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SIMULATION OF PHYSICAL PROCESSES
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NUMERICAL SOLUTION OF A 3D PROBLEM ON A SUPERSONIC
VISCOUS GAS FLOW PAST A PLATE-CYLINDRICAL BODY
JUNCTION AT M 2.95

E.V. Kolesnik, E.M. Smirnov, A.A. Smirnovsky

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation

In the paper, results of numerical simulation of a shock-wave pattern and vortex structures
forming in supersonic flow past an adjacent-to-plate elongate cylindrical body, which pene-
trates the developing flat-plate boundary layer, have been presented. The laminar flow regime
at Mach number 2.95 was considered, Reynolds number was taken 4000. The solutions were
obtained using two schemes for convective flux (HLL and AUSM). Comparison of the flow
fields computed with the mentioned schemes of the first and second orders of accuracy were
conducted. Solution mesh sensitivity issues were discussed.

Keywords: high-speed flow, viscous-inviscid interaction, numerical simulation, AUSM and
HLL schemes
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on a supersonic viscous gas flow past a plate-cylindrical body junction at M 2.95, St. Petersburg
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YUCNEHHOE PELLEHUE TPEXMEPHOM 3AAYU
OBTEKAHUA YCTAHOBJIEHHOIO HA NNACTUHE
LUWMJTMHAPUYECKOTIO TEJIA CBEPX3BYKOBbBIM NMNOTOKOM
BA3KOIo ra3AnPuU m = 2,95

E.B. KonecHuk, E.M. CmupHoG, A.A. CMupHoBcKuu

CaHkT-MeTepbyprckuii NONUMTEXHUYECKUit yHuBepeuTeT MNeTpa Benukoro,
CaHkT-lMeTepbypr, Poccuiickas ®eaepauus

IMpexncraBiieHbl pe3yabTaThl YMCIEHHOIO MOIEIMPOBAHUS YIAPHO-BOJTHOBBIX U BUXPEBBIX
CTPYKTYpP, KOTOpble (hOPMUPYIOTCS TPU OOTEKAHWM CBEPX3BYKOBBIM ITOTOKOM VIJIMHEHHOTO
LUJIMHAPUUYECKOTrO Tejla, KOTOpOe MPUMBIKAET K MJIAaCTUHE M MPOHU3bIBAET pPa3BUBAIOLLIMIAICS
Ha TJTJACTMHE TIOTPAaHWYHBIN clioii. PaccMOTpeH JTaMUHApHBIA pEeXUM TEUCHUSI TPU UYKCIE
Maxa HaberaroIiero IoToka, paBHoM 2,95, m umcie PeitHombaca, paBHoMm 4000. Pemrenus
MOJIy4eHbl C MCIIOJIb30BAaHMEM [BYX CXeM [JIsI pacyeTa KOHBeKTMBHbIX mnotokoB (HLL wu
AUSM). I1poBeneHoO cpaBHEHME TOJIe TeUEHUsSI, PACCUMTAHHBIX C MPUMEHEHUEM yKa3aHHBIX
YUCJIEHHBIX CXEM TTEPBOTO M BTOPOTO MOPSIAKOB TOUHOCTH. OOCYKIAaI0TCS BOITPOCHI CXOTUMOCTH
YUCJICHHOTO PEIICHUS IO CETKE.

KxiroueBbie ¢10Ba: BHICOKOCKOPOCTHOE TEUCHHUE, BI3KO-HEBSI3KOE B3aMMOICIICTBIE, YUCICHHOE
MonenupoBaHue, cxema AUSM, cxema HLL

Ccpiika npu nutupoBannn: KonecHuk E.B., CmupnoB E.M., CmupHoBckuii A.A. YucieHHoe
pelleHne TPeXMEpHOUl 3aJayn O0TeKaHUsSI YCTAHOBJIEHHOTO HA TUIACTUHE IUJIUHAPUYECKOTO
TeJla CBEPX3BYKOBBIM MOTOKOM BsI3KOTo raza nmpu M = 2,95// HayuyHo-TeXxHUYeCcKre BEIOMOCTHU
CIIoI'T1Y. ®usuko-marematnyeckue Hayku. 2019. T. 12. Ne 2. C. 7-22. DOI: 10.18721/
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Introduction

Practical problems of the aerospace industry
and turbomachinery often involve studies
on the structure of subsonic and supersonic
flows around structural elements fixed on the
streamlined surface. This includes, in particular,
design of connections between wings, fuselage,
tail and other elements, and optimization of
interaction of supersonic flow with injected gas
jets used in control elements.

Keen interest in this type of problems was
instigated by development of supersonic and
hypersonic aircraft construction started in the
mid-20th century. One of the challenging tasks
here is three-dimensional flow with a complex
shock-wave structure, a wide separation region
and a system of horseshoe-shaped vortices
that takes place in supersonic viscous gas flow
around the junction of a blunt body with a plate.
In other words, the effects of viscous-inviscid
interaction in supersonic flow of viscous gas
can be clearly observed in this problem.

On the whole, sufficient detailed information
has been collected obtained in recent years
for the case of the interaction of a separating
boundary layer with a bow shock. Reviews
of literature on this topic can be found, for
example, in [1, 2].

A case of a separation region forming
in front of the body in subsonic flow is also
of interest. For instance, this applies to
problems of turbomachine engineering, where
understanding the complex vortex structure
of the flow near the leading edge of the
blade is important for taking into account
the heat transfer patterns in the region of
the blade/endwall junction in disks vanes of
high-temperature gas turbines. Many studies,
both experimental and computational, have
been dedicated to studying the flow structure
in subsonic regime (see, for example, [3—6]).

The subject of this study is one of the model
problems simulating the complex structure of
three-dimensional flow. We have considered
supersonic flow around an elongated cylindrical
body mounted on a plate along which the
boundary layer evolves (Fig. 1). A fairly large
number of experimental works [7—13] addressed
this problem. Some of the earliest studies of
the flow structure in this configuration [7—9]
revealed that local supersonic regions and bow
shocks, inducing a secondary separation region
inside the main zone, evolve in front of the
cylindrical body.

One of the most important characteristic
for high-speed aircraft is the intensity of heat

8

transfer in front of the streamlined body; studies
indicate strong intensification of heat transfer in
this region. In particular, a recently published
paper [13] considered local heat transfer on a
plate with flow around a cylindrical body at a
Mach number of 5.

It is rather problematic to experimentally
obtain sufficient data on the detailed structure
of three-dimensional supersonic flow in
the entire region where it develops. For this
reason, it would be of great interest to be
able to predict the flow structure in the given
model configuration based on computational
fluid dynamics, providing high quality of
resolution for the regions with viscous-inviscid
interaction. The first studies on numerical
simulation of laminar and turbulent flows
in the given configuration [14, 15] wused
computational meshes that could not provide
sufficient resolution of all flow features. A
relatively recent work [16], detailing extensive
study (both experimental and numerical) of the
flow around a blunt body at Mach number M
= 6.7 was performed, established, for example,
that a sufficiently accurate resolution of the
flow structure is obtained with a mesh size of
about 15 million cells.

Numerical simulation of supersonic flow
under given conditions may be complicated
by the so-called carbuncle instability [17, 18],
which leads to strong distortion of bow shock
in the numerical solution. This instability may
occur when using several well-known numerical
schemes; different approaches (in particular,

Fig. 1. Schematic representation
of problem statement:
viscous gas flow around elongated cylindrical body
with diameter D of blunt part,
mounted on plate; boundary layer
develops along the plate
(8 is the thickness of this layer)
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hybrid schemes [18, 16] and introduction of
additional artificial viscosity [19]) have been
devised to suppress it. There are also schemes
where the carbuncle instability is usually not
observed. These include the Harten—Lax—van
Leer (HLL) scheme [20], which is characterized
by high dissipativity, and a family of schemes
based on s flux vector splitting, proposed
by Liou and Steffen (Advection Upstream
Splitting Method (AUSM)) [21], which many
authors have found to be stable to non-physical
oscillations on the bow shock.

The majority of published works on
numerical solution to the problem of high-
speed flow of viscous gas around a blunt body
mounted on a plate considered a case of
hypersonic flow. However, little attention has
been paid in literature to flows with moderate
free-stream Mach numbers and the quality of
numerical prediction of the effects of viscous-
inviscid interaction.

In this paper, we present the results of a
numerical solution to the problem of flow past
an elongated blunt body mounted on a plate,
with the free-stream Mach number equal to
2.95, and the Reynolds number based on the
diameter of the blunt part equal to 4000. A
moderate Reynolds number, ensuring laminar
flow in the given region, was chosen because we
focused on obtaining an accurate, almost grid-
converged solution, with detailed resolution
of both the complex structure of the flow in
the viscous separation region with a system
of horseshoe-shaped vortices, and the gas-
dynamic structure characterized by detached
shock and a system of oblique compression
waves generated by flow around the separation
region.

Numerical solutions were obtained by two
schemes, HLL and AUSM; both of them
allowed to avoid the carbuncle instability.
Additionally, we have carried out comparative
analysis of the solutions.

Numerical method for solving the problem

General formulation. The  following
numerical solutions for viscous gas flow were
obtained using the finite volume method
(FVM), based on integral formulation of the
laws of conservation of mass, momentum
and energy, as applied to computational cell
(control volume):

J)%V:dg +Y[FdS=0, ()

where Q is the control volume; M is the number
of its faces; S is the area of the current face, m
= 1,M, F* is the vector of the fluxes on the face
of the control volume; w = [p,pu,pv,pw,pE] is
the vector of conservative variables (v = u, v
= u,, w = u, are the components of the velocity
vector V in the Cartesian coordinate system; £
is the total energy; p is the density).

The vector F* is the sum of vectors of invis-
cid and viscous fluxes F* = F + F¥*, defined by
the expressions:

pV:-n
pV-nu+ pn-i
pV:-nv+pn-j |, 2)
pV -nw+ pn-k
pV-nH
_ 0 B}
n-t-i
ntj | (2)
n-t-k
n:(t-V+q)]

F visc __

where p is the pressure; H is the total enthalpy;
n is the normal to the face; i, j, k are the unit
vectors of the Cartesian coordinate system (x =
Xp Y =X, 2= X)),

The components of the viscous stress tensor t
and the heat flux density vector q are written as

_|(ou, Ou u,
T”_“[[G_)chra_xi] (2/3)%%}(3)

q;=-(0T/ex;). 0

where 7T is the temperature; p is the dynamic
viscosity of the gas whose dependence on tem-
perature is determined by the Sutherland for-
mula; A is the thermal conductivity of the gas.

The total energy and enthalpy are determined
by the expressions:

E=cT+V?[2, H=c,T+V?/2,

where cv, cp are the specific heat capacities
at constant volume and constant pressure,
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respectively; they are assumed to be constant.
Pressure p, density p and internal energy e are
related by the equation of state of a perfect gas:

p=(y—1Dpe,

where vy is the adiabatic index (y = ¢p/cv).

Simulation schemes for convective flows. The
method for inviscid fluxes F approximation is
especially important in simulation of supersonic
flows. The approximation scheme should provide
sufficiently accurate resolution of gas dynamic
discontinuities with a small number of internal
points in the absence of flow field oscillations near
the discontinuities. The methods with desired
behavior, which are based on characteristic
properties of the system of equations, have gained
great popularity over the past decades [22]. These
include flux vector splitting schemes (for example,
the Steger—Warming splitting scheme, the AUSM
method), and schemes based on the Riemann
solver for the discontinuity problem (for example,
Godunov, Roe, HLL and HLLC schemes).
Below, we consider in-detail only the AUSM and
HLL schemes selected for our computations.

Parameters for the “left” and “right” sides of
a given face are widely used in flux computations
(denoted by subscripts L and R below). If values
from the centers of adjacent cells are used as such
parameters, the numerical method is of the first
order of accuracy. Special methods for evaluating
the parameters to the left and right of the face
(briefly discussed below) can be used to implement
schemes with a higher order of accuracy.

AUSM scheme [21]. The flux vector F is
represented as the sum of F© (convective
component) and F®» (component related to
pressure):

pV:-n
pV -nu+pn-i
pV-nv+pn-j |=
pV-nw+ pn-k
pV-nH

" pV-n | 0 (5)
pn-i

pnj (=
pn-k

pV -nu
= pV-nv |+
pV -nw
pV-nH | 0

:F(")+l;‘“’>.
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Accordingly, Ff (numerical flux on the face)
is also found as the sum:

F,=F9+F". (©6)

A specific splitting method is used for each
of the components.

The convective flux F© is expressed in terms
of the Mach number M constructed from the
normal velocity component:

M=V-n/a,

where a = VyRT is the speed of sound ( R is the
gas constant):

pa
pau
F“ =M| pav |= MF©. (7)
paw

| paH

Splitting of the convective flux is based on
the sign of the Mach number at the face M " in
the following manner:

M,|FO| , M,>0,
g WLz

M, [F] . M, <o

The Mach number at the face is found as the
sum of the positive and negative components:

M, =M; +M,,

where the splitting into components is carried
out using the following relationship:

1
. iZ(ML/Ri1)29ML/R|£1;
M; ;= 1 ©))
E(ML/R :I:|ML/R )9 ML/R| >1.

The component of the flux related to
pressure is defined as

0
n-i
nj |,
n-k
0

FP =(p; +p;) (10)
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where the splitting of pressure into the positive
and the negative component is also carried out
depending on the Mach number:

£ LM, 217 2F M),
M, .| <1

Pk (ML/R * |ML/R |)
2 M ’

L/R
M, | >1.

HLL scheme [20]. The scheme is based
on the approximate Riemann solver for the
discontinuity problem. It is assumed that the
solution consists of two main discontinuities
describing the propagation only of strong
waves such as shock waves; other waves, such
as contact or tangential discontinuities, are not
taken into account.

The velocities of the main discontinuities
(characteristics) S, and S, comprising solution
are defined by the following expressions [23]:

Pin = (11)

S, =min(VL -n—aL,Von—&), (12)

S, =min(VR -n+aR,V-n+&), (13)

where a, and a, are the speeds of sound com-
puted by the parameters on the left and right

sides of the face; the quantities ¢ and V are
the variables computed for the current face by
means of Roe averaging [24].

According to the approximate Riemann
solver [20], the characteristics of S, and §, are
separated from each other by three regions with
constant gas parameters on the x—¢ diagram:
two regions with undisturbed gas parameters
“left” and “right” from the face, and the third
region between them.

Numerical flux on the face depends on the
configuration corresponding to the current

face:
F, 0<S,;
F, =F, § <0<8,; (14)
F, 0>S,,
where the flux F* is found by the formula
F S:F, =S, F, +8,8, (w, —WL)' (15)

S-S,

Increasing the order of accuracy. The order
of accuracy of a numerical scheme can be
increased with a technique for quasi-monotonic
interpolation of mesh solutions: the MUSCL
approach (Monotonic  Upstream-Centered
Scheme for Conservation Laws) [25], which is
used for piecewise polynomial reconstruction
of the solution in each control volume and

Fig. 2. Scheme for constructing algorithm for quasi-one-dimensional computations
in two-dimensional case;
left and right cells adjacent to the given face f'are highlighted in dark gray,
all stencil cells used for determining the values at additional points
(notations are given for them) are highlighted in light gray;
r, [ are direct reconstructions for face f

11
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for reconstruction of the values on the face
with increased accuracy. Total Variation
Diminishing schemes (TVD) are applied to
obtain monotonous solutions in computations
by second-order accuracy schemes [26]. This
approach can be generalized to the case of
unstructured meshes by applying quasi-one-
dimensional computations with some suitable
direction (similar to the coordinate direction
initially present in structured meshes) selected
locally for each face. In other words, aside
from the values of the variables in the centers
of the cells located on both sides of the face,
at least two more virtual points to the left and
right of the center points (points P}, P;, P}, and
P; in Fig. 2) are required, in which the values
of variables can be reconstructed in some way.

The numerical solutions given below were
obtained using the approach proposed in [27]
and described in detail in [28]. Two straight
lines (reconstruction beam) are drawn through
the center of each face f and through the
centers of the cells adjacent to the face (direct
reconstructions are / and r in Fig. 2); two
additional points are taken on each of these
straight lines, with the values of the variables in

% R
)\ D/2

z
L
y

X

these points found evaluated by interpolation
based on the known values of the variables
in certain neighboring centers of the cells
(“interpolating triples”).

Such cells are found by the following
algorithm [28]: first, a set N, is established,
including all first-level neighbors for the
current cell, i.e., the set of cells that have at
least one common node with the current cell,
excluding the cell itself. Next, all cells from
the set N, are sorted by ascending cosine of
the angle between the reconstruction beam
emanating from the center of the current cell
and the vector of direction to the center of the
cell from this set. Next, an iterative search of
the cell triplets is performed in ascending order
of the sum of the indices of these cells in the
sorted array and the first of the “interpolating
triplets” found is wused. By interpolating
triplet we mean a triplet of cells whose
centers form a triangle and the straight line
of reconstruction intersects it.After the values
at additional points have been computed, the
values on the left and right sides of the face
are found in accordance with one-sided linear
extrapolation:

.

Fig. 3. Computational domain for problem of supersonic flow
around elongated cylindrical body (see Fig. 1).
The figure shows the geometrical parameters: D is the diameter of the blunt part of the body,
R, L, h are the dimensions of the computational domain,
the arrow indicates the direction of the flux

12



ul =u, +y, (uL —ug)/Z,

Uy =l =, (”1: _”R)/za

where u is any of the reconstructed variables;
y(r) is the limiter introduced to control oscil-
lations and computed as a function of the ratio
of two differences:

=i (0 ) 1),

Wi =W (=) /(e —22)). (19

We used Van Albada’s TVD-limiter [29] as
the function y in these computations.

(16)

(17)

(18)

Problem statement and computational tools

Fig. 3 shows the computational domain
for the given problem of supersonic flow
past an elongated cylindrical body mounted
on an adiabatic plate along which a laminar
boundary layer evolves. The flow is assumed to
be symmetrical, so the computational domain
covers only half of the initial configuration.
The dimensions of the region are: R = 15D,
h = 10D, L= 8D, where D is the diameter of
the blunt part of the body, also assumed to be
adiabatic.

The problem is governed by the following set

—/

(T PP

C_NWRUION®®©®
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of dimensionless parameters: the free-stream
Mach number M, the Reynolds number Re,,
the Prandtl number Pr, the adiabatic index y
and the ratio D/§ of the body’s diameter to the
thickness of the incoming boundary layer. The
numerical solutions in this study were obtained
for M = 2.95, Re,, = 4000, Pr = 0.71, y = 1.4,
D/s,, = 1. Velocity and temperature profiles
for the boundary layer of a given thickness &,
were prescribed at the inlet boundary of the
computational domain.

We have implemented the above-described
numerical method in combination with the im-
plicit scheme in “increments” as one of the op-
tions of the finite-volume unstructured program
code SINF/Flag-S, which is under develop-
ment at the Hydroaerodynamics, Combustion
and Heat Transfer Department of Peter the
Great St. Petersburg Polytechnic University.

The resources of the  Polytechnic
Supercomputer Center (Www.scc.spbstu.ru)
were used for computations.

Computation results and discussion

Flow structure. The numerical solution
obtained by the AUSM scheme on the most
refined of the meshes used is shown in Figs.
4—6 (the issues of grid-converged solution are
discussed below). In general, the structure of the
computed flow field is similar to that described

Fig. 4. Surface streamlines and flow structure
in axial (XZ plane) and transverse (XY) cross-sections of flow.
Pressure distributions in these cross sections and on the surface
of the streamlined body are also shown

13
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Fig. 5. Density gradient field and streamlines in symmetry plane.
The figure shows values of the density gradient, computed by differentiation
from dimensionless coordinates and corresponding to free-stream densities p,,
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Fig. 6. Field of Mach number in symmetry plane;
dashed line indicates sonic line M = 1

earlier in studies carried out for higher Mach
and Reynolds numbers [15, 16]. A bow shock
that occurs in front of the body interacts with
the boundary layer, causing it to separate. The
separation region induces oblique compression
waves intersecting with the bow shock. Zones
with supersonic velocities and local compression
waves appear within the separation region,
inducing secondary separation of the near-wall
flow. As a result, an extended separation region
with a chain of vortices evolves in front of the
body, each of them becomes the “head” of a

14

horseshoe-shaped vortex that surrounds the
body.

The surface streamlines in Fig. 4 indicate
the regions where the boundary layer separates
and reattaches. The figure also shows the
pressure distribution (related to the free-stream
pressure value P, ). In particular, it can be seen
that maximum pressure in the frontal part of
the streamlined body exceeds the inlet pressure
by about ten times.

More detailed visualization of the flow in the
symmetry plane is given in Fig. 5, illustrating the
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Fig. 7. Computational mesh 1, containing 0.3 million cells

(see the explanations in the text)
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Fig. 8. Distributions of dimensionless pressure along frontal line (a)

and skin friction coefficient on plate along line of symmetry (b)

The figure shows computations by the AUSM scheme of second order of accuracy on meshes 1—4

(curve numbers coincide with mesh numbers) and first order of accuracy on mesh 4 (curve 5)
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shock wave structure with the density gradient
field, combined with streamline patterns for the
evolution of a vortex chain in the separation
region. Analysis of the figure shows that the
vortices filling the separation region induce
oblique compression waves interacting with
the bow shock. As a result of this interaction,
the bow shock bends in the direction of the
streamlined body, and a gas jet forms; as it
flows onto the body, a zone of local pressure
increasing arise. This effect is discussed in more
detail below.

Fig. 6 shows the Mach number distribution
in the symmetry plane; the dashed line
indicates the sonic line (M = 1). While the
flow is mainly subsonic in the separated
separation region, two zones with supersonic
flow are also observed. The flow moving from
the stagnation region along the surface of the
streamlined body towards the plate accelerates
to supersonic speeds and then turns into a
vortex, also reaching supersonic speed.

Mesh convergence. The study of mesh
convergence was carried out using several
quasi-structured meshes: mesh 1 contained 0.3
million cells, mesh 2 2.4 million cells, mesh 3
8.1 million cells and mesh 4 13.3 million cells.
Mesh 2 was constructed by refining mesh 1
twice in each coordinate direction, mesh 3 by
refining mesh 2 1.5 times, mesh 4 by refining
mesh 3 only near the leading edge of the body
(from 0 to 2.5 along the Z/D coordinate and
from 2 to 0 along the X/D coordinate). All
meshes had the same structure, with the mesh
lines clustered to the streamlined body and
to the surface of the plate. A general view of
computational mesh 1 is shown in Fig. 7.

Fig. 8 shows the results obtained by the
AUSM scheme using different meshes,
including the pressure distribution along a
front line on the surface of the body, and the
distribution of the skin friction on the plate
along a line of symmetry (the pressure was
taken as the total pressure P, behind a normal
shock wave, computed analytically). Notably, a
characteristic increase in pressure was observed
in the region at Z/D = 1.5, which is associated
with a gas jet forming during the interaction
of oblique compression waves with the bow
shock. It is also interesting that the scheme
with first-order accuracy does not reproduce
this characteristic pressure peak even on the
most refined mesh; this is primarily due to
insufficient resolution of oblique compression
waves. Moreover, a first-order scheme predicts
a substantially simpler vortex structure of the
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separation region in front of the body.

The solution obtained on mesh 3 is very
close to that obtained on mesh 4, both with
respect to the pressure distribution and skin
friction on the plate. This allows us to conclude
that if schemes with second-order accuracy are
used, mesh 4 is sufficiently refined for resolving
all the details of the vortex structure near the
junction between the body and the plate and
also provides high-quality resolution of the
shock-wave structure.

Comparison of solutions obtained
by different schemes

Comparative computations were carried out
on the most refined mesh (mesh 4) using the
HLL and AUSM schemes of the first and second
orders of accuracy. The most convenient way
to compare the results obtained using different
schemes is to analyze pressure distributions
along selected lines on the streamlined body,
as well as the predicted distributions of the
skin friction along individual lines on the plate
surface. The lines selected for analysis are
shown in Fig. 9, and the distributions compared
in Figs. 10 and 11.

