Electron spectrometer for studying field-induced emission from nanostructured objects

Physical electronics

A novel electron spectrometer has been designed to study low-voltage field-induced emission of nanostructures such as nanoporous carbon, nanotubes, nanodia-mond and other carbon structures. The estimated high resolving power of the device is mainly achieved by using an original energy analyser of high energy dispersion and by retarding the electron beam by the factor of tens and hundreds in terms of energy. The analyser pass energy governs the absolute energy resolution ΔЕ of the spectrome-ter; ΔЕ value varies approximately in the range of 10 meV < ΔЕ < 300 meV. There are three different working modes adapted for emission of widely variable current. The minimal emission current at which energy analysis is still possible is approximately 0.1 nA. The spectrometer working modes were tested experimentally using a ther-moemitter as the test object. The study then proved that the recorded spectra reflected physical phenomena taking place on the emitter surface.