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CONTRIBUTION OF INTERNAL IONIZATION PROCESSES  
IN SEMICONDUCTORS TO RADIATIVE LOSSES  

OF RELATIVISTIC ELECTRONS

A.E. Vasiliev1, V.V. Kozlovski1, S.N. Kolgatin2

1 Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation;
2 Bonch-Bruevich St. Petersburg State University of Telecommunications, 

St. Petersburg, Russian Federation

The study presents analysis of mass radiative energy losses (RL) incurred by relativistic 
electrons in different materials commonly used in semiconductor electronics. We have 
specifically focused on accounting for the processes of ‘internal’ ionization, resulting in the 
production of electron-hole pairs in semiconductors and dielectrics. We have established that 
accounting for these processes is the only method offering consistent explanations on the 
values of mass RLs observed experimentally. The analysis performed should allow to make 
more detailed predictions for the performance of semiconductor devices in real conditions, 
particularly, in space.

Keywords: relativistic electron, ionization potential, radiative energy losses, silicon, germanium, 
graphene 
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ВКЛАД ПРОЦЕССОВ ВНУТРЕННЕЙ ИОНИЗАЦИИ 
ПОЛУПРОВОДНИКОВ В ТОРМОЗНЫЕ ПОТЕРИ 

ЭНЕРГИИ РЕЛЯТИВИСТСКИХ ЭЛЕКТРОНОВ

А.Э. Васильев1, В.В. Козловский1, С.Н. Колгатин2

1 Санкт-Петербургский политехнический университет Петра Великого, 
Санкт-Петербург, Российская Федерация;

2 Санкт-Петербургский государственный университет телекоммуникаций 
им. проф. М.А. Бонч-Бруевича, Санкт-Петербург, Российская Федерация

Выполнен анализ массовых тормозных потерь энергии (ТПЭ) релятивистских 
электронов в различных материалах, используемых в полупроводниковой электронике. 
Особое внимание уделено учету процессов «внутренней» ионизации, приводящей к 
образованию электронно-дырочных пар в полупроводниках и диэлектриках. Показано, 
что только при таком учете удается непротиворечиво объяснить экспериментально 
наблюдаемые значения массовых ТПЭ. Проведенный в работе анализ позволит 
выполнять более детальное прогнозирование работоспособности полупроводниковых 
приборов в реальных, в частности космических, условиях.
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Introduction

While the effects of electron irradiation on 
the properties of semiconductor structures and 
devices have been considered in numerous papers 
and books [1 – 4], many aspects of this problem 
are yet to be fully understood. Most studies 
tend to focus on the role of elastic processes 
and the effect of emerging radiation defects on 
the properties of materials and devices [4 – 8]. 
The contribution from inelastic energy losses of 
bombarding particles is discussed to a far lesser 
extent. However, it is the inelastic processes that 
determine the resistance to electron radiation 
for a number of semiconductor devices, e.g., 
metal-oxide-semiconductor (MOS) structures 
and field-effect transistors [9]. 

The goal of our study is to investigate the 
ionization losses and the absorbed energy of 
relativistic electrons in different materials 
used in semiconductor electronics. In 
particular, we concentrated on the processes 
of ‘internal’ ionization leading to production 
of electron-hole pairs in semiconductors and 
dielectrics. Relativistic electrons of 0.9 MeV 
(V = 0.94c) were used as irradiating particles. 
The particles and the energy were chosen so 
that the computational data could be verified 
experimentally with the RTE-1V electron 
accelerator available at Peter the Great St. 
Petersburg Polytechnic University. 

Estimation of radiative energy losses 
of relativistic electrons within the Born 

approximation of scattering theory 

In general, calculating the absorbed energy 
is a complex problem that can be best solved 
by numerical methods. We confine ourselves 
to considering the situation when the thickness 
of the irradiated sample is much lower than 
the particle range, which is the case in most 
applied problems.

The absorbed dose De depends on linear 
radiative losses (RL) of the bombarding 
electrons (dE/dx) in the medium:

 De = (1/ρ)∙(dE/dx)Fe. (1)

Here ρ is the density of the medium, Fe is the 
exposure dose, often referred to as fluence.

The quantity (1/ρ)∙(dE/dx) which is called 
the reduced (or mass) RL, is more common 
in practice. For convenience, Eq. (1) can be 
transformed by introducing the units widely 
used for the quantities included in this 
formula: 

Dе = 1.6∙10-10(1/ρ)∙(dE/dx)Fe; (2)

De is given here in grays (Gy), mass RL 
(1/ρ)∙(dE/dx) in MeV∙(cm2/g), Fe in cm–2. 

 Eq. (2) allows calculating the absorbed 
dose at a known particle fluence. The inverse 
formula for estimation of the fluence required 
to obtain a known absorbed dose takes the 
following form: 

10
1 .

1.6 10 (1 / ) ( / )eF
dE dx−=

⋅ ρ ⋅
(3)

The stopping power of MeV electrons is 
mainly due to ionization and excitation of 
bound electrons in target atoms (ionizing 
losses). Therefore, the notions of radiative and 
ionizing energy losses are virtually identical 
in this case. Ionizing energy losses (IEL) of 
relativistic electrons due to excitation and 
ionization of target electrons are described by 
the Bethe formula obtained within the Born 
approximation of scattering theory [10]:

( )

4

2

2
2 1/2 2

2 2

2 1/2 2
2

2  

 –  2 2 1 1 
2 1

1 – 11 ,

)

8

( )
(

[ ( ) ]

ion e

e

atdE pN Ze
dx m V

m V Eln ln
I

 − = × 
 


× −β − +β + −β

−β
+ −β + 


(4)

where E is the kinetic energy of the relativistic 
electron, V is the velocity of the incident 
electron, β = V/c is the relativistic factor, I 
is the mean ionization potential of the target 
atoms. 
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IEL linearly depend on the number of 
electrons per unit of the target volume (elec-
tron density), Ne. Electron density, in turn, is 
known to be proportional to the density of the 
medium:

Ne = Z ∙ Nat = Z ∙ ρ ∙ N0/A. (5)

Here N0 is the Avogadro constant; A is the 
atomic mass of the medium.

The first (logarithmic) term in curly brack-
ets in the Bethe formula (4) exceeds the re-
maining terms by an order of magnitude in the 
given examples. For this reason, Eq. (4) can 
be simplified by omitting all terms except the 
first one. 

4 2

2 2 2
2 .

(2 1 )
ea

ion e

tdE N Ze m V Eln
dx m V I

 π − =   −β   
(6)

Let us express the squared initial velocity of 
the incident electron in terms of the relativistic 
factor

4 2 2

2 2 2 2
2  .

1( )2 
e

i n

at

o e

dE N Ze m c Eln
dx m c I

 π β − =   β −β   
(7)

Let us rewrite the factor in front of the 
logarithm in expression (7), introducing the 
Rydberg energy (ER) and the Bohr radius (r0) 
widely used in atomic physics

(8)

( )

0
8

4

2 2
0

2
0

2 0.53 10

3
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1 .6 eV;
2 4

4

e
R

e

m eE

r
m e

−

= − =
πε

πε
= =





(9)

Now Eq. (8) can be used for linear 
IEL to obtain the formula for mass RL 
(1/ρ)∙(dE/dx), given that the density of the 
medium ρ = А∙Nat/N0. 

2 2
0

2

2 2

2 2 2

1 8 

.
2 ( )1

Î R

ion

À

e

Ã

e

ÂdE N E r
dx m c

Z m c Eln
A I

π − = × ρ  

 β
×  ⋅β −β 

(10)

Or, substituting the universal constants, we 
arrive to:

( )2

6 2

2 2 2

1 MeV cm /g

0.511 100.154 ,
2 )1(

ion

dE
dx

Z Eln
A I

 − ⋅ = ρ  

 ⋅ ⋅β
= ⋅  ⋅β −β 

(11)

It is often assumed that normalized linear 
IEL reduced to electron density in the target 
(or normalized mass RL reduced to mass-to-
charge ratio of the target nucleus), 

2 2

2 2 2

1

1 ( ),
2 1( )

ion

e

dE A
dx Z

m c Eln K Z
I

    =   ρ    

 β
= = β −β 

(12)

is a quantity independent of the material of the 
stopping target, equal to 18/β2 [11]. 

 This implies that the contribution from 
variation of the mean ionization potential under 
the logarithm in Eq. (11) is small. Making 
this assumption, we can use Eq. (11) to easily 
calculate mass RL in any medium based on 
the experimentally found RL, for example, in 
aluminum [12]:

1 1

.

x Al

x Al

dE dE
dx dx

Z Z
A A

   
⋅ = ⋅ ×   ρ ρ   

   ×   
   

(13)

We believe that neglecting the contribution 
from the ionization potential of the target 
atoms and using Eq. (13) is ill-suited for our 
problems. For this reason, Eq. (11) was used 
to calculate RL in some materials common for 
semiconductor electronics. Semiconductors with 
different band gaps, and metals with different 
ohmic and rectifying contacts were selected. 
The mean ionization potential I and mass RL of 
electrons were approximated for these materials. 
The value of I was taken equal to [13]:

I = 11.5Z (for Z < 15),

I = 9.0Z (for large Z).
(14)

The data obtained are given in Table 1. The 
table also lists the coefficients for calculating 
the absorbed dose at a known fluence (by Eq. 
(2)) and calculating the fluence at a known 
absorbed dose (by Eq. (3)).
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As evident from Table 1, mass RL and 
conversion factors between the exposure and 
absorbed doses can differ by 1.7 times for most 
materials (with the atomic number Z ranging 
from 6 to 79). 

 The Bragg rule was used for the case 
when the stopping medium was a chemical 
compound consisting of several elements [13]. 
According to this rule, the stopping power of 
a complex substance is equal to the weighted 
sum of stopping powers of the constituent 
elements: 

1 2

1 21 2

1 .dE dE dE
dx dx dx

ω ω   ⋅ = ⋅ + ⋅   ρ ρ ρ   
(15)

where ω1 and ω2 are the relative proportions of 
elements in the compound (wt. %).

Eq. (15) was used to calculate the stopping 
powers of silicon oxide (dielectric) and silicon 
carbide (wide-bandgap semiconductor). Both 
values of 1/ρ∙(dE/dx) coincided and were equal 
to 1.61 MeV∙(cm2/g). 

Fig. 1 shows the curve for mass RL normal-
ized to mass-to-charge ratio of the target nu-
cleus K(Z), as a function of the nuclear charge; 
the dependence was obtained by Eq. (12). This 
curve can be extrapolated by the dependence

2 2
1( ) ln .constK Z

Z
 
 β  

 (16)

As follows from Fig. 1, substituting the curve 
with a straight line K(Z) = 18/β2 is not entirely 
acceptable for light and heavy targets.

According to the Bethe formula, targets 
with close values of Z should also have close 
values of mass RL. For example, it can be 

seen from Table 1 that the elements with 
Z = 13 (aluminum) and Z = 14 (silicon) 
have virtually the same calculated values 
of mass RL (1.53 and 1.56 MeV∙(cm2/g), 
respectively). However, it was experimentally 
confirmed in Ref. [14] that RL in silicon 
are higher than in aluminum by almost 1.5 
times (1.5 and 2.1 MeV∙(cm2/g), respectively). 
Possible explanations for this difference may 
lie in the mechanism of internal ionization in 
semiconductors. 

Contribution from internal ionization 
of semiconductors to radiative energy 

losses of relativistic electrons 

The concept of internal ionization is 
introduced for condensed matter. Internal 
ionization in semiconductors and dielectrics 
corresponds to the transition of valence 
electrons to the conduction band (band-to-band 
transition). Klein [15] suggested an equation 
relating the energy for production of an electron-
hole pair Ei and the band gap Eg (in eV): 

Ei = 2.67Eg + 0.87, (17)

establishing that the internal ionization energy 
is approximately three times more than the 
band gap.

Ei is higher than Eg because the energy of 
relativistic electrons is spent not only for 
ionization but also for generation of excited 
states in a solid, i.e., plasmons and phonons. 
Table 2 gives the energies Ei and Eg for the 
main materials used in modern semiconductor 
electronics (silicon, germanium) and graphene.

Since the average ionization potential, 
which is equal to ~9Z for most elements, 

Tab l e  1

Mean ionization potentials, mass RL, 
and coefficients for converting absorbed dose 

to fluence (and vice versa) for irradiation 
of different materials used in modern semiconductor 

electronics with 0.9 MeV electrons

Target 
material

I (1/ρ)∙(dE/dx) F/D
eV MeV∙(cm2/g) 1/Gy∙cm2

Graphene 69 1.72 3.6∙109

Aluminum 150 1.53 4.1∙109

Silicon 161 1.56 4.0∙109

Germanium 288 1.29 4.8∙109

Gold 711 1.04 6.0∙109
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is significantly (by orders of magnitude) 
higher than the energy for the production of 
electron-hole pairs in semiconductors, the 
main result of electron stopping is a sharp in-
crease in the concentration of charge carriers. 
Mass RL are estimated by substituting into 
Eq. (10) the energies for production of elec-
tron-hole pairs for the materials listed in Table 
2. The results obtained are given in column 3 
of Table 2. Comparing the data in Table 1 
and Table 2, we can conclude that taking into 
account internal ionization changes (that is, 
increases) the capacities for RL: for example, 
by almost 50 % for silicon and germanium (up 
to 2.23 MeV∙(cm2/g)). With this factor taken 

into account, the calculated values of mass RL 
(2.23 MeV∙(cm2/g)) are much closer to the ex-
perimental ones (2.21 MeV∙(cm2/g)) [14]. The 
black dots in the inset at Fig. 1 correspond to 
the values of mass RL normalized to mass-to-
charge ratio of the target nucleus, accounting 
for internal ionization for graphene, silicon, 
and germanium. Let us estimate the concen-
tration of electron-hole pairs produced by a 
single relativistic electron (Ne-p/F), dividing 
linear RL by pair production energy. This data 
is given in column 4. For example, this value 
for silicon is 1.4∙106 cm-1. Let us estimate the 
production rate of electron-hole pairs for the 
real electron accelerator running at Peter the 

 Fig. 1. Mass RL normalized to mass-to-charge ratio of target nucleus K(Z) 
as a function of nuclear charge; obtained by Eq. (12).

The inset shows mass RL as a function of the nuclear charge calculated by Eq. (11) 
within the Born approximation of scattering theory. The black dots indicate mass RL values obtained 

taking into account the internal ionization for graphene, silicon, and germanium

Tab l e  2

Band gap, energy for production of electron-hole pairs, 
mass RL and pair production rate by single relativistic electron 

for three semiconductor materials

Target 
material

Eg Ei (1/ρ)∙(dE/dx) Ne-p/F
eV MeV∙(cm2/g) cm–1

Graphene 5.2 18.7 1.94 1.6∙105

Silicon 1.12 3.6 2.23 1.4∙106

Germanium 0.67 2.9 1.99 3.7∙106
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Great St. Petersburg Polytechnic University. 
Irradiation with electrons is performed using 
an RTE-1V pulse accelerator. Pulse frequency 
is 450 Hz, pulse duration 370 μs, duty cycle 
1/6. A beam with a current of 1 mA and a 
cross-sectional diameter of 0.9 cm scans over 
an area of 2 × 40 cm. The mean current den-
sity of the beam during irradiation with elec-
trons is taken to be 12.5 μA∙cm-2; however, the 
current density in the pulse is much higher, 
reaching 6 mA∙cm-2. The electron flux density 
in the pulse at such currents is 3.6∙1016 cm-2s-1, 
and the total production rate for electron-hole 
pairs upon electron irradiation reaches a huge 
value (1.4∙106·3.6∙1016) = 5∙1022 cm–3s–1. An 
additional charge is generated upon irradiation 
of MOS structures and field-effect transistors 
at the insulator-semiconductor interface and 
in the bulk of the insulator due to production 
of electron-hole pairs, resulting in a change in 
the main characteristic, which is the threshold 
voltage of the device [9]. 

Summary

The results obtained in the course of our 
investigation led us to the following conclusions:

1. Accounting for internal ionization of 
semiconductors due to production of electron-
hole pairs changes (increases) the stopping 
powers of relativistic electrons, for example, by 
almost 50% for silicon and germanium. 

2. This in turn offers a consistent explanation 
for the values of mass RL observed experimentally. 

3. The analysis carried out in the study should 
allow making more effective and more detailed 
predictions for the performance of semiconductor 
devices in real conditions, particularly, in space. 
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Introduction

Ferroelectrics are multifunctional materi-
als with vast potential for practical applica-
tions in various devices, such as nonlinear 
capacitors, piezoelectric, pyroelectric, and 
electro-optical devices. Spontaneous polar-
ization switching by an applied electric field 
makes it possible to use these materials in 
data storage devices.

Recently, there has been a great focus on 
novel organic ferroelectrics. For example, di-
isopropylammonium chloride (C6H16NCl, 
DIPAC), with spontaneous polarization 
Ps ≈ 8.9 μC/cm2 and the Curie temperature 
Тс = 440 K [2], was discovered in 2006 [1]. 
New crystals were obtained several years later 
by replacing chlorine with bromine and iodine 
(characterized by larger ionic radii): diisopro-
pylammonium bromide (C6H16NBr, DIPAB) 
with the Curie temperature Тс = 426 K and 
spontaneous polarization Ps ≈ 23 μC/cm2 [3], as 
well as diisopropylammonium iodide (C6H16NI, 
DIPAI) with the parameters Тс = 378 K, 
Ps ≈ 5.17 μC/cm2 [4]. 

In particular, DIPAB has a spontaneous 
polarization value close to that in barium ti-
tanate, a high Curie temperature, and exhibits 
good piezoelectric response. These attributes 
make ferroelectrics of the diisopropylammo-
nium group an alternative to perovskite-type 
ferroelectrics. This is the reason for the growing 
interest in studies of these materials [2–6].

Furthermore, the structures incorporating 
ferroelectric composites based on such materi-
als may have unusual properties uncharacteris-
tic for homogeneous substances.

The dielectric properties of diisopro-
pylammonium chloride (DIPAC) nanopar-
ticles embedded in opal and MCM-41 sil-
ica matrices were considered in [7], where it 
was found that embedding such a compound 
into the opal pores shifts the phase transi-
tion temperature of the composite towards 
low temperatures and increases its expansion 
coefficient compared to the bulk sample. In 
addition, the thermal hysteresis of the phase 
transition increases in the opal nanopores. 
No anomalies of the dielectric constant re-
lated to the ferroelectric transition were ob-
served for DIPAC embedded into MCM-41 
molecular sieves because this compound is 
amorphous.

Ref. [8] reports on the studies of lin-
ear and nonlinear dielectric proper-
ties, accompanied by calorimetric mea-
surements, for a ferroelectric composite 

(DIPAB)1–x/(PbTiO3)x with the volume frac-
tion of lead titanate particles x = 0.1, 0.2 
and 0.3. It was established that adding lead 
titanate particles to diisopropylammonium 
bromide leads to a change in the sequence 
of structural phase transitions, an increase in 
the effective dielectric constant and dielec-
tric loss tangent (tgδ) of the composite. Two 
phases are observed in C6H16NBr in the tem-
perature range from 423 to 411 K (the ferro-
electric phase Р21 and the non-ferroelectric 
one P212121); the ratio between the phases 
depends on the fraction of lead titanate par-
ticles in the composite.

The goal of this study consists 
in establishing the effect of lead 
titanate particles on the properties of 
diisopropylammonium chloride in the  
(DIPAC)1–x/(PbTiO3)x composite.

Samples and experimental procedure

Diisopropylammonium chloride was ob-
tained by reacting diisopropylamine with 
a 30% aqueous solution of HCl followed 
by recrystallization from methyl alcohol. 
According to X-ray spectroscopy data, the 
obtained diisopropylammonium chloride 
was in the polar phase Р21 at room tempera-
ture, which corresponds to ICDD card 00-
009-0589. A non-polar crystal structure is 
observed in DIPAC at temperatures above 
Tс ≈ 440 K; it belongs to space group 2/m. 
The phase transition in DIPAC is classified 
as a first-order transition because there is a 
thermal hysteresis of about 4 K.

Lead titanate is a classical perovskite-type 
ferroelectric with the Curie tempera-
ture Тс = 763 K. PbTiO 3 is in a tetragonal 
ferroelectric phase at room temperature, with 
Ps ≈ 60 μK/cm2 [9]. 

Diisopropylammonium chloride powder 
with an average particle size of about 10 μm 
and lead titanate powder with an average 
particle size of about 1 μm were used to 
prepare the (DIPAC)1–x/(PbTiO3)x samples. 
The PbTiO3 content was varied from x = 0.10 
to 0.40 (x is the volume fraction of lead 
titanate). Samples for measurement were 
prepared by thorough mixing, followed by 
molding under a pressure of about 104 kg/cm2 
into disks 10 mm in diameter and 1.5 mm 
thick. Silver electrodes were deposited on the 
surface of the samples to conduct dielectric 
measurements. An electron micrograph of 
the surface of a composite sample without 
electrodes is shown in Fig. 1.
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Analysis of dielectric properties of the  
(DIPAC)1–x/(PbTiO3)x composite samples 
was carried out using an E7-25 digital LCR 
meter with a frequency range of 25–106 Hz 
and an operating voltage of 0.7 V. A TC-
6621 thermometer with a chromel-alumel 
thermocouple was used to measure the 
temperature. The temperature was determined 
with an accuracy of 0.1 K. The studies were 
carried during successive heating-cooling cycles 
at a rate of 1 K/min in the temperature range 
from 290 to 450 K in computer-controlled 
automatic mode.

Experimental results and discussion

The results of studies on the dielectric prop-
erties of polycrystalline DIPAC samples and 
(DIPAC)1–x/(PbTiO3)x composites at x = 0.10, 
0.20 and 0.25 are shown in Fig. 2. Analysis of 
the dependences for ε′(T) indicates that an ad-
ditional peak appears on the curves in the com-
posite with x = 0.10 both upon heating and upon 
cooling; the peak is also observed for composites 
with a volume fraction of PbTiO3 up to 0.30.

If x > 0.30, the temperature peaks of the 
phase transition are smoothed out with a fur-
ther increase in the volume fraction of inclu-
sion particles in pure DIPAC upon heating 
(T1) and upon cooling (T2) . At the same time, 
the amplitudes of additional peaks on the tem-
perature dependences of the dielectric constant 
upon heating (T3) and upon cooling (T4) in-
crease with increasing volume fraction of lead 
titanate particles.

The temperature value of the main phase 
transition in composite samples with the 
volume fraction of inclusions up to 0.30 does 
not change significantly compared to the pure 
DIPAC sample (Fig. 3). The temperature of 
the additional peak in composite samples 
with x ranging from 0.10 to 0.30 is virtually 
independent of the fraction of inclusions, and 
decreases slightly (by about 5 K) for the sample 
with x = 0.40.

To explain the appearance of new 
phase transitions in the composite, let us 
consider a system of interacting particles. 
According to phenomenological theory, the 

Fig. 1. Electron micrograph for surface
of (DIPAC)0.90/(PbTiO3)0.10 composite sample at a magnification of 2,000 times 

(dark matrix corresponds to diisopropylammonium chloride particles, 
light inclusions to lead titanate particles)
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Landau–Ginzburg expansion in terms of the 
degree of polarization, serving as the order 
parameter, is used to describe the phase 
transition in a homogeneous ferroelectric 
[10]. The free energy for composites that are 
a mixture of ferroelectric powders is the sum 
of the energy of the particles included in the 
composite and the energy of their interaction. 
In view of these considerations, the free energy 
can be written in the following form:

2 4
0

2 4
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1 1
2 4

1 1
2 4

.
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j

i i i i i i
i V

j j j j j i
j V
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where Pi, Pj are the polarization values for 
particles of the first kind (for example, DIPAC) 
and particles of the second kind (for example, 
PbTiO3), respectively; ΔFij is the interaction 
energy between particles, which is mainly 
electrical in nature in case of composites. 

The strength of the electric field generated 
by a single-domain particle 1 μm in diameter at 
a distance of 50 μm from it in the direction of 
polarization can be estimated as approximately 
5·106 V/cm for lead titanate and 7·105 V/cm for 
DIPAC.

The energy of electrical interaction between 
dipole particles is the sum of the Keesom and 
Debye energies. The maximum interaction en-
ergy of two dipole particles can be written as
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where the first term is the Keesom energy 
(describing the interaction of particles with 
complete dipole moments), and the second and 
the third are the Debye energy (the interaction 
of dipole and non-dipole particles due to 
induced polarization); p1, p2 are the dipole 
moments of particles. 

The energy ΔFij for a system of dipole 
particles has the form
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where Pi and Pj refer to some average values of 
particle polarization; this is due to the scatter 
in the values of dipole moments of particles 
both in magnitude and in direction.

Fig. 2. Temperature dependences for dielectric constant
of (DIPAC)1-х/(PbTiO3)х composite, recorded at a frequency of 10 kHz in a heating-cooling cycle; 

x = 0 (1), 0.10 (2), 0.20 (3), 0.25 (4)
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The phase transition temperatures of DIPAC 
particles in the composite are found from the 
condition of minimum free energy, taking into 
account the interaction:

2

4

1
2

1 0.
4
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ii i V
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dF d P
dP dP

P dv F
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According to expressions (3) and (4), 
the interaction energy of particles and, 
consequently, the phase transition temperatures 
for DIPAC in the composite differ from the 
phase transition temperatures of homogeneous 
DIPAC. The temperature shift of the phase 
transition depends on several quantities: 

concentration and size of inclusion particles, 
the values of spontaneous polarization of 

these particles,
the degree of their polarization,
 the dielectric constant of these particles.
Analyzing the dependence of phase tran-

sition temperatures of the composite on the 
volume fraction of lead titanate (see Fig. 3), 
we can assume that the mixture contains two 
states of DIPAC particles: 

the first is particles with no PbTiO3 particles 
in their immediate vicinity; their phase transi-
tions correspond to phase transitions in isotro-
pic DIPAC (T1 and T2); 

the second is the particles adjacent to dipole 

PbTiO3 particles; their phase transition tem-
peratures are determined taking into account 
the interaction energy (T3 and T4), as follows 
from relations (3) and (4). 

This is confirmed by the fact that the am-
plitudes of the curves ε′(Т) (Fig. 3) increase 
with increasing concentration of PbTiO3 for 
particles of the second type, and the number of 
particles of the first kind is negligible with x > 
0.30. The phase transition temperatures T3 and 
T4 are virtually independent of the concentra-
tion of lead titanate particles in the range of x 
values from 0.10 to 0.30, which may point to 
some anomalies in the thermodynamic poten-
tial of DIPAC at these temperatures, while a 
small change in the interaction energy leads to 
phase transitions.

Conclusion

We have carried out studies on the dielectric 
properties of polycrystalline DIPAC samples 
and (DIPAC)1–x/(PbTiO3)x composites at x = 
0.10, 0.20 and 0.25. Analysis of the obtained 
data indicates that an increase in the volume 
fraction x (PbTiO3 content) from 0.10 to 
0.30 produces additional phase transitions for 
composites based on diisopropylammonium 
chloride and lead titanate. The main transition 
peak was practically indistinguishable at x > 
0.30. The appearance of an additional phase 
transition can be explained by the dipole-
dipole interaction of the components of the 
composite.

Fig. 3. Positions of temperature peaks depending on volume fraction of inclusions 
in (DIPAC)1–х/(PbTiO3)х composite samples:

T1, T2 are the temperatures of the main peak during heating and cooling, respectively; 
T3, T4 are the temperatures of the additional peak during heating and cooling, respectively
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A modification of an embedded-atom method (EAM)-type potential is proposed for a quan-
titative description of equilibrium and non-equilibrium properties of metal systems within the 
molecular dynamics framework. The modification generalizes the previously developed linear 
correction to EAM-type potentials and asymptotically approaches zero at large interatomic 
distances. A general procedure for constructing this modification is outlined and its relation 
to the linear correction is elaborated. To benchmark this procedure, we examine the melting 
phase transition and several equilibrium properties of finite-size nanosystems made of silver, 
gold and titanium. The simulations performed with the modified potential predict higher bulk 
melting temperatures of the metals and agree better with experimental values as compared to 
the original EAM-type potential. Our results show that the modification works well for metals 
with both cubic and hexagonal lattice structures. The Gupta potential is chosen as an example 
but the modification proposed can also be applied to other potentials of the EAM type.
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Предложена модификация потенциалов погруженного атома (EAM) для описания 
равновесных и неравновесных свойств металлических систем в рамках классической 
молекулярной динамики. Данная модификация обобщает разработанную ранее 
авторами линейную поправку к потенциалам типа EAM и асимптотически убывает на 
больших межатомных расстояниях. Описана процедура построения модифицированных 
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потенциалов и показана связь данной модификации с линейной поправкой. Предложенная 
модификация использована для моделирования процесса плавления и изучения ряда 
равновесных свойств наносистем из серебра, золота и титана. Результаты расчетов, 
проведенных при помощи модифицированного потенциала, предсказывают более 
высокие температуры плавления металлов, по сравнению с изначальным потенциалом 
типа EAM, что лучше согласуется с экспериментальными данными. Многочастичный 
потенциал типа Гупта рассмотрен в качестве примера, но предложенная модификация 
может также применяться и к другим потенциалам типа EAM.
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Introduction
Computer simulations based on atomistic 

models have emerged as a powerful tool for the 
analysis of physicochemical processes occurring 
in materials and related materials properties [1]. 
A vast number of atomistic simulations employ 
molecular dynamics (MD) methods that require 
the evaluation of total potential energy of many-
atom systems and the forces acting on constituent 
atoms [2, 3]. MD simulations provide insights 
into many physical processes, such as diffusion 
[4–6], plastic deformation [7, 8], melting [9–
11], crystallization [10, 12] and other phase 
transformations [13, 14]. All of these processes 
happen on temporal and spatial scales exceeding 
by far those accessible by ab initio methods. 
In order to reach these scales, semi-empirical 
interatomic potentials parameterized for specific 
material compositions and structures are used 
[3, 15–17]. A potential constructed by fitting 
to a specific set of properties should perform 
well for other properties that were not explicitly 
considered during its construction phase [18].

Different interatomic potentials [19–24] 
belonging to a general class of embedded-atom 
method (EAM)-type potentials are commonly 
used in MD simulations of metal systems [25]. 
In the past decades, more complex potentials, 
based on the modified EAM (MEAM) or the 
second-neighbor (2NN) MEAM, have also been 
developed for different metals and alloys (see, 
e.g., a few recent examples [26, 27]). Parameters 
of these potentials are usually fitted to reproduce 
experimental data on the properties of bulk 
materials (e.g., cohesive energy, equilibrium 
lattice constants, bulk modulus, elastic 
constants, vacancy-formation energy, etc.) or 
fitted to zero-temperature ab initio calculations 
of perfect crystalline structures.

It has also been widely discussed that EAM-
type potentials are less accurate in describing 
the dynamics of systems being far from 
equilibrium, for instance, the melting phase 
transition. In particular, these potentials often 
struggle to reproduce the experimental values 
of melting temperature for bulk metals and 
yield the discrepancy up to several hundred 
degrees [5, 28–30]. This indicates the necessity 
to modify the exploited force fields in order to 
enable a more accurate description of systems’ 
properties at elevated temperatures. An 
accurate description of both equilibrium and 
non-equilibrium properties of metal systems 
is important, e.g., for studying irradiation-
driven phase and structural transformations of 
nanostructures [31, 32] or irradiation-induced 
chemistry underlying novel nanofabrication 
techniques [33, 34].

Different approaches to account for finite-
temperature effects in classical force fields 
for metal systems have been discussed in 
literature. A method for re-parameterization 
of interaction potentials was proposed [35] 
to adjust the calculated melting temperature 
of materials without affecting mechanical 
properties to which the potentials were fitted. 
In that method, the melting temperature was 
calculated using a trial interatomic potential 
and the Gibbs–Duhem equation (which relates 
changes in the chemical potential of a system 
to changes in its temperature and pressure) 
was then solved to update the parameters of 
potentials. This method was applied [35] to 
re-parameterize an EAM-type potential for 
Al and improved the calculated bulk melting 
temperature without considerable change 
in other properties. A correction to a many-
body force field for titanium proposed in Ref. 
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[36] included the contribution of thermal 
excitations of electronic degrees of freedom. 
In that approach, an EAM-type potential 
was augmented by an additional term (related 
to electronic entropy) that arises from the 
Sommerfeld theory of metals. According to 
that theory, there is a temperature-dependent 
contribution to the free energy of a metal 
system that depends also on the density of 
states at the Fermi energy. In Ref. [37], several 
parameterizations of EAM-type potentials for 
Ti describing defects, plasticity and melting 
were presented. These potentials fit well to 
either low- or high-temperature experimental 
data but could not describe both temperature 
regions simultaneously. On this basis, a 
temperature-dependent potential, being a 
combination of potentials operating better in 
different regions, was suggested to study the 
properties of Ti in a wide temperature range. 
The knowledge accumulated in these studies 
suggests that modifications of conventional 
EAM-type potentials are required in order to 
match the calculated non-equilibrium properties 
(the melting temperature in particular) of metal 
materials to experimental values.

In our previous work [38], we presented 
a modification of an EAM-type potential 
(considering a many-body Gupta potential 
[39] as an example). With that modification, 
both the melting temperature and the near-
equilibrium properties of selected metal 
systems were reproduced. It was revealed 
that augmenting steepness of the interaction 
potential by enhancing its repulsive part leads 
to an increase of the melting temperature. 
This happens because a higher thermal energy 
is needed to reach the threshold of atomic 
vibration amplitudes at which the melting 
occurs. To that end, the original EAM-type 
potential was augmented by adding a linear 
term to the repulsive part [38]. The linear 
correction represented a minor change to 
the potential energy but led to a significant 
increase of the melting temperature. It was 
applied to study thermal, geometrical and 
energetic properties of magnesium, titanium, 
platinum and gold, yielding a good agreement 
with experimental results. In Ref. [40], this 
method was used to evaluate melting points 
of finite-size NiTi nanoalloys with different 
composition of Ni and Ti. These results were 
used to evaluate bulk melting temperatures 
of Ni1−xTix alloys, which agreed with an 
experimental phase diagram for the NiTi 
material.

In this paper, the previously developed 
methodology is generalized in the form of a 
new modification of an EAM-type potential. 
This modification represents a linear function 
multiplied by a sigmoid function, which 
gradually tends to zero beyond a given 
distance. A general procedure for constructing 
this modification is outlined and its parameters 
are related to the parameters of the linear 
correction [38]. The modified EAM-type 
potential is used for MD simulations of 
melting of nanometer-sized nanoparticles 
made of silver, gold and titanium. Structural 
and energetic equilibrium properties of these 
systems, such as lattice constants, cohesive 
energy and vacancy formation energy are also 
analyzed. Our results demonstrate that the new 
modification is applicable for metals with both 
cubic and hexagonal crystalline lattices. To be 
consistent with our previous works [38, 40] the 
Gupta potential is considered as an example but 
we stress that the modification proposed can 
also be applied to other interatomic potentials 
of the EAM type, e.g., to Sutton–Chen [20] or 
Finnis–Sinclair [41] potentials.

EAM-type Gupta potential

Similar to other many-body potentials of the 
EAM type the Gupta potential is constructed 
as a sum of (i) a short-range repulsive term 
that stems from the repulsion between atomic 
cores and (ii) a long-range attractive term 
which imitates delocalization of the outer-shell 
electrons and is related to electron density at 
a given atomic site. The total energy of an 
N-atom system interacting via an EAM-type 
potential reads as

1 1

1 ( ) ( ),
2

N N

ij i i
i j i i

U V r F
= ≠ =

= + ρ∑∑ ∑ (1)

Where V(rij) is the short-range repulsive in-
teraction between atoms i and j separated by 
the distance rij; the attractive term Fi stands for 
the energy obtained by embedding atom i into 
the local electron density ρi provided by the 
remaining atoms of the system. 

The functional form of Fi(ρi) may vary in 
different EAM-type potentials [25] while the 
Gupta potential employs a specific form of this 
function,

( ) .i i iF ρ ∝ − ρ

This functional form is based upon the 
second-moment approximation of the tight- 
binding model [42, 43], according to which the 
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attractive many-body term is related to the en-
ergy of d valence electron band and expressed 
as a square root of ρi. The latter is constructed 
empirically as a linear superposition of electron 
charge densities of constituent atoms, 

( ).i ijj i
r

≠
ρ = ψ∑

Within the Gupta representation, the func-
tions V(rij) and ψ(rij) are introduced in expo-
nential forms so that the total potential energy 
UGup reads as follows:
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where d is the first-neighbor distance; p, q are 
related to bulk elastic constants; ξ represents an 
effective orbital-overlap integral; A adjusts the 
cohesive energy.

The parameters for silver, gold and titanium 
used in this work were taken from Ref. [22].

Linear correction to EAM-type potentials

The EAM-type Gupta potential (2) 
corrected with the linear term Ulin introduced 
in Ref. [38] reads

U U U

U Br C

lin

ij
i j

N

� � �

� � �� �
�
�

Gup

Gup

1

2 1,

, (3)

where B and C are parameters.

The linear form was chosen to match the 
curvature of the modified potential energy profile 
in the vicinity of the equilibrium point (governed 
by the second derivative of potential energy U) to 
that of the original EAM-type potential.

As discussed in Ref. [38], the term Brij (B > 
0) makes the potential energy profile steeper at 
interatomic distances exceeding the equilibrium 
point r0 whilst also slightly changing the depth 
of the potential well at r0. The constant term 
C < 0 was therefore added to mitigate the 
latter effect. In Ref. [38], parameters B and C 
were obtained empirically for a specific cutoff 
distance rc for titanium, gold, platinum and 
magnesium. As shown below, these parameters 
can be derived for any material and any rc using 
the following analytical estimate.