Because schemes with first-order accuracy
are highly dissipative, the solutions obtained
by first-order and second-order schemes differ
quite considerably in individual regions of the
flow, both in the case of AUSM and in the
case of the HLL scheme. Notably, however,
the first-order AUSM scheme is fairly adequate
in reproducing the shock-wave structure of the
flow on the most refined mesh. Fig. 10 shows,
in particular, that the pressure distribution over
the body surface, obtained by the first-order
AUSM scheme, is close to that computed by
the second-order scheme (except for certain
local regions); on the other hand, solution
obtained with first-order HLL scheme strongly
differs in the form.

Regarding the quality of viscous effects
resolution of-viscous—effeets, as noted above,
the first-order AUSM scheme turns out to be
too dissipative: using it results in a decreased
number of resolved vortices that have reduced
intensities even in case of the most refined mesh
(see. Fig. 11). Using the first-order HLL scheme
yields even less acceptable results: a completely
different level of friction is predicted on a large
part of the plate (see Fig. 11). While the results
obtained by the AUSM and HLL schemes of the
second order of accuracy are fairly close, there
are also some local differences. In particular,
it follows from analysis of the pressure
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Fig. 9. Position of streamlines on body, selected for analysis
of computed pressure and skin friction distributions
(see comparative analysis in Figs. 10, 11)
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Fig. 10. Distributions of dimensionless pressure along vertical lines
on surface of streamlined body (see Fig. 9): on frontal line (¢ = 0°) (a),
at the end of blunt part (¢ = °90) (b), downstream (X/D) = 4.5 (c)
Computations were carried out by different schemes:

1, 2 correspond to HLL of first and second orders of accuracy, respectively;

3, 4to AUSM of first and second orders of accuracy

17



4St. Petersburg State Polytechnical University Journal. Physics and Mathematics 12 (2) 2019

>
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Fig. 11. Distributions of skin friction coefficient along several lines on plate surface:
along line of symmetry (a) (Y/D = 0), at distances of two (Y/D = 2)
and four (Y/D = 4) diameters from body, respectively (b, c).
Computations were carried out by different schemes:
1, 2 correspond to HLL of first and second orders of accuracy, respectively;
3, 4to AUSM of first and second orders of accuracy

distribution along the front line (see Fig. 10)
that the local pressure peak has a noticeably
smaller width in the solution obtained by to the
AUSM scheme. Conversely, analysis of the skin
friction distribution on the plate (see Fig. 11)
shows that the vortex intensity in the solution
obtained by the HLL scheme is slightly lower
than in the case of the AUSM scheme.

Conclusion

We have obtained a family of numerical
solutions for a model problem of interaction
of supersonic viscous gas (air) flow with an
elongated blunt body mounted on a plate
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along which a laminar boundary layer evolves.
Solutions using two schemes (HLL and AUSM)
for convective flux evaluation on meshes of
different sizes were obtained with a free-stream
Mach number of 2.95 and a Reynolds number
of 4000.

The flow evolving in the given configuration
is three-dimensional, with clear effects of
viscous-inviscid interaction. The separation
region in front of the body has a complex
vortex structure, with a family of horseshoe-
shaped vortices that spread along the plate
and expands around the body. Supersonic flow
around the separation region induces oblique
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compression waves; interacting with the bow
shock, these waves generate a gas jet, which
causes a local increase in pressure on the body.

According to the results of the mesh
convergence study, we have found that if
schemes with second order of accuracy are
used, meshes containing 13—15 million
hexagonal cells allow to resolve all the details of
the vortex structure ofthe-flow near the region
where the body is connected to the plate, as

Simulation of physical processes >

well as to obtain high-quality resolution of the
shock-wave structure. Schemes of the first-
order of accuracy do not allow to reproduce
significant characteristics of the flow caused by
viscous effects even on the most detailed mesh
among those used. The solutions obtained by
the AUSM and HLL schemes of the second-
order of accuracy are in good agreement, but
on the whole, the HLL scheme proves to be
more dissipative.
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Introduction

Numerical methods are very efficient and
straightforward, vyielding highly accurate
results, which is why they are widely used
for constructing induction heating systems.
These methods allow to use automatic
parameterization, eliminating extremely high
costs for a probabilistic range of experimental
trial-and-error procedures. However, while
reproducing all factors affecting metal heating
in an electromagnetic field can improve the
quality of the process and, accordingly, produce
better results, it also considerably complicates
the problem statement.

Parameters of nonlinear properties of mate-
rials depending on temperature should neces-
sarily be considered to correctly reproduce the
experimental results in numerical solution of
the heating problem. Besides, magnetic perme-
ability u depends on the magnetic field resultt
ing from magnetic saturation.

The nonlinear behavior of materials means
that the problem should be solved in the time
domain instead of the simpler data processing
in the frequency domain.

The frequency of the current passing through
the material can reach high values (up to hun-
dreds of kHz for induction hardening), leading
to significant fluctuations of the magnetic field
per second. Thus, a periodic electromagnetic

a)

solution can be obtained for a short time in-
terval, while the temperature distribution varies
over wider time intervals (in seconds). This im-
plies that the distribution of temperature over
the material sample depends on the average
flux density of the magnetic field. If p is varis
able, its value can be updated over every short
period of time while preserving computational
efficiency, but this inevitably leads to unneces-
sarily lengthy computations.

The rapidly changing source term in the
heat equation, expressing the specific power of
internal heat sources, can be replaced by an
average value over one period of electric cur-
rent, calculated from the previously obtained
value of the magnetic field, depending on time.
This solution is optimal for updating the values
of physical parameters characterizing the prop-
erties of materials taking into account the new
temperature values in the grid nodes.

Numerical simulation

The goal of this study has consisted in
maintaining local uniform heating of the disk
with minimal temperature deviation from
450°C. This temperature value was chosen
based on the results of [7], giving the data
obtained after tempering a through-hardened
metal sample 3 mm thick.

Each study developing new electrical tech-

b)

Fig. 1 .3D models of induction heating system
in longitudinal (a) and transverse (b) magnetic fields
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nologies or modernizing existing ones requires
experimental verification. The results of com-
puter studies [1—6] were tested using a labora-
tory model. A infrared camera was used as a
tool for monitoring the temperature variation.
The emissivity was set to 0.95 in the software.
The temperature range was set from 200 to
1200°C. This way, the sensitivity of the device
could be increased in the final temperature
zone of 450°C.

Systems developed using the ANSYS APDL
software package are 3D models of induction
systems for simulating coupled electromagnetic
and thermal problems of disk heating. The giv-

a)

Fig. 2. Comparison of simulation results (a)
with experimental data (b);
obtained for temperature distribution
over workpiece surface with stationary disk heating
in high-frequency longitudinal magnetic field;
b is the straight line passing from the edge of the disk
to its center indicating the direction along which the
temperature was measured; the dark triangle indicates
the maximum temperature on the surface of the disk

en system includes three-turn induction coils
and a heated metal disk. The disk is made of
hardened steel and has the following main di-
mensions: outer diameter of 410 mm, thickness
of 3 mm. The operating frequency of the system
is 2.5 kHz. A constant power was maintained
in the object during heating. Air is the ambi-
ent environment; it is numerically described as
a non-magnetic non-conductive medium that
does not contain sources generating the elec-
tromagnetic field.

The penetration depth of the current in
steel depends on its brand, and was taken in
the range of 1.5—0.77 mm for the current fre-
quency of 2.5 kHz, while the relative mag-
netic permeability p was taken in the range of
10—40.

As is known, highly efficient tempering is
achieved if steel is heated to a depth exceed-
ing its hardening depth. Volumetric induction
heating with a small temperature difference
across the cross-section is maintained due to
a relatively low heating rate. Uniform tem-
perature can be maintained in the given area
both due to high thermal conductivity of the
heated object, and by varying the time inter-
val required for heating due to small thickness
of the workpiece. The given temperature level
can be also reached by using other frequen-
cies; in that case, the temperature distribution
over the disk surface would be different from
the initial one provided that the initial data
are unchanged. Additionally, assuming that a
sample made by stamping has a complex pro-
file, hot spots may appear if frequencies above
2500 Hz are used to heat such a sample for
subsequent tempering.

The geometric shape of the induction coils
and the positioning of the heated object ful-
ly replicate the actual samples in numerical
models. The workpiece is attached to the
torque transmission system of torque connect-
ed to the electric motor. Eddy currents gen-
erate heating (that is local by default) of an
electrically conductive workpiece under the
coil, but this phenomenon can only be de-
tected with a infrared camera on the surface.
This is the reason why numerical simulation is
necessary in this case.

The results of the first stage of the study are
shown in Figs. 1—3. The 3D model is parti-
tioned into a finite element mesh in the fol-
lowing manner: there are five partitions per
each millimeter of the disk thickness; the fi-
nite elements of the mesh along the disk di-
ameter are larger but their size still makes it
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Fig. 3. Final temperature profile along workpiece radius
according to results of numerical simulation (/) and experiment (2)

Fig. 4. Comparison of simulation results (a)
with experimental data (b);
obtained for temperature distribution over workpiece
surface with disk heated by rotation in high-frequency
longitudinal magnetic field; b is the straight line passing
through the center of the disk indicating the direction
along which the temperature was measured; the dark
triangle indicates the maximum temperature on the
surface of the disk
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possible to obtain fairly satisfactory results.
We managed to plot the relationships between
the main parameters and to assess the fit of
the numerical results to the experimental data.

Electromagnetic and thermal characteristics,
namely the relative magnetic permeability, re-
sistivity, thermal conductivity, heat transfer co-
efficient and heat capacity are non-linear and
depend on both the temperature of the hard-
ened steel disk and the ambient temperature.
The density of the disk material is assumed to
be constant and uniform.

The purpose of the model was to solve the
coupled electromagnetic and thermal prob-
lems, taking into account rotation, nonlinear
magnetic permeability p and the algorithm
for updating data during dynamic temperature
variation. The principles by which the model
was constructed are described in detail in [4].

Comparison of experimental results and
numerical simulation is shown in Fig. 2.

There are several objective reasons for the
discrepancy between the simulation and the
experimental data. Sharp dips in the temperature
distribution along the workpiece radius (Fig.
3) are explained by the fact that the infrared
camera was placed at some distance from the
heating system. In the specific example, these
dips depend on the temperature at the surface
of the water-cooled turns of the coil. Because
the workpiece was partially located inside the
coil, there was no other way to measure the
temperature.

We simulated the rotation of the disk
at the second stage of the study. Heating to
a temperature of 450°C was reached in 30 s
with the workpiece rotated at a speed of 18
rpm (Figs. 4 and 5). The graphs are based on
averaged results.

The heating time was selected assuming



Simulation of physical processes >

0.8

0.6

04

0 20 40 60 30

100 120 140 160 180

200 r.mm

100 120 140 160 180

200 » mm

Fig. 5. Temperature profiles on workpiece surface along the radius
with disk heated in the longitudinal (a) and transverse (b) magnetic fields:
1 corresponds to simulation results, 2 to experimental data

that tempering is done for a metal product.
Tempering temperature has a significant
effect on mechanical properties during high-
frequency hardening. As mentioned above, this
temperature was chosen based on the results
of [7], presenting the data obtained after
tempering a through-hardened metal sample
with a thickness of 3 mm. A stable temperature
field and, as a result, high strength, ductility
and toughness of the metal can be maintained
at a moderate heating rate. A further increase
in tempering temperature inevitably leads to
a decrease in strength and an increase in the
toughness of the product.

The final temperature distribution at a low
rotational speed of the metal disk is induced by
thermal conductivity of the material and heat
losses from its surfaces. The results obtained are
in agreement with the data of [8—10], describing
dependences of the allocated additional power
in the disk on the rotational speed.

As seen from the data in this study, due to

radiative heat losses, the edges of the disk have
a lower temperature relative to the required
level, while the maximum temperature along
the disk radius is shifted towards the center of
the heated sample.

In our simulation, the metal disk was
heated through for tempering to account for
the effects that the operating frequency and
the construction of the induction coil system
had on the disk’s temperature profile. This
made it possible to minimize the temperature
difference over the cross-section of the disk in
the heated zone. However, we did not take into
account the presence of a hardened layer in
the numerical study. We can predict without
running a simulation that in practice this may
manifest as an uneven decrease in hardness
along the radius of the disk but the hardness
can be reduced in an optimal manner.

The discrepancy between the numerical
results and the experimental data is about 5%,
which indicates that the simulation we have
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carried out is adequate.

