Human visual model-based technology: measuring the geometric parameters of microinstrument
In the paper, a scheme of an optical microscope which includes a special bitelecentric optical system for the formation of a diode support and a telecentric objective for capturing the image has been designed and implemented. The use of such system makes it possible to reduce the diffraction effects at the edges of the shadow structure and to measure (using the microscope) the main parameters of a cutting microinstrument: its protrusion and diameter. An algorithm for modeling the two main visual channels of the human eye was developed. It allowed rapid detection of spatial-temporal processes and noise, and provided measuring the cutting edge contour of the instrument with a subpixel error (up to 0.01 pixel) and determining the dimensions of the cutting tool with an error of 0.5 μm.