The correction to an EAM-type potential 
should not change the cohesive energy of a 
bulk material to which the potential was fitted. 
Therefore, the change in the total potential 
energy due to a linear correction should be 
equal to zero. If we approximate the real 
crystalline structure of a metal with a uniform 
distribution of atoms with number density n0, 
this condition can be written as

( )0 0,
c

ijr r
n Br C dV

<
+ =∫ (4)

leading to the relation

3 .
4 cC Br= − (5)

Fig. 1 shows (lines) the calculated 
dependence C(B) for gold and titanium for 
different values of rc. These parameters of 
the linear correction leave intact the cohesive 
energy of bulk metal systems. Bulk gold and 

Fig. 1. C(B) dependence for Au (a) and Ti (b) for different cutoff values of rc; 
lines show the results obtained using Eq. (5); symbols show the results of structure optimization 
calculations which account for the realistic crystal structures (see the ‘Results and discussion’ section)
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silver have fcc crystal lattices and very similar 
lattice constants, so the results shown for gold 
also describe silver crystals. For each metal 
we consider three cutoff distances between 
6 and 8 Å, corresponding to minima in the 
radial distribution function (see the vertical 
lines in Fig. 2). The indicated values of rc were 
chosen following Ref. [22]. In that work, the 
parameters of the Gupta potential for the fcc 
metals were derived accounting for interatomic 
interactions up to the fifth-neighbor shell, while 
the suggested cutoff values for titanium and 
other hcp structures corresponded to inclusion 
of seven to eight shells of neighboring atoms.

The linear correction causes a small dis-
placement ∆r of atoms from their equilibrium 
positions defined by the original EAM-type po-
tential. Expanding U in a Taylor series about 
the equilibrium atomic positions for the origi-
nal potential and keeping only the first term of 
this expansion one evaluates a change in po-
tential energy associated with ∆r as

� �

�

U F r

C
B
n r

lin� � �
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�
�

�
�
�

2

3

4

3

3 3

2 0

�
.

(6)

As it was demonstrated in our earlier work 
[38], augmenting steepness of the interatomic 
potential beyond the equilibrium point by en-
hancing the repulsive contribution of the force 
field leads to a rise of the melting point. It 
happens because an increased thermal energy 
is needed to reach the threshold of atomic vi-
bration amplitudes at which the melting phase 
transition occurs. Knowing the experimental 
bulk melting temperature Texp

m and the value 
predicted by the original Gupta potential, TGup

m , 

parameters B and C can be chosen such that 
an increase in the melting temperature will be 
equal to ΔT = Texp

m  – TGup
m .

Eqs. (5) and (6) define, for any rc, a 
combination of parameters B, C that reproduce 
experimental values of cohesive energy and 
melting temperature of bulk materials. These 
conditions were used to define B and C for the 
three metals studied.

Generalized modification of 
EAM-type potentials

In this section, we generalize the above 
described methodology and propose a new 
modification of an EAM-type potential. The 
modification should keep features of the linear 
correction, i.e., maintain its behavior in the 
vicinity of atomic equilibrium points and 
enhance the repulsive interactions with an 
increase of atomic displacements. We construct 
the modification in such a way that it contains a 
parameter describing the characteristic range of 
the potential thus eliminating the dependence 
of the potential on the choice of the cutoff 
distance. These conditions are fulfilled by 
multiplying Ulin by a sigmoid function which 
is equal to unity at small interatomic distances 
and asymptotically approaches zero beyond a 
given distance. The modified EAM-type Gupta 
potential then reads as

U U U

U
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The parameters B̃ and C̃ have the same 
meaning as B and C in Eq. (3): B̃ defines an 
additional force acting on the nearest atoms 

Fig. 2. The calculated radial distribution functions (RDFs) for 10-nm Au (a) and Ti (b) nanoparticles 
(composed of approximately 30,000 atoms). The cutoff values of rc used are shown by dashed lines
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and C̃ adjusts the depth of the potential well 
in the vicinity of the equilibrium point where 
U = 0. The parameter λ describes the slope 
of Umod at large interatomic distances, while 
rs defines the sigmoid’s midpoint and hence 
the range of this potential. Fig. 3 shows the 
potential Umod for a pair of atoms as a function 
of interatomic distance r. Due to its sigmoid-
type shape, Umod(r) asymptotically approaches 
zero and its range serves as a natural cutoff 
distance for this interaction.

For each pair of atoms, the potential Ulin 
grows monotonically with interatomic distance 
up to the cutoff rc, and all atoms located 
within the sphere of radius rc experience the 
same force exerted by a given atom. On the 
contrary, Umod has a maximum at interatomic 
distances of about 5–8 Å depending on the 
choice of λ and rs (see Fig. 3). Thus, the force 
exerted by an atom due to Umod enhances 
interaction with several nearest atomic shells 
while the interaction with more distant atoms 
weakens. The strength of this interaction is 
governed by the steepness of the potential 
beyond its maximum, i.e., by the parameter 
λ. Therefore, the force acting on the nearest 
neighbors due to Umod should exceed (by the 
absolute value) the force Flin as its effect is 
compensated by weaker interactions with 
more distant atoms. Thus, for each pair of 
atoms interacting via Umod(r), the initial slope 
of the potential should be steeper than the 
slope of Ulin(r), i.e., B̃ > B.

To analytically derive parameters of the 
new modification, Ulin(r) in Eqs. (4) and (6) 
was substituted with Umod(r), a piecewise lin-
ear approximation of the sigmoid-type func-
tion Umod(r), see Eq. (8) in Appendix. Then, 
parameters of this function were expressed 
through the parameters B and C of the lin-
ear correction. As a last step of this proce-
dure, Umod(r) was fitted with Umod(r) to derive 
λ and rs. Further technical details are given 
in the Appendix. The parameters of Umod used 
for an analysis of melting temperature and 
near-equilibrium properties of silver, gold 
and titanium nanosystems are summarized 
in Table 1. Details of this analysis are pre-
sented below in the ‘Results and Discussion’ 
section.

The modification Umod (7) is qualitatively 
similar to the well-known Dzugutov potential 
[45] which was developed to model glass-
forming liquid metals. The Dzugutov potential 
coincides with the Lennard–Jones potential at 
small interatomic distances but has a maximum 
beyond the equilibrium point. This enables 
the suppression of crystallization and enforces 
the emergence of icosahedral structures. The 
maximum of Umod corresponds to the positions 
of more distant atoms (see Fig. 3 and the 
RDFs in Fig. 2). As a result, the modification 
Umod does not affect crystal structure but leads 
to an increase in the melting temperature 
whilst slightly changing the near-equilibrium 
properties of metals.

Fig. 3. Plots of Umod(r) (7) for different values of the parameters (solid lines) and Ulin (a dashed gray line) 
vs. the interatomic distance r, and also the piecewise linear approximation Umod (r) (8) (dotted curves, 
see the Appendix for details). The used procedure of deriving the parameter values is given in the text
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Computational details

All simulations described in this work were 
conducted using the MBN Explorer soft-
ware package [46]. We considered spherical 
nanoparticles with radii from 1 to 5 nm (rang-
ing from 250 to 30,000 atoms) that were cut 
from ideal silver, gold and titanium crystals. 
The systems were constructed using the MBN 
Studio software [47].

Prior to the analysis of the structural and en-
ergetic parameters of each system, energy mini-
mization calculations were performed using the 
velocity-quenching algorithm. The MD simula-
tions of the melting process were performed using 
a large simulation box of 20 × 20 × 20 nm in 
the NVT canonical ensemble. The temperature 
T was controlled by a Langevin thermostat with 
a damping time of 1 ps. The nanoparticles were 
heated up (starting from the initial temperature T0 
well below the expected melting temperatures, T0 
= 300 K for Ag and Au and 1000 K for Ti) with 
a constant heat rate of 0.5 K/ps, which is within 
the range of typical values used for MD simula-
tions of phase transitions. The total simulation 
time for each run was 3 ns. The time integration 
of the equations of motion was done using the 
velocity-Verlet algorithm [2] with an integration 
time step of 1 fs. In the calculations performed 
with the linear correction Ulin, the interatomic 
interactions were truncated at the cutoff radius 
rc ranging from about 6 to 8 Å as shown in Fig. 
2. In the case of the potential augmented with 
Umod, its range served as a natural cutoff distance, 
which varied between 8 and 9 Å.

The melting temperatures of nanoparticles 
were determined from the analysis of heat 
capacity

( )/V V
C E T= ∂ ∂

defined as a partial derivative of the internal 
energy of the system with respect to temperature 

at a given volume. A sharp maximum of CV 
was attributed to the nanoparticle melting and 
the position of the maximum was referred to 
as the nanoparticle’s melting point. The bulk 
melting temperature Tbulk

m was estimated by 
extrapolating the obtained values to the N → 
∞ limit according to the Pawlow law [48, 49]

3/1−+= NTT m
bulk

m γ

with γ being the factor of proportionality.

Results and discussion

Fig. 1 shows the dependence C(B) that 
describes the parameters of the linear correction 
Ulin at different values of cutoff rc. Dashed lines 
were obtained by means of Eq. (5) within 
the uniform density model (see the section 
‘Linear correction to EAM-type potentials’), 
while symbols show the results of structure 
optimization of gold and titanium systems 
with realistic crystal structures. In the case of 
structure optimization, the parameters B and 
C were chosen to match experimental cohesive 
energies [50]. The outcomes of the uniform 
density model are in good agreement with 
the results of optimization calculations. Table 
2 summarizes the bulk cohesive energy for 
silver, gold and titanium, calculated with the 
linear correction as well as the experimental 
values and the results obtained by means of the 
original EAM-type Gupta potential.

Fig. 4 shows the melting temperature 
of bulk silver, gold and titanium calculated 
using the linear correction Ulin to the Gupta 
potential, Eq. (3), at different values of the 
parameter B and the cutoff rc. The parameter 
C was defined according to Eq. (5). Symbols 
denote the results of MD simulations of finite-
sized nanoparticles melting, extrapolated to the 
bulk limit. The figure shows that the calculated 
melting temperature increases linearly with B.

T ab l e  1
Parameters of the potential Umod 

Element B̃, eV/Å C̃, eV λ , Å–1 rs, Å
Ag 0.009 – 0.048 5.93 7.10
Au 0.026 – 0.145 4.68 7.36
Ti 0.052 – 0.269 2.77 6.68

Nota t i on : B̃ is an additional force acting on the nearest atoms; C̃ adjusts the depth of 
the potential well in the vicinity of the equilibrium point where U = 0; λ describes the 
slope of Umod at large interatomic distances; rs defines the sigmoid’s midpoint.
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These results can be used to evaluate 

( ) .lin Gup
m mT T B T∆ = ∆ −∆

As follows from Eq. (6), 

� � �U k T r� � ,

where ∆r stands for an increase in the ampli-
tude of thermal vibrations of atoms with re-
spect to the values predicted by the original 
Gupta potential. 

The slope of ∆T(B) is therefore proportional 
to the distance by which the atoms should be 
additionally displaced from equilibrium positions 
to initiate the melting process at the temperature 
corresponding to the experimental value. For sil-
ver and gold Δr ≈ 0.09 Å, which is about 3% of 
their nearest-neighbor distances. For titanium we 
observed the dependence of ∆r on the cutoff dis-
tance. For smaller cutoff values, rc = 6.2 Å and 
6.8 Å, an increase in the amplitude of thermal 
vibrations is equal to 0.06 Å and it increases up 
to 0.09 Å for rc = 8.1 Å. These results suggest 

that an increase in the amplitude of thermal vi-
brations by a few percent leads to a dramatic rise 
of the melting point. A much steeper slope of 
∆T(B) for Ti at rc = 8.1 Å suggests that more dis-
tant atoms located in a concentric shell between 
7 and 8 Å make a significant contribution to the 
melting process and the original Gupta potential 
cannot account properly for this contribution.

Tables 2–4 summarize the results on 
structural and energetic properties of silver, 
gold and titanium nanocrystals obtained with 
the sigmoid-type modification Umod (7). These 
results are compared to those obtained by means 
of the original EAM-type Gupta potential (2) 
and the linear correction Ulin (3).

As mentioned above, the calculated bulk 
cohesive energies are summarized in Table 
2. Neither linear correction nor sigmoid-type 
modification significantly change the values 
predicted by the original Gupta potential; 
all these values are in good agreement 
with experimental data [50] with a relative 
discrepancy of less than 0.5%.

Fig. 4. The calculated dependences of the melting temperature of bulk silver (a), gold (b) 
and titanium (c) on the parameter B at the different cutoff rc values (symbols) as well as the least-squares 

fit to these results (solid lines). Experimental values from Ref. [50] are shown by dashed lines.
The calculation procedure is given in the text. B = 0 corresponds to the original Gupta potential, Eq. (2)

Tab l e  2
Comparison of the calculated bulk cohesive energy values 

with experimental data

Bulk cohesive energy, eV per atom

Element UGup UGup + Ulin UGup + Umod
Experiment

[50]
Ag 2.96 2.96 2.97 2.96
Au 3.78 3.77 3.78 3.78
Ti 4.87 4.87 4.83 4.85

Notation: UGup is the original Gupta potential, Eq. (2); (UGup + Ulin) is the one corrected by Ulin, Eq. (3); 
(UGup + Umod) is the one corrected by the sigmoid-type modification Umod, Eq. (7), proposed in this work.
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Table 3 presents the vacancy-formation 
energy that is the amount of cohesive energy 
required to form a vacancy in a crystal. It is 
defined [62, 63] as

( )1

1

( 1)

1 ,

coh coh
vf N N

N N

E N E E

NE E
N

−

−

≡ − − =

−
= −

where 

1 1

,
( 1)

coh
N N

coh
N N

E NE
E N E− −

=

= −
are the potential energies of systems containing 
N and (N − 1) atoms, whereas Ecoh

N and Ecoh
N–1 

are the corresponding cohesive energies per 
atom. The calculated values (columns labeled 
as ‘UGup’, ‘UGup + Ulin’ and ‘UGup + Umod’) are 
compared with available experimental data 
and the results of DFT calculations and MD 
simulations employing different EAM-type 
potentials.

The values calculated with the original 
Gupta potential are consistent with some ex-
perimental and theoretical values reported in 
literature [22, 23, 52, 55, 57], whereas other 
works predicted either smaller or much larger 
values of Evf. Note that the theoretical re-
sults reported in literature were obtained with 

different EAM-type potentials (Finnis–Sinclair 
and Gupta potentials as well as a distinct po-
tential introduced in Ref. [54]) as well as with 
different EAM and modified EAM (MEAM) 
potentials. The variety of potentials and pa-
rameterizations used has resulted in a large (up 
to 40 %) discrepancy between the calculated 
values of Evf.

Calculations performed with the Gupta po-
tential corrected by Ulin (see the column ‘UGup + 
Ulin’) yield smaller values of Evf as compared to 
the original Gupta potential, and the magnitude 
of the decrease depends on the parameter B. 
The values of Evf listed in Table 3 were obtained 
for each metal using the B values that reproduce 
the experimental bulk melting temperatures (see 
Fig. 4). The figure shows that for rc ≈ 8 Å, Å the 
value of B for silver, 0.0016 eV/Å, is three times 
smaller than that for gold, 0.005 eV/Å, and five 
times smaller than for titanium, 0.008 eV/Å. As 
a result, the vacancy-formation energy for silver 
calculated by means of the linear correction is 
slightly (by about 5 %) smaller than the value 
predicted by the original Gupta potential. For 
gold and especially titanium, larger values of 
B should be used to reproduce the experimen-
tal bulk melting temperatures, which leads to a 
more pronounced decrease of Evf. The magni-
tude of this discrepancy for titanium is within 

Tab l e  3
Comparison of the vacancy formation energy E

vf 
obtained in this paper

with the published experimental and calculated data

Element

Vacancy formation energy Evf , eV

UGup UGup+Ulin UGup+Umod Experiment Calculation
EAM-type DFT

Ag 0.94 0.90 0.91 0.99±0.06[52]
1.09±0.10 [53]

0.79[19] (Gupta)
0.88[22] (Gupta)
0.97 [23] (EAM)

1.10 [54]
–

Au 0.72 0.58 0.81 0.62–0.67 [55]
0.70–1.10 [55]

0.60[19] (Gupta)
0.75[22] (Gupta)
1.03 [23] (EAM)

1.10 [54]
–

Ti 1.49 1.22 1.44 1.55 [56]

1.43 [21] (FS)
1.49 [57] (EAM)
1.56[58] (Gupta)
1.78[59](MEAM)
1.79[28](MEAM)

1.97
[60]

2.14 
[61]

Nota t i on : UGup corresponds to the Evf value calculated with the original EAM-type Gupta potential; (UGup+Ulin), 
(UGup+Umod) correspond to the Evf values done using the potential corrected by Ulin and the new modification Umod; 
EAM, MEAM – embedded-atom method and modified EAM [51]; DFT is the density functional theory; FS is 
the Finnis–Sinclair potential [41].
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the uncertainty range of the existing theoretical 
data obtained by means of different EAM-type 
potentials (see Table 3). In MD simulations re-
ported in literature [21, 28, 57–59] Evf varies 
from about 1.4 to 1.8 eV while DFT calcula-
tions [60, 61] predicted even larger values up to 
2.1 eV.

The sigmoid-type modification Umod gives 
the results which are closer to the experimental 
values and the results of other MD simulations 
[21–23, 57] compared to the original Gupta 
potential and linear correction. This is due to 
the change in the asymptotic behavior of the 
original Gupta potential, i.e., the weakening of 
interatomic interactions at large distances.

Table 4 presents the equilibrium lattice con-
stants for silver, gold and titanium calculated 
with UGup, UGup + Ulin and UGup + Umod. The 
force created by the linear correction causes a 
uniform strain on crystals, which become uni-
formly compressed. For silver and gold this ef-
fect is rather small (the relative change in the 

lattice parameters is less than 1 %) while the 
relative shortening of titanium crystals is about 
2.5 %. This can also be attributed to a very 
steep linear correction (i.e., a large force) that 
should be used to reproduce the experimen-
tal bulk melting temperature of Ti. Note also 
that the geometry optimization of a Ti crystal 
using the original Gupta potential yields the 
structure which is elongated along the [0001] 
axis as compared to the experimental value (the 
calculated lattice parameter c = 4.75 Å vs. the 
experimental value of 4.68 Å). The geometry 
optimization by means of the linear correction 
results in a uniform compression of the crystal, 
which brings the parameter c in a better agree-
ment with the experimental value.

The sigmoid-type modification Umod has a small 
impact on the equilibrium lattice parameters, 
which almost coincide with those predicted 
by the original Gupta potential and agree 
reasonably well with the experimental results. 
Contrary to the linear correction, Umod does not 

Fig. 5. Melting temperature of Ag (a), Au (b) and Ti (c) nanoparticles of diameter D calculated by 3 ways: 
using the original EAM-type Gupta potential (Eq. (2)), its linear correction Ulin (Eq. (3)) 

and the new modification Umod (Eq. (7)); 3 values of rc were considered (symbols). 
The extrapolation of the calculated numbers to the bulk limit was made (lines). 

Experimental values of bulk melting temperature are shown by stars

Tab l e  4
Comparison of the calculated equilibrium lattice constants with experimental data

Element
Equilibrium lattice constant, Å

UGup UGup + Ulin UGup + Umod Experiment [50]
Ag 4.07 4.05 4.07 4.09
Au 4.06 4.03 4.09 4.08

Ti (a) 2.91 2.83 2.89 2.95
Ti (c) 4.75 4.63 4.77 4.68

Foo tno t e . The presented results were calculated with the original Gupta potential (UGup), as well as with the Gupta 
potential corrected by Ulin and the new modification Umod. Two lattice parameters, a and c, are listed for titanium.
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induce a strong compression of the Ti crystal 
and its lattice parameters obtained by means of 
Umod are similar to those calculated with UGup. 
As discussed above, this is due to the functional 
form of Umod wherein a positive contribution of 
U'mod  plays the role at small interatomic distances 
(which span over a few nearest atomic layers) 
while a negative contribution of U'mod plays the 
role at larger values of r.

Fig. 5 shows the melting temperatures of 
finite-sized Ag, Au and Ti nanoparticles as 
functions of their inverse diameter D. For all 
these metals, the bulk melting temperature 
predicted by the original Gupta potential is 
significantly lower than the experimental values. 
The most illustrative example is titanium (see 
Fig. 5, c) whose melting temperature calculated 
with UGup is approximately 1380 K. It is more 
than 500 K lower than the experimental value of 
1941 K (marked by a star symbol) which yields 
the relative discrepancy of about 30 %. A similar 
feature has been observed for gold and silver 
– the absolute discrepancy is smaller for these 
metals (about 330 and 100 K, respectively) while 
the relative discrepancy for gold is as large as 
25 %. These results further justify the necessity 
of correcting the EAM-type potential to bring 
the calculated bulk melting temperatures in 
closer agreement with the experimental values. 
The modification Umod produces a similar 
effect as the linear correction – it leads to an 
increase of nanoparticles’ melting temperatures 
and, as a result, to an increase in bulk melting 
temperatures. The new modification improves 
the calculated bulk melting temperature for the 
three metals considered. Good agreement with 
the experimental values has been obtained for 
titanium and silver (the relative discrepancies 
from the experimental values are 0.8 and 
1.5 %, respectively) while a somewhat larger 
discrepancy of about 6 % has been observed 
for gold. This is linked to the observation that 
the sigmoid-type modification increases the 
slope of the Tm(1/D) dependence for silver and 
titanium nanoparticles but it almost does not 
change the slope for gold nanoparticles. The 
utilized parameters of Umod for gold have been 
chosen such that all the quantities considered 
in this work agree better with experimental data 
as compared to the original Gupta potential. 
An even better agreement might be achieved 
by performing a more detailed analysis of the 
multi-dimensional parameter surface of Umod. 
A finer tuning of parameters should bring the 
calculated Tbulk

m for gold to a better agreement 
with experimental data.

Summary

We formulated a recipe for modification of 
classical embedded-atom method (EAM)-type 
potentials aiming at a quantitative description of 
both equilibrium and non-equilibrium properties 
of metal systems by means of molecular dynamics 
simulations. The modification suggested in 
this work asymptotically approaches zero at 
large interatomic distances and generalizes the 
previously developed linear correction [38]. A 
general procedure for constructing the modified 
EAM-type potential was outlined and the relation 
between parameters of the new modification and 
the linear correction was elaborated.

The procedure developed has been applied 
to analyze the melting temperature as well as 
lattice constants, cohesive energy and vacancy 
formation energy of nanosystems made of sil-
ver, gold and titanium. It was demonstrated that 
the modified potential leads to an increase in 
the melting temperature of the metals and to 
a better agreement with experimental values as 
compared to the uncorrected EAM-type poten-
tial. The new modification induces a small (on 
the order of a few per cent or less) change of 
the equilibrium properties but increases the bulk 
melting temperature by more than 30% as it is 
demonstrated for the case of titanium. We have 
considered the many-body Gupta potential as 
an example but the generality of the correction 
allows its application in combination with other 
potentials of the EAM type such as Sutton–Chen 
or Finnis–Sinclair potentials. The results pre-
sented for the metals with cubic and hexagonal 
crystalline lattices further confirm a wide range 
of applicability of the proposed modification.

Appendix

Derivation of parameters of Umod

To analytically derive the parameters of the 
sigmoid-type potential Umod(r), the latter was 
approximated by a piecewise linear function:

1 1 0

mod 2 2 0 2

2

,
( ) , ,

0,

B r C r R
U r B r C R r R

r R

+ <
= + < <
 >

(8)

where B1 > 0 (C1 < 0) and B2 < 0 (C2 > 0), 

1 2
0

1 2

C CR
B B
−

= −
−

is the point of intersection of the two linear 
segments, and R2 = –C2/B2 is the point where 
Umod(r) = 0 (see dotted curves in Fig. 3). After 
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substituting Eq. (8) into Eq. (4) and carrying 
out the integration one arrives at the condition:

( )
( )

4 4

3 3

1
,

1
− γ γ

= −
β−β

(9)

where β = B2/B1 and γ = C2/C1.
Substituting Eq. (8) in Eq. (6) one derives 

the force Fmod due to the potential Umod(r). This 
force should be equal to the force Flin arising 
due to the linear correction at a given cutoff in 
order to increase the melting temperature by 
the same value. This can be expressed as

( )
( )

33 33 3
1

22 2 2
1

14 .
3 1

CC
B B

 − γ γ  = +   β  −β  
(10)

The procedure for deriving the parameters of 
the sigmoid-type function Umod (7) and its approx-
imation Umod (8) can be summarized as follows:

(i) The parameters B and C of the linear cor-
rection are obtained as described in the section 
‘Linear correction to EAM-type potentials’;

(ii) Fixing the point R1 = –C1/B1 at which 
Umod(r) = 0 (see Fig. 3), a scan over different 
values of B1 and C1 is performed;

(iii) β and γ are derived from the numerical 
solution of Eqs. (9) and (10), and the corre-
sponding values of B2 and C2 are obtained;

(iv) Repeating steps (i)–(iii) for different 
combinations (B1, C1) one obtains a multidi-
mensional parameter surface (B1, C1, B2, C2);

(v) Once B1,2, C1,2 are derived, the result-
ing piecewise function is fitted with the sig-
moid-type function Umod, Eq. (7), to obtain the 
parameters λ and rs.

Acknowledgments

This work was supported in part by Deutsche 
Forschungsgemeinschaft (Project No. 
415716638), the European Union’s Horizon 
2020 research and innovation programme 
(H2020-MSCA-IF-2017 “Radio-NP”, GA 
794733) and the Alexander von Humboldt 
Foundation Linkage Grant. The possibility 
to perform calculations at the Goethe-HLR 
cluster of the Frankfurt Center for Scientific 
Computing is gratefully acknowledged.

REFERENCES

1. Andreoni W., Yip S. (Eds.), Handbook 
of materials modeling. Methods: theory and 
modeling, 2nd ed., Springer International 
Publishing, Cham, 2019.

2. Rapaport D.C., The art of molecular 
dynamics simulation, 2nd ed., Cambridge 
University Press, 2011.

3. Solov’yov I.A., Korol A.V., Solov’yov A.V., 
Multiscale modeling of complex molecular 
structure and dynamics with MBN Explorer, 
Springer International Publishing, Cham, 2017.

4. Hoyt J.J., Asta M., Sadigh B., Test of the 
universal scaling law for the diffusion coefficient in 
liquid metals, Phys. Rev. Lett. 85 (3) (2000) 594–597.

5. Sushko G.B., Verkhovtsev A.V., Yakubovich 
A.V., et al. Molecular dynamics simulation of self-
diffusion processes in titanium in bulk material, 
on grain junctions and on surface, J. Phys. Chem. 
A. 118 (33) (2014) 6685–6691.

6. Cheng B., Paxton A.T., Ceriotti M., 
Hydrogen diffusion and trapping in α-iron: the 
role of quantum and anharmonic fluctuations, 
Phys. Rev. Lett. 120 (22) (2018) 225901. 

7. Verkhovtsev A.V., Yakubovich A.V., Sushko 
G.B., et al., Molecular dynamics simulations of 
the nanoindentation process of titanium crystal, 
Comput. Mater. Sci. 76 (August) (2013) 20–26.

8. Zink M., Samwer K., Johnson W.L., Mayr 
S.G., Plastic deformation of metallic glasses: size 
of shear transformation zones from molecular 
dynamics simulations, Phys. Rev. B. 73 (17) 
(2006) 172203.

9. Cleveland C.L., Luedtke W.D., Landman U., 
Melting of gold clusters: icosahedral precursors, 
Phys. Rev. Lett. 81 (10) (1998) 2036–2039.

10. Qi Y., Cagin T., Johnson W.L., Goddard 
III W.A., Melting and crystallization in Ni 
nanoclusters: the mesoscale regime, J. Chem. 
Phys. 115 (1) (2001) 385–394.

11. Lyalin A., Hussien A., Solov’yov A.V., 
Greiner W., Impurity effects on the melting of Ni 
clusters, Phys. Rev. B. 79 (16) (2009) 165403.

12. Yakubovich A.V., Sushko G.B., Schramm 
S., Solov’yov A.V., Kinetics of liquid-solid phase 
transition in large nickel clusters, Phys. Rev. B. 
88 (3) (2013) 035438.

13. Purja Pun G.P., Y. Mishin Y., Molecular 
dynamics simulation of the martensitic phase 
transformation in NiAl alloys, J. Phys.: Condens. 
Matter 22 (29) (2010) 295403.

14. Kexel C., Schramm S., Solov’yov A.V., 
Atomistic simulation of martensite-austenite 
phase transition in nanoscale nickel-titanium 
crystals, Eur. Phys. J. B. 88 (9) (2015) 221.



31

Simulation of Physical Processes

15. Kim S.-G., Horstemeyer M.F., Baskes 
M.I., et al., Semi-empirical potential methods 
for atomistic simulations of metals and their 
construction procedures, J. Eng. Mater. Technol. 
131 (4) (2009) 041210.

16. Lloyd J.R., Luo T. (Eds.), Handbook of 
molecular dynamics potential functions, Begell 
House, New York, Connecticut, 2011. 

17. Müser M.H., Semi-empirical interatomic 
potentials: recent advances and challenges, 
Modelling Simul. Mater. Sci. Eng. 23 (7) (2015) 
070401.

18. Rassoulinejad-Mousavi S.M., Zhang Y., 
Interatomic potentials transferability for molecular 
simulations: a comparative study for platinum, 
gold and silver, Sci. Rep. 8 (2018) 2424.

19. Rosato V., Guellope M., Legrand B., 
Thermodynamical and structural properties 
of f.c.c. transition metals using a simple tight-
binding model, Philos. Mag. A. 59 (2) (1989) 
321–326.

20. Sutton A.P., Chen J., Long-range Finnis 
– Sinclair potentials, Philos. Mag. Lett. 61 (3) 
(1990) 139–146.

21. Ackland G.J., Theoretical study of titanium 
surfaces and defects with a new many-body 
potential, Philos. Mag. A. 66 (6) (1992) 917–932.

22. Cleri F., Rosato V., Tight-binding potentials 
for transition metals and alloys, Phys. Rev. B. 48 
(1) (1993) 22–33. 

23. Foiles S.M., Baskes M.I., Daw M.S., 
Embedded-atom-method functions for the fcc 
metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys, 
Phys. Rev. B. 33 (12) (1986) 7983–7991.

24. Daw M.S., Foiles S.M., Baskes M.I., The 
embedded-atom method: a review of theory and 
applications, Mater. Sci. Rep. 9 (7–8) (1993) 
251–310.

25. Mishin Y., Asta M., Li J., Atomistic 
modeling of interfaces and their impact on 
microstructure and properties, Acta Mater. 58 (4) 
(2010) 1117–1151.

26. Lang L., Yang K., Tian Z., et al., 
Development of a Ni-Mo interatomic potential 
for irradiation simulation, Modelling Simul. 
Mater. Sci. Eng. 27 (4) (2019) 045009.

27. Kavousi S., Novak B.R., Baskes M.I., et 
al., Modified embedded-atom method potential 
for high-temperature crystal-melt properties of 
Ti-Ni alloys and its application to phase field 
simulation of solidification, Modelling Simul. 
Mater. Sci. Eng. 28 (1) (2020) 015006.

28. Kim Y.-M., Lee B.-J., Baskes M.I., 
Modified embedded-atom method interatomic 
potentials for Ti and Zr, Phys. Rev. B. 74 (1) 
(2006) 014101.

29. Ryu S., Weinberger C.R., Baskes M.I., Cai 
W., Improved modified embedded-atom method 
potentials for gold and silicon, Modelling Simul. 
Mater. Sci. Eng. 17 (7) (2009) 075008.

30. Lewis L.J., Jensen P., Barrat J.-L., Melting, 
freezing, and coalescence of gold nanoclusters, 
Phys. Rev. B. 56 (4) (1997) 2248–2257. 

31. Nordlund K., Kuronen A., Non-equilibrium 
properties of GaAs interatomic potentials, Nucl. 
Instrum. Meth. B. 159 (3) (1999) 183–186.

32. Wang Z.W., Palmer R.E., Determination 
of the ground-state atomic structures of size-
selected Au nanoclusters by electron-beam-
induced transformation, Phys. Rev. Lett. 108 (24) 
(2012) 245502.

33. Sushko G.B., Solov’yov I.A., Solov’yov 
A.V., Molecular dynamics for irradiation driven 
chemistry: application to the FEBID process, 
Eur. Phys. J. D. 70 (10) (2016) 217.

34. Huth M., Porrati F., Schwalb C., et al., 
Focused electron beam induced deposition: a 
perspective, Beilstein J. Nanotechnol. 3 (2012) 
597–619.

35. Sturgeon J.B., Laird B.B., Adjusting the 
melting point of a model system via Gibbs-Duhem 
integration: application to a model of aluminum, 
Phys. Rev. B. 62 (22) (2000) 14720–14727.

36. Ackland G.J., Temperature dependence in 
interatomic potentials and an improved potential 
for Ti, J. Phys.: Conf. Ser. 402 (2012) 012001.

37. Mendelev M.I., Underwood T.L., Ackland 
G.J., Development of an interatomic potential 
for the simulation of defects, plasticity and phase 
transformations in titanium, J. Chem. Phys. 145 
(15) (2016) 154102.

38. Sushko G.B., Verkhovtsev A.V., Kexel 
C., et al., Reconciling simulated melting and 
ground-state properties of metals with a modified 
embedded-atom method potential, J. Phys.: 
Condens. Matter. 28 (14) (2016) 145201.

39. Gupta R.P. Lattice relaxation at a metal 
surface, Phys. Rev. B. 23 (12) (1981) 6265–6270.

40. Kexel C., Verkhovtsev A.V., Sushko G.B., 
et al., Toward the exploration of the NiTi phase 
diagram with a classical force field, J. Phys. 
Chem. C. 120 (43) (2016) 25043–25052.

41. Finnis M.W., Sinclair J.E., A simple 
empirical N-body potential for transition metals, 
Philos. Mag. A. 50 (1) (1984) 45–55.

42. Ackland G.J., Finnis M.W., Vitek V., 
Validity of the second moment tight-binding 
model, J. Phys. F: Met. Phys. 18 (8) (1988) 
L153–L157.

43. Goringe C.M., Bowler D.R., Hernandez E., 
Tight-binding modelling of materials, Rep. Prog. 
Phys. 60 (12) (1997) 1447–1512.



St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (3) 2020

32

44. Daw M.S., Baskes M.I., Semiempirical, 
quantum mechanical calculation of hydrogen 
embrittlement in metals, Phys. Rev. Lett. 50 (17) 
(1983) 1285–1288.

45. Dzugutov M., Glass formation in a simple 
monatomic liquid with icosahedral inherent local 
order, Phys. Rev. A. 46 (6) (1992) 2984–2987.

46. Solov’yov I.A., Yakubovich A.V., Nikolaev 
P.V., et al. MBN Explorer – a universal program 
for multiscale computer simulations of complex 
molecular structure and dynamics, J. Comput. 
Chem. 33 (30) (2012) 2412–2439.

47. Sushko G.B., Solov’yov I.A., Solov’yov 
A.V., Modeling MesoBioNano systems with 
MBN Studio made easy, J. Mol. Graph. Model. 
88 (May) (2019) 247–260.

48. Pawlow P., Über die Abhängigkeit des 
Schmelzpunktes von der Oberflächenenergie 
eines festen Körpers, Z. Phys. Chem. 65 (1909) 
1–35.

49. Calvo F., Thermodynamics of nanoalloys, 
Phys. Chem. Chem. Phys. 17 (42) (2015) 
27922–27939.

50. Kittel C., Introduction to Solid State 
Physics, 7th ed., Wiley, 1995.

51. Baskes M.I., Modified embedded-atom 
potentials for cubic materials and impurities, 
Phys. Rev. B. 46 (5) (1992) 2727–2742.

52. McGervey J.D., Triftshäuser W., Vacancy-
formation energies in copper and silver from 
positron annihilation, Phys. Lett. A. 44 (1) (1973) 
53–54.

53. Simmons R.O., Balluffi R.W., Measurement 
of the equilibrium concentration of lattice 
vacancies in silver near the melting point, Phys. 
Rev. 119 (2) (1960) 600–605.

54. Doyama M., Kogure Y., Embedded atom 

potentials in fcc metals, Radiat. Eff. Defects 
Solids. 142 (1–4) (1997) 107–114.

55. Jongenburger P., Energy of formation of 
vacancies in copper and gold, Phys. Rev. 106 (1) 
(1957) 66–69.

56. Shestopal V.O., Specific heat and vacancy 
formation in titanium at high temperatures, Sov. 
Phys. Solid State. 7 (11) (1966) 2798–2799.

57. Johnson R.A., Many-body effects on 
calculated defect properties in h.c.p. metals, 
Philos. Mag. A 63 (5) (1991) 865–872.

58. Lai W.S., Liu B.X., Lattice stability of 
some Ni–Ti alloy phases versus their chemical 
composition and disordering, J. Phys.: Condens. 
Matter 12 (5) (2000) L53–L60.

59. Baskes M.I., Johnson R.A., Modified 
embedded atom potentials for HCP metals, 
Modelling Simul. Mater. Sci. Eng. 2 (1) (1994) 
147–163.

60. Raji A.T., Scandolo S., Mazzarello R., et 
al., Ab initio pseudopotential study of vacancies 
and self-interstitials in HCP titanium, Philos. 
Mag. 89 (20) (2009) 1629– 1645.

61. Le Bacq O., Willaime F., Pasturel A., 
Unrelaxed vacancy formation energies in 
group-IV elements calculated by the full-potential 
linear muffin-tin orbital method: invariance with 
crystal structure, Phys. Rev. B. 59 (13) (1999) 
8508–8515. 

62. Korzhavyi P.A., Abrikosov I.A., B. 
Johansson B., et al., First-principles calculations 
of the vacancy formation energy in transition 
and noble metals, Phys. Rev. B. 59 (18) (1999) 
11693–11703. 

63. Mattsson T.R., Mattsson A.E., Calculating 
the vacancy formation energy in metals: Pt, Pd, 
and Mo, Phys. Rev. B. 66 (21) (2002) 214110.

Received 13.05.2020, accepted 04.06.2020.

THE AUTHORS

VERKHOVTSEV Alexey V.
MBN Research Center at Frankfurt Innovation Center of Biotechnology
3 Altenhöferallee, Frankfurt am Main, 60438, Germany
verkhovtsev@mbnexplorer.com

KOROL Andrei V.
MBN Research Center at Frankfurt Innovation Center of Biotechnology
3 Altenhöferallee, Frankfurt am Main, 60438, Germany
korol@mbnexplorer.com

SUSHKO Gennady B.
MBN Research Center at Frankfurt Innovation Center of Biotechnology
3 Altenhöferallee, Frankfurt am Main, 60438, Germany
sushko@mbnexplorer.com



33

Simulation of Physical Processes

SCHRAMM Stefan 
Goethe University Frankfurt
1 Max-von-Laue St., Frankfurt am Main, 60438, Germany

SOLOV’YOV Andrey V.
MBN Research Center at Frankfurt Innovation Center of Biotechnology
3 Altenhöferallee, Frankfurt am Main, 60438, Germany
solovyov@mbnresearch.com

СПИСОК ЛИТЕРАТУРЫ

1. Andreoni W., Yip S. (Eds.). Handbook 
of materials modeling. Methods: theory and 
modeling. 2nd Ed. Springer International 
Publishing, Cham. 2019. 1987 p.