The natural construction of the heating
system also includes a magnetic core, which
allows to use a lower electromagnetic field
frequency by controlling the pole pitch of the
coil.

The results obtained indicate that the
proposed induction system is sensitive to
variation in geometric parameters such as coil
geometry and position of the turns relative
to the workpiece, as well as to variation in
electrical parameters. Therefore, there is an
optimal configuration of parameters allowing
to achieve the best result, that is, uniform local
heating of the product in the permissible range
of temperature deviations from the given value
in the shortest heat treatment time.

The study showed that non-standard
solutions open up additional opportunities for
regulating the heating process and improving
the efficiency of heat treatment. Thus, the
key step in improving the efficiency of
induction systems for heating metal products
by rotation is modernizing the existing
induction heating systems and developing
new ones based on automated optimization of
geometric, positional and electrical parameters
(combined with computer simulation). This
should successfully solve the related physical
problems during heat treatment, construct the
shape of induction coils, select the optimal
mode of operation, incorporate the properties

of new materials in the design of the developed
systems, produce reliable estimates for devising
non-standard solutions to reduce material
costs.

Conclusion

We have constructed problem-oriented 3D
models of induction systems in the ANSYS
APDL software package in order to calculate
the coupled electromagnetic and thermal
problems. The models developed have been
tested and verified experimentally. The
obtained results can be successfully applied
to analyze and solve electrothermal problems
for constructing induction systems and for
parametric search of optimal configurations of
these systems. In turn, optimal characteristics
should ensure high quality of the final product
and its maximum yield, minimum cost of
equipment and maximum total efficiency.

Potential applications of the constructed
models are lie in study of different induction
systems for heating samples of different shapes.
The developed methods and approaches can
be applied to other electrical engineering
processes. The proposed solutions allow to
efficiently use the results obtained for steel
rings, disks, gears, shafts, springs and other
symmetrical workpieces of different types
and sizes, for constructing induction systems
and for parametric search of optimal system
configurations.
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Introduction

The Thomson formula [1—3] for 3D har-
monic functions is a unique tool. Any other
formula of this type may differ from the origi-
nal Thomson formula only by a trivial change
of variables, represented as a superposition of
shifts, reflections, rotations, and proportional
stretching of coordinates. Let us describe in de-
tail how the Thomson formula works.

If U(x,y,z) is an arbitrary harmonic function
of three variables, i.e., it satisfies the Laplace
equation

U +U +U =0 (D)
XX yy ped

(from now on we use the subscripts composed
of the symbols x, y, z to denote partial deriv-
atives with respect to the corresponding vari-
ables), then the function

1
V(x,y,z)=;U(%,%,%), @)

r rr

where 7=+/x"+y>+z>, is also harmonic
[1, 2]. Using Eq. (2) once again, we make the
transition from the function W (x,y,z) back to
the function U(x,y,z). We can verify that the
function V obtained from Eq. (2) is harmonic
(provided that the function U is harmonic) us-
ing the identity

Ve +V, +V, %5

(U, +U,+U.),

where the function V'is given by expression (2),
and the function U is arbitrary.

The change of variables used for the argu-
ments of the function U in Eq. (2) is the inver-
sion in a sphere of unit radius with the center
at the origin. Eq. (2) is named the Thomson
formula after its author, the eminent British
physicist William Thomson, Lord Kelvin [3—
5]; sometimes this formula is also called the
Kelvin transform [1, 6—10]. Transformation
(2) preserves harmonic functions and can be
used, in particular, not only for solving bound-
ary problems with the Dirichlet condition (with
the interior Dirichlet problem transformed into
exterior and vice versa) but also for generating
new analytical solutions for scalar potentials of
electrostatic and magnetostatic fields, which
is convenient in synthesizing electron and ion
optical systems [11—13].

Euler-homogeneous electric and magnetic
fields are a useful tool for synthesizing a spe-
cial type of electron and ion optical systems
[14—18]. The trajectories of charged particles
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in Euler-homogeneous electrostatic and mag-
netostatic fields obey the principle of similarity
of trajectories described by Golikov [19, 20];
the unique optical properties of the devices
controlling the motion of charged particles and
using Euler-homogeneous electric and magnet-
ic fields follow from this principle.

As a rule, these fields are characterized by
a scalar electric or magnetic potential which
is an Euler-homogeneous (or, more precisely,
positively homogeneous) function in the sense
given to this term in classical mathematical
analysis [21, 22]:

VA >0: U(hx, Ay, kz) =AU (x,9,2), (3)

where k is the degree of homogeneity of the
scalar function (that is not necessarily an inte-
ger) and, accordingly, the degree of homoge-
neity of the field.

Possible exceptions, when the scalar poten-
tial of a homogeneous field is not a homoge-
neous function, were considered in [23].

If U(x,y,z) is a harmonic and Euler-homoge-
neous function with a degree of homogeneity &,
then the harmonic function WMx,y,z) calculated
according to rule (2) is also Euler-homogeneous
with a degree of homogeneity (—k — 1). Applying
transformation (2) again, we make the transition
from the function WM(x,y,z) back to the function
U(x,y,7). Therefore, a harmonic prototype with
a degree of homogeneity (—k — 1) necessarily
exists for each harmonic function that is Eul-
er-homogeneous with a degree of homogeneity
k, so that the function can be obtained from
this prototype by Eq. (2). Combined with dif-
ferentiation with respect to the variables x, y, z,
which is a universal method for obtaining new
homogeneous harmonic functions with reduced
degree of homogeneity [24, 25], the Thomson
formula (2) allows to obtain differential/algebra-
ic equations of a general form for 3D homoge-
neous harmonic functions with any integer-val-
ued degrees of homogeneity [24, 26]. Donkin’s
formula is used as the starting point for 3D ho-
mogeneous harmonic functions of zero degree
[16, 17, 24, 27—31]. This issue is considered in
more detail in [24, 26].

The common factor 1/7 in Eq. (2) is taken
out of the function arguments for Euler-homo-
geneous functions U satisfying identity (3). Eq.
(2) then takes a simplified form (see Thomson’s
treatise [5], Appendix B to Chapter 1):

V(x,y,z)=7’72k71U(X,y,Z)- (4)
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We can verify that if a homogeneous func-
tion U is substituted into Eq. (4), function (4)
is homogeneous. The function V, calculated in
accordance with rule (4), is harmonic, as fol-
lows from the identity

VetV t V=, + U, + U +
+ 2mrm2(xU, tyU +zU —kU) + (%)
+ m(m + 2k + 1)r2U,

valid for functions of the form WMx,y,z) = rU(x-
,V,2) with an arbitrary exponent m and an ar-
bitrary function U. Indeed, the right-hand side
of identity (5) becomes zero at m = 0 and m =
—2k — 1, since the function U must satisfy the
Laplace equation (1) and the Euler differential
equation for homogeneous functions [21, 22]:

xU,+ yU + zU= kU. (6)

The goal of this study has consisted in find-
ing alternative recipes for generating new ana-
Iytical solutions of the Laplace equation and, in
particular, for generating 3D harmonic func-
tions that Euler-homogeneous.

Uniqueness of Thomson’s algebraic formula

Let us consider the transformation of a
three-dimensional harmonic function U(x,y,z)
in accordance with the rule

V(x,y,Z)=S(an/aZ)x
xU(f(x,5.2),8(x,y.2),h(x,.2)),

where S, f, g, h are some fixed functions.

Here we can confine ourselves to algebraic
expressions linear with respect to U, since the
Laplace equation (1) has the property of linear-
ity and linear superposition of its solutions with
constant coefficients is again a solution.

Let us impose the condition that expression
(7) be a harmonic function for any harmonic
functions U. After substituting expression (7)
into the Laplace equation (1), we obtain a lin-
ear combination composed of partial deriva-
tives U', U;’ Uy’ Uvz’ Uxx’ (j;/y’ Uzz’ ny’ []xz’ Uyz'
Since the function U is harmonic, the deriv-
ative U_ can be expressed in terms of partial
derivatives U_and Uy "

(7

Uzz= _Uxx_ Uyy‘ (8)

This brings up the question whether the oth-
er partial derivatives can be regarded as inde-
pendent. The answer is yes: the Cauchy prob-
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lem for the Laplace equation (1) with initial

conditions
Ux,y,z) = UOx.,y),

U(x.y,z) = U"(x,y),

set for the plane z = z,, is solvable for any
initial values of U9(x,y) and U"”(x,y), at least
in some neighborhood of the plane z = z,. For
example, this solution could be a Taylor series
with respect to the variable z, where all coef-
ficients are uniquely expressed in terms of the
functions U9(x,y), U"(x,y) and their deriva-
tives with respect to x, y. Therefore, the deriva-
tives of the functions U”(x,y) and U"(x,y) with
respect to the variables x and y, calculated at a
fixed point, are independent numbers.

Consequently, if there are no additional con-
straints on the harmonic function U, then the
remaining partial derivatives in the final linear
combination of partial derivatives of the func-
tion U, obtained after substituting condition (8),
should be assumed to be independent, and each
of the factors grouped before these partial deriva-
tives should be zero. The set of independent par-
tial derivatives includes mixed derivatives of any
order with respect to x, y, but only zero and first
order with respect to z. This rule holds not only
for derivatives whose order is not higher than the
second, used in the given linear combination, but
also in the general case (see the next section).

As a result, we obtain for the unknown
functions S, f, g, A, assuming that S(x,y,z) # 0,
a system of nine partial differential equations:

fe.+/8 +/8 =0,

fih + b+ fh =0,

gh +gh +g.h =0,
fIH I+ =h+h +h,
g +g tgl=hi+h +h,

S(fu+ S+ 1o)+

9
+2Sxfx+2Syfy+2Ssz=0, ©)
S(gxx+gyy+gzz)+
+25.g,+25 g,+25. g =0,
S(hy +h, +h_)+

+28 h, +2S h, +2S h. =0,
S,+S,+5.=0.

This system of equations is overdetermined
(there are more equations than unknown
functions), so, generally speaking, it may not
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have solutions [32—38]. However, the Thom-
son formula (2) guarantees that system (9) has
non-degenerate non-zero solutions that inter-
est us.

The first five equations of system (9) mean
that a one-to-one, continuously differentiable
mapping

X = fxy,2), ¥ = gxy.z2),

7 = h(x,y,2)

is conformal, that is, it locally preserves the
angles between the lines at the point where
they intersect regardless of the location of these
lines, and converts infinitely small segments in-
to proportional infinitely small segments with
a proportionality coefficient that does not de-
pend on direction. This mapping preserves the
shape of infinitely small figures but does not
preserve the length of the lines, their curvature,
or the global shape of the figures and, possibly,
the orientation of the local basis [39, 40].

The family of conformal transformations for
a two-dimensional plane is very diverse and in
fact coincides with the family of analytic func-
tions of one complex variable [41—45]. How-
ever, this is not the case for three and higher
dimensions: the Liouville theorem on confor-
mal mappings in Euclidean spaces (see [46—
52]) postulates that the family of conformal
mappings coincides with the group of Mobius
transformations in these cases [53—55] and no
other multidimensional conformal mappings
are available. Unfortunately, we have not man-
aged to uncover the elementary proof of this
important theorem; evidently, the simplest
proof is given in [52].

In general, the Maobius group is a group gen-
erated by the following elementary transforma-
tions and their superpositions:

a) shifts (parallel translation),

(10)

X =xtay=y+tbi=ztc

b) three-dimensional rotations around a
fixed point |56, section 14.10];

¢) reflections with respect to hyperplanes, in
particular, elementary symmetries

X=—x,yV=-y7 ="z

d) proportional stretching in all coordinates
relative to some center
X =kx,y =ky, 7 = kg
(the origin is used as the center here);
e) inversion relative to the sphere,

xv — xr02/(x2+y2_|_22), yv :erZ/(x2+y2+ZZ)’
Z' = zr (X’ +y*+2%)

(here r, is the radius of the sphere, and the origin
is used as the center of the sphere).

Not all of the above transformations are inde-
pendent. For example, stretching can be replaced
by two successive inversions relative to spheres
with a common center but with different radii,
and reflections relative to hyperplanes x =0, y =
0 or z = 0 can be replaced by stretching with a
scaling factor of —1 combined with 180° rotation
relative to one of the coordinate axes.

The Mobius group for the two-dimension-
al case that is the most typical for practical
applications coincides with the group of linear
fractional conformal transformations, to which
complex conjugate linear fractional conformal
transformations are added (anti-conformal, if
conformal transformations are understood as
those preserving not only local angles but also
their direction, i.e., the orientation of the local
basis).

We can prove that any element of the Mobius
group can be reduced to one of two possible types:

. AA(r—a)
r=b+——=, (11)
r—al
r'=b+2A(r—a), (12)

where r is the radius vector (generally speak-
ing, n dimensional) for the initial point; r' is
the radius vector for the transformed point;
a is the initial center of the geometric trans-
formation; b is the final location of the cen-
ter of the geometric transformation; A is the
stretch factor (real number); A is an orthogo-
nal matrix satisfying the condition AA"= A"A
= F and describing rotation in n dimensional
space relative to the origin (possibly with a
change in the orientation of the local basis
if the determinant of the matrix A4 is equal
to —1).

To prove this statement, it is sufficient
to verify that the composition of geometric
transformation (11) or (12) is again reduced
either to reference form (11) or to reference
form (12) with each of the elementary trans-
formations of the Mobius group given above.

Three-dimensional geometric transforma-
tions of the form (11) or (12) are obviously
decomposed into a superposition of elemen-
tary transformations in the form of an initial
shift, inversion with the center at the origin
(for transformation (11)), three-dimensional
rotations around the origin [56, section 14.10]
(possibly combined with one of the symme-
tries changing the orientation of the system),
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proportional stretching relative to the origin
and the final shift to the new center. The
harmonic function U remains harmonic with
a shift, rotation, symmetric reflection and
proportional stretching of the arguments, so
in these cases the factor S(x,y,z) for Eq. (7)
is equal to unity (or, more precisely, to an
arbitrary constant, as follows from Egs. (9)).
In case of inversion with the center at the
origin, the factor S(x,y,z) for Eq. (7) is deter-
mined up to a constant factor in accordance
with the Thomson formula (2), and system
of equations (9) confirms that this factor is
unique.

Successively making these transforma-
tions, with the conformal transformation (10)
is written either in the form (11) or (12),
we obtain the final solution for the problem
of finding algebraic formulas of the form (7)
which remain harmonic. If, however, an Eu-
ler-homogeneous harmonic function is to be
transformed into a homogeneous harmonic
function, the answer is either the Thomson
formula (2) or the identity equality WM(x,y,7)
= U(x,y,z) up to a rotation and proportional
stretching of the arguments x, y, z relative to
the origin, and also up to the potential values
at all points of space multiplied by a con-
stant. Uniqueness of the Thomson formula is
also proved in [8, 10].

Expanded form including first derivatives

The purely algebraic transformation (7)
has no other meaningful solutions except
the classical Thomson formula (2), leading
us to search for other methods of generating
new harmonic functions. Let us consider the
transformation of the three-dimensional har-
monic function U(x,y,z) in accordance with
the rule

V&yﬂﬁ
—S xy, (f xy, (x,y,z),h X, Y,z ))—i—
+P x v,z Y(f X,y (x,y,z),h X, 9,z ))+(13)
+Q X, 9,z (f X, V.2 (x,y,z),h X, V.2 ))+
+R(x,y,z)~U( (x,y,z ) g(x,y,2),h(x,y,z )

where S, P, O, R, f, g, h are some fixed func-
tions, U is an arbitrary harmonic function.

As before, let us impose that expression (13)
be a harmonic function for the given functions
S, P, O, R, f, g, hand any harmonic functions U.
To ensure that function (13) is a homogeneous
function with homogeneous functions U, we
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impose that the functions S, P, O, R, f, g, h also
be Euler-homogeneous (it is easy to verify that
this requirement is necessary as well as suffi-
cient). To eliminate the freedom of choice in
the form of three-dimensional rotations around
the origin, which is excessive in our case, simi-
lar to Eq. (2), we confine ourselves to the case
when f(x,y,z) = X(P()C,y,Z),g(X,y,Z) = y(P(x,y,Z),
h(x,y,2) = z¢(x,y,2),

where the common factor o(x,y,2)
Euler-homogeneous function.

We should however keep in mind that we
run the risk of discarding any truly interesting
solutions, and not just rotations.

It is convenient to write the homogeneous
functions ¢, S, P, O, R in the following form:

is an

o(x,y,z) = r'o(x/r, y/r),
S(e,y,z) = rs(x/r, yir),
P(x,y,2) = r"u(x/r, ylr),
O(xy,z) = r™W(x/r, yir),
R(x,y,z) = r™™w(x/r, yir),

(14)

where m is the degree of homogeneity of the
common factor for the arguments of the func-
tion U; n is the degree of homogeneity of the
factor before the function U itself; w(y,n),
s(m), u(x.n), v(x.n), w(x,m) are some functions
of two variables, unknown so far.

This formulation is a slightly modified uni-
versal representation [21, 22] for homogeneous
functions of degree k:

f(x.%,.0x, ) =x'g(x,/x,,...x, /x,)(15)

and does not lead to loss of admissible solu-
tions. Importantly, the change of variables used
for constructing substitution (14) is reversible

x:x/\/x2+y2+zz,
n:y/w/x2+y2+zz, =N
p=+/x>+y +2°,

X =%p,
Sy =np,

z=1p -y’ -n".
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After substituting Egs. (13) into the Laplace
equation (1), we obtain a linear combination
with some factors independent of U, composed
of partial derivatives

U, U, Uy, U, U,

U,U,U,U U
U U

zz2 T xy xz> T yz?
xxx? T xxy? T xxz’ nyy’ Uryz’
l]xzz’ (]yyy’ (]yyz’ yzz® " zzz’
Since the function U is harmonic, some of
these derivatives can be expressed in terms of
others:

u.=-U,-U,U_=-U_-U,_,
zz xx »y xzz Xxx xyy
v =-U -U ,U =-U -U .
zzy xxy Yy zzz xxz wz

The reasoning in the previous section proves
that the remaining partial derivatives should be
assumed to be independent. Therefore, after sub-
stitution into the resulting linear combination of
the above expressions for dependent derivatives

uv,u ,U ,U

222 T xzz’ T yzz’ T zzz

and finding common factors before the remain-
ing partial derivatives, each of the resulting fac-
tors should be identically zero.

The resulting system of partial differential
equations with respect to the unknown functions
turns out to be overdetermined.

(), s(un), ulrn), ven), wln)

It has a rather complicated form, so it is
not given here explicitly. By the same logic,
we omitted the analysis of compatibility of the
obtained system of equations and its solutions,
since it is overly cumbersome and, apart from
standard technical methods, does not provide
any new information. Analysis of this system
using the appropriate methods [32—38] yields
the following solutions which exhaustively
cover all possible cases:

aywhenm=0and n=—1orm=—2

and n =0

o(n) = ¢, s(xn) =0,
u(xn) = ¢, v(xN) = ¢, w(n) = ¢,

where ¢, ¢, c¢,, ¢ are arbitrary constants;
a b c

b)withm=0andn=1lorm=n=—2
o(xn)=cs(xn)=(c,/c)x+

+(c, e+ (c. /e)J1-x* -7,

u(yx,m)=c, (—1+2X2)+

+2c,ym+2c1-1* -1,

v(x.m)=2¢c,xm+c, (—1+2n2)+

Mathematical physics
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+H2enyl-¢ -,
w(z.m)=2¢,y1-¢" —n’ +
R2emyl-* =’ +e, (1-2%° -207),

where ¢, ¢, ¢,, ¢, are arbitrary constants;
cwithm=n=0orm=—2and n=—1

o(x.n)=cs(x.n)=c,,
u(xm)=ca+en—cJ1-x" -,
v(xn)=—caren+e -’ -n’,
w(rn)=cx—en+e,N1-1" —n’,
where ¢, ¢, ¢,, ¢, ¢, ¢, are arbitrary constants.
As a result, we obtain a list of basic formulas

transforming the original harmonic functions
into new harmonic functions

V(x,y,2)=U(x,5,2), (16)
V(x,y,2)=U,(x,5,2), (17)
V(x,y,z)=Uy(x,y,z), (18)
V(xp,2)=U.(x1.z), (19)
V(x,y,2)=xU(x,y,z)+
+(x2 —y2 —Zz)Ux (x,y,z)+ (20)
+2nyy (x, y,z) +2xzU, (x, y,z);
V(x,y,2)=yU(x,y,2)+
29U, (x,3.2)+(=x" +y"=2*)x 1)
XU, (x,y,2)+2yzU_(x,y,2);
V(x,y,z):zU(x,y,z)+
+2xzU, (x, y,z)+2yzUy (x, Y.Z)+ (22)
+(— 2—)/2+22)Uz()c,)/,z);
Vix,y,z)=xU_(x,y,z)+
(x,3,2) =xU,(x,,2) o
+yUy(x,y,z)+zUz(x,y,z);
V(x,y,2)=yU, (x,3,2)-xU, (x,9,2); (24)
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V(x,,2)=2zU (x,y,2)-xU_(x,y,2); (25) Vixyz)=2u|X L Z |-
b b r3 X ]/'2 2 rz 2 }/~2
V(x,y,2)=2U,(x,,2)=yU, (x,,2); (26) x x y z) (35)
1 e
X z
V(xay,2)=—U(—z%,—zj; (27)
r r r r z X y z
V(x,y,z) = r_st (r—z,r_z,r_zj_
v( )_lU xy oz (36)
xayaz _l" x 1”2’}"2,1"2 9 (28) _iU (ili}
P\ )
V(oy2)==U| 555 29
ot z X Yy z
V(xayaz)_yUy(r_zar_zar_zj_ .
X z
V(x’yJZ)Z_U _2912’_2 ; (30) y (x y ZJ ( )
r r r r ——3UZ SRR E
r roror
X X y z
Vix,y,z ——U(—,—,—j+
( ) o\t where 7= x>+’ +2°.
2.2 _ZZ z
= ys U, lz’lzﬁ_zj-{_ (31 Eqgs. (16)—(19) are trivial but we still in-
r rrr cluded them in this list for formal reasons. The
2xy X y z Xz X y z origin of Egs. (20)—(22) is not obvious at first
,,_sz PR +r_5Uz PERSFINN glance but they are evidently obtained from the
Thomson formula (2) after it is differentiated
y X y z 2x with respect to one of the variables x, y, z and
V(xy ,z)=r—3U 2 +r_5U L(v)+ the Thomson transformation (2) restoring the
., initial form of the arguments of the function U
XAy -z (i b ij+ (32) is applied again.
= Y g2 2 Egs. (24)—(26) are mentioned in monograph
[24] but for some reason only in relation to ho-
2yz U (l P i) mogeneous harmonic functions of zero degree.
oo\ We have not actually encountered Eq. (23), as
well as Egs. (20)—(22) before (which is not to
V( X, 7, Z) — %U(iz’lz’izj + say of course that there are no .such references).
r roror Egs. (27)—(37) are obtained from Egs.
(16)—(26) using the Thomson transform. In
2xz U *ry z + particular, Eq. (27) is obtained from the iden-
A R tical transformation (16) and, by virtue of this,
) (33)  coincides with Eq. (2).
Yz U (i’l’ij.;_ Unlike the original Thomson formula, re-
R U peated application of differentiating transfor-
2 2 mations (16)—(37) does not restore the initial
+—x Y +z U (i’l’i} form of the transformed functions. However,
P Nt some combinations of transformations (16)—
(37) may turn out to be identical or again one
V(x z) _X U [ Xy z + the formulas from the given set. The reason for
> P 2000 this is that the higher derivatives of the func-
(34) tion U, appearing from combining differentiat-
+lU (l pa ij_'_iU (l pa i) ing transformations (16)—(37), can eventually
P\ g ) A ) be reduced, since the function U satisfies the
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Laplace equation.
Egs. (16) and (23)—(26) for Euler-homoge-
neous functions preserve the degree of homo-
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geneity of the function. Egs. (17)—(19) reduce
the degree of homogeneity of the function by
one, and Egs. (20)—(22) increase the degree of
homogeneity of the function by one. Accord-
ingly, homogeneous functions of degree k are
transformed by Egs. (27) and (34)—(37) into
homogeneous functions of degree (—k —1),
into homogeneous functions of degree (—k) by
Egs. (28)—(30), and into homogeneous func-
tions of degree (—k — 2) by Egs. (31)—(33).

The same as Eq. (16), Egs. (23) and (34)
are completely useless for Euler-homogeneous
harmonic functions. It follows from the dif-
ferential Euler relation (6) for homogeneous
functions [21, 22] that applying Eq. (23)
yields the same homogeneous harmonic func-
tion, only multiplied by a constant (degree of
homogeneity). Accordingly, applying Eq. (34)
is equivalent to applying Eq. (27) multiplied
by a constant.

Generalization to the case of n variables

It is known that the Thomson formula (2)
for 3D harmonic functions can be generalized
to the multidimensional case |7, 9]. If

1 X X X,
V(x,%,,...%, )= e U(r—;,r—;,"',r—zja (38)

where ¥ = \/ xf +x§ +"'+x,f , and the function
U is harmonic (i.e., it satisfies the » dimen-
sional Laplace equation), then the function V
is also harmonic. The result of substituting the
function

1 X X X
_ 1 2 ... n | —
V(x,x,,..x,)=—U PRl

r

1 .
:r_mU (xl’xz’...’xn)

into the Laplace equation is a chain of equalities

Ficle | Rl

i=1
o Ox, ox, \r" r" I ox;

ou” _Z":a_U —2x%, ), 0U 1
ox, ‘=ox | r ox; r
o’U”

z -2x, Sxka 8U(—2x ]_’_
ox; “ox, | 1t r ox, \_r

b

59 () 5 8 ()
s=1 k=1 axkax rg k=1 6xk6x 7"6
_ n 2 _
+5_U[ :c,-jJrz o*U ( 2)66,-ka o 1
ox,\_r = oxox \

ax rt
2 (L),
ax‘ rm rm+2 4

)

using, as arguments for function U, the values
xX/P, X,/P, ..., X [P

Ultimately, because Z X, =r", we obtain
the identity i=tn
(m +2 n)

L0 (U ) m -
Za_z(_m}=—m+2 U
i-1 OX; r

2m+2 n) oUu 1 &oU
kz a_ rm+42¥’

i=1

+

whose right-hand side for harmonic functions
U becomes zero for m = n — 2. Notably, Eq.
(38) remains valid, including with » = 2, when
it turns out to be a particular case of a con-
formal transformation of a plane (or, more
precisely, anti-conformal transform, i.e., with
a change in the direction in which angles are
measured):

V(w)ﬂf( X )

X +y x +y

Formulas including partial derivatives of the
first order from the previous section are also
transferred to the multidimensional case:

V(x],xz,...xn)=U(xl,x2,...xn); (39)

oU (x,,x,,...
V(xl,xz,...xn): (xla); xn); (40)
V(xl,xz,...xn):(n—Z)in(xl,x2,...xn)+
+(2xi2—rz)aU(xl’xz’mx")-l—
OX, (41)
oU (x,,%,,...,)
2 ) .
+; XX, o ;

39
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V(xl,xz,...xn)=2xk

oU (x,,x,,...x,)

5 (42)

k ox,
V(xlaxz,--.xn):xiaU(xlﬂa");za--.xn)_
J )
oU (x,,x,,...x,)
o ox, ’
1 X X, :
VOt ) =55V 55

2 2
(2xi —r )5U XX n
t—— | = |t
r r r

rn+2 axi (46)
2xx, OU [ x; x, X,
+ — | > s s
kz:‘ F? Oox, (rZ r’ rZJ
V(x,x,,...x,) =
:Zx_k@_U %o ox) @)
" Ox, R R
x. oU( x, x X
Vix,x,..x )=—t—|L 2 .. 20|
(1 ? ") r" 8xj(r2 P rzj
(48)
_&NoUMxy X X,
r" ox, R R

where rz\/x12+x22+---+xj.

In contrast to the three-dimensional case,
we cannot be certain that the given formulas
exhaust the entire list of symmetric homoge-
neous algebraic formulas including first deriv-
atives transforming an arbitrary » dimensional
harmonic function into a new n dimensional
harmonic function.

Eq. (46) is obtained by differentiating Eq.
(38) with respect to the variable x. Eq. (41)
is obtained from Eq. (46) using substitution
(38). Substitution (38) is also used to obtain
Eq. (47) from Eq. (42) and Eq. (48) from Eq.
(43). Finally, we can verify that Eq. (42) is
valid by using the identity

40

>

oV (x,,...x,) o’U(x,,...x,)

Z ox? - z ox?

i i i i

+Zk:(xk %(Z azU(;;z. X, )D

1

+

which is satisfied for any functions V of the
form (42), that Eq. (43) is valid using the
identity

OV (x,,...x,)

z ox;
0 82U(x1,...xn)
- ox (Z ox;
0 o’U(x,...x,)
K OX, [z ox? ’

k

which is satisfied for any functions of ¥ form (43).

Conclusion

The study presents an exhaustive list of ho-
mogeneous symmetric differentiating expres-
sions of the first order transforming arbitrary
3D harmonic functions into new 3D harmonic
functions. We have generalized the formulas
obtained to the case of an arbitrary number of
measurements.

There are similar formulas using partial de-
rivatives of higher orders. In particular, such
formulas can be obtained by multiple differen-
tiation of the Thomson formula (2) with respect
to the variables x, y and z, and by superposi-
tion of first-order differential transformations
obtained in this study (16)—(37). Compiling a
complete list of transforming formulas with de-
rivatives of higher orders is beyond the scope of
this study; it is a task that presents considerable
technical difficulties and, in our opinion, has
little practical meaning.

It should be borne in mind for transfor-
mations with derivatives of higher orders that
some partial derivatives of the second order
and higher are expressed through each other
for harmonic functions. Any transforming for-
mula can be supplemented with the three-di-
mensional Laplace equation (1) with an arbi-
trary factor, in original form or after it is differ-
entiated with respect to x, y or z the necessary
number of times. This does not change the
nature of the transformation (only its algebraic
form) and, while its basic property to transform
the original harmonic functions into new har-
monic ones is preserved, additional analytical
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expressions for 3D harmonic functions are not
generated.

Notably, the calculations implicitly led to
the assumption that substitution (10) is nonde-
generate (reversible). It is possible that there are
some additional solutions using changes of de-
generate variables, not considered in this study.
However, such degenerate transformations of
harmonic functions apparently have little prac-
tical value, even if they do exist. For exam-
ple, substituting constants for the arguments of
any harmonic function, we obtain a constant,
which is, of course, a harmonic function for-
mally speaking, but it is completely useless for
practical purposes.

The weak point of the analysis carried out is
the assumption that the change of variables has
a symmetric form,

f(x’ y’ Z) = ‘x(p(‘x’ y’ Z)’
glx, y,2) = yo(x, y, 2),
h(x,y, z) = z9(x, y, z),

while all functions involved in the differential/
algebraic Eq. (13) are Euler-homogeneous.
We deliberately limited the list of solutions
(16)—(37) to homogeneous symmetric lin-
ear differential expressions of the first order.
There are perhaps additional differential/al-
gebraic expressions of the form (13), different
from solutions (16)—(37) and free from this
constraint, which also transform 3D harmon-
ic functions into new 3D harmonic functions.
However, comprehensive analysis of such an
extended [problem [57—60] is well beyond
the goals set in our study.

We should also note that the approach
described has proved useful and efficient
for other equations of mathematical physics
beside the Laplace equation (1). For exam-
ple, similar differential transformations were
considered in [61] for the multidimensional
heat equation. Unfortunately, the results ob-
tained in [61] cannot be directly transferred
to the Laplace equation, even though it is
the steady-state limit of the heat equation.
The reason for this is that the transformations
used in [61] explicitly include time in such a
manner that stationary solutions are trans-
formed into non-stationary.
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Introduction

This paper continues the studies in [1],
considering generalizations of the Thomson
formula for 3D harmonic functions of a general
form. Differential-algebraic transformations
similar to the classical Thomson formula
for homogeneous harmonic functions were
discussed. These transformations can be used to
generate new harmonic functions represented
in analytical form that are Euler-homogeneous.
Electric and magnetic fields whose scalar
potential (3D harmonic function) is an Euler-
homogeneous function obey the principle of
similarity of trajectories described by Golikov
[2, 3]. Such fields possess additional useful
electron and ion-= optical properties [4—10].

Let »=+/x"+y”+2z° be the distance from

a sample point (x,y,z) to the origin. The Thom-
son formula (Kelvin transform)
1 X y z
V x, ) - U 9 ) 1
(e =2u[222] 0

transforms the harmonic function U(x,y,z),
satisiying the Laplace equation

U +U +U =0, ‘ 2)
xXx pag ped

into a new harmonic function Mx,y,z) [11—
18]. From now on we use the subscripts x, y, z

to denote partial derivatives with respect to the

corresponding variables.

In particular, the Thomson formula (1)
serves as a useful mathematical tool for
generating analytical expressions for scalar
potentials of electric and magnetic fields that
can be used for synthesizing new electron and
ion optical systems [4—10, 19, 20].

The function U(x,y,z) is called Euler-
homogeneous (or, more precisely, positively
homogeneous) if it satisfies the identity

VA>O0: U(Xx,ky,kz) = KmU(x,y,z),

where m is the degree of homogeneity of the
function (not necessarily an integer) [21, 22].

For a continuously differentiable function
U(x,y,z7) to be positively homogeneous with
degree m, it is necessary and sufficient that the
Euler differential equation for homogeneous
functions be satisfied at any point in space
(echpt for the origin):

xU, +yU, + zU — mU= 0. 3)
The proof of this important statement can
be found in [21, 22].

Searching among linear algebraic formulas
of the type
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V(x,y,z)=8(x,p,z)x
xU(f(x,y,z),g(x,y,z),h(x,y,z))

(where S, f, g, h are some fixed functions) of
other relations that can generate new harmonic
functions WM(x,y,z) for any harmonic functions
U(x,y,7), we verified that the Thomson formula
(1) is, in a sense, unique [1, 15, 17].

Specifically, the Thomson formula (1) and
the trivial identity WMx,y,z) = U(x,y,7) are the
only expressions of form (4) that meet the
requirements of the problem stated to within
3D rotations around the origin, shifts (parallel
translations)

“4)

X=x+ay=y+b7=z7+c,
symmetries
X=—x,yV=-y,7=—z
and proportional scaling
X =kx,y =ky, 7 = kz

(as well as multiplication of the potentials
obtained by a constant factor).

Considering linear expressions including
first partial derivatives of the function U, which
have the form

V(x,y,z)=
=S(x,y,z) (f(x ¥,z ), (x,y, ,h x, ,z )+
+P(x,y,z) x(f(x ¥,z ), (x,y, x y, )+(5)
+Q(x,y,z) (f(x ¥,z ), (x y, x I,z )+

+R(x,y,z)-UZ (f(x,y,z),g(x,y,z),h(x,y,z))

(S, P, O, R, f, g, h are some fixed functions),
we found that additional formulas transforming
3D harmonic functions into new 3D harmonic
functions could exist [1].

Now the transformations are not purely
algebraic but differential-algebraic.  This
expands the range of mathematical tools
available for generating new 3D harmonic
functions that serve as scalar potentials for
electric and magnetic fields.

Increasing the order of partial derivatives
of the function U included in expressions of
form (5) expands the list of such formulas
even further but also makes operations with
them somewhat inconvenient. In particular,
such formulas cannot be uniquely defined
because the second derivatives of harmonic
functions depend on each other. This is to say
that there is a wide variety of such formulas
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for each transformation: while their forms are
not algebraically equivalent to each other, they
yield essentially the same results.

Notably, however, we found a smaller amount
of transformations preserving 3D harmonic
functions in [1] than we had expected. One of
the reasons why the search for new first-order
algebraic and differential-algebraic expressions
for generating 3D harmonic functions yielded
unsatisfactory results might be that the
requirement for these expressions to work for
any initial harmonic functions U(x,y,z) is too
strict. For example, it is well known that any
conformal transformation of the arguments for
two-dimensional harmonic functions U(x,y)
generates a new two-dimensional harmonic
function [23—27]. Such a transformation of
harmonic functions has the form (4) but it
is considerably different from the Thomson
formula (1).

Another example is the Thomson formula
for homogeneous harmonic functions (see [28]
and [29], Appendix B to Chapter 1), which has
the form

V(x,y,z)=r?""U(x,y,2). (6)

Function (6) becomes harmonic if a
homogeneous harmonic function U of degree
m substituted into it, but this is definitely not
the case for any harmonic function U.

