An influence analysis of creep and plasticity characteristics on the spark plasma sintering process

Simulation of physical processes

In the paper, the spark plasma sintering (SPS) process for metal particles has been simulated based on experimental data and using the finite element method in the thermo-electro-mechanical formulation with taking into account the temperature influence on parameters of materials (nickel and copper). A comparison of obtained results with experimental data made it possible to create a computational model of the SPS process, the model being convenient to evaluate the influence of creep and plasticity parameters on the size of the interparticle neck forming in SPS. It was found that the creep effect significantly dominated over the plasticity influence on the process of forming the sintering neck at high temperatures. In this case, the variation of creep parameters in simulation also actively affects the formation of the neck.