2. Rapaport D.C. The art of molecular dynamics 
simulation. 2nd Ed. Cambridge: Cambridge 
University Press, 2011. 549 p.

3. Solov’yov I.A., Korol A.V., Solov’yov A.V. 
Multiscale modeling of complex molecular structure 
and dynamics with MBN Explorer. Springer 
International Publishing, Cham. 2017. 451 p.

4. Hoyt J.J., Asta M., Sadigh B. Test of the 
universal scaling law for the diffusion coefficient 
in liquid metals // Phys. Rev. Lett. 2000. Vol. 85. 
No. 3. Pp. 594–597.

5. Sushko G.B., Verkhovtsev A.V., Yakubovich 
A.V., Schramm S., Solov’yov A.V. Molecular 
dynamics simulation of self-diffusion processes in 
titanium in bulk material, on grain junctions and 
on surface // J. Phys. Chem. A. 2014. Vol. 118. 
No. 33. Pp. 6685–6691.

6. Cheng B., Paxton A.T., Ceriotti M. 
Hydrogen diffusion and trapping in α-iron: the 
role of quantum and anharmonic fluctuations 
// Phys. Rev. Lett. 2018. Vol. 120. No. 22. P. 
225901.

7. Verkhovtsev A.V., Yakubovich A.V., 
Sushko G.B., Hanauske M., A.V. Solov’yov 
A.V. Molecular dynamics simulations of the 
nanoindentation process of titanium crystal // 
Comput. Mater. Sci. 2013. Vol. 76. August. Pp. 
20–26.

8. Zink M., Samwer K., Johnson W.L., Mayr 
S.G. Plastic deformation of metallic glasses: size 
of shear transformation zones from molecular 
dynamics simulations // Phys. Rev. B. 2006. Vol. 
73. No. 17. P. 172203.

9. Cleveland C.L., Luedtke W.D., Landman U. 
Melting of gold clusters: icosahedral precursors 
// Phys. Rev. Lett. 1998. Vol. 81. No. 10. Pp. 
2036–2039.

10. Qi Y., Cagin T., Johnson W.L., Goddard 
III W.A. Melting and crystallization in Ni 
nanoclusters: the mesoscale regime // J. Chem. 
Phys. 2001. Vol. 115. No. 1. Pp. 385–394.

11. Lyalin A., Hussien A., Solov’yov A.V., 
Greiner W. Impurity effects on the melting of Ni 
clusters // Phys. Rev. B. 2009. Vol. 79. No. 16. 
P. 165403.

12. Yakubovich A.V., Sushko G.B., Schramm 
S., Solov’yov A.V. Kinetics of liquid-solid phase 
transition in large nickel clusters // Phys. Rev. B. 
2013. Vol. 88. No. 3. P. 035438.

13. Purja Pun G.P., Y. Mishin Y. Molecular 
dynamics simulation of the martensitic phase 
transformation in NiAl alloys // J. Phys.: Condens. 
Matter. 2010. Vol. 22. No. 29. P. 295403.

14. Kexel C., Schramm S., Solov’yov A.V. 
Atomistic simulation of martensite-austenite phase 
transition in nanoscale nickel-titanium crystals // 
Eur. Phys. J. B. 2015. Vol. 88. No. 9. P. 221.

15. Kim S.-G., Horstemeyer M.F., Baskes 
M.I., Rais-Rohani M., Kim S., Jelinek B., 
Houze J., Moitra A., Liyanage L. Semi-empirical 
potential methods for atomistic simulations of 
metals and their construction procedures // J. 
Eng. Mater. Technol. 2009. Vol. 131. No. 4. P. 
041210.

16. Lloyd J.R., Luo T. (Eds.) Handbook of 
molecular dynamics potential functions. New 
York, Connecticut: Begell House, 2011. 245 p.

17. Müser M.H. Semi-empirical interatomic 
potentials: recent advances and challenges // 
Modelling Simul. Mater. Sci. Eng. 2015. Vol. 23. 
No. 7. P. 070401.

18. Rassoulinejad-Mousavi S.M., Zhang 
Y. Interatomic potentials transferability for 
molecular simulations: a comparative study for 
platinum, gold and silver // Sci. Rep. 2018. Vol. 
8. P. 2424.

19. Rosato V., Guellope M., Legrand B. 
Thermodynamical and structural properties 
of f.c.c. transition metals using a simple tight-
binding model // Philos. Mag. A. 1989. Vol. 59. 
No. 2. Pp. 321–326.

20. Sutton A.P., Chen J. Long-range Finnis 
– Sinclair potentials // Philos. Mag. Lett. 1990. 
Vol. 61. No. 3. Pp. 139–146.

21. Ackland G.J. Theoretical study of titanium 
surfaces and defects with a new many-body 

mailto:solovyov@mbnresearch.com


St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (3) 2020

34

potential // Philos. Mag. A. 1992. Vol. 66. No. 6. 
Pp. 917–932.

22. Cleri F., Rosato V. Tight-binding potentials 
for transition metals and alloys // Phys. Rev. B. 
1993. Vol. 48. No. 1. Pp. 22–33.

23. Foiles S.M., Baskes M.I., Daw M.S. 
Embedded-atom-method functions for the fcc 
metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys 
// Phys. Rev. B. 1986. Vol. 33. No. 12. Pp. 
7983–7991.

24. Daw M.S., Foiles S.M., Baskes M.I. The 
embedded-atom method: a review of theory and 
applications// Mater. Sci. Rep. 1993. Vol. 9. No. 
7–8. Pp. 251–310.

25. Mishin Y., Asta M., Li J. Atomistic modeling 
of interfaces and their impact on microstructure 
and properties // Acta Mater. 2010. Vol. 58. No. 
4. Pp. 1117–1151.

26. Lang L., Yang K., Tian Z., Deng H., Gao 
F., Hu W., Mo Y. Development of a Ni-Mo 
interatomic potential for irradiation simulation // 
Modelling Simul. Mater. Sci. Eng. 2019. Vol. 27. 
No. 4. P. 045009.

27. Kavousi S., Novak B.R., Baskes M.I., Asle 
Zaeem M., Moldovan D. Modified embedded-
atom method potential for high-temperature 
crystal-melt properties of Ti-Ni alloys and 
its application to phase field simulation of 
solidification // Modelling Simul. Mater. Sci. 
Eng. 2020. Vol. 28. No. 1. P. 015006.

28. Kim Y.-M., Lee B.-J., Baskes M.I. 
Modified embedded-atom method interatomic 
potentials for Ti and Zr // Phys. Rev. B. 2006. 
Vol. 74. No. 1. P. 014101.

29. Ryu S., Weinberger C.R., Baskes M.I., Cai 
W. Improved modified embedded-atom method 
potentials for gold and silicon // Modelling 
Simul. Mater. Sci. Eng. 2009. Vol. 17. No. 7. 
P. 075008.

30. Lewis L.J., Jensen P., Barrat J.-L. Melting, 
freezing, and coalescence of gold nanoclusters 
// Phys. Rev. B. 1997. Vol. 56. No. 4. Pp. 
2248–2257.

31. Nordlund K., Kuronen A. Non-equilibrium 
properties of GaAs interatomic potentials // 
Nucl. Instrum. Meth. B. 1999. Vol. 159. No. 3. 
Pp. 183–186.

32. Wang Z.W., Palmer R.E. Determination 
of the ground-state atomic structures of size-
selected Au nanoclusters by electron-beam-
induced transformation // Phys. Rev. Lett. 2012. 
Vol. 108. No. 24. P. 245502.

33. Sushko G.B., Solov’yov I.A., Solov’yov 
A.V. Molecular dynamics for irradiation driven 
chemistry: application to the FEBID process // 
Eur. Phys. J. D. 2016. Vol. 70. No. 10. P. 217. 

34. Huth M., Porrati F., Schwalb C., Winhold 
M., Sachser R., Dukic M., Adams J., G. Fantner 
G. Focused electron beam induced deposition: 
a perspective // Beilstein J. Nanotechnol. 2012. 
Vol. 3. Pp. 597–619.

35. Sturgeon J.B., Laird B.B. Adjusting the 
melting point of a model system via Gibbs-
Duhem integration: application to a model of 
aluminum // Phys. Rev. B. 2000. Vol. 62. No. 
22. Pp. 14720–14727.

36. Ackland G.J. Temperature dependence in 
interatomic potentials and an improved potential 
for Ti // J. Phys.: Conf. Ser. 2012. Vol. 402. P. 
012001

37. Mendelev M.I., Underwood T.L., Ackland 
G.J. Development of an interatomic potential 
for the simulation of defects, plasticity and phase 
transformations in titanium // J. Chem. Phys. 
2016. Vol. 145. No. 15. P. 154102.

38. Sushko G.B., Verkhovtsev A.V., Kexel 
C., Korol A.V., Schramm S., Solov’yov A.V. 
Reconciling simulated melting and ground-state 
properties of metals with a modified embedded-
atom method potential // J. Phys.: Condens. 
Matter. 2016. Vol. 28. No. 14. P. 145201.

39. Gupta R.P. Lattice relaxation at a metal 
surface // Phys. Rev. B. 1981. Vol. 23. No. 12. 
Pp. 6265–6270.

40. Kexel C., Verkhovtsev A.V., Sushko G.B., 
Korol A.V., Schramm S., Solov’yov A.V. Toward 
the exploration of the NiTi phase diagram with 
a classical force field // J. Phys. Chem. C. 2016. 
Vol. 120. No. 43. Pp. 25043–25052.

41. Finnis M.W., Sinclair J.E. A simple 
empirical N-body potential for transition metals 
// Philos. Mag. A. 1984. Vol. 50. No. 1. Pp. 
45–55.

42. Ackland G.J., Finnis M.W., Vitek V. 
Validity of the second moment tight-binding 
model // J. Phys. F: Met. Phys. 1988. Vol. 18. 
No. 8. Pp. L153–L157.

43. Goringe C.M., Bowler D.R., Hernandez 
E. Tight-binding modelling of materials // Rep. 
Prog. Phys. 1997. Vol. 60. No. 12. Pp. 1447–1512.

44. Daw M.S., Baskes M.I. Semiempirical, 
quantum mechanical calculation of hydrogen 
embrittlement in metals // Phys. Rev. Lett. 1983. 
Vol. 50. No. 17. Pp. 1285–1288.

45. Dzugutov M. Glass formation in a simple 
monatomic liquid with icosahedral inherent local 
order // Phys. Rev. A. 1992. Vol. 46. No. 6. Pp. 
2984–2987.

46. Solov’yov I.A., Yakubovich A.V., Nikolaev 
P.V., Volkovets I., Solov’yov A.V. MBN Explorer 
– a universal program for multiscale computer 
simulations of complex molecular structure and 



35

Simulation of Physical Processes

dynamics // J. Comput. Chem. 2012. Vol. 33. 
No. 30. Pp. 2412–2439.

47. Sushko G.B., Solov’yov I.A., Solov’yov 
A.V. Modeling MesoBioNano systems with MBN 
Studio made easy // J. Mol. Graph. Model. 2019. 
Vol. 88. May. Pp. 247–260.

48. Pawlow P. Über die Abhängigkeit des 
Schmelzpunktes von der Oberflächenenergie eines 
festen Körpers // Z. Phys. Chem. 1909. Vol. 65. 
Pp. 1–35.

49. Calvo F. Thermodynamics of nanoalloys // 
Phys. Chem. Chem. Phys. 2015. Vol. 17. No. 42. 
Pp. 27922–27939.

50. Киттель Ч. Введение в физику твердого 
тела. М.: Наука, 1978. 791 с. 

51. Baskes M.I. Modified embedded-atom 
potentials for cubic materials and impurities 
// Phys. Rev. B. 1992. Vol. 46. No. 5. Pp. 
2727–2742.

52. McGervey J.D., Triftshäuser W. Vacancy-
formation energies in copper and silver from 
positron annihilation // Phys. Lett. A. 1973. Vol. 
44. No. 1. Pp. 53–54.

53. Simmons R.O., Balluffe R.W. Measurement 
of the equilibrium concentration of lattice 
vacancies in silver near the melting point // Phys. 
Rev. 1960. Vol. 119. No. 2. Pp. 600–605.

54. Doyama M., Kogure Y. Embedded atom 
potentials in fcc metals // Radiat. Eff. Defects 
Solids. 1997. Vol. 142. No. 1–4. Pp. 107–114.

55. Jongenburger P. Energy of formation of 
vacancies in copper and gold // Phys. Rev. 1957. 
Vol. 106. No. 1. Pp. 66–69.

56. Шестопал В.О. Теплоемкость и 
образование вакансий в титане при высоких 

температурах // Физика твердого тела. 1965. 
Т. 7. Вып. 11. С. 3461–.3462.

57. Johnson R.A. Many-body effects on 
calculated defect properties in h.c.p. metals 
// Philos. Mag. A. 1991. Vol. 63. No. 5. Pp. 
865–872.

58. Lai W.S., Liu B.X. Lattice stability of 
some Ni–Ti alloy phases versus their chemical 
composition and disordering // J. Phys.: Condens. 
Matter. 2000. Vol. 12. No. 5. Pp. L53–L60.

59. Baskes M.I., Johnson R.A. Modified 
embedded atom potentials for HCP metals// 
Modelling Simul. Mater. Sci. Eng. 1994. Vol. 2. 
No. 1. Pp. 147–163.

60. Raji A.T., Scandolo S., Mazzarello R., 
Nsengiyumva S., Härting M., Britton D.T. Ab 
initio pseudopotential study of vacancies and 
self-interstitials in HCP titanium // Philos. Mag. 
2009. Vol. 89. No. 20. Pp. 1629– 1645.

61. Le Bacq O., Willaime F., Pasturel A. 
Unrelaxed vacancy formation energies in 
group-IV elements calculated by the full-potential 
linear muffin-tin orbital method: invariance with 
crystal structure // Phys. Rev. B. 1999. Vol. 59. 
No. 13. Pp. 8508–8515.

62. Korzhavyi P.A., Abrikosov I.A., B. 
Johansson B., Ruban A.V., Skriver H.L. 
First-principles calculations of the vacancy 
formation energy in transition and noble metals 
// Phys. Rev. B. 1999. Vol. 59. No. 18. Pp. 
11693–11703.

63. Mattsson T.R., Mattsson A.E. Calculating 
the vacancy formation energy in metals: Pt, Pd, 
and Mo // Phys. Rev. B. 2002. Vol. 66. No. 21. 
P. 214110.

Статья поступила в редакцию 13.05.2020, принята к публикации 04.06.2020.

СВЕДЕНИЯ ОБ АВТОРАХ

Верховцев Алексей Валерьевич – Ph.D., научный сотрудник Научно-исследовательского цен-
тра мезобионаносистем (MBN), г. Франкфурт-на-Майне, Германия. 

60438, Германия, г. Франкфурт-на-Майне, Альтенхёфераллее, 3
verkhovtsev@mbnexplorer.com

КОРОЛЬ Андрей Владимирович – кандидат физико-математических наук, доцент, научный 
сотрудник Научно-исследовательского центра мезобионаносистем (MBN), г. Франкфурт-на-
Майне, Германия. 

60438, Германия, г. Франкфурт-на-Майне, Альтенхёфераллее, 3
korol@mbnexplorer.com

Сушко Геннадий Борисович – Ph.D., научный сотрудник Научно-исследовательского центра 
мезобионаносистем (MBN), г. Франкфурт-на-Майне, Германия. 

60438, Германия, Франкфурт-на-Майне, Альтенхёфераллее, 3
sushko@mbnexplorer.com

mailto:korol@mbnexplorer.com


St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (3) 2020

36

© Peter the Great St. Petersburg Polytechnic University, 2020

ШРАММ Штефан – Ph.D., профессор Центра научных вычислений Франкфуртского универ-
ситета им. Гёте.

60438, Германия, Франкфурт-на-Майне, Макс-фон-Лауэ штрассе, 1 

СОЛОВЬЁВ Андрей Владимирович – доктор физико-математических наук, профессор, ве-
дущий научный сотрудник Научно-исследовательского центра мезобионаносистем (MBN), г. 
Франкфурт-на-Майне, Германия.

60438, Германия, г. Франкфурт-на-Майне, Альтенхёфераллее, 3
solovyov@mbnresearch.com



37

Simulation of Physical Processes

DOI: 10.18721/JPM.13304
УДК 519.632

THE DIFFUSION PROBLEM IN A RECTANGULAR CONTAINER 
WITH AN INTERNAL SOURCE: EXACT SOLUTIONS 

OBTAINED BY THE FAST EXPANSION METHOD

A.D. Chernyshov1, D.S. Sajko1, V.V. Goryainov2, 
S.F. Kuznetsov1, O.Yu. Nikiforova1

1 Voronezh State University of Engineering Technology, Voronezh, Russian Federation;
2 Voronezh State Technical University, Voronezh, Russian Federation

The diffusion problem in a rectangular-shaped body with the Derichlet’s boundary conditions 
and an internal substance source depending on the rectangle points’ coordinates has been solved 
generally by the fast expansion method (FEM). The exact solution containing free parameters 
was obtained, and by changing them one could get many new exact solutions. Exact solutions to 
the problem with a constant internal source were shown as an example. From our analysis of the 
exact solutions it follows that the concentration and diffusion fluxes distributions should be sym-
metrical relative to the plane y = b/2, provided that the substance concentration in the corners 
of the rectangular area is equal to zero. An investigation into the difference in the diffusion fluxes 
along the coordinate axes showed that the constant internal source affected the difference in the 
nonsymmetrical fluxes, and the concentration of the substance in the area corners had no effect.
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Методом быстрых разложений решается в общем виде задача диффузии в теле 
прямоугольной формы с граничными условиями -1го рода и внутренним источником 
вещества, зависящим от координат точек прямоугольника. Получено точное решение, 
содержащее свободные параметры, изменяя которые можно получить множество новых 
точных решений. В качестве примера показаны точные решения задачи с постоянным 
внутренним источником. Из анализа точных решений следует, что распределения 
концентрации и диффузионных потоков будут симметричны относительно плоскости y = 
b/2 при условии равенства нулю концентрации вещества в углах прямоугольной области. 
Изучение перепада диффузионных потоков вдоль координатных осей показало, что на 
перепад несимметричных потоков влияет постоянный внутренний источник и не влияет 
концентрация вещества в углах области.
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Introduction

Planar problems of diffusion can be solved 
by different methods, for example, the method 
of least-squares collocation with increased 
accuracy. A parametric dual spline consisting 
of two cubic splines was constructed in [1] 
in Cartesian coordinates to define a domain 
bounary approximately and exactly. Numerical 
analytical representation of the solution 
of two- and three-dimensional boundary-
value problems was obtained in [2] using 
integral Fourier–Laplace transforms. Ref. [3] 
describes a method for constructing the exact 
solutions for equations of nonlinear diffusion 
in a one-dimensional coordinate space based 
on the special superposition principle. The 
approximate self-consistent method for solving 
the system of functional equations, obtained 
from spectral expansion of Euler correlation of 
the carrier medium, was proposed in [4] for 
problems of diffusion in continuous media. 
Finite-difference methods were used in [5–8]. 
Quadrature methods were applied in [9–11], 
while a method based on using the Haar 
wavelets was used in [12,13].

In this study we relied on the fast expansion 
method (FEM) [14] to obtain some exact 
solutions to the problem on diffusion in a 
rectangular body with first-kind boundary 
conditions and an internal source depending 
on the coordinates of the rectangle points.

Problem statement

Let us consider a diffusion problem where 
the body has a rectangular shape, Ω□. If 
the concentration C(x,y) is unknown, the 
phenomenon of diffusion can be described using 
a second-order partial differential equation for 
the variables x, y with the given internal source 
F(x,y) (Poisson’s equation):

( )

( )

2 2

2 2 , 0 ,

, , 0 , 0 .

C C F x y
x y

x y x a y b

∂ ∂
+ + =

∂ ∂

∈Ω ≤ ≤ ≤ ≤


(1)

Boundary conditions are given as

( ) ( )
( ) ( )

1 20 0

3 4

, ,

, .
x y

x a y b

C f y C f x

C f y C f x
= =

= =

= =

= =
(2)

The solution of the problem on the 
distribution of substance concentration C(x,y) 
is represented by the simplest dependence from 
the theory of fast expansions [14–16] using the 
polynomials taking the form
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The assumed exact solution C(x,y) can be 

formulated as the final expression used for fast 
decomposition in [14–16], i.e., consisting of 
the polynomial and the finite trigonometric 
parts:
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The form of expression (3) is attractive 
because a similar form can be used for highly 
accurate approximation of the broad class of 



39

Simulation of Physical Processes

smooth functions from the Sobolev–Liouville 
space, given in boundary conditions and as the 
internal source; these functions have certain 
practical value. 

The functions included in boundary 
conditions (2) and the internal source F(x,y) of 
substance concentration can be written as finite 
sums, similar to dependence (3): 
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The coefficients fi,j and Fi,j in equalities (4) 
and (5) are assumed to be known. The coeffi-
cients Ai,j from Eq. (3) are assumed to be un-
known so far. They must be found by exactly 
satisfying boundary conditions (2) and differ-
ential equation (1).

Solution (3) of boundary-value problem (1), 
(2) must satisfy the consistency conditions for 
boundary conditions (2) and differential equa-
tion (1) in the corners:
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Conditions (6) follow because the concen-
tration C(x,y) is independent of the direction 
of approach to the corners of the rectangle. 

Consequently, we arrive to the following 
problem: 

 It is required to find such a solution to Eq. 
(1) with the given internal source in the form 
(5), which exactly satisfies boundary conditions 
(2) and consistency conditions (6). 

Solution of the problem

First let us substitute the assumed exact 
solution of the problem in the form (3) into 
boundary conditions (2):
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The obtained equalities (7) must hold true 
for ∀ (x, y) ∈ Ω□ with respect to the unknowns 
Ai,j. 

Next, we substitute C(x,y) from expression 
(3) into differential equation (1):
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Eq. (8) must hold true for any

0 ≤ x ≤ a, 0 ≤ y ≤ b.
The following functions are linearly inde-

pendent in equalities (7) and (8): 
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Functional system (7), (8) is reduced to a 
system of linear algebraic equations by equat-
ing the coefficients in Eqs. (7) and (8) on the 
left and on the right in front of linearly inde-
pendent functions (9), taking into account the 
following equalities [14, 15]:

1 2 3 1 4 20, , .P P P P P P′′ ′′′′ ′′= = = =

The resulting system of linear algebraic 
equations is overdetermined but it has a solu-
tion because consistency conditions (6) are 
satisfied. It follows from analysis of the alge-
braic system that consistency conditions (6) are 
satisfied automatically, since all algebraic rela-
tions obtained from (6) are included in the sys-
tem of linear algebraic equations. It is neces-
sary to solve 36 algebraic equations to find the 
unknowns Ai,j, while the rest of the equations 
are used to compose the relations between the 
coefficients 

fi,j, (i = 1÷4, j = 1÷6)
and  

Fi,j, (i = 1÷6, j = 1÷6).
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Thus, the values of the coefficients Ai,j are 
found from the following equalities:
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Substituting the coefficients from equalities 
(10) into expression (3), we obtain an exact 
solution to the problem. 

The following conditions should be satisfied 
for giving boundary conditions (2) and internal 
source (5)
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F F F F
F F F F

b bf F F

b bf F F

a af F F

à àf F F

b bf F F

f

= =

= =

 
= + π π 

 
= + π π 

 
= + π π 

 
= + π π 

 
= + π π 

2 2

4,6 2,62 2

2 2

4,5 5,4 5,22 2

2 2

4,6 6,4 6,22 2

,
4 4

= ,

= .
4 4

b b F F

à àf F F

à àf F F

 
= + π π 

 
+ π π 

 
+ π π 

(13)

Therefore, solution (10) holds when condi-
tions (11)–(13) are satisfied. 

Example of constructed exact 
solutions and their analysis

Let a constant internal source be present 
in a rectangular container. This version of 
the internal source can be obtained from 
expressions (5) and condition (12) provided 
that the equalities

( ) ( )
( ) ( ) ( ) ( )

1 2

3 4 5 6

,

0.

F y F y

F y F y F y F y

=

= = = =
(14)

hold true. The condition F1(y) = F2(y) in 
equalities (14) implies the equality of the 
coefficients 
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1,1 1,2 2,1 2,2 ,F F F F Q= = = = (15)

while the remaining coefficients are 
simultaneously equal to zero: 

1,3 1,4 1,5 1,6

2,3 2,4 2,5 2,6 0.

F F F F

F F F F

= = = =

= = = = =
(16)

Thus, if equalities (14)–(16) are satisfied, 
we have a constant internal source

( ), .F x y Q= (17)

Let us write the boundary conditions 
satisified for source (17). For this purpose, in 
view of equalities (15), we rewrite equalities 
(12) in the form

1,3 2,3 1,4 4,3

2,4 3,3 4,4 3,4

0, 0,
0, 0.

f f Q f f Q
f f Q f f Q

+ + = + + =

+ + = + + =
(18)

Suppose only the coefficients included in 
equalities (18) can be different from zero in 
Eqs. (4). Several types of boundary conditions 
are possible for this case: they correspond to 
different combinations of the values of the 
coefficients in equalities (18). Let 

1,3 1,4 2,4 4,4

2,3 4,3 3,3 3,4

0,
.

f f f f
f f f f Q

= = = =

= = = = −
(19)

Then, taking into account the values of the 
coefficients from equalities (19), boundary 
conditions (2) have the form

( )2
0

2 3

0

0, ,
2

.
2 6 3

x x a

y y b

QC C y by

x x axC C Q
a

= =

= =

= = − −

 
= = − − − 

 

( )2
0

2 3

0

0, ,
2

.
2 6 3

x x a

y y b

QC C y by

x x axC C Q
a

= =

= =

= = − −

 
= = − − − 

 
(20)

Substituting the coefficients from equalities 
(16) and (19) into expressions (10), we obtain: 

A2,3 = A2,4 = A3,1 = A3,2 = –Q. 
After simplifications, the exact solution of 

Eq. (1), corresponding to conditions (20), with 
a constant internal source (17) takes the form

( ) ( )2

2 3

,
2

.
2 6 3

Q xC x y y by
a

x x axQ
a

= − − −

 
− − − 

 

(21)

Eq. (21) can be used to calculate substance 
concentration C(x,y) at any point in the 
rectangle. It follows from this equation that 
C(x,y) = 0 in the corners of the rectangle. The 
distribution C(x,y) for the case 

Q = 4, a = 1 m, b = 2 m (22)

is shown in Fig. 1,a. Evidently, this distribu-
tion, calculated by Eq. (21), has a plane of 
symmetry passing through the section y = b/2. 
The highest concentration C(x,y) = 2 is at the 
point (a; b/2); the lowest one, C(x,y) = 0, is 
located in the corners of the domain and at the 
boundary x = 0 (this also follows from bound-
ary conditions (20)). The maximum concen-
tration difference is between the points of the 
curve obtained by section of the surface C(x,y) 
with the plane y = b/2, and is equal to

ΔC(x,y) = C(a; b/2) – C(0; b/2) = 2.

Fig. 1. Distribution of substance concentration C(x,y),
constructed by Eqs. (21) (a) and (25) (b)

a) 	 b)
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Now let us consider the case when the 
concentrations of the substance in the corners 
of the domain are given along with the constant 
internal source (17). 

The boundary conditions are written so that 
equalities (19) are satisfied and the coefficients 
fi,j included in conditions (11) are not equal to 
zero. Let us introduce the notations 

f f C f f C
f f C f f C
1 1 2 1 1 2 2 3 1 3

3 2 4 2 4 1 2 4 1 2

, , , ,

, , , ,

, ,

, .

= = = =

= = = =
(23)

In view of Eqs. (19) and (23), the boundary 
conditions can be written in the form

C C C
b

C y
b

C C C
b

C y
b

Q y by

C

x

x a

y

�

�

� ��
�
�

�
�
� �

� ��
�
�

�
�
� � � �� �

0 1 2

3 4

2

1

1
2

,

,

��

�

� ��
�
�

�
�
� � �

� � �
�

�
�

�

�
�

� ��
�
�

�

0 1 3

2 3

2

1

2 6 3

1

C x
a

C x
a

Q x x
a

ax

C C x
ay b

,

��
� � �

� � �
�

�
�

�

�
�

C x
a

Q x x
a

ax

4

2 3

2 6 3
.

(24)

Using equalities (19) and (23), we find from 
Eqs. (10) 

A1,1 = C1, A1,2 = C1, 

A2,1 = C3, A2,2 = C4, 

A2,3 = A2,4 = A3,1 = A3,2 = –Q. 
Consequently, the exact solution of diffusion 

equation (1) with constant internal source (17), 
corresponding to boundary conditions (24), 
takes the form

C x y C C
b

C y
b

x
a

C C
b

C y

,� � � ��
�
�

�
�
� �

�

�
�

�

�
� ��
�
�

�
�
� �

� ��
�
�

�
�
� �

1 2

3 4

1 1

1
bb
x
a

Q y by x
a
Q x x

a
ax

�

�
�

�

�
� �

� �� � � � �
�

�
�

�

�
�

2 2 6 3

2
2 3

.

(25)

The distribution of concentration C(x,y) for 
particular values of the parameters

Q C
C C C
a b

= =
= = =
= =

4 1

4 2 3

1 2

1

2 3 4

, ,

, , ,

m, m.

(26)

is shown in Fig. 1,b. Evidently, the distribution 
C(x,y) that is calculated by Eq. (25) has no 
planes of symmetry. The highest concentration 
C(x,y) = 4.5 is at the point (a; b/2), and the 
lowest, C(x,y) = 1, is at the point (0;0).

Substituting the values x = a/2 and 
y = b/2 into solution (25), we calculate the 
concentration value in the center of the domain: 

C a b

C C C C Q a b

2 2

4 16

1 2 3 4 2 2

,

.

�
�
�

�
�
� �

�
� � �

� �� �
Let us calculate the diffusion fluxes of 

substance by the following equations [17]:

( ) ( )

( ) ( )

,
, ,

,
, .

x

y

C x y
q x y D

x
C x y

q x y D
y

∂
= −

∂
∂

= −
∂

(27)

where D is the diffusion coefficient.
Substituting the exact solution (21) into 

these formulas, we obtain: 

( )

( )
2

2

,

1 ,
2 2 3

xq x y

x aDQ y by x
a a

=

  
= − + − −  

  

(28)

( ) ( ), 2 .
2y
xq x y DQ y b
a

= − (29)

Substituting solution (25) into Eqs. (27), we 
obtain:

q x y D
a
C C

b
C y
b

D
a
C C

b
C y
b

x ,� � � ��
�
�

�
�
� �

�

�
�

�

�
� �

� ��
�
�

�
�
� �

�

�
�

�

1 2

3 4

1

1
��
� �

� �� � � � �
�

�
�

�

�
�

�

�
�

�

�
�DQ

a
y by x x

a
a1

2 2 3

2
2

;

(30)
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q x y D C
b

C
b

x
a

D C
b

C
b

x
a
DQ x

a
y

y ,� � � ��
�
�

�
�
� ��
�
�

�
�
� �

� ��
�
�

�
�
� �

1 2

3 4

1

2
2 ��� �b .

(31)

The diffusion fluxes of substance shown 
in Fig. 2 are constructed by Eqs. (28) and 
(29) using the data from (22). The diffusion 
coefficient was equal to D = 4⋅10–6 m2/s in the 
calculations .

The data in Fig. 2 allow us to conclude that 
the diffusion flux qx(x,y) has the same plane of 
symmetry as the corresponding concentration 
distribution C(x,y) for diffusion under the 
action of only the internal source Q; that is, the 

plane of symmetry passes through the section 
y = b/2. 

Given the ratio b/a = 1 – 4, the shapes taken 
by the distribution of substance concentration 
C(x,y) and the diffusion flux qx(x,y) in the 
rectangular domain are qualitatively similar to 
the distributions shown in Figs. 1 and 2. If the 
length of any of the sides (a or b) of the rectangle 
is ten or more times larger than the other, such 
a difference leads to a qualitative change in the 
distributions of substance concentration C(x,y) 
and diffusion flux qx(x,y), compared with the 
distributions shown in Figs. 1 and 2,a.

For example, if only the value of the variable 
y is changed in (26) from 2 to 10 meters, then 
the graphs C(x,y) and qx(x,y), constructed by Eqs. 
(25) and (28), have the form shown in Fig. 3.

Fig. 3. Distributions of substance concentration C(x,y) (a) 
and diffusion fluxes of substance q(x,y) (b) at b/a = 10

a) 	 b)

Fig. 2. Graphical representation of diffusion fluxes of substance q(x,y)
constructed by Eqs. (28) (a) and (29) (b); D = 4⋅10–6  m2/s

a) 	 b)
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If only the value of the variable x is changed in 
(26) (for example, to 10 meters instead of 1), the 
distributions C(x,y) and qx(x,y), constructed by 
Eqs. (25) and (28), take the form shown in Fig. 4. 

It can be seen from Figs. 3,a and 4,a that 
substance concentration in the corners of the 
domain is small compared with the maximum 
concentration, and the shape of the distribution 
C(x,y) constructed by Eq. (24) (see Fig. 3,a) 
is now qualitatively similar to the shape of 
distribution C(x,y) constructed by Eq. (21) (see 
Fig. 1,a).

Analysis of the data shown in Figs. 2, 3,b 
and 4,b indicates that it would be of interest 
to consider the difference in diffusion fluxes 
along the coordinate axes. As evident from Fig. 
2,a, the flux difference between the boundaries 
x = 0 and x = a in any sections is 

y = const (0 ≤ y ≤ b), 
i.e., a constant value; it is found by the formula

( )

( )

const

const

0,

, .
2

x x y

x y

q q y

DQaq a y

=

=

∆ = −

− = −
(32)

It can be seen from Fig. 2,b that the diffusion 
flux qy(x,y) takes the greatest value in the 
section x = a. The flux difference qy(x,y) at 
x = a between the boundaries y = 0 and y = b 
is found by the formula

( ) ( ),0 , .y y yq q a q a b DQb∆ = − = − (33)

Equalities (32) and (33) hold true both 
for symmetric diffusion fluxes qx(x,y) and 
qy(x,y) calculated by Eqs. (28) and (29), and 
for asymmetric ones calculated by Eqs. (30), 
(31). Thus, it follows from equalities (32) and 
(33) that the differences Δqx and Δqy of asym-
metric fluxes qx(x,y) and qy(x,y) are affected 
by a constant internal source but not by the 
concentration of matter in the corners of the 
rectangle.

Conclusion

The examples presented confirm that the 
fast expansion method allows to obtain not 
only approximate solutions [18–20] but also 
exact ones. The analytical solution of the 
diffusion equation formulated in this study 
can be used to obtain exact solutions of this 
equation for different boundary conditions, for 
constant as well as variable internal sources. 
The coefficients of boundary conditions (2) 
and internal source (5) should be selected 
taking into account Eqs. (11)–(13). 

It follows from analysis of the exact 
solutions obtained that if the substance 
concentrations in the corners of the 
rectangular domain equal zero, the 
distributions of the concentration C(x,y) 
and the diffusion fluxes qx(x,y) and qy(x,y) 
of the substance are symmetrical relative to 
the plane y = b/2. If the concentrations in 
the corners are not equal to zero, then the 
distributions C(x,y), qx(x,y) and qy(x,y) do 
not possess such symmetry.

Fig. 4. Distributions of substance concentration C(x,y) (a) 
and diffusion fluxes of substance q(x,y) (b) at b/a = 1/5 

a) 	 b)
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I. Foundations for eddy-resolving approach application 
based on periodical formulation
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The paper presents the methods and results of numerical modeling of turbulent airflow in 
a test room based on the vortex-resolving wall-modeled large eddy simulation approach. The 
room ventilation is provided by a plain air jet at Re = 5233. The jet is supplied from a slit 
placed at a side wall under the ceiling. The room geometry and airflow parameters correspond 
to the experimental benchmark test by Nielsen et al. (1978), but with the periodicity boundary 
conditions in the transverse direction. Calculations were carried out with the ANSYS Fluent 
software using fine grids consisting of up to 6x107 cells. The paper presents detailed analysis 
of parametric computations aimed at the evaluation of numerical simulation adequacy. In 
particular, the grid dependency study was performed and the Kolmogorov scale was estimated.
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ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЦИРКУЛЯЦИИ ВОЗДУХА 
В ПОМЕЩЕНИИ ПРИ ПОДАЧЕ ИЗ ПЛОСКОЙ ЩЕЛИ. 

I. Отработка применения вихреразрешающего подхода 
с использованием периодической постановки

М.А. Засимова1, Н.Г. Иванов1, Д. Марков2

1 Санкт-Петербургский политехнический университет Петра Великого,
Санкт-Петербург, Российская Федерация;

2 Софийский технический университет, София, Болгария

Представлены методика и результаты численного моделирования турбулентного 
течения воздуха в тестовом помещении на основе вихреразрешающего подхода – метода 
моделирования крупных вихрей с пристенным моделированием. Вентиляция помещения 
осуществляется плоской воздушной струей, подаваемой из расположенного под потолком 
на торцевой стенке щелевого отверстия, при значении числа Рейнольдса Re = 5233. 
Геометрия помещения и параметры течения соответствуют классическому тестовому 
эксперименту (Nielsen et al., 1978), однако задача ставилась как периодическая, что 
справедливо для помещения, сильно вытянутого в поперечном направлении. Расчеты 
в программном пакете ANSYS Fluent выполнены с использованием весьма подробных 
сеток размерностью до 6·107 ячеек. Подробно описаны результаты методических расчетов, 
направленных на оценку адекватности выполненного численного моделирования, 
в частности проведен анализ сеточной зависимости и дана оценка колмогоровского 
масштаба для рассматриваемого течения.
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Introduction
One of the challenges posed in design and 

modernization of buildings is configuring 
the heating, ventilation and air conditioning 
(HVAC) systems controlling the microclimate. 
Comfort and safety are ensured in the living 
quarters by maintaining the parameters of the 
air (air velocity, temperature, concentration of 
harmful impurities, etc.) within the required 
range, which largely depends on the air supply 
scheme for the ventilation system. In this regard, 
improving the accuracy of assessing the quality 
of the air provided by the ventilation system is 
an issue that is steadily gaining importance.

Methods of computational fluid dynamics 
allowing to carry out three-dimensional 
simulation of turbulent jet flows have been 
increasingly popular in the recent years. 
Approaches that estimate the flow parameters 
based on numerically solving the steady/
unsteady Reynolds-averaged Navier–Stokes 
equations (RANS/URANS) have become 
widely popular in engineering practice. The 
RANS/URANS approaches were employed, 
for example, for designing and/or modernizing 
the ventilation systems for a swimming pool 
[1], an ice rink [2], a university assembly 
hall of historical and architectural value [3], 
the interior of St. Isaac’s Cathedral in St. 
Petersburg [4]. 

Methods of computational fluid dynamics 
turn out to be even more important for 
developing life support systems than ventilation 
systems for buildings, since almost every 
proposed solution is unique. An example of 
solving such problems are the computations 
of ventilation for crew and passenger cabins 
of aircraft [5, 6]. Over the past two decades, 
the RANS/URANS approaches have been 
used to assess the performance and efficiency 
of life support systems for spacecraft. In 
particular, calculations of the atmosphere at the 
International Space Station (ISS) were carried 
out under standard conditions [7], as well as 
after using a carbon dioxide fire extinguisher in 
the US Orbital Segment of the ISS [8].

Despite examples of successful solutions 
to applied ventilation problems, the accuracy 
of the calculation results for air distribution 
in rooms obtained by the RANS/URANS 
approaches remains an open question. The 
degree of uncertainty in the results of RANS/
URANS calculations can be estimated either 
by direct comparison of the calculated results 
with the data of a physical experiment, or by 
comparing the RANS/URANS results with the 
data obtained by more accurate eddy-resolving 
approaches to describing turbulent flows.

Direct Numerical Simulation (DNS) from 
first principles can be used as an eddy-resolving 
approach. Full Navier–Stokes equations 
are solved within the DNS approach, which 
allows to describe all scales of turbulence if 
applied correctly. It is well known that the 
DNS approach requires huge computational 
costs and its application is limited to very 
moderate values of the Reynolds number. 
An alternative for numerical studies with 
manageable computational costs is the Large 
Eddy Simulation method (LES). The LES 
approach involves solving filtered Navier–
Stokes equations, allowing to describe the 
behavior of large eddies in combination with 
semi-empirical simulation of small-scale 
eddies. The LES method not only makes it 
possible to carry out fundamental studies, 
including those aimed at assessing the accuracy 
of RANS simulation, but is also gaining ground 
for solving applied problems [9], including in 
modeling ventilation flows characterized by 
relatively moderate Reynolds numbers, and 
also, in most cases, fairly mild requirements for 
near-wall resolution.

Different studies modeled HVAC systems 
using the LES approach. Simulation of air 
exchange by the LES approach was first 
presented in [10], considering the ventilation 
in a test room of a simple shape, with 
experimental data available [11]. A more 
complex problem of flow in a relatively 
cluttered room equipped with a displacement 
ventilation system is solved in [12]. Ref. [13] 
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presents air distribution estimates carried out 
by LES for the Columbus orbital module, 
which is part of the ISS, equipped with a 
multi-jet ventilation system; the calculation 
results were also compared with experimental 
data. Later, the LES approach was used to 
determine the parameters of air exchange in a 
university lecture hall [14] and in the premises 
of a residential building [15]. 

The practical application of the LES 
approach needs to further refined by solving 
test problems. This study describes and 
tests the procedure for applying the Wall-
Modeled LES approach (WMLES). The 
well-known test problem of ventilation flow 
in a room where a plain air jet is supplied 
from a slit located under the ceiling [11] was 
chosen as the object of research. Detailed 
experimental data are available for this test on 
the distributions of the velocity components 
and their fluctuations, measured using Laser 
Doppler Anemometry (LDA). The test room 
in [11] was a rectangular parallelepiped with a 
square cross section; however, in this study, we 
formulated a three-dimensional problem with 
periodic conditions imposed in the transverse 
direction, which is to say that the side walls 
were excluded from consideration. 

This statement makes it possible to correctly 
reproduce the flow structure only in the 
central part of the room, without affecting 
the three-dimensional structure of secondary 

flows. The clear advantage of such a “quasi-
two-dimensional” simplified statement was 
that it made it possible to carry out a series 
of parametric calculations, considerably 
optimizing the computational costs. 

We present the results of systematic 
calculations, and recommendations for 
applying the WMLES method developed based 
on these results.

The sidewall effect is considered in the 
second part of this study, published as a separate 
paper [16], providing a detailed comparison of 
the calculation results in a complete statement, 
without assuming periodic flow [11]. 

Problem statement

Room geometry. The air flow in a rectangular 
region is considered (Fig. 1). The coordinate 
system is chosen so that x is the longitudinal, y 
the vertical, and z the transverse direction. The 
origin of the coordinate system is at the corner 
of the room. The height of the room, taken as a 
length scale, is H = 3 m. The length of the room 
is L = 9 m, so L/H = 3. The room is assumed 
to be infinite in the lateral z direction, while 
calculations are carried out for three values of 
the width W of the computational domain, so 
that W/H is taken equal to 1/6, 1/3 and 1. Air 
is supplied to the room through an inlet slit with 
the height of hin = 0.056H = 0.168 m and the 
width of W; this slit is located directly under the 
ceiling on one of the side walls. The outlet slit 

Fig. 1. The geometry of the computational domain for the aspect ratio of the room W/H = 1
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located near the floor on the opposite wall has 
a height of hout= 0.16H = 0.48 m and a width of 
W. A channel with a length of 0.5H adjacent to 
the slit is included in the computational domain 
to prevent the formation of return currents at 
the outlet boundary of the domain. 

Physical parameters of the environment and 
boundary conditions. Isothermal motion of air 
described by the model of incompressible fluid 
with constant physical properties is considered: 
the density ρ = 1.23 kg/m3, the dynamic vis-
cosity µ = 1.79·10–5 Pa·s.

Air is supplied to the entrance to the room at 
a mean flow velocity equal to Vin = 0.455 m/s. 
The Reynolds number computed from the height 
of the inlet slit is Re = ρhinVin/µ = 5233. An aux-
iliary problem of air flow in a flat channel with a 
height of hin, also based on the WMLES method 
was solved before imposing the boundary con-
ditions at the inlet. The transverse dimensions 
of the computational domain in this case corre-
spond to the selected value of W/H. The velocity 
distributions in the section x/hin = 18 from the 
entrance to the channel served as the velocity 
profiles at the entrance to the room (a uniform 
profile was given at the entrance to the chan-
nel), extracted from the time-averaged solution. 
Additional calculations were carried out for the 
case with the transverse size W/H= 1/6, giving a 
uniform velocity profile, as well as the inlet pro-
file extracted from the solution to the problem 
of flow in the channel in the section x/hin = 60 
at the entrance to the room.

Periodic boundary conditions were imposed 
at the lateral boundaries along the z direction. 
Soft boundary conditions were imposed at the 
outlet boundary. The remaining boundaries of 
the computational domain were solid walls on 
which the no-slip conditions were imposed.

Turbulence simulation. Turbulent air flow 
was simulated using the eddy-resolving WMLES 
approach, which is based on solving the filtered 
Navier–Stokes equations (see, for example, [9]). 
The instantaneous variables f are replaced by the 
sum of the filtered and subgrid-scale variables:

F = f ̃+ f ′.  
The value of f ̃is determined by the expression

f x t G x x f x t dx
Vol

( , ) ( , ) ( , ) ,= − ′ ′ ′∫ ∆ 3
(1)

where G(x – x′, Δ) is the filter function 
determining the size and structure of small-
scale turbulence (for example, a box filter); x is 
the coordinate of the point under consideration, 
∆ is the characteristic filter size (filter width).

Eddies whose size is smaller than the filter 
width are not resolved.

The filtered Navier–Stokes equations for 
incompressible fluid with constant physical 
properties can be written in the following form:
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where V is the velocity vector with the com-
ponents (Vx, Vy, Vz); S is the strain rate tensor; 
τSGS is the term resulting from spatial filtering 
of the equations.

The generalized Boussinesq hypothesis is 
used to determine the subgrid-scale stresses:
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where νSGS, m
2/s, is the subgrid-scale turbu-

lent viscosity to be found using some subgrid 
model. 

The classical subgrid-scale model is the 
algebraic Smagorinsky model, proposed back in 
1963 [17]. Based on dimensional analysis, the 
subgrid-scale viscosity in this model is expressed 
in terms of filter size and the magnitude of the 
strain-rate tensor:

νSGS = (CSΔ)2S,
where CS = 0.2 is the empirical Smagorinsky 
constant. 

The computational grid acts as the filter in 
practical implementations of the LES approach, 
with Δ usually defined as the cube root of the 
volume of the grid cell.

The WMLES S-Omega approach was used 
in our calculations; its practical implementation 
is based on the data given in [18]. Compared 
with the classical Smagorinsky model, the 
subgrid-scale viscosity is determined here using 
a modified linear subgrid scale, a damping 
factor (similar to the Van Driest factor in the 
Prandtl model for the RANS approach), and 
the difference |S – Ω| instead of the magnitude 
of the strain-rate tensor S: 
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where CS = 0.2 is the empirical Smagorinsky 
constant; S, s–1, Ω, s–1, are the magnitudes of 
strain rate and vorticity tensors

S = (2SijSij)
0.5, Ω = (2ΩijΩij)

0.5;
κ = 0.41 is the Kármán constant; dw, m, is 
the distance to the nearest wall, y+ is the nor-
malized distance from the center of the first 
near-wall cell to the wall (y+ = dwuτ/ν, while 
uτ = (τw/ρ)0.5, m/s, is the dynamic velocity, τw, 
Pa, is the shear stress on the wall). 

The filter size ∆ included in expression (4), 
defining the linear subgrid scale, is determined 
by the formula

�

� � �

� �
�

min max( ,

, ), ,
max max

C d

C
w w

w wn

(5)

where ∆max, m, is the maximum grid cell size 
(found as the maximum edge length for an 
orthogonal hexagon); ∆ wn, m, is the grid step 
along the normal to the wall; Cw = 0.15 is an 
empirical constant.

Since only averaged values were extracted 
from the solution of the auxiliary problem on air 
flow in a flat channel to impose the inlet boundary 
conditions, one of the available synthetic 
turbulence generators, the Vortex Method, was 
used to determine the instantaneous fluctuation 
characteristics (turbulent content) in the inlet 
section [19]. When the synthetic turbulence 
generator is activated, it is required to determine 
the turbulence intensity at the inlet boundary. 
The value I = 4% was taken in our calculations.

Computational aspects of the problem. 
Numerical modeling was carried out in 
the ANSYS Fluent 16.2* general-purpose 
hydrodynamic code, with discretization of 
the governing equations by the finite volume 
method. The parameters selected for the 
computational algorithm provided spatial and 
temporal discretization with second-order 
accuracy. The central differencing scheme was 
used for approximating the convective terms in 
the equation of motion.

The non-iterative algorithm corresponding 
to time advancement by the method of 
fractional steps (NITA) was used. The time 
step ∆t, equal to 0.006 s, was chosen so that 
the maximum value of the Courant number on 
the finest grid was less than unity in all cells of 
the computational domain. The computations 
showed that increasing the time step from 
0.006 to 0.010 s does not affect the averaged 

*   ANSYS Inc. ANSYS Fluent 16.2 User’s Guide, 2015.

characteristics of the flow; however, NITA 
had to be abandoned when the local Courant 
number turned out to be greater than unity. 
The reason for this is that it proved impossible 
to ensure the time evolution of the solution by 
the method of fractional steps, as the residuals 
began to grow indefinitely. The development 
of unsteady flow was controlled by placing 
specific monitoring points in the computational 
domain, allowing to detect the transition to a 
statistically steady flow regime. 

Quasi-structured unrefined uniform grids 
with identical cubic cells were built in the 
ICEM CFD generator for the computations. 
The number of cells was varied from 3 to 58 
million. The data on the grids used in the 
computations are given in Table 1.

The main series of computations for an-
alyzing the grid dependence of the solution 
was performed for the narrowest region with 
W/H= 1/6. The coarsest (initial) mesh con-
sisted of 3 million cells, where the size of each 
cubic cell was ∆ = 16.8 mm. Finer grids were 
generated by gradually increasing the dimen-
sion of the initial grid by √2, 2, and 2√2 times 
in each direction. Thus, the total number of 
cells for four successively refined grids was 3, 8, 
23 and 58 million cells (see Table 1, from the 
1st to the 4th grids).

The average normalized distance y+ from 
the center of the first near-wall cell to the wall 
of the initial grid with a total dimension of 3 
million cells does not exceed unity, while the 
maximum values located near the inlet slit 
reach y+ = 20. 

The computations were carried out using the 
resources of the Polytechnic Supercomputer 
Center (http://scc.spbstu.ru). The problems 
were run on the Polytechnic RSC Tornado 
cluster with a peak performance of 943 tera-
flops. The cluster contains 668 dual-processor 
nodes (Intel (R) Xeon (R) E5 2697v3), each 
node containing 14 cores. A problem was run 
on a maximum of 512 parallel cores, while it 
took at least three weeks of real time (258,000 
core hours) to accumulate unsteady statistics.

Computational results and discussion

Assessment of the relationship between 
resolved and simulated turbulence. The validity 
of applying the eddy-resolving approach was 
established by estimating the ratio of the resolved 
to the simulated components of the turbulent 
energy spectrum. The value of subgrid-scale 
(SGS) viscosity reflecting the contribution of 
the simulated turbulence can be used for this 
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estimation to some extent. Fig. 2, a–d shows 
the ratios of instantaneous fields of SGS to 
molecular viscosity, in several sections of the 
room. The computational results are given for 
the baseline (narrowest) computational domain 
with W/H = 1/6 (on a grid of 8 million cells) 
and for the case with the ratio W/H= 1. The 
mean value of relative SGS viscosity for the 
entire computational domain is approximately 
equal to 3, while the maximum value does not 
exceed 7. Notably, the distributions of νSGS/ν for 
different widths of the computational domain 
differ qualitatively at small x (see Fig. 2,c): the 
spatial distribution of νSGS/ν for the ratio W/H = 
1 indicates a large transverse scale of turbulent 
eddies compared with the longitudinal scale; 
such eddies cannot develop when W/H= 1/6 
because periodic conditions are imposed; the 
dependence of the solution on the transverse 
size of the computational domain is discussed 
below.

The SGS turbulent kinetic energy simulated 
can be estimated by the following formula [20]:

kSGS = 2C∆2 |S |2,
where C = 0.1. 

Fig. 2, e shows the distribution of the 
instantaneous field of subgrid-scale turbulent 
kinetic energy kSGS in a ratio to the mean 
resolved turbulent kinetic energy ‹k›, defined as

‹k› = [‹(Vx ′)
2› + ‹(Vy ′)

2› + ‹(Vz ′)
2›]/2.

The contribution of subgrid-scale kinetic 
energy to the total kinetic energy, equal to 
‹k› + kSGS, is less than 3% in the jet region. The 
contribution of subgrid-scale kinetic energy 
to the total kinetic energy is even smaller in 
the backflow region, characterized by low 
velocities, and does not exceed 1% on average. 
In general, it can be concluded that the fraction 
of simulated turbulence is small, and the main 
contribution is made by resolved turbulence.

Fig. 2. Fields of ratios of SGS to molecular viscosity in sections z = 0.25 m (a), y = 1.5 m (b), x= 3.0 m 
(c) and x= 6.0 m (d); (e) is the field of subgrid-scale turbulent kinetic to resolved turbulent kinetic 

energy, in the section z = 0.25 m (the W/H values are shown)

Tab l e  1
Parameter values of computational grids used

Parameter Notation Parameter value for grid
1st 2nd 3rd 4th 5th 6th

Relative length of computational 
domain along z axis W/H 1/6 1/3 1

Number of partitions 
along coordinate axis

Nx 536 751 1070 1446 1070 751

Ny 179 252 354 482 354 252
Nz 30 43 59 80 119 250

Total number of cells 
(rounded), million Nx × Ny × Nz 3 8 23 58 46 48

Cell size, mm
 ×103

∆ 16.8 12.0 8.4 6.2 8.4 12.0
∆/H 5.6 4.0 2.8 2.1 2.8 4.0
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Estimation of the Kolmogorov scale. The 
Kolmogorov scale η (m) is an important 
characteristic in simulation of turbulent flows, 
reflecting the characteristic size of the minimum 
eddies where kinetic energy dissipates due 
to the action of viscous friction forces. This 
scale determines the minimum requirements 
to the spatial resolution in direct numerical 
simulation, which must fully resolve the entire 
turbulent energy spectrum. The magnitude of 
the Kolmogorov scale is found by the formula 

1/43

,
 ν

η =  ε 
(6)

where ε, m2/s3, is the dissipation rate of 
turbulent kinetic energy per unit mass; ν, m2/s, 
is the kinematic viscosity.

The local values of the Kolmogorov scale 
for a near-ceiling jet take their minimum values 
in the region of the near-wall boundary layer 
in the initial zone of jet propagation. However, 
the degree of eddy resolution in the region of 
the near-wall boundary layer is not explicitly 
considered within our study; below we confine 
ourselves to discussing the quality of predicting 
wall friction by comparing solutions obtained 
on different grids. Quantitative estimates of the 
Kolmogorov scale were primarily carried out for 
the mixing layer whose degree of resolution is 
extremely important for adequately predicting 
the structure of the ventilation flow. Estimates 
of η are carried out using the computed data for 
the baseline (narrowest) computational domain 
with W/H= 1/6, while two different methods 
are used to determine the local dissipation rate 
of turbulent kinetic energy.

Method I for estimating ε. This method for 
determining ε to subsequently estimate the 
magnitude of the Kolmogorov scale η relies 
on the data from an additional steady RANS 
computation. A quasi-structured grid with the 
dimension of 141,000 cells clustered in the re-
gion of the mixing layer and to the walls of 
the room, so that the value of y+ was less than 
unity (a grid-independent solution is taken 
for this grid). A uniform velocity distribution 
(Vin = 0.455 m/s) was set at the inlet boundary. 
A semiempirical RNG k-ε turbulence model 
was used to close the RANS equations, allow-
ing to directly extract the field ε from the ob-
tained numerical solution. 

As it turned out, there are pronounced 
differences in the flow structures predicted by 
the RANS and WMLES computations in the 
baseline computational domain at W/H = 1/6. 
This is confirmed by comparing the fields of 
the mean velocity magnitude obtained by the 
given approaches (Fig. 3, a and b). As revealed 
below, the reason for the differences in the 
flow structure is that the results of WMLES 
computations at W/H = 1/6 largely depend 
on the size of the computational domain 
in the transverse direction. The distribution 
of η, computed from such a ‘mismatched’ 
distribution of ε, is shown in Fig. 3,c. 

In addition, an auxiliary 2D RANS problem 
was solved, where a ‘frozen’ velocity field, 
extracted from the WMLES computation, was 
given, considering the mean field in the central 
section of the room, z= 0.25 m (see Fig. 3,b). 
The equations of motion were not solved in 
the ‘frozen’ statement; only the turbulence 
characteristics were computed (also using the 

Fig. 3. Fields of mean velocity modulus magnitude, computed by RANS (a) and WMLES (b) models; 
RANS computations of Kolmogorov scale distributions, obtained from the ε fields, 

corresponding to two different flow patterns (c,d) ; 
The dashed line in Fig. 3, b marks a part of the section for data analysis in the mixing layer 
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RNG k-ε model). The field of ε obtained by 
this method was also used to calculate the field 
of η (see Fig. 3,d).

It can be seen from Fig. 3, c that the lo-
cal value of the Kolmogorov scale in the dis-
tribution of η, computed from the field of ε 
corresponding to the combined RANS com-
putations of the distributions of velocity and 
turbulent characteristics, varies from ηmin= 0.42 
mm in the region of the jet mixing layer up to 
ηmax= 13.3 mm in the region of low-velocity 
flow (see Fig. 3,c, bottom left corner). The dis-
tribution of the Kolmogorov scale constructed 
from the field of ε corresponding to the ‘frozen’ 
WMLES velocity field is shown in Fig. 3,d. In 
this case, the distribution of local values of η 
differed considerably from the picture shown in 
Fig. 3,c but the minimum value practically did 
not change: ηmin= 0.43 mm; the localization of 
the region of small values of η did not change 
either, while the maximum value of η in this 
case was ηmax= 34 mm.

Thus, the dimension of the grid for direct 
numerical simulation of the flow in the region 
W/H= 1/6 on a uniform grid of cubic elements 
with a linear size ηmin should be at least 182 bil-
lion cells. A grid with the total dimension of at 
least 1100 billion cells will be required for DNS 
computations in the region W/H= 1, described 
in the experimental study [11]; in this case, the 
time step value should not exceed 10–3 s to en-
sure the Courant number values less than unity. 
Importantly, these estimates do not take into 
account the decrease in η in the boundary layer 
of the near-wall jet, so grids of even higher 
dimensions are required to perform DNS com-
putations in reality.

The results of the estimates are summarized 
in Table 2, listing the ratios of the linear size 
of the cell in the computational grid to the 
local minimum and maximum values of the 
Kolmogorov scale for the four cases considered.

Method II for estimating ε. This method for 
determining ε directly uses the data obtained 
by the LES approach based on interpreting the 
equation for kinetic turbulent energy:
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where the last term is exactly the expression for 
its dissipation rate, 

' '

.k k

j j

V V
x x

∂ ∂
ε = ν

∂ ∂
(8)

The DNS approach allows to fully resolve 
the turbulent energy spectrum; therefore, if the 
dissipation rate is calculated directly by Eq. 
(8), it is determined exactly. The dissipation 
rate has a maximum in the high-frequency part 
of the energy spectrum, and the high-frequency 
part of the spectrum is simulated by the SGS 
viscosity in the LES method, so the value of the 
resolved dissipation rate calculated by Eq. (8) 
is underestimated compared to the exact value 
of ε. The value of ε increases in LES computa-
tions of successively refined grids that provide 
a better resolution of the high-frequency region 
of the spectrum Accordingly, the values of η 
decrease, approaching the exact value. 

The estimate of η, obtained by directly cal-
culating ε using Eq. (8), is illustrated in Fig. 4, 
a,b, where the isolines correspond to the distri-
butions for the ratio of the linear cell size in the 
grids, consisting of 8 and 58 million cells, to 
the local values of the Kolmogorov scale. The 
corresponding minimum values ηmin for differ-
ent grids are given in Table 2: the value of the 
Kolmogorov scale decreases by 33% as the grid 
is refined from 3 to 58 million cells (the size of 
cubic elements decreases by almost 3 times). 

The dissipation rate of turbulent kinetic en-
ergy can be also estimated from the data of 
LES computations according to the method 
proposed in [22]; this procedure has already 
been successfully applied in [23], considering 
the problem of jet flow. According to the data 
in [22], instead of directly estimating the value 
of ε from the LES data, all the other terms 
in Eq. (7) can be calculated, yielding an indi-
rect but more accurate estimate of ε (the sum 
of all calculated terms should be substituted 
into equation (6) to find η). The value of the 
Kolmogorov scale obtained in this way should 
not change substantially with the change in the 
dimension of the computational grid.

To estimate η in the mixing layer, it is suf-
ficient to calculate only one component in the 
generation term entering into Eq. (7), which 
makes the dominant contribution to generating 
turbulence in this region:

( )' ' .x x
y x y x y x

V VV V V V V V
y y

∂ ∂
= −

∂ ∂
(9)
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Fig. 4. Distribution of ratio of linear cell size to Kolmogorov scale, computed directly by the estimate 
of ε based on the data from LES computations (a,b), and by the estimate based on expression (9) (c,d). 

Data are given for the jet region.
 The dimension of the grids was 8 million (a,b) and 58 million (c,d) cells 

T ab l e  2
Values of Kolmogorov

scale estimated by methods I–IV 

Grid Number Quantity
Calculated value

I II III IV

1st
(∆ = 16.8 mm)

ηmin, mm 0.42 0.43 1.41 0.56

ηmax, mm 13.3 34.0 8.7 –

Δ/ηmin 40 39 12 30

∆/ηmax 1.3 0.5 1.9 –

2nd
(∆ = 12.0 mm)

ηmin, mm 0.42 0.43 1.27 0.63

ηmax, mm 13.3 34.0 9.0 –

Δ/ηmin 29 28 9 19

∆/ηmax 0.90 0.35 1.30 –

3rd
(∆ = 8.4 mm)

ηmin, mm 0.42 0.43 1.14 0.64

ηmax, mm 13.3 34.0 9.8 –

Δ/ηmin 20 20 7 13

∆/ηmax 0.60 0.25 0.90 –

4th
(∆ = 6.2 mm)

ηmin, mm 0.42 0.43 1.06 0.64

ηmax, mm 13.3 34.0 9.2 –

Δ/ηmin 15 14 6 10

∆/ηmax 0.50 0.18 0.70 –

Note s . 1. About the methods: I, II determined the ratios of the cell 
size Δ to the minimum (ηmin) and maximum (ηmax) values of the local 
Kolmogorov scale (KS), calculated from the RANS computations of 
the velocity field and turbulence characteristics (I), and in the ‘frozen’ 
WMLES velocity field (II); III, IV constructed the KS by the dissipation 
rate resolved in the LES computation (8) (III), as well as according to 
the dissipation rate estimated based on expression (9) (IV).
2. The numbering of the grids corresponds to Table 1.
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Calculating term (9) from the data of 
WMLES computations allowed to obtain 
one more estimate of ε and, accordingly, the 
Kolmogorov scale. The distributions of the ra-
tios of linear cell sizes in the grids consisting of 
8 and 58 million cells to the local values of the 
field of η computed in this way are shown in 
Fig. 4, c, d , respectively. The computed min-
imum values ηmin for different grids are given 
in the last column of Table 2: they practically 
do not vary from grid to grid, tending to ηmin 
= 0.64 mm as the grid is refined. In this case, 
a computational grid with the dimension of 51 
billion cells is required to carry out valid DNS 
computations for W/H = 1/6 (306 billion cells 
for W/H = 1). 

Dependence of the solution on the 
grid parameters. A series of parametric 
computations estimating the degree to 
which the inlet boundary conditions affected 
the solution was also carried out for the 
computational domain W/H= 1/6. Fig. 5, 
a, b shows the time-averaged distributions of 
the skin friction coefficient Cf along the mid-
section of the upper and lower walls (with 
no additional spatial averaging). Apparently, 
the quantitative prediction of the skin friction 
coefficient depends on the degree of spatial 
resolution, especially on the upper wall. A 
monotonic increase in friction is observed as 
the grid is refined. The differences between 
the solutions obtained on the initial (3 million 

cells) and on the first refined (8 million cells) 
grids reach 15%; with grid dependence grows 
with further refinement. Some qualitative 
influence of the spatial resolution on the 
predicted flow structure is also observed, as 
evidenced by the local differences in friction 
distributions. For example, the near-wall jet 
separates in the vicinity of the upper wall 
at x > 7 m, generating a recirculation zone 
(see Fig. 5,a). The position of the separation 
point depends on the dimension of the 
computational grid: separation on the coarsest 
grid occurs approximately 1 m closer to the 
entrance compared with the grid with the 
most refined spatial resolution. The positions 
of the points on the bottom wall where the 
flow separates and reattaches also depend on 
the grid to some extent (see Fig. 5,b). 

Fig. 5,c shows the distributions of the 
averaged longitudinal velocity along the 
vertical lines located in the mid-section: 
A-A with x/H = 1.0 and B-B with x/H = 2.0 
(shown with in Fig. 1 with a dashed line). 
The dependence of the velocities in the jet 
on the spatial resolution can be observed: 
the finer the grid, the higher the maximum 
velocity in the jet, both in section A-A (region 
I) and in section B-B (region III). Some grid 
dependence is also visible in the backflow 
region (section B-B, region II). 

The results of computations on the grids 
consisting of 23 and 58 million cells are close 

Fig. 5. Distributions of skin friction coefficient along the upper (a) and lower (b) walls; 
velocity profiles along the lines A-A and B-B (c).

 The dimensions of the grids used, million cells: 3, 8, 23 (long, medium 
and short dashes, respectively) and 58 (solid line) 
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to each other both in velocity profiles and in 
the friction distributions. Thus, the solution 
can be interpreted as almost grid-independent 
for a grid with the dimension of 23 million 
cells. The grid dependence of the solution is 
more pronounced for cells with a linear size of 
12 mm (a grid of 8 million cells); however, it 
was decided to use these cells with increasing 
transverse size of the computational domain. 
If a finer grid with a linear cell size of 8 
mm were used in the computations for W/H 
= 1, it would consist of approximately 140 
million cells, which was unacceptable with the 
available computing resources. 

Influence of inlet boundary conditions. A 
series of parametric computations estimating the 
degree to which the inlet boundary conditions 
affected the solution was also carried out for 
the computational domain W/H= 1/6 (a grid 
with the dimension of 8 million cells). Three 
different velocity profiles were considered 
(homogeneous profile and profiles extracted 
from the solution of the problem on the flow in 
a channel in a section 18 and 60 calibers from 
the entrance to the channel). An additional 
alternative without a synthetic turbulence 
generator was calculated for a profile taken in a 
cross section of 18 calibers. 

The influence of the inlet boundary 
conditions is illustrated in Fig. 6, showing 
the distributions of the averaged longitudinal 

velocity component along the same vertical 
lines A-A and B-B located in the mid-section. 
The dependence of the averaged flow structure 
on the velocity profile at the inlet is illustrated 
in Fig. 6,a (all distributions given here 
were obtained using a synthetic turbulence 
generator). Evidently, the velocity in the jet 
is somewhat higher when a well-developed 
profile is given at the inlet: the differences 
in the section A-A (region I) are about 10%, 
stratification of the velocity distributions is also 
pronounced downstream. The backflow is also 
characterized by a lower intensity for a uniform 
profile (see Fig. 6,a, section B-B, region II). 
Note that the two solutions obtained for two 
inlet velocity distributions different from a 
uniform profile are very close to each other.

A comparison of the velocity distributions 
obtained for the same inlet profile with and 
without a synthetic turbulence generator is 
shown in Fig. 6,b. It can be seen that the 
velocity in the jet core turns out to be somewhat 
lower in the case when the turbulence generator 
is not used, and the degree of the generator’s 
influence approximately corresponds to the 
transition from a uniform to a well-developed 
profile. However, using a synthetic turbulence 
generator has little effect on the description 
of the general air circulation in the room, 
including the level of velocities in the backflow 
zone.

Fig. 6. Averaged flow structure (longitudinal velocity along lines A-A and B-B) depending 
on different velocity profiles at the inlet (a), and on using a synthetic turbulence generator 

(the data obtained when the generator was turned off is shown with long dashes) 
for the same inlet profile x/hin = 18 (b);

(a) corresponds to the inlet velocity profiles: uniform (short dashes), 
at x/hin= 18 and 60 (solid and dash-dotted lines, respectively)
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Influence of the length of the computational 
domain in the transverse direction. It is a well-
known situation in simulation of periodic 
flows using eddy-resolving approaches that 
the solution can be significantly affected by 
the insufficient length of the computational 
domain in the periodic direction. A series of 
computations was carried out to investigate the 
effect of this parameter in the given problem; 
the relative width of the computational domain 
was taken equal to W/H = 1/6 (the standard 
case, for which the study of the grid dependence 
and the influence of boundary conditions at the 
inlet is presented above), W/H = 1/3, and 1. 

The structure of the averaged flow obtained 
in a periodic statement for the three indicated 
values of W/H is shown in Fig. 7, a–c; Fig. 7, 
d shows the flow structure computed in the full 
statement, taking into account the side walls 
[16]. Evidently, a two-vortex flow pattern is 

observed at W/H = 1/6 and 1/3: an intense 
secondary flow occupies only the right half of 
the computational domain, while a less intense 
secondary eddy with the opposite direction of 
rotation evolves in the left half. Increasing the 
dimension of the computational domain in the 
periodic direction changes the pattern of the 
averaged flow: a pair of large eddies transforms 
into a single one, occupying almost the entire 
computational domain (see Fig. 7,c). Note 
that the flow structure obtained in the periodic 
statement at W/H = 1 practically coincides 
with the flow pattern in the mid-section (see 
Fig. 7, d), computed in the full statement, with 
side walls.

The influence of the length of the 
computational domain in the periodic direction 
is also illustrated by the velocity profiles shown 
in Fig. 8 in comparison with the experimental 
data [11]. The lines located here in the 

Fig. 7. Fields of mean velocity magnitude in the longitudinal mid-section, obtained for two statements 
of the problem: periodic (a–c) and full, with side walls [16] (d). Values of W/H are shown

Fig. 8. Computed (lines) and experimental [11] (symbols) profiles of mean longitudinal velocity 
in four sections, obtained in a full statement with side walls [16] (solid lines) 

and in a periodic setting (other lines) at different values of W/H: 
1/6 (short dashes), 1/3 (long dashes) and 1 (dash dotted line)
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mid-section were shown above by the dashed 
line in Fig. 1: A-A and B-B are vertical lines; 
C-C and D-D are horizontal lines with y/H = 
0.972 and 0.028, respectively.

It can be seen from Fig. 8 that the profiles 
obtained for W/H = 1 in the periodic and 
full statements coincide almost completely. 
These computations adequately reproduce the 
flow pattern that was observed experimentally 
[11] (the quantitative differences between the 
computational results in the full statement 
and the experimental data obtained for the 
backflow region are discussed in [16]). It 
should be concluded that the flow structure for 
W/H ≥ 1 is reproduced correctly for the region 
that is infinite in the z direction. The periodic 
conditions significantly affect the shape and 
length of the eddies in the transverse direction 
for a computational domain of a smaller 
length, and a certain anisotropy is observed. 
Eddy structures that are large-scale in the 
transverse direction are observed at W/H= 1 
in the instantaneous fields of SGS viscosity 
given above (see Fig. 2, c, d). It is impossible 
to reproduce such eddies in the numerical 
solution in simulations with a computational 
domain of a smaller transverse size, which 
leads to noticeable changes in the averaged 
fields.

Even though the structure of the averaged 
flow depends on the size of the computational 
domain in the standard case with W/H= 1/6, 
it reflects all the characteristic features of 
the given flow, namely: the propagation of a 
near-wall turbulent jet, the development of a 
mixing layer and the formation of large eddy 
structures governing the flow as a whole. Thus, 
the computational results on the influence of 
the grid and the inlet boundary conditions 
obtained at W/H= 1/6 can be extended to all 
of the situations considered. 

Conclusion

Eddy-resolving WMLES approach was used 
in this study for numerical simulation of turbulent 
air flow in a room ventilated by a 2D air jet 
supplied from a slit located under the ceiling with 
the Reynolds number Re = 5·103. The problem 
was posed in a periodic statement describing a 
quasi-two-dimensional flow in a room strongly 
elongated in the transverse direction. The 
calculations were carried out in the ANSYS 
Fluent general-purpose CFD code, providing 
second-order spatial and temporal discretization.

The dependence of the solution on the 
grid was analyzed in a series of calculations 
performed on grids with the linear size of a 
cubic cell ranging from 6 to 16 mm; a baseline 
grid with a linear cell size of 12 mm was found 
acceptable. Estimates of the Kolmogorov 
scale revealed that the minimum values of 
the Kolmogorov scale in the mixing layer are 
locally about 20 times smaller than the linear 
cell size for the standard grid.

We have found that using a synthetic 
turbulence generator for imposing the inlet 
boundary conditions has practically no effect 
on the description of the general air circulation 
in the room, including the level of velocities in 
the backflow zone.

We have established that the length of 
the computational domain in the transverse 
direction noticeably affects the calculation 
results if W/H <1. In case of calculations in the 
region with the length W/H ≥ 1, the averaged 
structure of a quasi-two-dimensional flow is 
reproduced correctly in a room elongated in 
the transverse direction. 

The study was supported of the Program 
for Increasing the Competitiveness of Leading 
Universities of the Russian Federation (Project 
5-100-2020).
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The paper presents the results of numerical modeling of turbulent airflow in a test room 
based on the vortex-resolving wall-modeled large eddy simulation approach. The room ven-
tilation is provided by a plain air jet at Re = 5233. The jet is supplied from a slit placed at a 
side wall under the ceiling. The problem formulation reproduces the test experiment conditions 
(Nielsen et al., 1978, 1990) as completely as possible. Two configuration with various air supply 
slit width are considered. Calculations are carried out with the ANSYS Fluent software using 
the grid consisting of 48 million cells. The paper demonstrates that in the near-wall jet zone 
the computational results agree well with the experimental data, but visible disagreement is 
obtained in the recirculation flow region (occupied zone) with relatively low velocities.
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ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ЦИРКУЛЯЦИИ ВОЗДУХА 
В ПОМЕЩЕНИИ ПРИ ПОДАЧЕ ИЗ ПЛОСКОЙ ЩЕЛИ.  
II. LES-расчеты для помещения конечной ширинЫ

М.А. Засимова1, Н.Г. Иванов1, Д. Марков2
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Представлены результаты численного моделирования турбулентного течения воздуха 
в тестовом помещении на основе вихреразрешающего подхода – метода моделирования 
крупных вихрей с пристенным моделированием. Вентиляция помещения осуществляется 
плоской воздушной струей, подаваемой из расположенного под потолком на торцевой 
стенке щелевого отверстия, при Re = 5233. Задача ставилась в постановке, максимально 
полно воспроизводящей условия тестовых экспериментов (Nielsen et al., 1978, 1990). 
Рассмотрены две геометрические конфигурации, отличающиеся шириной входного 
отверстия. Расчеты в программном пакете ANSYS Fluent выполнены с использованием 
сетки размерностью 48 млн. ячеек. Показано, что результаты расчетов хорошо 
согласуются с экспериментальными данными в пристенной струе, однако наблюдается 
заметное рассогласование результатов расчетов и эксперимента в зоне возвратного 
течения (обитаемой зоне), характеризующейся малыми скоростями.

Ключевые слова: турбулентное течение, плоская струя, метод моделирования крупных 
вихрей, вентиляция
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Introduction
A crucial factor in developing and optimiz-

ing heating, ventilation and air conditioning 
(HVAC) systems for residential, public and 
industrial buildings is organizing the air ex-
change ensuring comfortable microclimate 
for humans. The most popular methods used 
for simulation of air exchange are based on 
integral estimates and balance ratios corre-
sponding to various conditions of supply air 
distribution [1]. These methods integrate em-
pirical approaches and can be only adjusted 
to a specific type of flow (propagation of a 
free submerged jet, propagation of a near-wall 
jet, etc.). For this reason, balance computa-
tional methods do not always yield complete 
and quantitatively reliable data even for in-
tegral flow parameters in real conditions, for 
example, for rooms with complex geometry. 
Furthermore, air in applied problems is typ-
ically supplied to a room using various types 
of diffusers, and it is difficult to describe the 
characteristics of diffusers in computational 
methods. A complete picture of the flow, in-
cluding data on the mean and local charac-
teristics of the flow, can be gained using more 
accurate approaches to describing the turbu-
lent motion of air. 

Data on the spatial structure of the flow, 
typical for ventilation problems, which is im-
portant for substantiating design decisions, can 
be obtained by numerical modeling of multi-
dimensional fluid dynamics problems. One of 
the most common approaches to numerical 
modeling of turbulent flows is solving steady/
unsteady Reynolds-averaged Navier–Stokes 
equations (often referred to as RANS/URANS 
in literature) [2], closed by a semi-empiri-
cal turbulence model. Notably, the available 
studies on free jet flows suggest that two-pa-
rameter k-ε turbulence models [3], as well as 
Sekundov’s model [4] with one differential 
equation return satisfactory results; however, 
validation of RANS data for simulation of 
complex jet flows remains a pivotal challenge.

Eddy-resolving approaches are methods for 
predicting the parameters of turbulent flows, 
have high accuracy, making it possible to ob-
tain not only averaged but also instantaneous 

fields of physical quantities. The classical 
eddy-resolving approaches include, first of 
all, the direct numerical simulation method 
(DNS) based on directly solving the full 
Navier–Stokes equations. Another eddy-re-
solving approach is Large Eddy Simulation 
(LES), solving the filtered Navier–Stokes 
equations, which allows to resolve large ed-
dies but requires semi-empirical modeling of 
small-scale eddies. 

Eddy-resolving approaches have extremely 
high computational costs; however, the LES 
approach takes less computational resources 
compared to DNS, especially if there is no 
goal to resolve the near-wall regions and the 
simulation is limited to applying techniques 
based on the RANS approach. Hybrid RANS-
LES approaches, including Wall Modeled 
LES (WMLES) have seen rapid advances over 
the past two decades. For example, eddy-re-
solving approaches are described in [5, 6].

The degree of uncertainty for the eddy-re-
solving LES and RANS-LES models, as well 
as for other approaches to modeling turbu-
lence including some empiricism can be esti-
mated by solving test problems for which reli-
able and well-described experimental data are 
available. 

This study presents the results of validation 
computations for the well-known test problem 
of ventilation flow in a room where an air jet 
is supplied from a slit located under the ceil-
ing [7, 8]. A series of laboratory experiments 
described in [7, 8] was aimed at studying tur-
bulent air flow in the model of a ventilated 
room. Laser Doppler anemometry (LDA) 
was used for measuring the velocity fields and 
fluctuation characteristics with controlled ac-
curacy. The measurement data are well docu-
mented: they are represented graphically in [7, 
8] and available as a database at http://www.
cfd-benchmarks.com/.

This paper continues the investigation in 
[9], where technique involving the WMLES 
approach was tested for computations in a sim-
plified periodic statement. In contrast to [9], 
we consider the full statement of the problem, 
including the side walls and most accurately 
reproducing the experimental conditions. 

http://www.cfd-benchmarks.com/
http://www.cfd-benchmarks.com/
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Tab l e 
Studies with numerical simulation  

of experiment in [7]

No. Authors Year Country Method Code Computational
Grid

2D problem statement

[10] Heikkinen, 
Piira 1991 Finland RANS (k-ε) WISH 28 × 17, 

45 × 26
[11] Vogl, Renz 1991 Germany RANS (k-ε) Fluent 56 × 62

[12]
Skalicky, 

Morgenstern,
 Auge, Hanel, 

Rosler
1992

Germany
RANS (k-ε) Psiom2D

ResCUE
64 × 32,
128 × 64

[14] Chen 1995 USA
RANS (k-ε)
 k-ε RNG) PHOENICS 50 × 45, 

100 × 70

[15] Chen 1996 USA
RANS (k-ε; RSTM 

–IP, –GY, –QI) PHOENICS 50 × 45

[16]
Peng, 

Davidson, 
Holmberg

1996 Sweden
RANS 

(LRN k-ε) CALC-BFC 50 × 47,
 102 × 132

[19] Bennetsen 1999 Denmark
RANS (k-ε,

 k-ω, ASM, DSM) CFX 4.2 72 × 48,
144 × 96

[20] Voight 2001 Denmark
RANS (k-ε, RNG, 

LS; k-ω, SST) EllipSys 192 × 128,
288 × 192

[23] Mora, Gadgil, 
Wurtz 2003 USA,

France

RANS (k-ε) 
Zonal models: PL, 
PL-SDF, SD-SDF

SPARK
Star CD

10 × 10,
40 × 40

[25] Rong, Nielsen 2008 Denmark RANS (k-ε; k-ω, 
BSL, SST) CFX 11.0 4,736, 18,944, 

28,800 cells

[26]
Dreau, 

Heiselberg, 
Nielsen

2013 Denmark
RANS (k-ε) 

low-Re, realizable;
 k-ω, SST)

CFX 11.0
Star-CCM+

4,068, 4,793,
16,658 cells

[29] Yuce, Pulat 2018 Turkey RANS 
(k-ε; k-ω) Fluent 16.2 4,000–43,100 

cells
3D problem with periodic condition

[13] Rosler, Hanel 1993 Germany RANS (k-ε) ResCUE 64 × 28 × 4,
128 × 48 × 4

[20] Voight 2001 Denmark
RANS 

(k-ε LS, 
k-ω, k-ω BSLREV)

EllipSys 96 × 64 × 16

[27] Ivanov, 
Zasimova 2018 Russia WMLES

 S-Omega Fluent 16.2 751×252×250

3D problem statement

[17] Davidson, 
Nielsen 1996 Sweden

Denmark
LES (Smagorinsky, 
dynamic Germano) SLAP 72 × 42 × 52,

102 × 52 × 52

[18] Davidson 1996 Sweden
RANS (k-ε),

LES (Smagorinsky, 
dynamic Germano) CALC-BFC 72 × 42 × 52,

102 × 52 × 52

[19] Bennetsen
1999 Denmark

RANS (k-ε, 
RNG; k-ω, ASM, 
DSM), LES (MS, 

Smagorinsky, 
dynamic Germano

CFX 4.2
LESROOM

96 × 64 × 32,
84 × 72 × 72

(RANS)
64 × 64 × 32,
96 × 64 × 64

(LES)
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Since experimental data in [7] were first 
published, multiple attempts have been made 
to reproduce the qualitative picture of the flow 
and quantitative data on the velocity profiles 
using the methods of computational fluid dy-
namics. Aside from the actual experimental 
data, the CFD Benchmarks website contains 
the best known computational data obtained 
by various scientific groups from 1991 to 2013 
for the conditions corresponding to the test [7]. 
Notably, no results of numerical simulation 
are available in literature for the conditions of 
the experiment described in [8] with a smaller 
width of the inlet slit. 

The table contains brief information about 
the studies [10–30] giving the results of numer-
ical modeling of air exchange in a room model 
close to the data in [7]. The calculations were 
carried out in two-dimensional, quasi-two-di-
mensional (imposing periodic conditions in the 
transverse direction) and three-dimensional 
statements. These studies describe in detail the 
computational results, establishing the influ-
ence of turbulence models and various numeri-
cal parameters on the obtained solution. 

The table provides data on the general dimen-
sions of the computational grids used in numeri-
cal computations described in [10–30]. Naturally, 
the dimensions of the grids gradually increase 
over time: for example, the coarse computational 
grid used in computations in 1991 consisted of 
100 control volumes, while the finest grid consists 
of approximately 4.8·107 cells (2018).

It is evident from the data in the table that 
the model problem was numerically solved both 
using the RANS approach, closed by semi-
empirical turbulence models (such as k-ε, k-ω, 
k-ω SST, etc.), and using the eddy-resolving LES 
approach in combination with different subgrid-
scale models. Until recently, only three research 
groups (Davidson et al. [17, 18], Bennetsen 
[19], Voight [20]) performed computations for 
the model problem [7] using the LES approach; 
however, the computational grids were very 
rough by modern standards (with dimensions 
of less than half a million cells). Importantly, 
it is now clear [9] that such grids do not allow 
to describe the behavior of three-dimensional 
turbulent structures with a sufficient degree of 
accuracy for the given problem. 

Generalizing the results of numerical 
simulation available in literature for the experi-
mental conditions in [7], we can conclude that 
the general picture obtained for the averaged 
flow agrees with the experiment but the local 
characteristics turn out to be inaccurate. It is 
now possible to run accurate numerical simu-
lations of turbulent flows on fairly refined grids 
(with dimensions up to 107–10 8 cells) based on 
different eddy-resolving approaches, including 
WMLES.

This study presents the results of numerical 
simulation of turbulent airflow in a closed room 
using the eddy-resolving WMLES approach for 
the conditions approximating the experiments 
in [7, 8].

C o n t i n u e d

No. Authors Year Country Method Code Computational
Grid

[20] Voight 2001 Denmark

RANS (k-ε LS, 
k-ω BSLREV),

LES (Mixed Scale, 
Smagorinsky,

EllipSys

96 × 64 × 16
(RANS)

72 × 48 × 36,
96 × 64 × 48

(LES)
[21] Jiang, Chen 2001

USA

LES (Smagorinsky, 
Filtered Dynamic, 

Small-Scale 
model)

PHOENICS 66 × 18 × 34,
66 × 34 × 34[22] Jiang, Mingde, 

Chen 2003

[24] Ivanov 2005 Belgium
Russia

RANS (k-ε) 
LS; SA)

SINF,
FINE

37 × 41 × 29,
73 × 81 × 57

[27]
[28]

Ivanov, 
Zasimova 2018 Russia WMLES

 S-Omega Fluent 16.2 751×252×250

[30] Van Hoof, 
Blocken 2019 Belgium RANS Fluent 15.0

212,160–
1,697,280

cells
Notations: RSTM is the Reynolds Stress Models [6], LRN is the Low Reynolds Number correction, BSL 
is Baseline revised, LS is the Launder Sharma k-ε model, ASM is the Algebraic Stress Model, DSM is the 
Differential Reynolds Stress Model.
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Problem statement

Room geometry. We considered airflow in 
a room shaped as a rectangular parallelepiped 
with the dimensions 3H × H × H. The room is 
shown schematically in Fig.1, a, the origin of 
the coordinate system is located in the bottom 
corner of the room. The height of the room 
H = 3 m was taken as the length scale. 

The inlet to the computational domain was 
located on the side wall of the room, under the 
ceiling; this inlet was an air slit with the width 
win and the height hin = 0.056H = 0.168 m. In 
accordance with different experimental conditions 
in [7, 8], two geometric configurations with 
different inlet widths were considered. 

In the first scenario, the slit width coincided 
with the room width, win = H; this statement 
of the problem corresponds to the experimental 
conditions in [7].

In the second scenario, the width of the 
slit was halved and was equal to win = 0.5H, 
the slit was located in the center relative to 
the side walls of the room (see Fig. 1,a); this 
statement corresponds to the experimental 
conditions in [8]. 

A rectangular exhaust slit with the width 
H and the height hout = 0.16H = 0.48 m 
was located on the opposite side wall, near 
the floor, discharging air from the room. 
An outlet ventilation duct shaped as a 
rectangular parallelepiped with the dimensions 

0.50H × 0.16H × 1.0H was installed adjacent to 
the slit in order to prevent backflow generated 
on the surface of the exhaust slit.

The experimental data from [7, 8] are 
available along the lines marked with dashes 
in Fig. 1,a. Vertical lines A-A are located at 
x = 1.0H, and BB at x = 2.0H; horizontal lines 
C-C are located at y = 0.972H (at a distance 
hin/ 2 from the ceiling, which corresponds 
to the midsection of the inlet slit), and D-D 
at y = 0.028H (at a distance hin/2 from the 
floor). The subscripts ‘1’ correspond to the 
central section of the room (z = 0.5H), and ‘2’ 
to the lateral section (z = 0.1H).

Notably, the laboratory experiments in [7, 
8] were carried out in a scaled-down model of 
the room to reduce the errors in measuring the 
velocity: the width and height of the model were 
the same and were H = 0.0893 m, and the length 
was 0.268 m. However, the descriptions in [7, 8] 
and in subsequent numerical studies were given 
for the data scaled to full-size conditions.

Boundary conditions. The problem is 
considered in the isothermal approximation, 
which corresponds to the experimental 
conditions, where a uniform temperature 
field was maintained in the room. A model 
of incompressible fluid with constant physical 
properties was used to describe isothermal 
motion of air: density ρ = 1.23 kg/m3, dynamic 
viscosity µ = 1.79·105 Pa⋅s. 

Fig. 1. Geometric model of the room (a). Experimental data are available along the additional lines shown; 
the lines and the symbols correspond, respectively to computed and experimental distributions 

of longitudinal velocity at the entrance to the room along two axes (b, c) for the scenario with win = 3 
m; sections at z = 3.000 m (b) and y = 2.916 m (c) are shown
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Air is supplied to the entrance to the room at 
an average velocity equal to Vin = 0.455 m/s (this 
value corresponds to a volumetric flow rate of 
825 m3/h for the first scenario with a wide inlet 
slit). The Reynolds number computed from the 
height of the inlet slit is Re = ρhinVin/µ = 5.23·103.

The experimental velocity distributions in 
the inlet section along the central longitudinal 
and transverse lines are shown by symbols in 
Figs. 1, b, c. We should note that the inlet ven-
tilation duct is not described in [7, 8], which 
is to say that no data was provided for how the 
inlet velocity field was generated. 

The inlet velocity profiles were extracted 
from an additional WMLES solution to the cor-
responding problem of airflow in a straight ven-
tilation duct with the dimensions Lduct × hin × win. 
The duct length was taken equal to Lduct = 2.0H 
= 6 m, and its cross section corresponded to the 
inlet slit with the dimensions hin × win. 

Soft boundary conditions were imposed at 
the exit boundary of the computational do-
main. The remaining boundaries of the compu-
tational domain were solid walls where no-slip 
conditions were imposed.

Mathematical model. Turbulent air flow was 
simulated using the eddy-resolving WMLES 
approach, which is based on solving the filtered 
Navier–Stokes equations (see, for example, 
[31]). By applying the filtering procedure, the 
instantaneous variables f in the Navier–Stokes 
equations are replaced by the sum of filtered 
and subgrid-scale variables f = f ̃ + fˈ. The 
quantity f ̃is determined by the expression 

( ) ( ) ( ) 3, ', ', ' ,
Vol

f x t G x x f x t dx= − ∆∫ (1)

where G(x – x′, Δ) is the filtering function de-
termining the size and structure of small-scale 
turbulence (for example, a box filter); x, m, is 
the coordinate of the given point, ∆, m, is the 
characteristic size of the filter (filter width). 

Eddies whose size is smaller than the filter 
width are not resolved.

The filtered equations for incompressible 
fluid with constant physical properties can be 
written in the following form:  

SGS

0;
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t

p S

∇⋅ =
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
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V
V VV

(2)

where V is the velocity vector with the com-
ponents (Vx, Vy, Vz); S is the strain rate tensor;  
τSGS is the term resulting from spatial filtering 
of the equations. 

The generalized Boussinesq hypothesis is 
used to determine the subgrid-scale stresses:

1 2 ,
3

SGS
ij kk ij SGS ijSτ − τ δ = − ν (3)

where νSGS is the subgrid-scale turbulent viscos-
ity to be determined using some semi-empirical 
subgrid model.

The WMLES S-Omega approach 
implemented based on the data in [32] was used 
in the computations. Compared with the standard 
Smagorinsky model, the subgrid-scale viscosity is 
determined using a modified linear subgrid scale, 
a damping factor (similar to the Van Driest factor 
in the Prandtl model for the RANS approach), 
and the difference |S – Ω| instead of the magnitude 
of the strain-rate tensor S: 

( ) ( ){ }
( ){ }( )

2 2

3

min ,

1 exp / 25 ,

SGS w Sêd C S

y+

ν = ∆ × −Ω ×

× − −
(4)

where CS = 0.2 is the empirical Smagorinsky 
constant; S, s–1, Ω, s–1, are the magnitudes of 
strain rate and vorticity tensors

(S = (2SijSij)
0.5, Ω = (2ΩijΩij)

0.5);
к = 0.41 is the Kármán constant; dw, m, is the 
distance to the nearest wall, y+ is the normal-
ized distance from the center of the first wall 
cell to the wall. 

The quantity ∆ is determined by the formula

{
}max max

min max( ,

, ), ,
w w

w wn

C d

C

∆ =

∆ ∆ ∆
(5)

where ∆max, m, is the maximum grid cell size 
(found as the maximum edge length for an 
orthogonal hexagon); ∆ wn, m, is the grid step 
along the normal to the wall; Cw = 0.15 is an 
empirical constant.

Since only averaged values were extracted 
from the solution of the auxiliary problem on air 
flow in a flat channel to impose the inlet boundary 
conditions, one of the available synthetic 
turbulence generators, the Vortex Method 
[33], was used to determine the instantaneous 
fluctuation characteristics (turbulent content) in 
the inlet section. With the synthetic turbulence 
generator engaged, it is required to determine 
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the turbulence intensity at the inlet boundary; 
the value I = 4% was given.

Computational aspects of the problem. 
Numerical modeling was carried out in 
the ANSYS Fluent 16.2* general-purpose 
hydrodynamic code, with discretization of 
the governing equations by the finite volume 
method. A uniform grid consisting of cubic 
elements and built in the ICEM CFD generator 
was used. The grid dimension was approximately 
48 million cells (751 × 252 × 250), while the 
linear size of the cell was ∆ = 12 mm.

The parameters selected for the computational 
algorithm provided spatial and temporal 
discretization with second-order accuracy. 
The central differencing scheme was used for 
approximating the convective terms in the 
equation of motion. The non-iterative algorithm 
corresponding to time advancement by the 
method of fractional steps (NITA) was used. The 
time step ∆t, equal to 0.01 s, was chosen so that 
the maximum value of the Courant number in 
the computational domain was less than unity. 
Additional computations confirmed that a 
decrease in the time step to 0.006 s does not affect 
the averaged flow characteristics. The rationale for 
the choice of the grid and other aspects related to 
applying the LES method are considered in the 
first part of this study [9], considering a periodic 
problem with no influence from the side walls.

The development of unsteady flow was 
controlled by placing monitoring points in 
different positions in the room, allowing to 
detect the transition to a statistically steady flow 
regime. Notably, the fluctuation characteristics 

*   ANSYS Inc. ANSYS Fluent 16.2 User’s Guide, 2015.

of the flow are highly sensitive to the length 
of the averaging interval. Samples from 1500 s 
(150,000 time steps) to 3,000 s were computed 
to accumulate representative statistics. The 
averaged characteristics computed over shorter 
averaging periods turned out to be significantly 
dependent on the sample.

The computations were carried out using the 
resources of the Polytechnic Supercomputer 
Center (http://www.scc.spbstu.ru). The problems 
were run on the Polytechnic RSC Tornado 
cluster with a peak performance of 943 teraflops. 
The cluster contains 668 dual-processor nodes 
(Intel (R) Xeon (R) E5 2697v3), each node 
containing 14 cores. A problem was run on a 
maximum of 512 parallel cores, while it took 
at least three weeks of real time (258,000 core 
hours) to accumulate unsteady statistics. 

Computational results and discussion

 Description of the flow structure (scenario 
1, w

in
 =H). The structure of the flow in the 

room is illustrated in Fig. 2, showing the 
instantaneous, i.e.,

V = (Vx
2 + Vy

2 + Vz
2)0.5,

and averaged, i.e.,

Vm = (‹Vx›
2 + ‹Vy›

2 + ‹Vz›
2)0.5,

fields of the velocity magnitude for the first 
computational scenario, with the width of the 
inlet slit coinciding with the width of the room (win 
=H), in several sections of the room. The symbols 
‹…› here and below refer to time averaging. 

A near-wall turbulent jet of air develops 
near the ceiling (the upper regions of the fields 
in Fig. 2), which is practically symmetric 

Fig. 2. Instantaneous velocity fields in vertical sections z = 0.3 m, 1.5 m and 2.7 m of the room model 
(a); fields of mean velocity magnitude in sections z = 1.5 m (b), x = 3.0 m (c) and x = 6.0 m (d)

http://www.scc.spbstu.ru
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relative to the midsection of the room. As the 
jet propagates from the inlet slit to the opposite 
side wall, the velocities approximately halve 
(from Vin = 0.455 to 0.200 m/s). Colliding 
with the wall opposite to the entrance, the jet 
turns around, and a secondary low-velocity 
flow is generated in the bottom of the room, 
characterized by velocities less than 0.1 m/s.

As follows from the flow patterns in the cross 
sections (see Fig. 2, c, d), the flow in most of the 
room is uniform along the transverse z-direc-
tion, even though the cross section of the room 
is a square (W/H = 1). Pronounced deviations 
from the two-dimensional (planar) structure of 
the flow are observed near the side walls of the 
room, as well as in the region of lower velocities 
of recirculation flow. Thus, a simplified state-
ment of the problem with the periodic condi-
tion imposed makes it possible to predict the 
structure of the flow; however, as established in 
[9], the periodic computational domain has to 
sufficiently extended in the transverse direction 
for this purpose, i.e., W/H ≥ 1.

The pattern of the flow in the midsection 
(see Fig. 2, b) indicates that two regions with 
substantially different scales are observed in the 
room: the jet flow zone, i.e., the region where 
an intense near-ceiling jet develops, with char-
acteristically high air velocities, and the occu-
pied zone with low-velocity circulation flow, 
which is where fresh air is supplied to people in 
the room in real-world conditions. It is rather 
difficult to describe such a flow by numerical 
modeling because the flows evolving in differ-
ent areas of the room have different scales.

The data obtained at the monitoring points 
located in the jet flow zone also point to multi-
scale flow (point A with coordinates 3.0, 2.8 

and 1.5 m) and recirculation flow (point B with 
coordinates 3.0, 0.4 and 1.5 m); Fig. 3,a shows 
the evolution of the longitudinal velocity com-
ponent at these points. 

High-frequency fluctuations are observed in 
the jet flow zone, with their amplitude com-
parable to the mean velocity (‹Vx› = 0.29 m/s 
for the point A, and the value of the maximum 
deviation from this average equals 0.27 m/s). 
The characteristic time scale of the fluctuations 
at the point A is less than 5 s. The relative am-
plitude of the fluctuations is much higher in 
the region of lower velocities; the characteris-
tic time scale of low-frequency oscillations also 
turns out to be an order of magnitude higher 
than in the jet flow zone, for example, it is 
about 150 s at the point В. 

Fig. 3,b shows the frequency dependence of 
the power spectral density (PSD), calculated 
from the x-velocity component (see Fig. 3,a), 
which was obtained using the formula

PSD = 2AUx
2∆t,

where AUx is the amplitude of harmonic 
components in the Fourier transform. 

A straight line added to the graph reflects the 
decrease in the spectrum by the Kolmogorov law 
(denoted as the “–5/3 law”). This law states that 
the frequency power spectrum exhibits universal 
behavior in the inertial range E~k –5/3, where E is 
the spectral power density of kinetic energy, k is 
the wavenumber. A region where the Kolmogorov 
law is satisfied can be observed on the spectral 
curves plotted from the data at the points A and 
B. The graphs also show that the energy spectra of 
fluctuations are filled for more than two decades, 
which indicates that the given flow is described 
by a regime with developed turbulence.

Fig. 3. Time history of x-velocity components at two monitoring points: 
point A with coordinates (3.0, 2.8 and 1.5 m) and point B (3.0, 0.4 and 1.5 m) (a); 

energy spectra of velocity fluctuations at these points
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Comparison with experimental data (scenario 
1, w

in
 =H). Fig. 4 shows the profiles of the 

time-averaged x-velocity component ‹Vx›, and 
its root-mean-square deviations from the mean 
value (‹Vx′

 2›)0.5 in eight sections (lines) of the 
room (see Fig. 1,a for the locations of sections). 
The graphs summarize the data obtained in 
the course of this numerical simulation and 
experimental data given in [7]. The top of Fig. 
4 shows graphs along the lines drawn in the 
central section of the room, the bottom shows 
lines in the lateral section. It is evident from 
the graphs that the flow in the room is quasi-
two-dimensional in a wide range of transverse 
coordinates (as noted above); the profiles of 
velocity and its fluctuations in the central and 
lateral sections are identical both qualitatively 
and quantitatively.

The results of numerical computations are 
in good agreement with the experimental data 
in the region of the near-ceiling jet. At the 
same time, there is a disagreement between 
the computational and experimental results in 
the backflow zone. The computed profiles of 
velocity and its fluctuations in vertical sections 
(lines A-A and B-B) adequately reproduce the 
experimental data; there is some discrepancy in 
the results in the vicinity of the room’s floor at 
y < 1 (see Fig. 4,a,b). A certain disagreement 
between the computed and experimental 
results can also be observed from the data for 

velocity and its fluctuations in the horizontal 
sections of the room located in the backflow 
zone (lines C-C in Fig. 4, c, d), where local 
maxima of the velocity appear. Conversely, 
the computations are in good agreement with 
the experiment along the horizontal lines D-D 
(see Fig. 4, e, f).

Comparing the results with the 
data obtained earlier by other authors, 
numerically simulating the experimental 
conditions in [7] (see Table 1), we can 
conclude that the results of these studies are 
in better agreement with the experimental 
data [7] both in terms of velocity profiles 
and fluctuation characteristics. This is 
particularly pronounced in the jet flow zone 
(sections D-D in Fig. 4, e, f), for which 
quantitative agreement of the computational 
and experimental data was obtained in this 
study, and the position of the point where 
the jet separates from the top wall was 
predicted accurately. Our computations 
predict more intense flow than was observed 
in the experiment for the region of secondary 
flow (sections C-C in Fig. 4, c, d): the values 
of velocity and its fluctuations prove to be 
overestimated by the computational data. All 
studies published previously by other authors 
pointed to a significant disagreement between 
the computations and the experiment in the 
backflow zone with relatively low velocities.

Fig. 4. Computed (solid lines) and experimental (squares) velocity profiles; 
profiles of velocity fluctuations (dashed lines and triangles, respectively) 
in several sections of the geometric model of the room (see Fig. 1,a) 
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Characteristics of the flow with decreasing 
width of the inlet slit (scenario 2, w

in
 = 0.5H). 

Fig. 5 shows the characteristics of the flow for 
scenario 2, where the width of the inlet slit is 
half the width of the computational domain; the 
flow structures in both scenarios are compared. 
The figure shows three-dimensional isosurfaces 
of the Q criterion taking the form Q = 0.5 
(Ω2–S2), where Q has a value equal to 0.1 s-2; 
the colors of the isosurfaces correspond to the 
values of the velocity magnitude. As the width 
of the inlet slit is halved, additional mixing 
layers evolve in the transverse (z) direction; 
their development is noticeable in the near-
ceiling zone in the corners of the room: the 
averaged flow exhibits a fundamentally three-
dimensional nature here. The differences in the 
patterns of jet propagation are smoothed out 
away from the entrance; the numerical solutions 
demonstrate practically the same distributions 
of the Q criterion in the region where the jet 
ineracts with the opposite side wall.

On the whole, it can be concluded that the 
global structure of the flow is identical for the 
two scenarios differing by the width of the inlet 
slit, except for the region in the vicinity of the 
entrance.

Fig. 6 compares the time-averaged profiles 
of the x velocity components obtained in the 
computations with the experimental data 
from [8] along the vertical lines AA and 
B-B (note that only a very limited set of 
experimental data is available for the problem 
with the smaller widths of the inlet slit). Fig. 
6,a shows the distributions along the lines in 
the central section, with z = 1.5 m; Fig. 6,b 
shows the distributions along the lines in the 
lateral section, with z = 0.3 m (this value of 
the transverse coordinate is already outside 
the inlet slit). The graphs confirm that 
the computational results are in complete 
agreement with the experimental data in the 
near wake (lines A-A). Differences between 
the computed and experimental velocity 

Fig. 5. Instant isosurfaces of Q criterion, colored by velocity magnitude; 
constructed for two computational scenarios: win = H (a) and 0.5H (b) 

Fig. 6. Computed (solid lines) and experimental [8] (symbols) profiles 
of longitudinal velocity component in sections A-A and B-B for scenario 2, win = 0.5H 
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profiles in the area of the room located closer 
to the exit (lines B-B), especially in the 
lateral section. The reasons for disagreement 
may stem both from the drawbacks of the 
numerical simulation technique and from the 
uncertainty of the experimental data given in 
[8]. We should note that the computations 
revealed a strong sensitivity of the averaged 
flow characteristics to the duration of the 
sample used for averaging: independence 
from the averaging interval was achieved in 
the computations (for the samples exceeding 
1500 s). 

 The computations indicate that using a 
sufficiently long sample for averaging is of 
fundamental importance for an averaged 
flow with a substantially three-dimensional 
pattern, characteristic for scenario 2. There is 
no information about the averaging technique 
(including the duration of the samples) used in 
the experiments in [7, 8]. It is also known that 
the errors in velocity measurements can sharply 
increase in the region of low-velocity flow: 
specifically, a greater disagreement between 
the computational and experimental data is 
observed in this region.

Conclusion

The eddy-resolving WMLES approach was 
used in this study for numerical simulation 
of turbulent air flow in a room with a square 
cross-section ventilated by a plain air jet sup-
plied from a slit located under the ceiling; 
the Reynolds number Re = 10·53. The prob-
lem was formulated in a statement that most 
fully reproduced the conditions of the test ex-
periment. Two geometric configurations were 

considered, differing by the width of the inlet 
slit. The computations were carried out in the 
ANSYS Fluent general-purpose CFD code, 
providing second-order spatial and temporal 
discretization. 

Despite the geometric simplicity, the flow 
evolving in the room combines many factors 
that complicate the simulations: 

a plain near-wall jet develops under the ceil-
ing of the room; 

after turning around, the descending jet 
flows onto the lower wall; 

the side walls play a certain role, forming 
the three-dimensional structure of the averaged 
flow. 

We have established that the computational 
results are in good agreement with the experi-
mental data in the near-wall jet, however, there 
is a noticeable discrepancy between the com-
putational results and the experiment in the 
backflow zone (occupied zone), which is char-
acterized by relatively low velocities. 

Acknowledgment

We would like to express our gratitude to 
the Andrey Garbaruk (associate professor of 
Peter the Great St. Petersburg Polytechnic 
University) and Vladimir Ris (director of 
Scientific and Educational Center for Computer 
Technologies in Aerodynamics and Thermal 
Engineering of Peter the Great St. Petersburg 
Polytechnic University) for valuable advice and 
comments.

This study was supported by the Academic 
Excellence Project 5-100 proposed by Peter the 
Great St. Petersburg Polytechnic University.

REFERENCES

1. Grimitlin M.I., Raspredelenie vozdukha v 
pomeshcheniyakh [Air distribution in the rooms], 
3rd Ed., AVOK Severo-Zapad, St. Petersburg, 
2004 (in Russian).

2. Reynolds O., IV. On the dynamical 
theory of incompressible viscous fluids and the 
determination of the criterion, Phil. Trans. Roy. 
Soc. Mathematical, Physical and Engineering 
Sciences. 186 (December) (1895) 123–164.

3. Launder B.E., Spalding D.B., Lectures in 
mathematical models of turbulence, Academic 
Press, London, New-York, 1972. 

4. Guliaev A.N., Kozlov V.E., Sekundov A.N., 
A universal one-equation model for turbulent 
viscosity, Fluid Dynamics. 28 (4) (1993) 
485–494.

5. Sagaut P., Large Eddy Simulation for 
incompressible flows: An introduction, 3rd Ed., 
Springer, Heidelberg, 2006.

6. Garbaruk A.V., Strelets M.Kh., Travin 
A.K., Shur M.L, Sovremennyye podkhody 
k modelirovaniyu turbulentnosty [Modern 
approaches to turbulence modelling], St. 
Petersburg Polytechnic University Publishing, St. 
Petersburg, 2016 (in Russian).

7. Nielsen P.V., Restivo A., Whitelaw J.H., 
The velocity characteristics of ventilated room, J. 
Fluids Engineering. 100 (3) (1978) 291–298.

8. Nielsen P.V., Specification of a 
two dimensional test case, Instituttet for 
Bygningsteknik, Aalborg Universitet, Denmark, 
Gul Serie, Aalborg. R9040 (8) (1990) 1–15.



St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (3) 2020

76

9. Zasimova M.A., Ivanov N.G., Markov D., 
Numerical modeling of air distribution in a test 
room with 2D sidewall jet. I. Foundations for eddy 
resolving approach application based on periodical 
formulation, St. Petersburg Polytechnical State 
University Journal. Physics and Mathematics 13 
(3) (2020) 49–64.

10. Heikkinen J., Piira K., Simulation of simple 
(two-dimensional) test cases, Technical Research 
Center of Finland, Laboratory of Heating and 
Ventilation, Espoo, Finland, Annex report No. 
AN20.1-SF-91-VTT07 (1991).

11. Vogl N., Renz U., Simulation of simple 
test cases, In: Energy Conservation in Buildings 
and in Community Systems, Annex 20. Airflow 
Patterns within Buildings. No. 1.46. Aachen, 
Germany, 1991.www.cfd-benchmarks.com.

12. Skalicky T., Morgenstern G., Auge A., et 
al., Comparative studies of selected discretization 
methods for the numerical solution of room air 
flow problems, Proc. of the 3rd International 
Conference on Air Distribution in Rooms 
‘ROOMVENT-92’ (Aalborg, Denmark, 
September 2–4, 1992), (1992) 226–240.

13. Rosler M., Hanel B., Numerical 
computation of flow and heat transfer in 
air-conditioned rooms by a special velocity-
pressure iteration and a multigrid method, 
Proc. of the 3rd International Conference on 
Air Distribution in Rooms ‘ROOMVENT-92’ 
(Aalborg, Denmark, September 2–4, 1992), 
(1992) 178–199.

14. Chen Q., Comparison of different k-ε 
models for indoor air flow computations, J. 
Numerical Heat Transfer, An International 
Journal of Computation and Methodology, Part 
B. Fundamentals. 28 (3) (1995) 353 –369.

15. Chen Q., Prediction of room air motion 
by Reynolds–Stress models, J. Building and 
Environment. 31 (3) (1996) 233–244.

16. Peng S.-H., Davidson L., Holmberg S., 
The two-equation turbulence k-ω model applied 
to recirculating ventilation flows, Chalmers 
University of Technology, Sweden, Department 
of Thermo- and Fluid Dynamics, 1996.

17. Davidson L., Nielsen P.V., Large eddy 
simulations of the flow in a three dimensional 
ventilated room, Proc. of the 5th International 
Conference on Air Distribution in Rooms 
‘ROOMVENT-96’ (Yokohama, Japan, July 17–
19, 1996). 2 (1996) 161–168.

18. Davidson L., Implementation of a Large 
Eddy Simulation method applied to recirculating 
flow in a ventilated room, Aalborg University, 
Denmark, Department of Building Technology 
and Structural Engineering, 1996.

19. Bennetsen J.C., Numerical simulation 
of turbulent airflow in livestock buildings, 
The Technical University of Denmark, The 
Department of Mathematical Modeling, Ph. D 
thesis, 1999.

20. Voight L.K., Navier – Stokes simulations 
of airflow in rooms and around human body, 
International Center for Indoor Environment 
and Energy, Technical University of Denmark, 
Department of Energy Engineering, Ph.D thesis, 
2000. 

21. Jiang Y., Chen Q., Study of natural 
ventilation in buildings by large eddy simulation, 
J. of Wind Engineering and Industrial 
Aerodynamics. 89 (13) (2001) 1155–1178.

22. Jiang Y., Su M., Chen Q., Using large 
eddy simulation to study airflows in and around 
buildings, ASHRAE Transactions. 109 (2) (2003) 
517–526. 

23. Mora L., Gadgil A.J., Wurtz E., Comparing 
zonal and CFD model predictions of isothermal 
indoor airflows to experimental data, Indoor Air. 
13 (2) (2003) 77–85.

24. Ivanov N., Smirnov E., Lacor C., 
Computational fluid dynamics analysis of 
pollutant dispersion in a metro carriage, Proc. 
of the 17th Air-Conditioning and Ventilation 
Conference (Prague, Czech. Republic, May 17–
19, 2006) (2006) 117–122.

25. Rong L., Nielsen P.V., Simulation with 
different turbulence models in an annex 20 
room benchmark test using Ansys CFX 11.0, 
Denmark, Aalborg University, Department of 
Civil Engineering, 2008. DCE Technical Report. 
No. 46. 

26. Dreau J.L., Heiselberg P., Nielsen P.V., 
Simulation with different turbulence models in 
an Annex 20 benchmark test using Star-CCM+. 
Denmark, Aalborg University, Department of 
Civil Engineering, 2013. DCE Technical Report. 
No. 147.

27. Ivanov N.G., Zasimova M.A., Large Eddy 
Simulation of airflow in a test ventilated room 
// Journal of Physics: Conf. Series. 1038 (2018) 
012136. 

28. Ivanov N.G., Zasimova M.A., Mean 
air velocity correction for thermal comfort 
calculation: assessment of velocity-to-speed 
conversion procedures using Large Eddy 
Simulation data, Journal of Physics: Conf. Series. 
1135 (2018). 012106. 

29. Yuce B.E., Pulat E., Forced, natural 
and mixed convection benchmark studies for 
indoor thermal environments, International 
Communications in Heat and Mass Transfer. 92 
(March) (2018) 1–14.

http://www.cfd-


77

Simulation of Physical Processes

30. Van Hoof T., Blocken B., Mixing 
ventilation driven by two oppositely located 
supply jets with a time-periodic supply velocity: 
A numerical analysis using computational fluid 
dynamics, Indoor and Built Environment, 
Special issue – New Building Ventilation 
Technologies. (November) (2019) 1–18. DOI: 
10.1177/1420326X19884667. 

31. Piomelli U., Large eddy simulations in 2030 
and beyond, Phil. Trans. R. Soc. A. 372 (2022) 

(2014) 20130320.
32. Shur M.L., Spalart P.R., Strelets M.K., 

Travin A.K., A hybrid RANS LES approach with 
delayed-DES and wall-modelled LES capabilities, 
International Journal of Heat and Fluid Flow. 29 
(6) (2008) 1638–1649.

33. Mathey F., Aerodynamic noise simulation 
of the flow past an airfoil trailing-edge using a 
hybrid zonal RANS-LES, Computers & Fluids. 
37 (7) (2008) 836–843.

Received 20.04.2020, accepted 23.07.2020.

THE AUTHORS

ZASIMOVA Marina A.
Peter the Great St. Petersburg Polytechnic University
29 Politechnicheskaya St., St. Petersburg, 195251, Russian Federation
zasimova_ma@spbstu.ru

IVANOV Nikolay G.
Peter the Great St. Petersburg Polytechnic University
29 Politechnicheskaya St., St. Petersburg, 195251, Russian Federation
ivanov_ng@spbstu.ru

MARKOV Detelin 
Technical University of Sofia
8 Kliment Ohridsky boulevard, Sofia, 1000, Bulgaria
detmar@tu-sofia.bg

СПИСОК ЛИТЕРАТУРЫ

1. Гримитлин М.И. Распределение воздуха 
в помещениях. -3е изд., доп. и испр. СПб.: 
АВОК Северо-Запад, 2004. 320 с.

2. Рейнольдс О. Динамическая теория 
движения несжимаемой вязкой жидко-
сти и определение критерия // Проблемы 
турбулентности. Сб. переводных статей под 
ред. М.А. Великанова и Н.Т. Швейковского. 
Москва-Ленинград: ОНТИ НКТП СССР, 
1936. С. 185–227. 

3. Launder B.E., Spalding D.B. Lectures in 
mathematical models of turbulence. London, 
New-York: Academic Press, 1972. 169 p.

4. Гуляев А.Н., Козлов В.Е., 
Секундов А.Н. К созданию универсальной 
однопараметрической модели для 
турбулентной вязкости // Известия АН 
СССР. Механика жидкости и газа. 1993. № 
4. С. 69–81.

5. Sagaut P. Large Eddy Simulation for in-
compressible flows: An introduction. 3rd Ed. 
Heidelberg: Springer, 2006. 556 p.

6. Гарбарук А.В., Стрелец М.Х., 
Травин А.К., Шур М.Л. Современные 

подходы к моделированию турбулентности. 
СПб.: Изд-во Политехнического ун-та, 2016. 
234 с.

7. Nielsen P.V., Restivo A., Whitelaw J.H. 
The velocity characteristics of ventilated room 
// J. Fluids Engineering. 1978. Vol. 100. No. 3. 
Pp. 291–298.

8. Nielsen P.V. Specification of a two di-
mensional test case // Aalborg: Instituttet for 
Bygningsteknik, Aalborg Universitet, Denmark, 
Gul Serie. 1990. Vol. R9040. No. 8. Pp. 1–15.

9. Засимова М.А., Иванов Н.Г., Марков Д. 
Численное моделирование циркуляции воздуха 
в помещении при подаче из плоской щели. I. 
Отработка применения вихреразрешающего 
подхода с использованием периодической 
постановки // Научно-технические ведомо-
сти CПбГПУ. Физико-математические науки. 
2020. Т. 13. № 3. С. 56–74

10. Heikkinen J., Piira K. Simulation of sim-
ple (two-dimensional) test cases // Technical 
Research Center of Finland. Laboratory of 
Heating and Ventilation. Espoo, Finland. 1991. 
Annex report. No. AN20.1-SF-91-VTT07. 16 p.



St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (3) 2020

78

11. Vogl N., Renz U. Simulation of simple 
test cases // Energy Conservation in Buildings 
and in Community Systems. Annex 20. Airflow 
Patterns within Buildings. No. 1.46. Aachen, 
Germany, 1991. 10 p. www.cfd-benchmarks.
com.

12. Skalicky T., Morgenstern G., Auge A., 
Hanel B., Rosler M. Comparative studies 
of selected discretization methods for the 
numerical solution of room air flow problems 
// Proc. of the 3rd International Conference on 
Air Distribution in Rooms ‘ROOMVENT-92’ 
(Aalborg, Denmark, September 2–4, 1992). 
1992. Pp. 226–240.

13. Rosler M., Hanel B. Numerical 
computation of flow and heat transfer in air-
conditioned rooms by a special velocity-
pressure iteration and a multigrid method // 
Proc. of the 3rd International Conference on 
Air Distribution in Rooms ‘ROOMVENT-92’ 
(Aalborg, Denmark, September 2–4, 1992). 
1992. Pp. 178–199.

14. Chen Q. Comparison of different k-ε 
models for indoor air flow computations // 
Numerical Heat Transfer, An International 
Journal of Computation and Methodology, Part 
B. Fundamentals. 1995. Vol. 28. No. 3. Pp. 
353–369.

15. Chen Q. Prediction of room air motion 
by Reynolds – Stress models // J. Building and 
Environment. 1996. Vol. 31. No. 3. Pp. 233–244.

16. Peng S.-H., Davidson L., Holmberg S. 
The two-equation turbulence k-ω model applied 
to recirculating ventilation flows. Chalmers 
University of Technology, Sweden. Department 
of Thermo- and Fluid Dynamics. 1996. 26 p.

17. Davidson L., Nielsen P.V. Large eddy 
simulations of the flow in a three dimensional 
ventilated room // Proc. of the 5th International 
Conference on Air Distribution in Rooms 
‘ROOMVENT-96’ (Yokohama, Japan, July 17–
19). 1996. Vol. 2. Pp. 161–168.

18. Davidson L. Implementation of a Large 
Eddy Simulation method applied to recirculating 
flow in a ventilated room. Aalborg University, 
Denmark. Department of Building Technology 
and Structural Engineering. 1996. 28 p.

19. Bennetsen J.C. Numerical simulation 
of turbulent airflow in livestock buildings. 
The Technical University of Denmark. The 
Department of Mathematical Modeling. Ph. D 
thesis. 1999. 205 p.

20. Voight L.K. Navier – Stokes simulations 
of airflow in rooms and around human body. 
International Center for Indoor Environment 
and Energy, Technical University of Denmark. 

Department of Energy Engineering. Ph.D thesis. 
2001. 169 p.

21. Jiang Y., Chen Q. Study of natural ven-
tilation in buildings by large eddy simulation 
// J. of Wind Engineering and Industrial 
Aerodynamics. 2001. Vol. 89. No. 13. Pp. 
1155–1178.

22. Jiang Y., Su M., Chen Q. Using large eddy 
simulation to study airflows in and around build-
ings // ASHRAE Transactions. 2003. Vol. 109. 
No. 2. Pp. 517–526.

23. Mora L., Gadgil A.J., Wurtz E. Comparing 
zonal and CFD model predictions of isothermal 
indoor airflows to experimental data // Indoor 
Air. 2003. Vol. 13. No. 2. Pp. 77–85.

24. Ivanov N., Smirnov E., Lacor C. 
Computational fluid dynamics analysis of pol-
lutant dispersion in a metro carriage // Proc. 
of the 17th Air-Conditioning and Ventilation 
Conference (Prague, Czech. Republic, May 17–
19, 2006). 2006. Pp. 117–122.

25. Rong L., Nielsen P.V. Simulation with 
different turbulence models in an annex 20 
room benchmark test using Ansys CFX 11.0. 
Denmark, Aalborg University, Department of 
Civil Engineering, 2008. DCE Technical Report. 
No. 46. 16 p.

26. Dreau J.L., Heiselberg P., Nielsen P.V. 
Simulation with different turbulence models in 
an Annex 20 benchmark test using Star-CCM+. 
Denmark, Aalborg University, Department of 
Civil Engineering, 2013. DCE Technical Report. 
No. 147. 22 p.

27. Ivanov N.G., Zasimova M.A. Large Eddy 
Simulation of airflow in a test ventilated room // 
Journal of Physics: Conf. Series. 2018. Vol. 1038. 
International Conference PhysicA.SPb/2017, 
24–26 October 2017, Saint-Petersburg, Russia. 
P. 012136. 

28. Ivanov N.G., Zasimova M.A. Mean air 
velocity correction for thermal comfort calcula-
tion: assessment of velocity-to-speed conversion 
procedures using Large Eddy Simulation data // 
Journal of Physics: Conf. Series. 2018. Vol. 1135. 
International Conference PhysicA.SPb/2018, 
23–25 October 2018, Saint-Petersburg, Russia. 
P. 012106. 

29. Yuce B.E., Pulat E. Forced, natural and 
mixed convection benchmark studies for in-
door thermal environments // International 
Communications in Heat and Mass Transfer. 
2018. Vol. 92. March. Pp. 1–14.

30. Van Hoof T., Blocken B. Mixing ven-
tilation driven by two oppositely located sup-
ply jets with a time-periodic supply velocity: A 
numerical analysis using computational fluid 

http://www.cfd-


79

Simulation of Physical Processes

© Peter the Great St. Petersburg Polytechnic University, 2020

dynamics // Indoor and Built Environment. 
2019. Special issue – New Building Ventilation 
Technologies. November. Pp. 1–18. DOI: 
10.1177/1420326X19884667. 

31. Piomelli U. Large eddy simulations in 2030 
and beyond // Phil. Trans. R. Soc. A. 2014. Vol. 
372. No. 2022. P. 20130320.

32. Shur M.L., Spalart P.R., Strelets M.K., 

Travin A.K. A hybrid RANS-LES approach with 
delayed-DES and wall-modelled LES capabili-
ties // International Journal of Heat and Fluid 
Flow. 2008. Vol. 29. No. 6. Pp. 1638–1649.

33. Mathey F. Aerodynamic noise simulation 
of the flow past an airfoil trailing-edge using 
a hybrid zonal RANS-LES // Computers & 
Fluids. 2008. Vol. 37. No. 7. Pp. 836–843.

Статья поступила в редакцию 20.04.2020, принята к публикации 23.07.2020.

СВЕДЕНИЯ ОБ АВТОРАХ

ЗАСИМОВА Марина Александровна – ассистент Высшей школы прикладной математики и 
вычислительной физики Санкт-Петербургского политехнического университета Петра Великого.

195251, Российская Федерация, г. Санкт-Петербург, Политехническая ул., 29
zasimova_ma@spbstu.ru

ИВАНОВ Николай Георгиевич – кандидат физико-математических наук, доцент Высшей 
школы прикладной математики и вычислительной физики Санкт-Петербургского политехниче-
ского университета Петра Великого.

195251, Российская Федерация, г. Санкт-Петербург, Политехническая ул., 29
ivanov_ng@spbstu.ru

МАРКОВ Детелин – PhD, доцент Софийского технического университета.
1000, Болгария, г. София, бульвар Климента Орхидского, 8
detmar@tu-sofia.bg

mailto:zasimova_ma@spbstu.ru


80

EXPERIMENTAL TECHNIQUE AND DEVICES

DOI: 10.18721/JPM.13307
УДК 519.642; 550.388.2

AN ALGORITHM 
OF THE INITIAL APPROXIMATION FORMATION 
IN THE IONOSPHERIC TOMOGRAPHY PROBLEM 
WITH INTER-SATELLITE DATA REGISTRATION
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In the paper, an original approach to the formation of the initial approximation in the 
ionospheric tomography problem with inter-satellite registration of total electron content is 
presented. The direct Radon transform of the electron density (ED)’s orbital profile is proposed 
to approximate using convolution of the function of latitudinal distribution of ED’s maximum 
in the profile with the kernel function. This approximation makes it possible to estimate the 
latitude distribution of the ED maximum from the total electron content measurements by the 
deconvolution procedure. An analytical expression of the convolution kernel was obtained. 
Based on the proposed approach, two variants of formation of the initial approximation which 
used different prior information, namely, on the solar activity index and on the height of the 
ionization maximum in the profile, were considered. An accuracy of the mentioned formation 
was analyzed by the results of statistical simulation, and it was compared with the previously 
known approach where both the height of the ionization maximum in the profile and ED at 
this height were known.
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АЛГОРИТМ ФОРМИРОВАНИЯ НАЧАЛЬНОГО ПРИБЛИЖЕНИЯ  
В ЗАДАЧЕ ТОМОГРАФИИ ИОНОСФЕРЫ ПРИ 

МЕЖСПУТНИКОВОЙ СХЕМЕ РЕГИСТРАЦИИ ДАННЫХ

П.Н. Николаев
 Самарский национальный исследовательский университет 

имени академика С.П. Королева, г. Самара, Российская Федерация

В работе представлен оригинальный подход к формированию начального 
приближения в задаче томографии ионосферы при межспутниковой схеме регистрации 
данных полного электронного содержания (ПЭС). Предлагается аппроксимировать 
прямое преобразование Радона орбитального профиля электронной концентрации 
(ЭК) ионосферы сверткой функции широтного распределения максимума ЭК в 
профиле с функцией ядра. Такая аппроксимация позволяет оценить широтное 
распределение максимума ЭК по данным измерения ПЭС методом деконволюции. 
Получено аналитическое выражение функции ядра свертки. На основе предложенного 
подхода рассмотрены два варианта формирования начального приближения, 
использующие разную априорную информацию: об индексе солнечной активности и 
о высоте максимума ионизации в профиле. Проанализирована точность указанного 
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формирования по результатам статистического моделирования, проведено сравнение с 
известным подходом, когда известны как высота максимума ионизации в профиле, так 
и концентрация на этой высоте.

Ключевые слова: спутниковый мониторинг, томография ионосферы, начальное 
приближение; статистическое моделирование
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Introduction
Methods for studying the ionosphere, aimed 

at remote sensing in a wide range of positions 
of transceiving systems, have seen increasing 
use in recent years. These systems make it pos-
sible to reconstruct the ionospheric structures 
based on computer tomography algorithms. 
Monitoring of the ionospheric electron density 
(ED) assesses the total electron content (TEC), 
which is a linear integral of the ED along the 
path of electromagnetic wave propagation, ex-
pressed in TECU units (Total Electron Content 
Units, 1 TECU = 1016 electrons·m–2). 

The linear integral of the distribution func-
tion f(x,y)  along the straight line located at a 
distance l from the origin and making an angle 
θ with the positive direction of the axis OX cor-
responds to the Radon transform at the point 
(l,θ): 

( ) ( )

( ) ( )

, ,

, cos sin .

Rf l p l

f x y x y l dxdy
∞ ∞

−∞ −∞

  θ = θ = 

= δ θ+ θ−∫ ∫



The solution to the tomographic problem 
consists in finding the estimate f*(x,y)  of 
the function f(x,y)  from a set of integral 
characteristics obtained from all possible an-
gles, and assumes that the exact value of 
p(l,θ)  is known for all l and θ .

The problem of radio tomography (RT) of 
the ionosphere is typically confined to solv-
ing systems of linear equations (SLE) [1]. In 
this case, the solution of the SLE is a complex 
computational problem, since the matrix of 
the SLE (projection operator) contains about 
106–107 elements, even though it is sparse. An 
approach to solving the problem of ionospheric 
tomography was proposed in [2, 3] for an in-
ter-satellite scheme for recording TEC data us-
ing a convolution algorithm.

The problem of ionospheric RT via satellites 
involves a small number of angles for obtaining 

the integral characteristic. Even though the 
positions of transceiver systems cover a wide 
range, whether it is a chain of ground receiv-
ing stations [4, 5] or proposals for space-based 
receivers and transmitters [6, 7], the obtained 
angles are still insufficient to satisfy the con-
dition for the unique solution, and the inverse 
tomography problem is incorrect.

An initial approximation should be used to 
formulate the tomography problem correctly, 
corresponding to the distribution and values 
of the estimated parameters with some degree 
of confidence. For example, an IRI model 
(International Reference Ionosphere) and the 
Chapman distribution are used in [8–12] to 
construct the initial approximation for a chain 
of ground stations.

The initial approximation in [7, 13], where 
receivers and transmitters were used on the sat-
ellites of the ionospheric tomography system, 
was set in the entire reconstructed region to 
a constant value of 4·1011 electrons·m–3, which 
is the averaged value of the reference ED for 
all heights and latitudes in reconstructed re-
gion. However, because the ED of the equa-
torial ionosphere is higher than that of the 
mid-latitude and polar zones, and also because 
the system alternates between the illuminated 
and shadowed regions of the orbit due to the 
change between day and night, the accuracy 
with which such an initial approximation can 
be given is about 80–90%.

Ref. [13] compared the quality of ED re-
construction by a constellation of five satellites 
for an initial approximation given by a constant 
and for initial approximations obtained from 
the IRI-2007 ionospheric model [14], differing 
from the reference by 5, 10, 20 and 30% on 
average. The initial approximation based on the 
IRI ionospheric model yielded a better result 
compared with the initial approximation taken 
as constant.

In this study, we propose an original ap-
proach to rapidly formulating the initial 
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approximation whose accuracy value is inter-
mediate between the accuracy values provided 
by the approaches considered above. 

The proposed approach has a number of 
advantages:

simpler mathematical implementation than 
the IRI-2007 model;

less input data required.
As a result, the satellites are supposed to 

have great autonomy (there is no need to trans-
mit a large amount of input data to the satel-
lite, such as ionospheric index, magnetic index, 
and solar activity indices).

This approach is applicable to obtaining inte-
gral characteristics by transceivers of a constella-
tion of satellites located in the same orbital plane.

The accuracy of the initial approximation 
for the ionospheric ED profile is determined by 
numerical simulation, solving the forward and 
inverse problems. 

The forward problem consists in obtaining 
the TEC for a given ED distribution in the or-
bital plane for a given radio path. 

The inverse problem consists in reconstruct-
ing the ED distribution in the orbital plane 
from the available set of TEC measurements, 
with an initial approximation generated for this 
purpose. The generated initial approximation is 
compared with the given distribution.

The accuracy of the initial approximation 
was estimated in our study, as in [1, 7, 11], 
using the norms in the spaces l2 and l∞:

( ) ( )

( )
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2
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,
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−
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∑





where F and F̃ are the model distribution 
and the generated initial approximation, re-
spectively; i is the number of a pixel in the 
distribution.

The norm δ(l2) is the root mean square 
establishing a large difference in the values of 
F and F̃ in a small region of the distribution. 
The norm δ(l∞) corresponds to the difference 
between F and F̃ in the worst case.

Problem statement

Consider two satellites located in the same 
circular orbit; one satellite serves as a transmitter, 
and the other as a receiver (Fig. 1). The 
satellites are located so that the perigee altitude 
of their radio path is below the maximum ED 
in the orbital profile. This number of satellites 
is sufficient to form an initial approximation by 
the proposed algorithm.

The height distribution of ED close to the 
Chapman distribution [9, 10] was taken as 
baseline:

( , , )

exp 1 exp ,

e m m

m m
m

N h N H

h H h HN

=

 − −  = ⋅ − − −  σ σ  

(1)

where Nm is the maximum value of ED Ne in 
the height profile; h is the altitude above sea 
level; Hm is the height of the maximum ED 
above sea level; σ is the scale parameter.

Fig. 1. Scheme of radio path with perigee altitude htrack = 225 km;
the dots indicate the location of two satellites in one circular orbit (dashed line)
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Algorithm for forming the initial 
approximation for the distribution of electron 

density in the ionosphere

Consider a circular polar orbit with an 
altitude of horb = 1000 km and an inclination 
of i = 90º. The satellites are located in orbit in 
such a way that the angular distance between 
them is equal to Δφ = 54º, which corresponds to 
the satellites the farthest away from each other 
in orbit, from the constellation considered 
in [13] intended for solving the tomography 
problem in the altitude range of 200– 500 km. 
The chosen angular position of the satellites 
allows to form a radio path between them with 
a pericenter altitude htrack = 225 km. This radio 
path is certain to cross the ED maximum layer 
at two points; therefore, the TEC measured in 
this radio path is the largest among other TECs 
measured in the radio paths of the constellation 
[13].

The radio path between two satellites lo-
cated in the same orbit (Fig. 1) is described in 
the polar coordinate system (CS) by the equa-
tion of the straight line

( ) ( )
,

cos
lr ϕ =
ϕ−θ

where l is the length of the perpendicular 
dropped to the straight radio path from the 
origin, l = REarth + htrack; θ is the the angle 
between the positive direction of the axis OXorb 
and the direction of this perpendicular; REarth 
is the average radius of the Earth, REarth = 
6371.136 km. 

The height of the maximum ED Hm in the 
formula (1) depends on the latitude φ (this is 
due to the changing day and night conditions 
of the formation of the ionospheric profile), 
as well as on the zenith angle of the Sun [15]. 
To use expression (1) and carry out further 
analytical calculations for the segment of the 
orbit where the radio path is determined, we 

assumed that the height of the maximum ED 
Hm is the average in the segment Δφ = 54º:

( )
2

1

1
2

,m mH H d
ϕ

ϕ

= ϕ ϕ
π ∫

where φ1, φ2 are the angular coordinates of the 
first and second satellite, respectively.

The measurements can cover more than 20º 
in latitude for RT using a chain of ground sta-
tions. Given this value of the latitudinal angu-
lar distance, it is acceptable to use the initial 
approximation (1) with a constant height of the 
ED maximum, as established in [11, 12]. Since 
the angular distance between two intersections 
of the ED maximum by the radio path was 
taken about 20º in this study, it seems reason-
able to assume that the height of the ED max-
imum Hm is constant in the segment Δφ = 54º.

Thus, the distribution of ED (1) in the or-
bital plane of the transmitter and receiver in 
the segment Δφ is expressed as follows in the 
polar SC:

N r N

r R r R
e m

m m

,

exp exp ,

� �

� �
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� �
�
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��

�
�

�
�
�

�

�
�

�

�
�1

(2)

where φ  is the angular coordinate in the polar 
SC; r = REarth + h is the radial coordinate in the 
polar CS; Rm = REarth + 〈Hm〉.

The linear integral from Ne(r,φ) along the 
radio line L is curvilinear in the polar SC:

( ) ( )

( )( )
2

1

2
2

, ,

, ,

e
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e

p l N r dl

drN r r d
d

ϕ

ϕ

θ = ϕ =

 
= ϕ ϕ ⋅ + ϕ ϕ 

∫

∫
where the equation of the radio path for a small 
angle φ – θ has the form

( ) ( ) ( )211 .
cos 2

lr l  ϕ = ≈ + ϕ−θ ϕ−θ  

Thus, p(l,θ) is written as the integral of the 
convolution for the function Nm and the kernel g 
(Fig. 2) with respect to the parameter θ:

( ) ( )( )

( ) ( )
2

1

,

,

m

m

p l N g

N g d
ϕ

ϕ

θ = ∗ θ =

= ϕ ⋅ ϕ−θ ϕ∫
Fig. 2. Convolution kernel g(z) 
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where

( ) ( )
( )

( )

2

2

2

1

1exp 1
2

1exp .
2

m

m

g z l z

ll R z

ll R z

= ⋅ + ⋅

⋅ − ⋅ − − − σ σ
 − − ⋅ − − σ σ 

The expression for p(l,θ) makes a transition 
to infinite limits with respect to the angle φ: 

( ) ( ) ( ), ,mp l N g d
+∞

−∞

θ = ϕ ⋅ ϕ−θ ϕ∫
since g(φ – θ) decays exponentially for φ → φ1, 
φ2 (Fig. 2).

Since the expression for the convolution 
integral is known, the latitudinal ED profile 
Nm(φ)  can be estimated using the deconvolution 
method [16]:

( )

( )
( ) ( )

( )

( ) ( )( ) ( )( )

*
1

2 2

1 ,

ˆ
mN

G f
F P f

G f G f

F W f P f w p

−

−

ϕ =

 
 = ⋅ = 

+ α 
 

= ⋅ = ∗ ϕ

(3)

where G(f), W(f), P(f) are the Fourier images for 
g, w and p, respectively; G*(f) is the conjugate 
Fourier transform for g; α is the regularization 
parameter;〈|G(f)|2〉 is the average value of the 
energy spectrum G(f).

Substituting expression (3) into Eq. 
(2), the expression for modeling the initial 
approximation takes the form

( ) ( )( ),

exp 1 exp .

e

m m

N h w p

h H h H

ϕ = ∗ ϕ ⋅

 − −  ⋅ − − −  σ σ  

(4)

The resulting expression is the product of 
the latitudinal ionospheric profile (w⋅p)(φ) and 
the height profile

exp 1 exp ,m mh H h H − −  − − −  σ σ  
from which it follows that the latitude and 
height profiles can be found separately. 

If the latitudinal profile can be found by 
Eq. (3), then the height profile can be formed 

under different assumptions, which will affect 
the final accuracy of the initial approximation.

Thus, expression (4) can serve as a basis for 
formulating two versions of the algorithm for 
generating the initial ED approximation.

Version 1. The height is taken as an average 
over the orbit Hm = 〈Hm〉. Then,

( ) ( )( ),

exp 1 exp .

e

m m

N h w p

h H h H

ϕ = ∗ ϕ ⋅

 −  − 
⋅ − − −   σ σ  

(5)

Version 2. The height Hm is known a priori. 
Then,

( ) ( )( ),

exp 1 exp .

e

m apr m apr

N h w p

h H h H

ϕ = ∗ ϕ ⋅

 − −  
⋅ − − −   σ σ  

(6)

The efficiency of the proposed versions can 
be estimated numerically by using the stochastic 
approach and comparing the result of the 
algorithm with the simulated distribution.

Results and discussion

Estimating the accuracy of the initial ap-
proximation based on the results of statistical 
modeling. Let us compare the two proposed 
versions for forming the initial approximation 
of the ionospheric ED profile in the plane of 
the satellite orbit with one known parameter. 
Three possible cases are possible here (cases II 
and III correspond to versions 1 and 2).

Case I. The initial approximation is formed by 
Eq. (1), when the parameters Nm and Hm are given 
a priori (this method was considered in [11, 12]);

Case II. The initial approximation is formed 
by Eq. (5), when Hm = 〈Hm〉;

Case III. The initial approximation is formed 
by Eq. (6), when Hm is known a priori.

We assessed the accuracy of all three cases of 
forming the initial approximation by statistical 
modeling of the ED distribution in the plane of 
the polar orbit (10,000 numerical experiments) 
for different indices of solar activity, months, 
Greenwich Mean Time, and geographic lon-
gitudes. Consider a circular polar orbit of two 
satellites with an altitude horb = 1000 km and an 
inclination i = 90º. The angular distance be-
tween the satellites is considered to be constant, 
equal to Δφ = 54º, which corresponds to the 
perigee altitude of their radio path htrack = 200 
km. As the satellites were moving in orbit, the 
TEC was recorded every 0.5°.
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The ED distribution was given using the 
NeQuick ionospheric model [17]: 

vertical size of image element was 12.5 km; 
horizontal size of image element was 50 km. 
The rest of the parameters of the model 

were distributed by a uniform law: 
solar activity index F10.7 ∈ [63.7; 193]·10-22 

W·m-2·Hz-1;
month m ∈ [1; 12]; 
GMT time t ∈ [0:00; 24:00] UTC;
geographic latitude (longitude of the as-

cending node of the orbit) λ ∈ (0; 360]°.
The spread in the parameters of the NeQuick 

model determines the spread in the errors of 
the initial approximation. The scale parame-
ter σ was chosen taking into account the solar 
activity index F 10.7 ranging from 84 to 93 km.

The results of modeling by the algorithm for 
forming the initial approximation for the first 

case (10,000 simulations of the ED distribu-
tion were carried out) are shown in Fig. 3. The 
mean errors in this series of numerical exper-
iments in the metrics l2 and l∞ are δ(l2) = 0.23 
and δ(l∞) = 0.27, respectively. This result is the 
upper estimate of the accuracy of the initial ap-
proximation among the three considered cases, 
since the parameters Nm and Hm were taken to 
be known a priori.

Fig. 4,a shows an example of one of 10,000 
implementations of the ED distribution, 
formed by the NeQuick model for the following 
conditions:

solar activity index F10.7 = 127.6 ·10–22 
W·m–2·Hz–1;

month: October 
GMT t = 10:00; 
geographic latitude (longitude of the as-

cending node of the orbit) λ = 50°.

Fig. 3. Histograms of errors in forming the initial approximations 
by known parameters (case I) in metrics l2 (a) and l∞ (b)

a)	 b)

Fig. 4. Ionospheric ED distributions in the plane of the polar orbit in latitude-altitude coordinates: 
a is the model distribution; b is the initial approximation generated by Eq. (1) 

with the known Nm and Hm; c is the absolute value of the residual 

c)

a)	 b)
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Figs. 4, b, c show the initial approximation 
formed for case I, and the absolute value of the 
residual between the model and the distribution 
generated for this implementation.

The latitudinal ED profile N̂m(φ) was esti-
mated in the simulation for cases II and III (see 
above) using Eq. (3) (Fig. 5,c) for the model 
distribution (Fig. 4,a). The value of the regular-
ization parameter α in Eq. (3) was selected based 
on the minimization criterion for the residual:

1
ˆ min.m md N Nα= − →

For comparison, Fig. 5,a shows the initial 
latitudinal profile Nm(φ)Hm = Hm(φ) of the model 
distribution, and Fig. 5,b the latitudinal profile 
of the model distribution for the mean height 
Nm(φ)Hm = 〈Hm〉.

The difference between the profile in Fig. 
5,a and the profiles in Figs. 5, b, c in the 

metrics l2 and l∞ is given in Table 1. It can be 
seen from the results obtained that the values 
of the latitudinal profile Nm(φ)Hm = 〈Hm〉 for the 
mean height 〈Hm〉 can be used as values for the 
latitudinal profile Nm(φ)Hm = Hm(φ). This is used to 
generate the initial approximation for case III, 
where the values of N̂m(φ) are given at a priori 
known heights Hm.

The solar activity index F10.7 determines the 
shape of the ED profile and the height of the 
maximum in it [15]; therefore, the mean height 
of the ED maximum can be approximately 
described by a linear dependence

( )10,7 10.7 ,m mH F a F b H= ⋅ + ± ∆

where a = 0.65 · 1016 km3· Hz–1· W-1; b = 243.4 
km; Δ〈Hm〉 = 18.7 km is the spread in mean 
height depending on seasonal and diurnal ef-
fects for P = 0.95.

Fig. 5. Latitudinal ED profiles: initial Nm(φ)Hm = Hm(φ) (a); Nm(φ)Hm = 〈Hm〉, 
taken for mean height (b);  N̂m(φ), calculated by Eq. (3) (c)

Tab l e  1

Comparison of deviations δ of latitudinal profiles (in two metrics) 
from true latitudinal profile, obtained by two methods 

Metric
Error δ

Nm(φ)Hm = 〈Hm〉 N̂m(φ)
l2 0.10 0.16
l ∞ 0.19 0.23

Nota t i on s : Nm(φ)Hm = 〈Hm〉, N̂m(φ) are the  latitudinal profiles: taken for 
the mean height and calculated by Eq. (3). The true latitudinal profile is 
Nm(φ)Hm = Hm(φ). 
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Fig. 6. Histograms of errors of initial approximation in metrics l2 (a) and l∞ (b) 
for case II,and l2 (c) и l∞ (d) for case III

a)	 b)

c)	 d)

Fig. 7. Distributions of ionospheric ED in the plane of the polar orbit 
in latitude-altitude coordinates, obtained in the initial approximations by Eq. (4) 

for two values of the height: mean 〈Hm〉 (а) and known a priori Hm (c); 
the corresponding absolute values of the residuals are also given

for cases with 〈Hm〉 (b) and Hm (d)

a)	 b)

c)	 d)

Tab l e  2 

Errors in generating the initial approximation in two metrics 
for the three considered cases for model distribution (see Fig. 4,a)

Metric
Error δ

Nm and Hm 
are known

Nm = N̂m(φ), 
Hm is known

Nm = N̂m(φ),
Hm = 〈Hm〉

l2 0.18 0.31 0.30
l ∞ 0.18 0.30 0.25
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If the seasonal and diurnal effects in the 
ionosphere are not taken into account, then 
the term Δ〈Hm〉 can be discarded, defining 
〈Hm〉 in the second version of the algorithm as 
〈Hm〉 = a·F10.7 + b.

Fig. 6 shows histograms for the distribution 
of errors in the initial approximation in the 
metrics l2 and l∞, generated for cases II and 
III for 10,000 numerical experiments. Fig. 7 
shows the generated initial approximation and 
the absolute value of the residual between the 
model and the generated distributions for cases 
II and III for the implementation in Fig. 4,a.

Table 2 shows the errors in the initial 
approximation for the three considered cases of 
the model distribution (see Fig. 4,a). Cases II 
and III yield approximately the same accuracy, 
despite a noticeable visual difference (see 
Figs. 7, a, c). 

According to the results of statistical model-
ing (Fig. 6), case II has mean errors of the ini-
tial approximation δ(l2) = 0.39 and δ(l∞) = 0.42. 
The accuracy achieved is sufficient for obtain-
ing a satisfactory solution to the tomographic 

problem, where the errors do not exceed the er-
rors for the initial approximation [13] taken as a 
constant (the accuracy of the solution to the to-
mographic problem δ(l2) = 0.35 and δ(l∞) = 0.40 
for a reconstruction step of 50 km with respect 
to altitude). The accuracy of the initial approx-
imation is higher for case III than for case II:  
δ(l2) = 0.29 and δ(l∞) = 0.33, making this case 
similar to the initial approximation formed by 
the IRI-2007 model in [13] for obtaining the 
integral characteristics by transceiver devices of 
a constellation of satellites. Both versions of the 
algorithm (cases II and III) for generating the 
initial approximation are fast and can be im-
plemented on board the satellite.

Reconstruction of ionospheric ED 
distribution. The quality with which the initial 
approximation was generated was assessed 
by tomographic reconstruction of the ED 
distribution using the approach proposed in [2, 
3]. The configuration of satellites in low orbit, 
described in [3], was used as a scheme for 
detecting TEC: three satellites with transmitters 
and two with receivers, whose radio paths cover 

Fig. 8. Histograms for errors in reconstructing the ED profile for three cases 
of initial approximation in two metrics:

l2  (a, c, e) and l∞
 (b, d, f); cases I (a, b), II (c, d), III (e, f) 

were considered (see explanations in the text) 

a)	 b)

c)	 d)

e)	 f )
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the altitude range from 200 to 500 km with a 
step of 50 km. The tomography problem was 
solved in this altitude range.

Fig. 8 shows the histograms for the 
distribution of errors in the reconstruction of 
the ED profile in the metrics l2 and l∞, obtained 
for three cases of the initial approximation (Eqs. 
(2), (5), (6)) for 10,000 numerical experiments. 
Case I, when Nm and Hm are given a priori, 
yields the reconstruction result with the most 

accurate characteristics (see Fig. 8, a, b) among 
all three cases of the initial approximations 
based on the Chapman distribution. Fig. 9 
shows the reconstructed ED distributions for 
cases II and III of of the initial approximation. 
Reconstruction errors δ(l2) and δ(l∞) for the 
corresponding cases are given in Table 3.

It can be seen from Fig. 9, c, d and e, f, 
corresponding to Cases II (Nm = N̂m(φ), Hm = 
〈Hm〉) and III (Nm = N̂m(φ), Hm is known) of 

Fig. 9. Reconstruction of ionospheric ED distribution in the plane of polar orbit 
in latitude-altitude coordinates for three cases of initial approximation: I (a), II (c), III (e); 
the corresponding absolute values of the residuals for cases I (b), II (d), III (f) are also given 

a)	 b)

c)	 d)

e)	 f )

Tab l e  3

Comparison of errors in reconstructing the ED profile in two metrics 
for the three considered cases of the initial 

approximation for model distribution (see Fig. 4,a)

Metric

Error δ
Nm and Hm 
are known

Nm = N̂m(φ), 
Hm is known

Nm = N̂m(φ),
Hm = 〈Hm〉

l2 0.08 0.13 0.12
l ∞ 0.11 0.18 0.16
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the initial approximation, that the reconstruc-
tions obtained have a similar form and differ 
only slightly by the number of artifacts; in this 
case, the errors are mainly due to the errors in 
reconstructing the latitudinal profile N̂m(φ). In 
turn, the artifacts obtained at an altitude of 200 
km are due to the systematic reconstruction er-
ror [2, 3]. The height of the ED maximum in 
Case II (Nm = N̂m(φ), Hm = 〈Hm〉), Hm, was re-
constructed with satisfactory accuracy, despite 
the assumption that Hm = 〈Hm〉, and for this 
reason, this method (Case II) is preferable to 
Case III (Nm = N̂m(φ), Hm is known), primarily 
because the reconstruction errors in the initial 
approximation for this case are smaller (see 
Fig. 8, c–f).

Conclusion

We have developed a numerical algorithm 
for generating the initial approximation of the 
ED profile, using it to solve the problem of 
ionospheric radio tomography by a low-orbit 
satellite constellation. The initial approximation 
generated by the algorithm is based on the 
Chapman distribution and is represented as 
a product of two factors responsible for the 
latitude and height distributions. 

We have obtained an approximate analytical 
dependence of the latitudinal ED profile on 
the measured TEC data for an intersatellite 
detection scheme in the plane of the polar orbit.

We have confirmed that the latitudinal profile 
can be assessed by merely two satellites spaced 
apart in the orbit in such a way that the perigee 
altitude of their radio path is lower than the 
height of the ED maximum in the orbital profile. 

We have found that the latitudinal 

distribution makes the greatest contribution to 
the final ED estimate. 

Statistical modeling revealed that the errors 
in generating the initial approximation of 
the orbital ionospheric ED profile by TEC 
measurements, lie in the range from 20 to 55% 
in the metric l2 (the errors in reconstructing 
the ED profile in the metric l2 lie in the range 
from 8 to 20%), while the errors in generating 
the initial approximation by the NeQuick and 
IRI-2007 models reach 30% (the errors in 
reconstructing the ED profile in the metric l2 
lie in the range from 11 to 20%), and the errors 
in generating the initial approximation given 
by a constant value corresponding to the mean 
ED level reach 90% (the errors reconstructing 
the ED profile in the metric l2 lie in the range 
from 35 to 40%).

The developed algorithm makes it possible 
to use real TEC measurements to generate 
the initial approximation, thus accounting for 
the short-term disturbances in the ionosphere, 
which are not directly accounted for with the 
NeQuick and IRI-2007 models. 

In addition, the proposed algorithm has a 
simpler mathematical implementation than 
these models and requires less input data, 
allowing to solve the problem of generating the 
initial approximation on board a satellite.

The study was carried out within the framework 
of the FSSS-2020-0018 project, financed from 
the state assignment means given to winners 
of competition of scientific laboratories of 
educational organizations of higher education 
under the authority of Ministry of Education and 
Science of the Russian Federation.
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The results of an experimental study of a free convective boundary layer on a vertical heated 
surface are presented in this paper. Particular attention has been paid to investigation of the 
laminar-turbulent transition zone and determination of the zone boundaries. The main goal 
of the present work was to find the opportunity of the transition processes’ control by using 
various large-scale obstacles located in the region of the laminar section of the boundary layer. 
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ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ 
КРУПНОМАСШТАБНЫХ ВОЗМУЩЕНИЙ  

НА ЛАМИНАРНО-ТУРБУЛЕНТНЫЙ ПЕРЕХОД  
В СВОБОДНОКОНВЕКТИВНОМ СЛОЕ  
НА ВЕРТИКАЛЬНОЙ ПОВЕРХНОСТИ

Ю.С. Чумаков, Е.Ф. Храпунов, А.Д. Малых
 Санкт-Петербургский политехнический университет Петра Великого, 

Санкт-Петербург, Российская Федерация

В работе описываются результаты экспериментального исследования 
свободноконвективного пограничного слоя на вертикальной нагретой поверхности, 
причем особое внимание уделяется изучению зоны ламинарно-турбулентного 
перехода, определению границ этой зоны. Основная цель данного исследования – 
найти возможность управления процессами перехода, воздействуя на них различными 
крупномасштабными препятствиями, расположенными в области ламинарного участка 
пограничного слоя. Генератором свободноконвективного потока служила вертикальная 
алюминиевая пластина шириной 90 см и высотой 4,95 м. На основании полученных 
результатов можно с уверенностью утверждать, что с помощью крупномасштабных 
препятствий удается заметно сократить протяженность зоны перехода и тем самым 
приблизить начало области с развитым турбулентным теплообменом к передней 
кромке поверхности. Таким образом, препятствия можно рассматривать как пассивные 
элементы для управления интенсивностью теплообмена.
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Introduction
Numerous studies have considered the 

development of forced convective boundary layers 
under the influence of different types of external 
factors. In particular, it was discovered that external 
disturbances with low intensity have little effect 
on the transient processes in the boundary layer. 
Large-scale three-dimensional obstacles (the so-
called macro-roughness elements) placed in the 
laminar region of the boundary layer can serve to 
achieve sharp acceleration in the development of 
unsteady processes and transition to turbulence 
in the near-wall layer. Such macro-roughnesses 
are widely used to control the laminar-turbulent 
transition (LTT) in forced convective flows, for 
example, for obtaining relatively thick boundary 
layers in landscape wind tunnels to simulate 
the flow of the surface boundary layer around 
different objects [1]. 

While sufficient experience in numerical and 
physical simulation of methods for controlling 
LTT with macroroughness elements has been 
accumulated for forced convective flows, very 
few studies deal with free convective flows. For 
example, the results of direct numerical simulation 
of turbulence developing in a free-convective layer 
in the wake of macro-obstacles have been given 
so far only in [2], and we were unable to uncover 
any results of physical simulation. However, it is 
natural to assume that the LTT region (whose 
length in the absence of disturbances is two to 
three times greater than the length of the laminar 
region) can be substantially reduced by generating 
the appropriate conditions for sudden ‘trigger’ 
excitation of turbulence in the boundary layer 
[3–5]. In turn, the length of the turbulent heat 
transfer region and therefore the intensity of heat 
transfer in general can be increased by reducing 
the length of the LTT region.

This paper reports on the results of 
experimental study of the LTT region in a free-
convective boundary layer near a vertical heated 
plate with a cross-row of large-scale 3D obstacles 
disturbing the initially laminar layer arranged on 
the surface. The measurement data obtained in 
for a flat plate are also given for comparison.

Problem statement
 Our main goal consisted in exploring 

the possibility of controlling the transition 
processes in a free-convective boundary layer 
using different large-scale obstacles located in 
the laminar region of the boundary layer. 

Two types of plates with a thickness of 8 
mm were used as obstacles: with a rectangular 
section of 32 × 18 mm, and with a trapezoidal 
section with a height of 18 mm, where the 
lower base was 32 mm long and the upper one 
16 mm long. The obstacles were glued to the 
plate across the vertical axis at a distance of 
200 mm from the lower edge of the plate with 
a pitch of 32 mm. Fig. 1 shows a schematic 
representation of the plates, and a photograph 
of the obstacles installed on the heated surface.

The height of the obstacles H was chosen 
by estimating the thickness of the undisturbed 
laminar boundary layer in the region where 
the obstacle was supposed to be installed. The 
thickness of the boundary layer δ (m) can be 
estimated by the well-known semi-empirical 
formula [6] for air:

1 42

4.23 ,
Pr

X
g T

 ν ⋅
δ =  ⋅β ⋅∆ ⋅ 

(1)

where ν, m2/s, is the kinematic coefficient 
of viscosity; X, m, is the axial coordinate; 
g, m/s2, is the acceleration of gravity; β, 
K–1, is the coefficient of thermal expansion 
of the medium; ΔT = Tw – T∞, K, is the 
characteristic temperature difference (Tw, T∞ 
are the temperature of the plate surface and the 
temperature at the outer edge of the boundary 
layer, respectively); Pr is the Prandtl number.

When X = 200 mm, the layer thickness 
is δ = 13 mm, and the ratio of the obstacle 
height H to the layer thickness is H/δ = 1.4, 
i.e., the obstacle protrudes slightly beyond 
the boundary layer. Notably, all temperature-
dependent parameters in this formula and 
further in the text depend on the thermal 
conditions described below, including the 
characteristic temperature difference ΔT.
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Brief description of the experimental 
test bench and measurement methods

Free convective flow was generated by a 
vertical aluminum plate with a width of 90 cm 
and a height of 4.95 m. A total of 25 heaters 
(not shown in Fig. 1) were mounted on the 
back side of the plate; they were controlled by 
an electronic system capable of maintaining the 
given temperature conditions for a long time. 
Different laws for heating the surface along its 
height and, in particular, constant surface tem-
perature were simulated by setting a specific 
regime for each of the 25 sections. Because the 
plate was very high, all three flow regimes, i.e., 
laminar, transitional, and fully developed tur-
bulent could be simulated up to the Grashof 
number Gr = 4.5·1011. A detailed description 
of the experimental testbed is given in [5, 7].

Averaged and fluctuation components of the 
temperature and the axial component of the ve-
locity vector were measured. All measurements 
were made using a resistance thermometer and 
a hot-wire anemometer (TA). 

The measuring probe consists of two sensors 
where tungsten wires with a diameter of 5 μm 
and a length of 3–4 mm are used as sensitive 
elements. The wires of both sensors are located 
parallel to each other, spaced 2 mm apart, and 
parallel to the surface; the lower sensor (up-
stream with respect to the flow) measures the 
current temperature, and the upper sensor (af-
ter processing of the initial data) measures the 
current velocity.

It is known that if the velocity in noniso-
thermal flow is measured by thermal anemom-
etry, the anemometer readings should be in-
terpreted taking into account the temperature 

values. The given flow is characterized by low 
mean velocities and a high level of fluctuations, 
so the current velocities are typically measured 
by the method of thermal compensation by 
mean temperature, which can yield inaccurate 
velocity measurements.

We used the thermal compensation method 
described in [8] in this study. Without dwelling 
on a detailed description of this method, let us 
only note that unlike other methods of thermal 
compensation by mean temperature, the TA 
reading corresponding to the current velocity at a 
given point in space is interpreted taking into ac-
count the current temperature at the same point. 

All measurements were carried out at a 
constant surface temperature Tw = 60 ± 0.5°С, 
while the air temperature at the outer edge of 
the boundary layer T∞ varied from 24 to 26°С 
during the entire experimental period. 

A coordinate device was used to move the 
sensor within the boundary layer, providing an 
accuracy of movement of about 1 mm along 
the vertical (axial) coordinate X and of about 
1 μm along the coordinate Y normal to the 
surface (i.e., across the boundary layer); move-
ment along the normal coordinate was carried 
out remotely, in automatic mode. The coordi-
nate system used is shown in Fig. 1.

Flow parameters were measured fully auto-
matically in each section of the boundary layer. 

The measurement sequence is described as 
follows.

1. Probe is moved (with an accuracy of 1 
mm) in the selected section along the axial co-
ordinate X (see Fig. 1).

2. The probe is automatically brought to the 
surface until touching it.

Fig. 1. Schemes of trapezoidal (a) and rectangular (b) elements; 
photograph of heated plate (c) showing its face (1) 
and trapezoidal elements serving as obstacles (2). 

The distances in the figure are given in mm

a)	 b)	 c)



St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (3) 2020

96

3. After movement stops, the probe is moved 
away from the surface at a distance of 0.6 mm 
(with an accuracy of 1 μm).

4. The probe is ready to perform measure-
ments in automatic mode along the normal co-
ordinate Y with the given pitch.

5. Readings are taken from both sensors of 
the probe at each point almost simultaneously 
(with an interval of 10–5 s); such measurements 
are repeated with a given frequency (100 Hz). 
Typically, 2,000 samples of reading pairs were 
taken; thus, the time of one measurement was 
20 s. 

After appropriate data processing, we ob-
tained a record of the current values of tem-
perature and velocity at a given point. Then, 
after performing the averaging operation, we 
calculated the mean values of velocity, tem-
perature and fluctuation intensity.

Comparative analysis of the results

The influence of obstacles on the laminar-
turbulent transition was studied by comparing 
the results of measuring the averaged and 
fluctuation characteristics of temperature and 
velocity fields in the near-wall region of the 
boundary layer. The results of a detailed study 
on the free-convection boundary layer without 
disturbances are given in [3–5,9,10]. These 
studies describe the main characteristics of 
LTT, in particular, the local peaks appearing for 
mean velocity and its fluctuation intensity, as 
well as the intensity of temperature fluctuations 
at the end of the transition region.

It was assumed in earlier studies that the 
axial coordinate X of the maximum values 
of fluctuation intensity can be considered 
the beginning of a fully developed turbulent 
boundary layer. However, analysis of the fields 
of current values of temperature and velocity 
indicates that the intermittency factor in the 
region of maximum values of fluctuation 
intensity is approximately 0.65–0.75, which 
only points towards increasing intensity of the 
transition process. In fact, it can be assumed 
that the LTT has ended and the flow in the 
boundary layer has passed into a fully developed 
turbulent regime only downstream relative to 
the coordinate of the maximum, when the 
fluctuation intensity decreases slightly decreases 
and almost does not change with an increase in 
the axial coordinate. The intermittency factor 
reaches 0.80– 0.95 in this region.

The main conclusions obtained in previous  
studies [3–5,9,10], served as the basis for 
selecting criteria for assessing the length of 

the LTT region and detecting the beginning of 
the fully developed turbulent regime in a free-
convection boundary layer.

All results for the flow without disturbances 
introduced (case B1) are shown by circles in 
the graphs below; the results for rectangular 
obstacles (case B2), by squares, and for the 
results of trapezoidal obstacles (case B3) by 
triangles. 

The maximum values of the following 
dimensionless characteristics of the flow were 
analyzed: 

temperature fluctuation intensities, ITm,

2

max
,mIT t T = ∆ 

 
(2)

where Tm, K, is the maximum temperature in 
a given section of the boundary layer; t, K, 
is the fluctuation component of the current 
temperature;

velocity fluctuation intensities, IUm,

2

max
,m bIU u U =  

 
(3)

where Um , m/s, is the maximum velocity in a 
given section of the boundary layer; u, m/s, is 
the fluctuation component of the current axial 
velocity; Ub m/s, is the buoyancy velocity, de-
termined by the relation Ub = (gβΔTν)1/3; 

dimensionless mean velocity Um/Ub in the 
given section along the coordinate X.

It was not our intention to measure the 
full distributions of the characteristics of the 
boundary layer. Only the near-wall part of 
the distribution was measured, and this was 
sufficient to objectively assess the maximum 
values of the given characteristics in this section 
along the axial coordinate X. 

Fig. 2 shows the distributions of the 
maximum values of temperature fluctuation 
intensity ITm with respect to the local Grashof 
number, as well as along the dimensional 
coordinate X for the three given cases of 
obstacles. The thermophysical properties of air 
for calculating the Grashof number were taken 
at a mean temperature equal to (Tw +T∞)/2. 
The exception was the value of the thermal 
expansion coefficient, which was estimated at 
external temperature. The Grashof number is 
determined by the relation

3

2Gr .x
g T X⋅β ⋅∆ ⋅

=
ν

(4)
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Analysis of the data obtained for case B1 
made it possible to discover the following 
features:

a smooth increase in the fluctuation 
intensity ITm up to the maximum value at X ≈ 
1000 mm, Grx ≈ 4.9·109; 

a slight subsequent decrease in ITm; starting 
from X ≈ 1200 mm (Grx ≈ 8.4·109), the values 
of ITm practically do not change.

Analysis of the results obtained for cases 
B2 and B3 allows us to draw the following 
conclusions:

the growth rate of ITm is about 20% higher 
for case B2, than the corresponding velocity 
for case B3 up to X ≈ 450 mm (Grx ≈ 4.4·108). 
Then, starting from X ≈ 500 mm (Grx ≈ 6.1 
108), the fluctuation values ITm observed for 

B3 sharply increase and reach the maximum 
value at X ≈ 550 mm (Grx ≈ 8.1·108). In turn, 
the fluctuations ITm reach their maximum 
value only at X ≈ 750 mm (Grx ≈ 2.0·109) for 
B2;

the values of the temperature fluctuation 
intensity for B2 and B3 approach each other 
with a further increase in the values of the 
coordinate X (local Grashof number), and, 
starting from X ≈ 1200 mm (Grx ≈ 8.4·109) are 
combined with ITm for B1, reaching an almost 
constant value.

Fig. 3 shows the distributions of the 
maximum values of velocity fluctuations IUm 
along the plate for the three given cases. The 
following was established from analysis of the 
data presented:

Fig. 2. Maximum values of temperature fluctuation intensity ITm 
in the section across the layer depending on local Grashof number Grx 

for three cases of obstacles (the curve numbers correspond to the case numbers)

Fig. 3. Maximum values of velocity fluctuation intensity IUm 
in the section across the layer depending on local Grashof number Grx 

for three cases of obstacles (the curve numbers correspond to the case numbers)
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starting from X ≈ 300 mm (Grx ≈ 1.3·108), 
the fluctuation intensity IUm for both cases 
with disturbances (B2 and B3) considerably 
exceeds the fluctuation intensity IUm for the 
case without disturbances. Moreover, a rapid 
increase in the intensity IUm is observed for B2, 
and the maximum values of IUm are reached at 
X= 500 mm (Grx ≈ 6.1·108);

the intensities IUm increase almost equally 
up to X ≈ 650 mm (Grx ≈ 1.3·109) for B3 and 
B1, then IUm for B3 begins to decrease, and 
the fluctuation intensity for B1 increases, 
reaching a maximum value at X ≈ 950 mm 
(Grx ≈ 4.2·109);

the intensities IUm approach each other 
for all three cases with a further increase 

in the values of the coordinate X (local 
Grashof number), reaching identical values at 
X ≈ 1400 mm (Grx ≈ 1.3·1010).

Fig. 4 shows the distributions of the 
maximum values of the dimensionless mean 
velocity Um/Ub with respect to the Grashof 
number. The following was established from 
analysis of the data presented:

the values of the maximum velocity 
Um/Ub at the beginning of the boundary layer 
(X ≈ 300 mm or Grx ≈ 1.3 108) for the three 
cases were distributed in accordance with 
resistances to the developing flow from the 
disturbances (obstacles). For example, case B3 
has the greatest resistance, for which the value 
of velocity Um/Ub increases monotonically 

Fig. 4. Maximum values of dimensionless mean velocity Um/Ub 
in the section across the layer depending on local Grashof number Grx 

for three cases of obstacles (the curve numbers correspond to the case numbers)

Fig. 5. Dependences of Nusselt number on Grashof number for three cases of obstacles 
(the first numbers of the curves correspond to the numbers of the cases); 

segments of curves 4–6 are additionally shown:
(4) Nux

lam = 0.83 Grx
0.22; (5) Nux = 0.05 Grx

0.37; (6) Nux = 0.09 Grx
0.34
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throughout the entire section observed. At 
the same time, the velocities Um/Ub for cases 
B2 and B1 increase almost identically up to 
the coordinate X ≈ 400 mm (Grx ≈ 3.1·108). 
After that the velocity Um/Ub for case B2 still 
deviates from the values for B1, starting to 
slow down and merging with the curve for B3 
at a distance X ≈ 900 mm (Grx ≈ 3.5·109).

as expected, the velocity Um/Ub for B1 
steadily reaches the maximum value at X 
≈ 850 mm (Grx ≈ 2.3·109) and then, slowly 
decreasing, merges with the curves for the two 
other cases at X ≈ 1200 mm (Grx ≈ 8.4·109).

Before we can analyze the results obtained 
for heat transfer, let us briefly describe the 
procedure for determining the local heat 
transfer coefficient α (W/(m2∙ K)) and, 
ultimately, the Nusselt number Nux, expressed 
as

Nu ,x
Xα ⋅

=
λ

(5)

where λ, W/(m∙K), is the thermal conductivity.
The procedure is based on the technique 

proposed in [3–5]. According to this technique, 
there is a thin heat-conducting layer near the 
wall, where the distribution of the averaged 
temperature linearly depends on the normal 
coordinate Y. Based on this, the heat flux qw 
from the surface can be represented in the 
following form: 

( )w w
q T Y T .= −λ ⋅ ∂ ∂ = α ⋅∆ (6)

Consequently, the local heat transfer 
coefficient α can be easily calculated if the 
derivative is determined graphically from the 
experimental temperature distribution.

The degree to which the disturbances 
influence the process of transition from 

laminar to turbulent flow is well observed from 
the variation in heat transfer in this region. 
Fig. 5 shows the dependences of the Nusselt 
number Nux on the local Grashof number Grx 
for the case without disturbances (B1) and two 
cases with disturbances (B2 and B3).

Two regions are distinctly observed for B1: 
laminar and turbulent regions of the boundary 
layer with the corresponding laws of heat 
transfer:

Nux
lam = 0.83Grx

0.22; Nux
turb = 0.07Grx

0.35.
Additionally, notice the fairly extended LTT 

region (Grx ϵ (2 – 10)·109). A complete ab-
sence of a laminar region is observed for both 
cases upstream after the obstacles. Moreover, 
a region with the laws of heat transfer char-
acteristic for a turbulent flow regime begins 
almost immediately after the obstacles. For 
example, this ratio is Nux = 0.05·Grx

0.37 for 
the case B2, and Nux = 0.09·Grx

0.34 for the 
case B3.

Conclusion

Based on the data presented in the paper, 
we can claim with confidence that large-
scale obstacles can be used to substantially 
reduce the length of the transition region in 
free-convective boundary layers, moving the 
beginning of the region with fully developed 
turbulent heat transfer closer to the leading 
edge of the streamlined surface. In terms of 
practical application, obstacles of this kind can 
serve as passive elements for controlling the 
intensity of heat transfer.

The study was financially supported by a 
Russian Science Foundation grant (project no. 
18-19-00082).
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В статье представлена разработанная авторами физико-математическая модель, 
позволяющая анализировать амплитудно-частотную характеристику (АЧХ) 
электроэнцефалограмм (ЭЭГ) головного мозга человека. Предлагаемый метод обработки 
ЭЭГ, в отличие от применявшегося ранее, основан на аппроксимации АЧХ уравнением, 
которое содержит набор коэффициентов, удобных для сравнения данных, полученных 
от разных испытуемых и, как установлено, обладающих диагностической значимостью. 
Ранее для оценок использовалось лишь отношение частота/амплитуда либо обратное 
ему. Полученные результаты указывают на возможность дифференциации пациентов 
различных нервно-психических профилей по значениям параметрических показателей, 
получаемых при аппроксимации АЧХ ЭЭГ.
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Introduction

The share of interdisciplinary research in 
biomedical applications is growing steadily. 
One potential direction for this approach are 
modern computer technologies and methods of 
mathematical data processing in neurophysiological 
research. These studies consider neurodynamic 
processes occurring in the brains of animals 
belonging to different types and classes, as well 
as in the human brain. Researchers aim to gain 
an understanding of the mechanisms governing 
the nervous system and the mind, working with 
individual neurons, cell populations, brain slices, 
and the brain as a whole, as well as with their 
computer models.

Electroencephalography (EEG) is a non-
invasive method for recording brain activity, 
widely used in research and in clinical practice, 
along with magnetic resonance imaging (MRI), 
positron emission tomography (PET), computed 
tomography (CT). EEG records bioelectric signals 
of the brain taken from the electrodes placed on 
the surface of the scalp by measuring the voltage 
differences between the electrodes applied and 
the references [1]. The images obtained by EEG, 
characterizing the recorded voltage differences, 
are called electroencephalograms.

EEG readings reflect the synchronous 
synaptic activity of neuron populations. 
Electrical excitation of neurons generates an 
extracellular voltage that allows the opposing 

ends of the neuron (dendrites and axons) to have 
different charges. The general purpose of EEG 
is to interpret the changes in measured signals 
reflecting the changes in the activity of certain 
regions of the brain. Identifying these regions is 
a crucial problem, since the measurements in the 
surface of the scalp reflect the sum of the signals 
taken from different spatially distributed regions 
of the brain. Because neural activity is cyclic, the 
measured voltage fluctuates between positive and 
negative, and the rate of this cycle reflects the 
frequency of the signal.

EEG is a highly sensitive method with a 
resolution of up to tens of milliseconds, allowing 
to observe the evolution of various bioelectric 
processes over time, which cannot be achieved 
by other methods. In addition, EEG makes it 
possible to explore the response of such a highly 
complex biological system as the brain to various 
stimuli. However, a high-quality amplifier is 
necessary to adequately record and then interpret 
electroencephalograms, since the amplitude of 
the measured signal is small: it ranges from units 
to several tens of microvolts.

Several frequency ranges are observed in the 
bioelectric signal of the brain [2]: delta (0.5–4 
Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–
30 Hz), and gamma (over 30Hz). It can be seen 
from Fig. 1 that the measured signal contains all 
of these rhythms in a certain proportion which 
changes depending on the brain’s activity.

Fig. 1. Total signal of local EEG and brain rhythms: delta, theta, alpha, beta, gamma [3]
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In general, quantitative studies of 
electroencephalograms rely on various methods of 
analysis, including cross-correlation coefficients, 
coherence coefficients, the method of evoked 
potentials, etc. Different methods are also used 
to study the frequency response of the bioelectric 
signal of the brain. One of these methods is 
considered in our study. 

The method of evoked potentials (EP) consists 
of recording the electrical activity of the brain 
in response to an external stimulus. This method 
is used to study such properties of the brain as 
excitability and susceptibility to stimuli [4]. 
The amplitude and the delay in the response of 
evoked potentials of EEG signals provide valuable 
data on the functional capabilities of the brain in 
different conditions and in different target groups. 
For example, an increase in time delay may be 
associated with attention deficit hyperactivity 
disorder (ADHD) in children [5], aging [6], mild 
cognitive impairment [7], and various psychotic 
conditions [8].

Applying energy-dispersive spectroscopy [9] for 
analysis of evoked potentials - is one of the most 
successful methods for identifying biomarkers. 
In addition, it can yield important data on the 
frequency composition of EEG oscillations. 
Typically, spectral estimates are calculated for 
discrete frequencies (for example, 8.5–10.0 Hz, 
that is, for the lower alpha band). The RMS 
amplitude or power (squared amplitude) of the 
given EEG signal frequency is used to quantify its 
contribution to the measured signal. 

Unfortunately, spectral analysis does not 
provide data for the temporal evolution, that 
is, for the moments when frequency shifts 
occur over time. This problem can be solved by 
different methods of time-frequency analysis, 
including short-term Fourier transform, and 
wavelet analysis, which has gained popularity 
in recent years, making it possible to accurately 
convert EEG signal shapes into specific time 
and frequency components. EEG signals are 
regarded within this approach as shifted and 
scaled versions of a particular mathematical 
function (wavelet) rather than the composition 
of sinusoidal waves with different frequencies, 
as is the case with Fourier transforms. It has 
been found that the spectral power of alpha 
waves at rest and the peak frequency of the 
alpha rhythm can be reduced in patients with 
psychotic disorders [10]. A possible reason for 
this is that decreased alpha power is correlated 
with negative symptoms in schizophrenia.

Schizophrenia is a severe mental illness that 
affects approximately 1% of the population. 

Because this disabling disorder may be 
caused by diverse genetic and neurobiological 
factors, many trials have been carried out to 
identify its biomarkers with a view to its early 
diagnosis. The biomarkers most commonly 
used for schizophrenia are associated with the 
neuroimmune and neuroendocrine systems, 
metabolism, various neurotransmitter systems, 
and neurotrophic factors. Quantitative 
electroencephalography has also been applied 
to identify possible biomarkers but such studies 
are very scarce. A notable paper [11] considers 
the theta-phase gamma-amplitude relationship 
as an evidence-based tool for the detection of 
schizophrenia.

Russian researchers compared various 
indicators of the alpha rhythm in the 
electroencephalograms of healthy subjects with 
the corresponding indicators in patients with 
arterial hypertension [12]. The values of the 
amplitude and frequency observed for patients 
with hypertension were lower than those in 
healthy subjects. An increase in the frequency-
amplitude ratio in the frontal, parietal and 
occipital electrodes was found for diseased 
subjects, without any changes in the temporal 
electrodes.

Several cerebrovascular and cardiovascular 
diseases are associated with the onset of dementia. 
The neuropsychological profile of patients with 
such disorders [13] depends on the location and 
depth of vascular damage to the brain, as well 
as on the types of cerebrovascular pathologies. 
Quite often, such pathologies affect the frontal 
lobes; consequently, the patient’s motivation 
begins to decrease and control over the actions 
deteriorates. In addition, such symptoms as 
forgetfulness and confusion are observed. Ref. 
[14] reported an increase in the spectral power 
in the delta range, proportional to the damage to 
the cardiovascular system, and a decrease in the 
power of the alpha rhythm in diseased subjects. 
Furthermore, it was found that the ratio of theta 
to the alpha power can serve as a reliable marker 
for assessing the individual degree of brain damage 
in cardiovascular diseases.

Our study describes a new mathematical 
model that adequately describes the amplitude-
frequency response of the EEG.

We found the statistical distribution of the 
coefficient values determined by fitting the EEG 
frequency response obtained during examination 
of healthy subjects, comparing the obtained 
parameters between the groups of healthy subjects 
and those suffering from schizophrenia and age-
related vascular dementia.
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Materials and methods 

Electroencephalograms of the subjects were 
obtained at the Department of Functional 
Diagnostics of the V.M. Bekhterev National 
Medical Research Center for Psychiatry and 
Neurology (St. Petersburg) from 2010 to 2018. A 
Telepath-104 electroencephalograph was used for 
the recordings. The electrodes were positioned in 
accordance with the international 10–20 system 
(Fig. 2) [15]. 

The following notations and abbreviations were 
introduced in the figure for the electrodes and 
the anatomical structures: Nasion for bridge of 
the nose, Inion for occipital protuberance, Vertex 
for crown, Preaurical point for external auditory 
meatus, F for lobus frontalis (frontal lobe), C for 
sulcus centralis cerebri (central sulcus), T for lobus 
temporalis (temporal lobe), P for lobus parietalis 
(parietal lobe), O for lobus occipitalis (occipital 
lobe), A for auricula (earlobe); the electrodes in 
the left hemisphere are denoted by odd indices, 
and the electrodes in the right hemisphere by 
even indices. 

The sampling rate of the electroencephalograph 
was 250 Hz. A cap consisting of silicone tubes and 
silver chloride non-polarizing bridge electrodes 
were used.

Three groups of subjects were considered: 
relatively healthy (normal) subjects, patients 
with schizophrenia and patients with age-related 
vascular dementia. The ‘normal’ group consisted 
of relatively healthy subjects and included 17 
people aged 20 to 64 (3 men and 14 women). 
The ‘schizophrenia’ group included 9 patients 
with schizophrenia aged 22 to 49 (4 men and 
5 women). The ‘age-related vascular dementia’ 

group included 17 people aged from 54 to 80 (6 
men and 11 women) suffering from age-related 
cerebrovascular disorders with pronounced 
cognitive decline.

EEG recordings were examined in the 
WinEEG 2.90.53 program using average-
reference montage, with 16 electrodes, or (Fp1, 
Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, 
T3, T4, T5, T6) channels. The high-pass filter 
was set to 0.5 Hz, the low-pass filter - to 50 
Hz, with a notch filter at 50 Hz. Epoch length 
was 5 s. Artifact-free epochs recorded while the 
subjects were at rest with their eyes closed (the 
so-called quiet wakefulness) were chosen for 
analysis. About 45 different values of amplitudes 
and frequencies were obtained for each subject. 
Analysis of the coefficients was carried out using 
the MagicPlot 2.7.2 software. We used Student’s 
t-test for statistical analysis.

A physico-mathematical model was developed 
for quantitative analysis of electroencephalograms, 
reflecting the relationship between the amplitude 
and frequency of the bioelectric signal of the 
brain, which is described by the following 
formula:

A(f) = af + b + 

+ a1 exp[–(f – f0)
2ln 2/σ2],

(1)

where A, V, is the amplitude of the wave; f, 
Hz, is the wave frequency; a, b, a1, f0, σ are the 
numerical coefficients in different units: a in V/
Hz; b, a1 in V; f0, σ in Hz. 

Eq. (1) was derived empirically by 
approximating the frequency response. It 
provides the best description, giving the 

Fig. 2. International 10–20 system [15]; the human skull is shown in two projections (a and b) 
with characteristic points on it: bridge of the nose (Nasion), the crown (Vertex) 

and occipital protuberance (Inion); see also the explanations in the text
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minimum error of deviation from the given 
response curve. The frequency response was 
calculated in earlier studies using simply 
the ratio of amplitude to frequency or the 
inverse ratio, which is certainly convenient for 
obtaining a simple estimate but has no physical 
basis. Eq. (1) complicates calculations but 
reflects the behavior of the measured signal 
curve, therefore, it best describes the curve 
corresponding to the amplitude versus frequency 
function. Based on these considerations, the 
amplitudes and frequencies for each electrode, 
obtained from the electroencephalograms 
for each subject, were approximated by Eq. 
(1). The biophysical nature of the proposed 
relationship is undoubtedly intriguing and may 
be the subject of a separate study. However, 
this task is beyond the scope of our analysis.

Results and discussion

Let us first consider the results for the 
‘normal’ group. An example of the approximated 
frequency response obtained for one of the 
subjects using the T5 electrode is shown in Fig. 3. 
The frequency response for other channels had 
a similar appearance for each subject from the 
‘normal’ group.

Because we observed no significant 
differences in the coefficient values between 
the channels in each of the three study 
groups, data for each parameter were analyzed 
simultaneously for all electrodes (without 
separating the data for different electrodes). As a 

result, statistical distributions of the coefficient 
values were obtained for the ‘normal’ group 
(Fig. 4). Evidently, the peak frequency f0 lies 
in the alpha range, and so the obtained data 
are consistent with the general notion that the 
maximum amplitude of alpha waves occurs in 
a state of passive wakefulness with eyes closed 
(at rest).

Comparing the obtained values of the 
parameters between the three groups, we found 
the following differences (the paragraphs are 
lettered in accordance with the letters in Fig. 5):

a) in the coefficient a1 between the ‘normal’ 
and ‘age-related vascular dementia’ groups (p 
< 0.05); between the ‘schizophrenia’ and ‘age-
related vascular dementia’ groups (p < 0.05); 

b) in the coefficient f0 between the the ‘normal’ 
and ‘age-related vascular dementia’ groups (p 
< 0.05); between the ‘schizophrenia’ and ‘age-
related vascular dementia’ groups (p < 0.05); 
between the ‘normal’ and ‘schizophrenia’ groups 
(p < 0.20); 

c) in the coefficient σ between the ‘normal’ 
and ‘schizophrenia’ groups (p < 0.05); between 
the ‘schizophrenia’ and ‘age-related vascular 
dementia’ groups (p < 0.05).

These differences are shown graphically in 
Fig. 5. No other differences were found between 
the coefficients.

Thus, it was found that there are distinct 
characteristics in the behavior of the frequency 
response for each of the three groups, different 
from the other groups. For example, the 

Fig. 3. Example of approximated (dashed line) experimental frequency response (points) 
for T5 electrode for one of the subjects in the ‘normal’ group; 

the values of the obtained parameters are given
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characteristics for the ‘schizophrenia’ group are 
a slightly reduced peak frequency f0, compared 
to the ‘normal’ group (but still falling into the 
upper theta and lower alpha frequency ranges) 
and increased half-width at half-maximum σ, 
compared to similar coefficients from the other 

two groups. In the meantime, the ‘age-related 
vascular dementia’ group is characterized by 
a negative value of the coefficient a1 (i.e., the 
Gaussian peak is deflected downwards rather 
than upwards) and a reduced value of the peak 
frequency f0.

Fig. 4. Statistical distributions of frequency response coefficients (1) 
for subjects of the ‘normal’ group

Fig. 5. Statistical distributions of coefficients a1 (a), f0 (b) and σ (c) 
for all electrodes for three groups of subjects: ‘normal’ (N), ‘schizophrenia’ (Sch), ‘dementia’ (D);

 the differences observed between the data are given in the text

a)	 b)	 c)
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Notably, the differences in data between the 
groups should be assessed by the entire set of 
values of the obtained parameters, and not by one 
single parameter value.

Analysis of the results has lead us to conclude 
that the proposed mathematical model (1) can 
be used to divide the subjects into groups in 
accordance with their specific diseases.

Conclusion

Electroencephalography is a popular method 
used to diagnose various neuropsychiatric 
disorders. Because of its high temporal resolution, 
EEG allows to almost instantly track the changes 
in brain activity. In contrast to several other 
methods, the procedure is non-invasive and 
absolutely harmless for the subjects.

EEG signals are electrophysiological responses 
reflecting basic neural activities that depend 
on the physiological states of the subject (for 
example, emotions, attention, and many others). 
The key parameters obtained by EEG are 

the amplitude and frequency of the measured 
signal. Determining these parameters visually 
can produce serious errors; for this reason, they 
are calculated by various software packages and 
methods. Furthermore, understanding different 
manifestations and biomarkers of certain 
functional states of the brain, identified, in 
particular, by mathematical methods of EEG 
analysis, is important for clinical practice.

This study presents a physico-mathematical 
model that we have developed, approximating 
the amplitude-frequency characteristic of 
human electroencephalograms. We have found 
pronounced differences in the values of the 
coefficients obtained for different clinical 
groups of subjects. It has been established that 
the selected empirical parameters have actual 
diagnostic significance rather than serve for fitting 
purposes only.

Thus, we have confirmed the practical 
significance of the proposed method for 
differentiating neuropsychic disorders in patients.
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Introduction

A simple and natural understanding of the 
dynamic structure of the gauge theory is that the 
initial set of dynamic variables in its mathematical 
apparatus is redundant and some of them 
should be eliminated by solving the equations of 
constraints and additional gauge conditions [1]. 
However, in the subsequent development, this 
reduction procedure has been replaced by the 
expansion of the phase space of the theory with 
the addition of Lagrange multipliers with the 
corresponding canonical momenta and ghosts, 
as well as the expanded BRST-symmetry [2–6]. 
Another option for expanding the phase space of 
the gauge theory was proposed in Ref. [7], where 
the parameters of finite symmetry transformations 
were added to the original dynamic variables. 
These finite shifts in the group space are 
constructed in the form of integrals of infinitesimal 
shifts generated by constraints. However, such 
an extension alone does not solve the problem 
of separating physical degrees of freedom and 
pure calibrations and a dynamic interpretation 
of the theory. It should be supplemented with 
a structure that allows connecting finite shifts in 
the group space with observations. In the case 
of the dynamics of relativistic particles with 
reparametrization invariance of their world lines, 
the intrinsic parameter of the symmetry group 
plays the intrinsic time of each particle. This 
invariant parametrization also arises naturally 
in the BRST-invariant representation of the 
propagator of covariant quantum theory for a 
relativistic particle [8] and reproduces the Fock 
[9] and Schwinger [10] formalism based on the 
introduction of proper time. In Ref. [11], the 
introduction of this parameter was proposed to be 
supplemented with the condition of its classical 
dynamics with the corresponding modification 
of the initial action. This addition allows us to 
connect the proper time with observations and get 
a dynamic interpretation of covariant quantum 
theory. It can be assumed that such a two-stage 
modification of the singular theory (adding finite 
symmetry transformations to dynamic variables 
and an additional condition for their classical 
dynamics) will be an effective way to separate 
physical degrees of freedom and pure gauges in 
the general case. 

In this paper, this modification has been 
shown as an example of a free Yang–Mills 
field. The result should be a separation of the 
dynamics of the physical transverse components 
of the Yang–Mills field and the “motion” of the 
longitudinal components (pure calibrations) in 
the group space.