Finally, let us consider transformations of
the form

V(x,y,2)=CU_ (x,y,2)+

+BU, (x,y,z)+AUZ (X,y,Z);
A:a(2m+1)xz+b(2m+1)yz+
+c(—mx2 —my’ +(m+1)22);

B:a(2m+1)xy+ (7)
+b(—mx2 Jr(erl)y2 —mzz)+
+c(2m+l)yz;
C=a((m+1)x2 —my’ —mzz)+
+b(2m+1)xy+c(2m+1)xz,

that can be obtained by analyzing the harmonic
conditions for linear forms of partial derivatives
U, Uy , U with coefficients that are general
quadratic forms in terms of variables x, y, z It

follows from the identity
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Va+V, +V.=
z(4m+2)(ax+by+cz)(Um, +U,, +UZZ)+
+C(Uy +U,, +U,. )+ B(U,, +U, +U,_ )+
+A(Um +U,,. +Um)+
+2a(xU,, +yU,, +zU_—(m-1)U, )+
+2b(xey +yU, +zU,, —(m—l)Uy)+
+2¢(xU,, +yU,, +zU_ —(m-1)U.)

that, generally speaking, if the only requirement
imposed on the function U is for it to be
harmonic, expression (7) is a harmonic function
only if

a=b=c=0.

If U is a homogeneous function of degree
m, satisfying both the Laplace equation (2) and
the Euler differential equation (3), then the
conditions

U,tU,,+U_ =0,

U, +U,, +U,. =0,

Uxxz + Uyyz + Uzzz =0,
xU,+yU, +2U, = (m-1)U

x?°

xU,+yU, +:zU, =(m-1)U

yﬂ
xU,+yU, +2U_ = (m-1)U._,

obtained by differentiating (2) and (3) with
respect to x, y, z, are satisfied.

Then expression (7) turns out to be a
harmonic homogeneous function of degree (m
+1) for any a, b, c.

The goal of this study has consisted in
searching for alternative expressions that could
be applicable for 3D homogeneous harmonic
functions and useful for generating analytical
expressions for 3D harmonic functions that are
Euler-homogeneous.

There is good reason to believe that the set of
transformations can be significantly expanded
by limiting the class of transformed harmonic
functions.

Problem statement

Let us consider the transformation of a 3D
homogeneous harmonic function U(x,y,z) in
accordance with rule (5), where S, P, O, R,
/. g h are some fixed functions, and U is an
arbitrary homogeneous harmonic function of
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a fixed degree m. We require that expression
(5) be an Euler-homogeneous function for the
given functions S, P, O, R, f, g, h and any
homogeneous harmonic functions U of degree
m.

Since the function U should satisfy the Euler
differential equation (3), we can assume for
expression (5) without loss of generality that

Rx,y,20=0

(the partial derivative of U can be expressed in
terms of the functions U, U ).

Furthermore, let us conﬁne ourselves to a
particular case

fxy.z)=x, gxy.z) =y,
h(x,y.z) =z,

which is a consequence of the symmetric
change of variables

Sx,p,2) = xo(x,y,2),
g(x,y,2) = yo(x,y,2),

h(x,y,2) = z9(x,y,2)
considered in [1] (here the common factor
¢o(x,y,2) is taken out of the arguments of the
functions U, U, U and U, because these
functions are Euler homogeneous)
Thus, we are going to consider
transformations of the following type below:

V(x,y,z) =3, (x,y,z)'U(x,y,z)Jr
+F, (x,y,z)-Ux (x,y,z)+ ®)

+0, (x,y,z)-Uy (x,y,z),
where §,, P,, Q, are some fixed functions
preserving the function ¥ homogeneous and
harmonic provided that the function U with a
given degree of homogeneity m is homogeneous
and harmonic.

For expression (5) to be an Euler-
homogeneous function when an arbitrary
homogeneous harmonic function U is
substituted into it, the functions S, P, Q, R,
/. g h in expression (5) should satisfy some
additional conditions.

In particular, we can prove for expressions
of form (8) that the condition that S is Euler-
homogeneous of degree n — m and P, and Q,
are Euler-homogeneous of degree n — m + 1,
is sufficient as well as necessary for expression
(8) to be a homogeneous function of degree n.

To prove that it is necessary for the functions
S, P, and Q, to be Euler-homogeneous, we
use the condition that the function U is Euler-
homogeneous without invoking the condition
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that it is harmonic. We should also verify that
there are no additional options for homogeneous
harmonic functions that are missing in case of
arbitrary homogeneous functions. However,
the constraints

fx.y,2) = x, gx.y,2) =y

h(x,y,2) =z, R(x,y,2) =0
guarantee that there are no other possible
options for the functions §,, P, and Q,.

The obvious method for solving the problem
is to remove all dependent partial derivatives of
the function U from the result of substituting the
expression (5) or (8) into the Laplace equation
and into the Euler differential equation. After
that, the factors grouped before the remaining
partial derivatives of the function U should be
equal to zero separately and independently
of each other. “Extra” derivatives should be
excluded, using not only the Laplace equation

U+ U+ U= 0,

as done in [1], but also the Euler differential
equation

xe+yUy+zUZ=mU

for homogeneous functions of degree m, as
well as the results of differentiation of the given
equations with respect to the variables x, y, z

The task is somewhat complicated by the
fact that differential relations dependent
on each other appear upon independent
differentiation of the Laplace equation and the
Euler differential relation:

(xUm +yU,, +zU,. —(m—Z)UM)vL
+(xU,, +yU,, +2zU, —(m-2)U, )+
(m—2)UZZ)E

= x(Um +U,,+U,_. ) +

+(xezz +yU _ +zU__

yzz

+J/(Uxxy +U,, +Uyzz)+
+z(U,. +U,, +U_.)-
~(m=2)(U,+U,, +U..).

However, there is a more effective way to
solve the problem. Since U(x,y,z) is an Euler-
homogeneous function of degree m, by applying
the change of variables used for the Donkin
formula [7—10, 30—34], we can formulate it as

m Y
U 2 V.Z) = F s
(xy ) : (Z—i—l" z+r (9)




where 7 =+/x>+y*>+2z° and Fis some appro-

priate function of two variables.

This formulation is a slightly modified
universal representation of homogeneous
functions of degree k in accordance with the
formula [21, 22]:

f(xl,xZ,...,xn):xlkg(xz/xl,...xn/xl);
it does not lead to loss of admissible solutions.
Accordingly, the transformed function
Mx,y,z7), which should be an Euler-
homogeneous function of degree n, can be
represented as

V(x,y, )—r G( J j (10)
Z+I" z+r

The change of variables used to construct
substitutions (9) and (10) is reversible:

X

p:

3

Z4 X+ 42

Y

q:
ZHAX"+ Y+ 2
r=Nxt+y' 427,

2pr

, =

(11)

X=—>—,
l—i-pz+q2

_ 2gr
- 1+p*+4¢*’
r(1-p'-4’)

z==
l+;72+q2

For the function U, given by equality (9), to
be harmonic, that is, to satisfy the 3D Laplace
equation, it is necessary and sufficient that the
function F satisfy the two-dimensional elliptic
equation

2 2
0 F(p,q)+a F(p,q)Jr

op® oq°
(12)
dm(m+1
+(2—2)2F(p,q)20.
(1+p +q )

Then any homogeneous harmonic function
U of degree m corresponds to the function F,
which satisfies Eq. (12), substitution (9) yields
a homogeneous harmonic function of degree »
from any solution of equation (12), and there
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is one-to-one correspondence between the
functions F and U. This statement is verified
by direct substitution of expression (9) into
the 3D Laplace equation, followed by change
of variables according to rule (11). A similar
technique is used, for example, in [35—39].

Evidently, the transformation of the function
U according to rule (8), which should generate
a new homogeneous harmonic function V of
degree n, is equivalent to transformation of the
function F according to the rule

G(p.q)=s(p.q)F(p.q9)+

8F(p,q)+ 6F(p,q)(13)

+v(p.q) o w(p.q) o

with some fixed functions
s(p,9), V(p,9), W(p,q),
the function G should then satisfy the equation

2 2
0 G(P,Q)+a G(p,q)Jr

op? oq*
P q (14)
4n(n+1)
D) G(pg)=0.
(1+p2 +q2)

In the end the task is reduced to finding such
functions s(p,q), v(p,q), w(p,q) and such indices
m and n that would generate the solutions of
differential equation (14) after transformation
(13) for any solution of differential equation
(12). In this case, no additional conditions
except Egs. (12) and (14) are imposed on the
functions Fand G.

Solution of the problem

After substituting expression (13) into
equation (14), we obtain a linear combination
of partial derivatives

F,F,F,F,F,
pp pq
F > b 9 9
qq ppp ppq pqq 999
(the subscripts denote the partial derivatives
taken with respect to the corresponding
variables).

Derivatives qu F , Fare dependent, and
they can be expressed 1n terms of the remaining
partial derivatives using Eq. (12). After that,
the factors are grouped before the remaining
partial derivatives

FF,F,F,F,F.F

> pop’ " ppq’

should be zero if the function G is required to
satisfy Eq. (14) for any solution of Eq. (12).
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The resulting system of equations has the form:
v,=w,=0,v, +w, =0,
4(n(n+1)— (m+l))
(1+p +q )
(n(n ) (m+1))
(l+p +q )
4 n(n+1)—m(m+l)
Sy TS, S ( S ):
(1+p +q )

lom(m+1
=—(—)3(pv+qw)+
(l+p2 +q2)

4m(m+1)

=-2s ,

Vpp+qu+V »

=-25 ,

pr-i-qu-f-W 4

3 (Vp +Wq).

(1+p2+q2)

Analysis of the obtained overdetermined
system of partial differential equations with
respect to the unknown functions s(p,q), v(p,q),
w(p,q) using the methods [40—46] leads to the
following non-degenerate solutions that exhaust
all possible cases.

ayn=—2—morn=1+m

S( ) (m+l)

1+p°+¢°
x(4c p+écqg+c, (1 P’ —q ))

v(p,q)= cp+20bpq+c( 1+p2—q2),

w(p.q)=c.q+2c,pq+c,(-1-p* +q°),

where ¢, c,, ¢ are arbitrary constants;
a b c

b)n=—1+morn=—m:
—m

s(p,g)=————x

(pa) =1

x(4cap+4cbq+cc (l—p2 —qz)),

v(p,q):ccp+2cbpq+ca (—1+p2 —qz),

w(p.q)=c.q+2¢,pq+c,(-1-p* +q°),

where ¢, ¢,, c_are also arbitrary constants;
c)n=morn=-—1—m:

s(p.q)=c
v(p, )——ccq+2cbpq+c (1+p2—q2),
w(p.q)=c.p+2¢,pg+c,(1-p* +q°),
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where ¢, ¢, ¢,, ¢, are also arbitrary constants.
There are also degenerate solutions. The

first one has the form

s(p,q) = 0, v(p,q) = 0, w(p,q) =0

and is of no particular interest.
The second solution corresponds to the

choice m=0,n=0.
orm=0,n=—1,
orm=-1,n=0,
orm=-—1,n=—1.

In these cases, Egs. (12) and (14) turn
into two-dimensional Laplace equations, and
transformation (13) takes the form

G(p.q)=cF(p.q)+v(p.q)F,(p.q)+
+w(p.q9)F,(p.q).

where ¢ is constant, and functions V(p,q) and
w(p,q) satisfy the Cauchy—Riemann conditions

(15)

V=w, Vv =—w,
P q q P

i.e., are the real and the imaginary part of the
analytical function of a complex variable

u(p + iq) = v(p,q) + iw(p,q).

