Lobanov Andrey A.
  • Publications

Machine learning models to determine unobservable centrality-related parameter values for a wide range of nuclear systems at the energy of 200 GeV

Nuclear physics
  • Year: 2023
  • Volume: 16
  • Issue: 2
  • 75
  • 2990
  • Pages: 111-120

Machine learning models to find unobservable centrality-related parameter values in collisions of different nuclei in the initial energy range from 40 to 200 GeV

Nuclear physics
  • Year: 2023
  • Volume: 16
  • Issue: 2
  • 32
  • 2693
  • Pages: 121-131

A generator of deep inelastic lepton-proton scattering based on the Generative-Adversarial Network (GAN)

Nuclear physics
  • Year: 2023
  • Volume: 16
  • Issue: 4
  • 43
  • 2136
  • Pages: 181-188

Simulation of semi-inclusive deep inelastic lepton scattering on a proton at energies of 20 – 100 GeV on the basis of the Generative-Adversarial Neural Network

Nuclear physics
  • Year: 2023
  • Volume: 16
  • Issue: 4
  • 40
  • 2101
  • Pages: 189-197

A generative adversarial network as the basis for a semi-inclusive deep inelastic lepton scattering generator on a polarized proton

Nuclear physics
  • Year: 2024
  • Volume: 17
  • Issue: 1
  • 72
  • 1862
  • Pages: 93-102

Direct photon asymmetries in the longitudinally polarized proton-proton collisions at an energy of 27 GeV

Nuclear physics
  • Year: 2025
  • Volume: 18
  • Issue: 1
  • 0
  • 17
  • Pages: 142-148

Сообщить автору об опечатке:

Адрес страницы с ошибкой:

Текст с ошибкой:

Ваш комментарий или корректная версия: