Analyzing the acoustic spectra of sound velocity and absorption in the amphiphilic liquids
The paper analyzes the theoretical approaches to the study of the acoustic spectrum and the speed of sound absorption in the frequency range up to 10 GHz in liquid systems. For example oxyethylated derivatives of normal decyl alcohol ODSn, belonging to nonionic surfactants (SAW) showed that at room temperature and low degrees of ethoxylation n acoustic spectra can be described in terms of the relaxation theory. It is shown that within the experimental error of the ODSn acoustic spectra, in the studied range of frequencies and temperature, are composed of two prime areas of acoustic dispersion. The results of calculations of relaxation and thermodynamic parameters of fast and ultrafast processes restructuring ODSn, which can be used in the development of combined technologies of enhanced oil recovery using surfactant solutions and various physical fields and factors.