Modification of the Yang–Mills’ action

The proposed mode caution of the gauge 
theory action is divided into two stages. We 
proceed from the canonical form of action, 
namely,

( ) ( ), , ,i i aI dt p q p q h p q= −λ ϕ −  ∫  (1)

where the constraints obey the commutation 
relations:

{ }
{ }

, ,

, ,
a b abd d

a a ad

C

h h

ϕ ϕ = ϕ

ϕ = ϕ
(2)

(we consider the case ha = 0), and variations 
of the Lagrangian multipliers ensuring the 
invariance of the action (1) with respect to the 
infinitesimal symmetry transformations

{ }
{ }

, ,

,
i a i a

i a i a

q q

p p

δ = ε ϕ

δ = ε ϕ
(3)

have the form 

�� � � �a a abd b dC� � . (4)

At the first stage, according to Ref. [7], we 
replace the Lagrangian multipliers with explicit 
functions of the parameters defining the finite 
symmetry transformation (δsa = εa):

( ) ,a b abs sλ = Λ (5)

which are integrals of functional-differential 
Eqs. (4). At the second stage, according to 
Ref. [11], we add a variation generated by 
the infinitesimal shift of new dynamic vari-
ables to the action. We call this step a con-
dition of classical dynamics, since it allows 
one to remove integration over new dynamic 
variables in the functional-integral represen-
tation of the propagator of covariant quan-
tum theory. We carry out these construc-
tions as an example of a free Yang–Mills 
field Aμa where μ is a space-time index (μ 
= 0, 1, 2, 3), and a is an internal index of 
the gauge theory. Here, A0a are the Lagrange 
multipliers, so, at the first stage, the orig-
inal Yang–Mills Lagrangian function takes 
the form

( )( )2 21 ,
2 ia i b ba iaL A s B = −∇ Λ −  



 (6)



113

Theoretical Physics

where Bia is the Yang–Mills “magnetic 
field” tension, and the covariant derivative is 
determined by the following relation [1]:

.dibbadaiai FAigTFF −∂=∇ (7)

We will not have need of the explicit 
form of functions Λab here. Now, following 
Ref. [8], we will still expand the set of new 
variables by adding infinitesimal shifts εa to 
them, as well to Lagrangian function (6) we 
add its variation generated by these infinites-
imal shifts:

� � �

� � �

L A s B

A s

ia i b ba ia

ia i b ba i

� �� � �� � ��
��

�
��
�

� �� � �� � � �

1

2

2
2�

� �cc ca c
ca

d
ds

s
�

�
�

�
�

�

�



�

�



�

�




�

�


� � .

(8)

The canonical form of the 
 modified Yang–Mills’ action 

Now we turn to the canonical form of the 
modified action (8). Let us find the canonical 
momenta:

( )

,

ia ia i b ba

ca
i c ca c d

d

A s

s
s

π = −∇ Λ +

 ∂Λ
+∇ ε Λ + ε ∂ 





 

(9)

conjugated to Aia, and

( )( )
( )( )

,

bs ab i ia i c ca

bc
i ic i q qc d

d

ca
ab c ca c d

d

p A s

A s
s

s
s

= −Λ ∇ −∇ Λ −

∂Λ
−∇ −∇ Λ ε −

∂

 ∂Λ
−Λ ∆ ε Λ + ε ∂ 









 

(10)

conjugated to sa (Δ = ∇i∇i), and 

( )( ) ,b ab i ia i c caP A sε = −Λ ∇ −∇ Λ

 (11)

conjugated to εb. 
From here we immediately obtain the 

constraint equations, 

1 ,
b a

cb
s ab i ia ac d

d

p P
s

−
ε

∂Λ
= −Λ ∇ π + Λ ε

∂
(12)

and generalized velocities in the following 
combination:

( )1 1 .
b

ca
ñ añ c d

d

i ia ab

s
s

p− −
ε

∂Λ
ε Λ + ε =

∂

= ∆ ∇ π +Λ

 

(13)

Now we find the Hamilton function of the 
modified theory:

( )

2 2

2
1 1

1
2

1 ,
2 b

ia ia

i k ka ab

h B

p− −
ε

 = π + − 

 − ∇ ∆ ∇ π +Λ 



(14)

where we used (13). 
Let us see what we have got as a result. 

Obviously, the constraints (12) commute with 
the Hamiltonian (14). The Hamiltonian does 
not contain εa which means that canonical mo-
menta Pεa (color density of a charge) are in-
tegrals of motion. We perform the orthogonal 
longitudinal-transverse splitting of the canoni-
cal momenta:

( )0 ,L L T
ia i a a iaπ = ∇ χ + χ + π (15)

With

0 .
a

L
ab b PεΛ ∆χ = − (16)

As a result, the quadratic form of the mo-
menta in the Hamiltonian contains only the 
transverse components:

2 21 .
2

T
ia iah B = π + 

 (17)

Thus, the longitudinal components of the 
Yang–Mills are completely excluded from 
the dynamics in time. For them, only the 
“dynamics” in the group space described by 
the constraints (12) remains. Here, the evo-
lution parameters sa are supplemented by dy-
namic variables Pεa which can be eliminated by 
choosing the origin of the longitudinal compo-
nent of the momentum according to Eq. (16). 
In the gauge theory with the constraints linear 
in canonical momenta, these quantities do not 
have a dynamic meaning.

Summary

Thus, in the Yang–Mills theory, and 
generally in the theory with the constraints 
linear in canonical momenta, the introduction 
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of the classical parameters of symmetry 
transformations as additional dynamic variables 
allows us to separate the physical transverse 
and gauge longitudinal degrees of freedom. 
At the same time, classical external sources 
which are generators of classical symmetry 
transformations are also added as dynamic 
variables. These sources themselves can be set 
equal to zero, as long as the separation of the 
physical degrees of freedom is done. In theories 
with quadratic on the canonical momenta 

constraints, such as the theory of gravity, in 
which there is a time problem, the modification 
proposed here introduces the concept of proper 
time, which also has its own classical source – 
energy. In contrast to the case considered here, 
this energy can have a dynamic meaning. This 
issue will be considered separately.
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исследования регуляции мозгового кровообращения человека. В первой части 
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Introduction

Regulation of cerebral circulation serves as 
a perfect physiological mechanism maintaining 
the chemical and physical homeostasis of 
the brain. Research into this phenomenon 
helps establish the conceptual framework for 
introducing methods for controlling the system 
into clinical practice.

Understanding the specifics of the process 
is crucial for clinical practice, since pathogenic 
processes in various brain lesions (such as 
traumatic brain injuries, ischemic stroke, 
non-traumatic intracranial hemorrhage, brain 
arteriovenous malformations or anastomosis) 
largely depend on the state of the regulatory 
mechanisms.

Fig. 1 shows the main factors governing 
cerebral blood flow (CBF). All abbreviations of 
the common medical terms used in this paper 
are given in Appendix.

CBF is tightly regulated under normal 
conditions to provide an adequate response to 
local or systemic changes in homeostasis. The 
pressure gradient that regulates the level of CBF 
depends not only on systemic arterial pressure 

(SAP) and central venous pressure (CVP), but 
also on intracranial pressure (ICP). There are 
complex relationships between these values, 
but in practice, the value of cerebral perfusion 
pressure (CPP) is defined as the difference 
between AP and ICP or CVP (whichever is 
higher). The regulatory system also includes 
the endothelium, which is a thin semi-
permeable membrane separating the blood flow 
from the deeper structures of the vessel. The 
most important function of the endothelium is 
regulation of vascular tone. 

Autoregulation of cerebral blood flow (AR) 
is the ability of the cerebral circulation system 
to maintain a relatively adequate level of CBF, 
with AP/CPP fluctuating within a certain 
range, by changing vascular resistance. CBF 
is regulated through interaction of different 
factors. These include: 

myogenic response of smooth muscle cells 
in arteriolar walls to stretching due to the 
differences in transmural pressure, which is the 
difference between intra- (blood pressure) and 
extravascular pressures applied to the vessel 
wall; 

Fig. 1. Main factors governing cerebral blood flow (CBF): 
CPP is the cerebral perfusion pressure; pO2, pCO2 are the partial pressures of oxygen 

and carbon dioxide; ICP is the intracranial pressure; EM is the endothelial metabolites; 
SNS is the sympathetic nervous system; MA is the mental activity
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hemodynamic shock associated with the 
changes in vascular tone (an increase in CBF 
velocity can lead to narrowing of the lumen in 
blood vessels); 

metabolic factors, such as oxygen supply 
to tissues, neuronal metabolism, and the 
autonomic nervous system, which is involved 
in regulating vascular reactions [1].

Study of AR mechanisms is an important and 
urgent problemc currently tackled by numerous 
research groups. As new methods of mathematical 
analysis and signal processing are developed and 
widely introduced in practice, this greatly expands 
the opportunities for comprehensive study of 
cerebral blood flow regulation.

This paper is dedicated to comparative 
analysis of modern methods for studying the 
regulation of cerebral circulation, which can be 
regarded as the interaction of the input signal 
(AP) and the resulting response (CBF) via a 
regulation system with feedback.

Methods for signal processing

Data processing is used to analyze, modify 
and synthesize the signals received, for example, 
sound, images and the results of biological 

monitoring. Signal processing methods are used 
to improve transmission and storage efficiency, 
as well as to isolate or locate the components 
for further analysis in a measured signal. For 
example, the Fourier transform allows to extract 
the fundamental harmonics from a signal that 
at first glance appears to be noise (Fig. 2).

Types of signal conversion. Because the 
signals have a different nature, different 
methods are used for processing them. 

Continuous-time processing. This group of 
methods is applied to signals for which the 
time interval can be regarded as a continuum, 
including both time and frequency domains. 
The Fourier transform of the time series allows 
to obtain the frequency response of the process.

Discrete-time processing. It is used to analyze 
signals such as samples whose elements are 
defined only at a finite number of points in time.

Digital processing. It consists in processing 
of digitized sampled signals with discrete 
time. Examples of algorithms for this type 
of processing are Fast Fourier Transform, 
finite impulse response filter, infinite impulse 
response filter, and adaptive filters such as 
Wiener and Kalman filters. 

Fig. 2. Curves for monitoring blood flow velocity (BFV) in the middle cerebral artery (a) 
and spectral density (SD) of spontaneous fluctuations in the Slow-Wave Activity, 

Respiratory-Wave Activity and Pulse-Wave Activity ranges, 
calculated by fast Fourier transforms (b)
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Nonlinear processing. Nonlinear analysis is 
applied to the signals generated by nonlinear 
systems and can be performed in time, frequency, 
or space-time domains. Nonlinear systems 
can be used to simulate complex behaviors, 
including bifurcations, chaos, harmonics, and 
subharmonics that cannot be analyzed by linear 
methods. The modern approach is based on 
the concept of multifractals that are objects 
with different self-similarity characteristics in 
different scale ranges.

Statistical processing. Statistical processing 
is used for signals that can be regarded as 
stochastic processes with statistical properties 
that make it possible to apply the given 
methods [2]. For example, these methods can 
be used to reduce the effect of noise from 
receiving signals during medical monitoring of 
a patient’s condition. 

Mathematical methods. Mathematics 
possesses a powerful array of methods applicable 
in diverse fields of science and technology. They 
are also applicable in medicine. The following 
methods are the most important:

differential equations, recurrent procedures; 
Fourier and Hilbert transforms, wavelet 

transform, methods of nonlinear dynamics; 
time-frequency analysis (producing estimate 

of the spectral components in analysis of time 
series);

stochastic analysis;
methods of computational mathematics; 
data mining (used for statistical analysis 

of the relationship between a large number 
of variables representing multiple physical 
signals in order to extract previously unknown 
important properties).

Different types of relationships can exist 
between the processed attributes characterizing 
any phenomenon: 

Functional relationship is the most rigid type 
(mainly found in inanimate nature); changing 
one characteristic in this relationship always 
leads to a change in another, for example, the 
dependence of the distance on time and speed. 
This relationship is not typical for living nature, 
governed by the principle of deterministic chaos. 

Correlation relationship, when the value 
of one attribute corresponds to several 
values of another attribute (for example, the 
dependence of pulse rate on body temperature, 
the dependence of frequency of exacerbations 
of chronic diseases on age, etc.); in general, 
correlation is an interconnected change in 
indicators; it is characterized by direction, type 
and degree of closeness.

Pearson’s correlation criterion is a method of 
parametric statistics that allows to determine 
the presence or absence of a linear relationship 
between two quantitative indicators, as well as 
to assess its closeness and statistical significance 
[3]. The correlation coefficient r (X, Y) for 
discrete random variables can be calculated by 
the following formula:
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where xi, yj are the elements of the samples; pi qj 
are the probabilities with which these elements 
are included in the samples; pij are the their 
joint probabilities.

If r = 0, there is no correlation, if r = ±1, 
the correlation is complete and functional 
(the plus and minus signs express a positive 
or negative (inverse) relationship). Pearson’s 
correlation values are ranked by closeness: less 
than 0.3 corresponds to a weak correlation; the 
correlation is moderate in the range of 0.3–0.7, 
and strong in the range of 0.7–1.0. In addition, 
relationships are distinguished by the nature of 
the changes, which can be either straight or 
curvilinear.

Notably, the correlation coefficients can 
only establish statistical associations and do not 
indicate the presence of causal relationships 
between pairs of attributes.

Spearman’s rank correlation coefficient 
is a nonparametric measure describing the 
relationship between variables measured on 
a rank scale. It can be calculated without 
making any assumptions about the nature of 
the distributions of attributes in the statistical 
population. The ranking procedure begins 
by arranging the variables in ascending 
order of their values. Different values are 
assigned ranks that are natural numbers. 
The calculations are then carried out by the 
formula:
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where di is the difference between the ranks in 
pairs, n is the number of pairs. 
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The Fourier Transform F(ω) yields the 
coefficients (amplitudes) for the initial function 
f(x) decomposed into harmonic oscillations  
with different frequencies. It has the form

1( ) ( ) exp( ) ,
2

F f x i x dx
∞

−∞

ω = − ω
π ∫

where ω is the angular frequency.
An important property of the Fourier trans�-

form is Parseval’s equality:

2 2( ) ( ) .f x dx F d
∞ ∞

−∞ −∞

= ω ω∫ ∫

The conversion formula can be represented as

1( ) ( ) exp( ) .
2

f x F i x d
∞

−∞

= ω ω ω
π ∫ (1)

The physical meaning of the Fourier 
transform is that the right-hand side of equal-
ity (1) is the sum of harmonic oscillations 
exp(iωx) with the frequencies ω, the amplitudes
1

2π
|F(ω)| and the phase shifts argF(ω). 

The Fourier transform makes it possible to 
characterize the frequency content of the sig-
nal but does not allow to determine at what 
point in time a particular oscillation with the 
frequency ω appears. If time localization of fre-
quency components is required, for example, 
for analyzing signals of biological origin, a 
time-frequency transformation of the signal 
such as a wavelet transform should be applied.

Convolution of functions is an operation show-
ing the ‘similarity’ of one function to a mirrored 
and shifted copy of another. A mathematical 
operation over two functions, f and g, generates 
a third function, which is generally considered 
to be a modified version of one of the initial 
functions. The convolution operation is a de-
pendence of the integral over an infinite time 
interval of the product of the level of the first 
signal by the level of the second one, shifted 
in time relative to the first signal. The result of 
the convolution yields the positions where one 
signal is similar to another and where it is not. 
The definition of convolution is formulated as

( ) ( ) ( ) ( ) .f g t f g t d
∞

−∞

∗ = τ − τ τ∫
In the discrete case, the convolution corre-

sponds to the sum of f values with the coeffi-
cients corresponding to the shifted g values, i.e.,

( ) ( ) (1) ( 1)
(2) ( 2) ...

f g x f g x
f g x

∗ = − +
+ − +

Coherence is a statistic that can be used to 
describe the relationship between two signals or 
datasets. If the signals are ergodic and the sys-
tem function is linear, coherence can be used 
to assess the causal relationship between input 
and output.

Coherence (sometimes called the squared 
amplitude) between two signals x(t) and y(t) is 
a real function, which is defined as

2
( )

( ) ,
( ) ( )

xy
xy

xx yy

G f
C f

G f G f
=

where Gxy(f) is the cross-spectral density between 
x and y; Gxx(f), Gyy(f) are the autospectral 
densities of x and y, respectively. The magnitude 
of the spectral density is denoted as |G|. 

In view of the above limitations (ergodicity, 
linearity), the coherence function allows to 
assess the degree of confidence with which the 
form of the function y(t) can be predicted by 
the form of x(t) by choosing the optimal linear 
function by the least-squares method.

The power spectrum Sxx(f) of a time series 
x(t) describes the power distribution over the 
frequency components of this signal. 

The transfer function can be used to describe 
a dynamic system. It represents the differential 
operator expressing the relationship between 
the input and output of a linear stationary 
system. If the signal input to the system and the 
transfer function are known, the output signal 
can be reconstructed. Let us prove this.

Let u(t) be the input signal of the linear sta-
tionary system, and y(t) its output signal. Then 
the transfer function W(s) of such a system is 
written in the following form:

( )( ) ,
( )

Y sW s
U s

=

where s, rad/s, is the operator of the transfer 
function, s = jω; U(s), Y(s) are the Laplace 
transforms for the signals u(t) and y(t), 
respectively:
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Let us consider the case of discrete systems. 
Let u(k) be the discrete input signal of such 

a system, and y(k) its discrete output signal 
(k = 0, 1, 2,…). Then the transfer function 
W(z) of such a system has the form

( )( ) ,
( )

Y zW z
U z

=

where U(z), Y(z) are z transforms for signals 
u(k) and y(k), respectively: 

0
( ) ( ) ( ) ,kU z Z u k u k z

∞
−= =∑

0
( ) ( ) ( ) .kY z Z y k y k z

∞
−= =∑

Methods of nonlinear dynamics. The main 
methods are fractal analysis and fractional 
differentiation, as well as artificial neural net-
works. Let us consider these methods.

Fractal analysis is used for assessing the frac-
tal characteristics of the data. It includes meth-
ods for determining the fractal dimension and 
other fractal characteristics of an object. An im-
portant limitation of fractal analysis is that an 
empirically determined fractal dimension does 
not necessarily prove that a model is fractal.

The concept of fractal is associated with ob-
jects that meet two criteria: self-similarity and 
fractional dimension. The first criterion means 
that the object consists of several levels of units 
resembling the structure of the entire object. The 
second criterion for a fractal object is the pres-
ence of fractional dimension. This requirement 
distinguishes fractals from Euclidean objects, 
which are characterized by integer dimensions.

To process signals of medical origin, the 
time-series approach is substituted by intro-
ducing a new object formed in a phase space of 
finite dimension, called a reconstructed attrac-
tor. It can be characterized by different mea-
sures, the most fundamental being the fractal 
dimension [6, 7]. 

The Rényi dimension seems to be the most 
convenient for studying the autoregulation of 
cerebral circulation. 

Rényi entropy is a family of functionals 
used as a measure of uncertainty or random-
ness of a system. If some system has a discrete 
set of available states X = {x1,…, xn}, which 
corresponds to the probability distribution pi 
for i = 1, n (i.e., pi are the probabilities of the 
system being in the states xi), then the Rényi 
entropy with the parameter q (for q ≥ 0) of the 
system is defined as

1

1( ) log .
1

N
q

q i
i

H p p
q =

=
− ∑

Since 
i

N

�
�

1
pi = 1, then, provided that q → 1, 

it converges to the Shannon entropy, which has 
the form

1
( ) ln .

N

i i
i

H p p p
=

= −∑
However, analysis of signals from medical 

monitoring more often involves phenomena 
that require expanding the concept of fractals 
to complex structures with several dimensions. 
Complex fractals, called multifractals, are 
found in medicine (and in nature in general) 
more frequently than others. The multifractal 
approach actually means that the object under 
study can be divided into parts, each with its 
own properties of self-similarity. A large number 
of characteristics are required to describe these 
parts quantitatively. In particular, the spectrum 
of such processes cannot be described by a 
power law with a single exponent β.

The Wavelet Transform Modulus Maximum 
(WTMM) is a method for detecting the fractal 
dimension of a signal. It involves constructing 
the line of the local maximum of the wavelet 
transform, allowing to partition the time and 
scale domains into regions of fractal dimension. 
The continuous wavelet transform of the 
function f(x) is found by the following formula:

1( , ) ( ) ,x bW a b f x dx
aa

∞
∗

ψ
−∞

− = ψ  
 ∫

where a is the scale parameter, b is the 
coordinate or time. 

The initial signal f(x) is divided using the 
function ψ(x), generated from soliton-like 
functions, with the singularities obtained during 
its scale measurements and shifts. In the sim-
plest version (using the Hölder exponent h), 
the scaling of one of the lines (for example, the 
maximum) is considered:

( )( , ) .ih t
iW t s sψ 

Most of the information transmitted by the 
signal is carried by its singularities in the form 
of irregular structures and transient phenomena. 
The wavelet transform is an effective method for 
detecting and characterizing these singularities 
because the transform can decompose the signal 
into blocks that are localized in both time and 
frequency. This makes it possible to determine 
the local regularity of the signal [8].
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The local regularity of a function is often 
measured using Lipschitz exponents [8], also 
called the Hölder exponents. We can explain 
this as follows.

Let n be a positive integer, and n ≤ α ≤ n 
+ 1. The function f(x) is called an α-Lipschitz 
function at the point x0 if and only if there are 
two positive constants A and h0, as well as the 
polynomial Pn(x) (of the order n), such that the 
following inequality holds true for h < h0 [9]: 

|f (x0 + h) – Pn (h) | ≤ A | h|.
We believe that a function has a singularity 

at x0 if it is not a 1-Lipschitz function at x0. As 
a matter of fact, if a function is continuously 
differentiable at some point, its Lipschitz 
exponent is equal to unity at this point and 
therefore there is no singularity at this location. 
In practice, it is too difficult to verify the above 
conditions, so simpler and less stringent criteria 
are used for the singularity of functions. 

Artificial neural networks (ANN). Modern 
medical expert systems make it possible 
to track substantial changes in the human 
body; they also support decision-making 
about medical interventions. Artificial neural 
networks are capable of self-learning based on 
medical monitoring data. They are a system 
of interconnected simple processors (artificial 
neurons). Each processor interacts with the 
signals it receives and the signals it sends to 
other processors. An important advantage 
of neural networks is their training capacity. 
Technically, training consists in finding the 
coefficients of connections between neurons.

An artificial neuron is usually represented as 
a nonlinear function (activation or firing) of a 
linear combination of input signals (Fig. 3). The 
result obtained is sent to a single output. The 
outputs of some neurons are then connected to 
the inputs of other neurons, forming a network.

In practice, the network is based on 
perceptrons. A perceptron consists of sensors, 
associative and responsive elements [9].

A radial basis function network is an artificial 
neural network using radial basis functions 
(RBF) as activation functions. These functions 
have the form

2

2( ) ,xf x
 

= ϕ σ 
for example, 

2

2( ) exp ,xf x
 

= − σ 

where x is the vector of the neuron’s input 
signals, σ is the window width, φ is a decreasing 
function.

The error backpropagation method is an 
iterative gradient algorithm used to minimize 
the error of the multilayer perceptron (MLP) 
and obtain the desired output. The gist of the 
method is in transmitting the error signals from 
the outputs of the network to its inputs, in the 
direction opposite to forward propagation of 
signals in normal operation.

Orthogonal complement of the signal. 
Hilbert–Huang transform. Natural physical 
processes are nonlinear and nonstationary. 
The widespread approach superimposing a 
linear structure on a nonlinear system does 
not always provide reliable results. Analysis 
should cover the detailed evolution of the data 
over time, since an important characteristic 
of nonlinear processes is their variation in the 
time-frequency domain.

Consider a signal S(t). The orthogonal 
complement of this signal is a signal Sor(t), such 
that

( ) ( ) 0.orS t S t dt
∞

−∞

⋅ =∫

The Hilbert transform calculates the 
orthogonal complement of the signal:

( )( ) .
( )or
SS t d
t

∞

−∞

τ
= τ

π − τ∫
The Hilbert transform is the result of 

convolution of the signal S(t) with the function 
h(t) = 1/πt, called the kernel of the given 
transformation. The frequency and phase 
characteristics of this transform can be obtained 
using the Fourier transform:

Fig. 3. Simple neural network. 
Black circles represent the input and output 

nodes, gray circles represent hidden nodes 
(https://ru.wikipedia.org/wiki/Нейронная_сеть)

https://ru.wikipedia.org/w/index.php?title=%D0%98%D1%82%D0%B5%D1%80%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D1%8B%D0%B9_%D0%B3%D1%80%D0%B0%D0%B4%D0%B8%D0%B5%D0%BD%D1%82%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC&action=edit&redlink=1
https://ru.wikipedia.org/w/index.php?title=%D0%98%D1%82%D0%B5%D1%80%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D1%8B%D0%B9_%D0%B3%D1%80%D0%B0%D0%B4%D0%B8%D0%B5%D0%BD%D1%82%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC&action=edit&redlink=1
https://ru.wikipedia.org/w/index.php?title=%D0%9C%D0%B8%D0%BD%D0%B8%D0%BC%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F&action=edit&redlink=1
https://ru.wikipedia.org/wiki/Нейронная_сеть
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The modulus and phase shift of the Hilbert 
transform are found by the following formulas:

( ) 1, 0, ( ) sign .
2

H π
ω = ω ≠ Φ ω = − ω

The Hilbert-Huang transform (HHT) is the 
decomposition of a signal into functions. which 
are called ‘empirical modes’ (EMD method), 
with subsequent application of the Hilbert 
transform to the resulting decomposition 
components. It consists of the following.

Let X(t) be the analyzed signal. The method 
of Empirical Mode Decomposition (EMD) 
involves sequential calculation of empirical 
modes cj and residuals

rj = rj − 1 − cj (j = 1, 2,…,n),

r0 = X(t).

As a result of the calculations, we obtain a 
decomposition of the signal in the form

1
( ) ,

n

j n
j

X t c r
=

= +∑

where n is the number of empirical modes that 
is found during the calculations.

Applying methods for signal processing 
to study of regulation of cerebral blood 

circulation
Different methods of signal processing are 

given in [10]; notably, the influence of these 
methods on the results and their reproducibility 
are not discussed. Another study [11] argues 
that the response of cerebral blood flow velocity 
(CBFV) can be interpreted as a kind of step 
response of the control system and quantified 
using the autoregulation index (ARI) in the 
range from 0 to 9.

Another approach to quantitative assessment 
of dynamic cerebral autoregulation (DCA) 
consists of analyzing the transfer function 
(TFA) of the hypothetical linear control 
system, where SAP is taken as the input signal, 
and CBFV is taken as the output signal [12–
14]. The gain and the phase of the transfer 
function are estimated by the auto- and cross-
spectra of SAP and CBFV, while the level of 
linear relationship between SAP and CBFV 
is expressed by the consistency of the system. 
Analysis of the transfer function allows to find 
the step response function and then estimate 

the ARI of the system using the least-squares 
method. The sum of the squared differences 
with the TFA response is determined for each 
of the 10 ARI responses. High variability 
observed in the calculated parameters such as 
gain, phase and ARI is a factor limiting the 
clinical use of DCA.

The transfer function was calculated as 
follows [12–14]:

( )
( ) ,

( )
xy

xx

S f
H f

S f
=

where Sxx(f) is the auto-spectrum of SAP 
changes, Sxy(f) is the cross-spectrum between 
SAP and CBFV signals. 

The value of the transfer function H(f)| and 
the phase spectrum U(f) were obtained from 
the real (HR (f)) and imaginary (HI(f)) parts of 
the transfer function as
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The squared coherence function γ2(f) was 
calculated as

2

2
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where Syy(f) is the autospectrum of the changes 
in CBFV.

The squared coherence function reflects the 
closeness of the linear relationship between 
SAP and CBFV for each frequency, ranging 
from 0 to 1.

An alternative approach to overcoming some 
of the difficulties of the above method involves 
spectral Fourier analysis of the data obtained 
by multimodal pressure-flow analysis (MMPF) 
[14, 15]. It was established that MMPF analysis 
can be less sensitive to nonstationary data and 
their variation. The data obtained using MMPF 
for patients with traumatic brain injuries were 
found to have better reproducibility compared 
to ARI [16]. Attempts were also made to apply 
nonlinear approaches to assessing DCA [17, 
18] but there is as yet no clear evidence for the 
advantages of such approaches.

To reliably interpret the results of DCA 
assessment, the coherence levels must be 
considerably above zero. The calculations based 
on degrees of freedom yielded a minimum 
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required squared coherence level of 0.06 for 
15-minute episodes of spontaneous breathing 
and 0.20 for 5-minute breathing periods of 6 
cpm. 

Some authors recommend to assess dynamic 
autoregulation of cerebral blood flow based on 
analysis of the transfer function for a coherence 
level of at least 0.5–0.6 [19]. 

The algorithm for cross-spectral analysis 
consists in the following: 

Step 1. The amplitudes of BFV and SAP are 
calculated in the ranges of intracranial B waves 
and Mayer waves (M waves).

Step 2. The coherence between M waves of 
arterial pressure and BFV is calculated; the 
important area is where the coherence is at 
least 0.5.

Step 3. The phase shift between M waves of 
arterial pressure waves and BFV is calculated.

Figs. 4–7 show examples of calculated 
frequency dependences obtained by the above 
algorithm. The frequency of slow oscillations 
of systemic and cerebral hemodynamics is 
plotted on the horizontal scale. Evidently, the 
most informative part of the corresponding 
dependences lies in the region where the 
coherence exceeds 0.5.

Ref. [20] considered the effect of beat-to-
beat spontaneous fluctuations in mean arterial 
pressure and breath-to-breath end-tidal 
fluctuations of carbon dioxide on beat-to-beat 
cerebral blood flow velocity variations using 
the Laguerre–Volterra network methodology 
for multiple-input nonlinear systems. The 
results obtained also indicate that cerebral 
autoregulation (dependence on the frequency 
of slow oscillations of systemic and cerebral 

hemodynamic frequency) is nonlinear and 
dynamic. Nonlinearities are typically active 
in the low frequency range (below 0.04 
Hz). The models also confirm that beat-to-
beat fluctuations of CBFV are considerably 
nonstationary, and the effect of carbon 
dioxide on the evolution of this velocity is 
rather variable.

Ref. [21] compared the effects of different 
methods for spectral estimation of signals using 
simulated and clinical data. It was established 
that data in the absence of a trend can produce an 
artificial peak in the low-frequency region of the 
estimated power spectra. This is a shortcoming 
of the model used, meaning that the peak cannot 
be taken to prove that these oscillations have 
a physiological basis. A quantitative method 
for assessing low-frequency oscillations is also 
described in [21]. Low-frequency oscillations in 
linear blood flow velocity in the main cerebral 
arteries, measured by transcranial Doppler 
sonography, were detected using the method 
in 10 out of 17 healthy adults (the average 
frequency of these oscillations was 0.021 ± 0.007 
Hz), which is consistent with earlier results.

It is emphasized in [22] that traditional 
mathematical approaches based on theories of 
stationary signals cannot solve the problems 
related to nonstationarity, and, therefore, do not 
allow to reliably assess nonlinear interactions 
in physiological systems. The authors discuss a 
new MMPF method using the Hilbert-Huang 
transform to quantitatively assess dynamic 
cerebral autoregulation (DCA). The method 
is used to study the interaction between non-
stationary CBFV and SAP. DCA is an important 
mechanism responsible for controlling cerebral 

Fig. 4. Continuous recording (4 min) for Systemic Arterial Pressure (SAP, upper curve) 
and Blood Flow Velocity (BFV) in the right (R) and left (L) middle cerebral arteries 

(middle and lower curves, respectively).
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blood flow in response to fluctuations in 
SAP over a period of several beats. DCA has 
traditionally been assessed by the relationship 
between pronounced systemic variations in SAP 
and BFV observed in clinical trials. However, 
reliable non-invasive assessment of DCA remains 
an unresolved problem in clinical and diagnostic 
medicine. A brief review in [22] provides the 
following information:

results of the transfer function analysis 
(TFA) traditionally used to quantitatively assess 
the DCA;

description of the MMPF method and its 
modifications; 

algorithm and technical aspects of the 
improved MMPF method;

review of the clinical use of MMPF and its 
sensitivity for detecting DCA abnormalities in 
clinical trials. 

The MMPF method makes it possible to 
adaptively decompose complex nonstationary 
SAP and CBFV signals into several empirical 
modes, so that the fluctuations caused by a 
certain physiological process can be represented 

Fig. 6. Example of calculated coherence between M waves 
for SAP and BFV in the right (R) and left (L) 

middle cerebral arteries in the range of B and M waves 
(the area where the coherence is at least 0.5 is important)

Fig. 5. Normalized frequency response for SAP (upper curve) 
and BFV in the right (R) and left (L) middle cerebral arteries 

(middle and lower curves, respectively) in the range of B and M waves. 
Example of calculated result
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by the corresponding empirical mode. This 
technique was used to establish, for example, 
that DCA is characterized by specific phase 
delays between SAP and CBFV fluctuations 
and that phase shifts are significantly reduced in 
hypertensive, diabetic and stroke patients with 
impaired DCA. Furthermore, the new method 
allows to reliably assess the DCA by using not 
only the data collected in clinical trials but also 
spontaneous fluctuations in SAP/CBPV under 
resting conditions. 

Dynamic autoregulation of cerebral 
hemodynamics in healthy volunteers was studied 
in [23, 24] using the Laguerre–Volterra network 
for systems with fast and slow dynamics. Since 
autoregulation of the brain depends on diverse 
physiological mechanisms with significantly 
different time factors, this approach is used 
to demonstrate the effectiveness of the new 
method. The results are given in time and in 
frequency domains. They prove that cerebral 
autoregulation is a nonlinear and dynamic 
frequency-dependent system with significant 
nonstationarity. Quantitative estimates of 
the latter point to great variability in certain 
frequency bands for each subject in the low 
and medium frequency ranges below 0.1 Hz. 
Nonlinear dynamics is also clearly observed in 
the lower and middle parts of the range, where 
the frequency response of the system is less 
pronounced.

The goal of the study in [25] was to analyze 
low-frequency variations in MAP and ICP 
using an alternative algorithm developed based 
on the pressure reactivity index (PRx); the 

latter uses minute-by-minute MAP and ICP 
values to correlate them with patient follow-up 
at 6 months. The L-PRx value was calculated 
as the moving linear (Pearson’s) correlation 
coefficient using a minute value in a time 
window of 20 min from 20 consecutive MAP 
and ICP values. Episodes without MAP and 
ICP artefacts and the resulting CPP, L-PRx, 
and MD values were averaged over time, so 
each patient was characterized by one dataset. 
Nonparametric statistical methods were used 
because most of our variables did not fit the 
normal distribution, in particular Spearman’s 
rank correlation coefficient. Statistical analysis 
was performed using the SPSS v18.0 statistical 
package (SPSS, Chicago, IL, USA).

It is pointed out in [26] that the deciding 
which method to use to for quantitative 
assessment of cerebral autoregulation remains 
a matter of personal choice. However, TFA 
continues to be a popular approach adopted in 
studies considering spontaneous fluctuations in 
blood pressure. 

Ref. [26] aimed to improve the 
standardization of parameters and settings 
adopted for TFA in studies of dynamic cerebral 
autoregulation. The dynamic relationship 
between blood pressure and cerebral blood 
flow (CBF) has the characteristics of a 
high-pass filter. It is assumed that adapting 
cerebral arterioles in response to pressure 
changes is not fast enough to withstand high-
frequency oscillations (over 0.20 Hz) in CPP. 
Consequently, high-frequency oscillations 
are easily converted to CBF fluctuations. In 

Fig. 7. Calculated frequency characteristics of phase shift between M waves for SAP and BFV 
in the right (R) and left (L) middle cerebral arteries in the range of B and M waves 
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contrast, slower-frequency oscillations (below 
0.20 Hz but most effectively below 0.05 Hz) 
can counteract the cerebral arterioles and are 
therefore attenuated.

It is concluded in [26] that different methods 
of non-invasive assessment of DCA have been 
developed, based on spontaneous fluctuations 
of SAP and CBF at rest, i.e.,

analysis of the correlation coefficient (Mx), 
determination of the autoregulation index,
transfer function analysis (TFA),
nonlinear analysis using Laguerre expansions 

of Volterra kernels, or autoregression, 
Multimodal pressure-flow analysis 
However, it would be a simplification to 

assume that all of these methods allow to measure 
dynamic autoregulation. The methods only 
provide metrics for describing the relationship 
between pressure and flow; in reality, these 
parameters are influenced by numerous other 
factors besides CA. The coherence function 
can be used to determine the conditions where 
gain and phase estimates may prove unreliable. 
The coherence can vary from zero to unity at 
each frequency. This is the equivalent of the 
squared correlation coefficient. It essentially 
expresses the fraction of the output variance 
that can be interpreted as the corresponding 
input power at each frequency. The coherence 
equals unity for linear systems with high signal-
to-noise ratio (SNR) and one-dimensional 
input/output power ratio. On the other hand, 
coherence approaches zero if the SNR is low, 
the systems have significant non-linearity, or if 
there are other variables that affect the output 
power.

Despite the extensive theoretical experience 
accumulated on using TFA, its practical 
implementation involves a relatively large 
number of parameters and settings. The 
literature describing TFA for DCA reports on 
significant differences in practical use, limiting 
the comparison of results from similar studies 
and hindering the potential clinical applications 
of these methods. For example, one of the 
consequences of this lack of standardization 
is the difficulty of establishing clear limits for 
normal and impaired autoregulation [27, 28]. 

Ref. [29] presents modern data on the TFA 
method, its place among the methods for 
studying cerebral autoregulation, as well as on 
its benefits and drawbacks. It was found that 
autoregulation of cerebral blood flow largely 
determines the relationship between cerebral 
blood flow and cerebral perfusion pressure; for 
this reason, data on autoregulation are important 
for diagnosing and forecasting cerebrovascular 
disorders. Dynamic autoregulation of 
cerebral blood flow is a frequency-dependent 
phenomenon, functioning as a high-pass filter. 
Transfer function analysis is one of the three 
most commonly used methods for studying 
dynamic cerebral autoregulation, which has 
considerably evolved over the past two decades, 
finding diverse applications.

Conclusion

Analyzing modern studies on the regulation 
of human cerebral circulation, we have found 
that the most common methods used are for 
processing signals from measuring complexes 
and converting them into digital form. Whether 
the regulation processes should be considered 
linear or nonlinear is a question that remains 
open for debate. In the first case, a set of well-
known analysis methods has been developed, 
aimed at simplifying the study. However, real 
processes are strictly nonlinear. Analysis of 
nonlinear systems is a rapidly developing area 
of modern science but no consensus has been 
reached on the best methods for describing the 
real interactions in the body. Clearly, processing 
of signals received from medical equipment 
is a task that can be solved by applying the 
wide range of tools available in mathematical 
science. Thus, much work remains to be done 
on developing and improving systems for 
monitoring and analysis of the system regulating 
cerebral circulation.
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risks of critical conditions in real time).
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