The physical meaning of Eq. (15) is quite
simple: multiplication by a constant transforms
the solution of the two-dimensional Laplace
equation into a solution of the two-dimensional
Laplace equation, and the product of two
analytical functions of a complex variable

v(p,q) + iw(p,q), F(p,q) — iF(p,q)

yields the analytical function of a complex variable
whose real and imaginary parts should satisfy the
two-dimensional Laplace equation [24—27, 36].
However, this curious degenerate solution
is not very interesting as a generator of new
homogeneous harmonic functions, since the real
and imaginary parts of analytical functions of a
complex variable provide enough resources for
solving the two-dimensional Laplace equation.
All 3D homogeneous harmonic functions with
homogeneity degrees of 0 and —1 can be obtained
using the Donkin formulas [7—10, 30—34]:

V(x,y,z)zH( r ) j

zZ+r z+r
1
V(xayaz):_H( al s Y )9
r zZ+r z+r

where is His the solution of the two-dimensional
Laplace equation.
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In the end, the following transforming
expressions of the form (8) are obtained:

V(x,y,2)=U(x,y.2), (16)
V(x,y,Z)ZUX()C,y,Z), (17)
V(x,y,z)zUy(x,y,z), (18)
V(xayaz)=ﬁU(x>y:Z)_
z (19)
X Y
—;Ux(x,y,z)—;Uy(x,y,z),
V(x,y,2)=(2m+1)xU(x,y,z) - 20)
-r’U,(x,,2),
V(x,y,z):(2m+1)yU(x,y,z)— o
—VZUV (x,y,z),
2 2
V(x,y,z)z mr +(2m+1)z U(x,y,z)+
2 ‘ 2 (22)
+iUx(x,y,z)+£Uy(x,y,z),
z z
V(x,y,2)=yU, (x,y,2)=xU,(x,y,2), (23)

V(x,y,z)= —%U(x, y,z)+

(24)
ZU, (%,7.2),
z

x4z
+

U, (x,y,z) +

z

V(x, y,z) = —?U(x, y,z)+

X 4z (23)
+—yUx(x,y,Z)+y Uy(x,y,z),
z z
1
V(x ya ) WU()C,J’,Z), (26)
1
V(x,y,z)= e U (x».2), (@27
1
Voyz)=—m U (vr2), (28
V(x)yaz):%U(xﬂyﬁz)_
(29)

U ()

zr

U, (x.7:2),

2m+1
V(xayaz):(’;T)xU(xﬂyaz)_
1 (30)
U (50.2),
2m+1
V(x,y,z):(’;T)yU(x,y,z)—
| (3D)
_WUy(x,y,z),
2m+1)z* — mr?
V(x,y,z)= ( )2i+3 U(x,y,z)+
] zr , (32)
+WUX(X,)/,Z)+ r2m+1 Uy(x,y,z),
V(x,y, )_rz)njﬂU (x,y,z)—
X (33)
_WUy(x,y,z),
V(x,y,z) = _—z:;:” U(x,y,z)+
2 o (34)
WUX(X,)/,Z)-FZFMHI Uy(x,y,z),
V (50,2) = (1, 3,2)
s, (35)
Xy y

+z
+—U (x,y,z)+———U (x,y,z
20, (v 02)+ LU, (50.2),
where 7 =4/x’ +y2 +2°.

The variable z in the denominator typical-
ly indicates that the derivative U, with some
nonzero factor is implicitly present in formula;
because the Euler equation (3) is used to ehml—
nate the dependent derivative U, the derivative
subsequently turns into a linear combination
of functions U, U and U). As a result, some
expressions can be s1mphfjed by ehmlnatmg the
variable z in the denominator:

V(x,y,2)=U.(x,5,2),

V(x,y,z)=(2m+1)zU(x,y,z)—
—r*U, (x,y,z),

(19a)
(22a)

=zU, (x,y,z)—xU_(x,,2), (24a)

=zU, (x,y,Z)—yUz (x,y,z), (25a)
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1
V(xoyoz):WUz(xayoz)o (293)
() = 22 (12 -
| r (32a)
_WUZ (x,y,z),
V(x,y,z) = %Ux (x,y,z)—
. d (34a)
_WUZ (x,y,z),
V(x.02) = U, (x.02) -
d (35a)

Y
r2m+1 UZ (x,y,Z).

Conclusion

We have established that the Thomson
formula for 3D harmonic functions that are
Euler-homogeneous can be generalized if we
use linear algebraic form (5) including first-
order partial derivatives of the initial function
instead of purely algebraic linear expressions. We
have provided an exhaustive list of the obtained
expressions of the first order, transforming
arbitrary homogeneous 3D harmonic functions
into new 3D harmonic functions which can be
obtained without resorting to change of variables
in the arguments of the function U.

Careful checking, however, has revealed
that all the expressions obtained are in fact
transforming formulas for 3D harmonic
functions of a general form from [1], simplified
by assuming that the function U and Euler’s
differential equation (3) for homogeneous
functions are homogeneous [21, 22].

Other relations can also be obtained if we
consider linear combinations with constant
coefficients composed from the basic relations
(16)—(35), corresponding to the same degree
of homogeneity of the transformed function.
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Moreover, adding the Euler equation (3)
multiplied by an arbitrary homogeneous function
of the corresponding degree to any of the Egs.
(16)—(35), we obtain a new transformation.

For example, transformation (7) is such a
linear combination; formally speaking, it is
fundamentally different from the previously
obtained basic Egs. (16)—(35):

L[U]=(a(2m+1)xz+b(2m+1) yz +
+c(—mx2 —my’ +(m +1)zz))Ux +
+(a(2m+1))g/+b(—mx2 +(m+1)y? —m22)+
+c(2m+1)yz)U, +(a((m+1)x2 —my’ —mz’ )+
+b(2m+1)xy +c(2m+1)xz)U, =
=(2m+1)(ex+by+az)(xU, +yU, +zU, —mU )+
+mc((2m+1)xU —(x2 +y° +22)UX)+
+mb((2m+1)yU—(x2 +y° +zz)Uy)+

+ma((2m +1)XU—(X2 +y° +22)UZ).

However, while such formulas can be
considerably different (in the algebraic sense)
from the list obtained earlier, they are fully
equivalent to the basic Egs. (16)—(35) serving
as generators of new analytical expressions
for 3D homogeneous harmonic functions.
Similar problems with equivalent mathematical
expressions that are not identically equal to
each other in the algebraic sense are described,
for example, in [47—50].

The calculations given in this paper were
carried out using the Wolfram Mathematica
software [51].

This study was partially carried out within the
framework of State Task No. 075-00780-19-00 of
the Institute for Analytical Instrumentation of the
Russian Academy of Sciences.
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NUMERICAL VERIFICATION OF WEAK SOLUTIONS OF
THE CROCCO TYPICAL BOUNDARY PROBLEM USING
AN IMPLICIT SECOND ORDER DIFFERENCE SCHEME
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To verify the solution of a typical Crocco boundary problem, a numerical experiment has
been performed using an implicit second-order difference scheme. The computational exper-
iment showed uniform convergence in the 0 < x < 1 interval for the numerical approximation
of the solution to a weak solution with a small interval discrete sampling (of the order of N =
104 nodes). It was shown that a numerical solution approximated a weak solution of the typical
Crocco limit problem, except for the right end of the integration interval. The solution of the
Crocco boundary problem could be continued to the left of the point x = x; while preserving
the continuity and smoothness of the solution at this point. The point x = 1 represents the
natural upper bound of the solution domain.
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YUCNEHHAS BEPUDUKALIUA C/IABbIX PELLEHUN
TUNMUYHOU NPEAE/IbHOMU 3A[AYU KPOKKO C MOMOLbIO
HESIBHOM PABHOCTHOM CXEMbl BTOPOIO NMOPAAKA

M.P. lNempuueHko, E.B. Komo6
CaHkT-lNeTepbyprcknini NONUTEXHUYECKUI YHUBEPCUTET lMeTpa Benukoro,
CaHkT-MeTepbypr, Poccuiickas Peaepauus

HNns  Bepudukauuu pelieHus: TUMIMYHOW TipeaenbHON 3amauym  Kpokko mpoBeneH
YUCJIEHHBIN 5KCIEPUMEHT C UCITOJb30BaHUEM HESIBHOUM Pa3HOCTHOI CXeMbl BTOPOTO TOPSI/IKA.
BbrunciuTebHbIN 9KCIIEPUMEHT MOKa3ajl paBHOMEPHYIO Ha MpoMexyTke 0 < X < 1 cXoaMMOCTb
YUCJIEHHOW amnMpOKCHMAalWW PEUIeHUs] K CllaboMy pelIeHWI0 Mpu HEeOOIbIION TIOTHOCTH
MMCKpeTH3auu rnmpoMexyrtka (rmopsinka N = 10* y3noB). [TokazaHo, 4TO YMCIEHHOE pelleHue
armpoKCUMUPYET cIaboe pellieHre TUMUYHOU TpeaebHoi 3amaun Kpokko, Kpome mpaBoro
KOHIIA TIPOMEXYTKa MHTeTpupoBaHus — Touku x = 1. Pemenue npenenpHolt 3amaun Kpokko
MOXEeT OBbITh MPOJOJKEHO JieBee TOUKM X=(0 ¢ COXpaHEHUEM HEeNMpPEPbIBHOCTU W TJIAIKOCTH
penieHust B 3Toil Touke. Touka x = 1 MpeacTaBiaseT eCTECTBEHHYIO BEPXHIO TpaHUIly 00acTu
ompeaeieHust pelieHus.

Kunrouesbie caoBa: TunmyHas npeaeibHasd 3agaya Kpokko, HessBHas pa3HOCTHAs cxema, ciadboe
peleHue, roMoTONnus

Ccouika npu nutupoBannn: Iletpmuenko M.P., KoroB E.B. Yucnennas Bepudukamms ciradbbix
pelieHui TUITMYHOM MpeaeabHON 3amaun KpoKKO ¢ MOMOIIbI0O HESIBHOI Pa3HOCTHOM CXeMBbl
BToporo mnopsinka // Hayuno-texuudyeckue Begomoctu CIIOITTY. dusuko-maTreMaThdeCcKUe
Hayku. 2019. T. 12. Ne 2. C. 63—72. DOI: 10.18721/JPM.12205
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Introduction

It is known that the typical Crocco boundary
problem is stated as follows [1]:

W+ =0,D(y)=(x:0<x, <x<1);
Im(y)=(y:y,>y>0); (1)
' (%) =y(1)=0,
where y;:= y(x,)) > 0.

In the classic case of a typical boundary
problem,

y=1/2, x,= 0, y,:= »(0).

This study deals with this particular
classical case.

We can prove that two-point boundary
conditions (1) are equivalent to the Cauchy
condition:

y(0)—a=y'(0)=0.

Let @ = 0. Then y(x)=%2/3(-x)" is
the solution of a homogeneous one-point prob-
lem for the Crocco equation on the negative
semi-axis x < 0.

In hydrodynamic problems, y(x) is the di-
mensionless friction factor, x is the dimension-
less longitudinal component of velocity in the
boundary layer on a plate in plane flow in the
longitudinal direction.

Then y(0) = a is the shear stress on the
wall (Blasius constant) [2]. In seepage the-
ory, x is the dimensionless depth of seepage
flow through a scalar (homogeneous and iso-
tropic) porous medium, y is the Crocco po-
tential, defined as

y(x) = [sdx', y(1)=y'(0)=0,

where s is the longitudinal coordinate measured
along the seepage flow.

The constant y, = y(x,) in seepage problems
is proportional to seepage flow in the outflow
face [3].

Steady-state solutions for free surface seep-
age in a scalar medium are found in terms of
analytic theory of ordinary differential equa-
tions [3]. Modern results of such solutions are
given in [4—6].

The following statements are true for a typical
Crocco problem (1).

Mathematical physics
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1. The Crocco equation has two solution
branches: positive y,(x) and negative y (x). The
negative branch is defined as the solution to a
boundary problem:

2y y"+yx=0, D(y )=(x:x,<x<1),
Y(0)=y(1) =0, Im(y_)=(y_:=y,>y_>0);

with y, (x) +y_ (x) =0, Vxe (0,1).

The proof is trivial.

Below we consider only the positive branch
of the solution of the Crocco equation, i.e.,
V(x) =y, (x).

2. The solution of a typical Crocco bound-
ary problem (1) has the following properties:

Y'(x)<0, y"(x)<0;
V' (X)—=5—> -,

x—1-0

soy,=a>yx),0<x<1

To prove Statement 2, we formally reduce
the order of the Crocco equation, reformulat-
ing it as an integral equation:

2y’ =— ﬂaygo, 0<x<l.
0 V()

The integral on the right-hand side can be cal-
culated using the Bonnet mean value theorem.
We obtain:

23y’ =-1/2x" (1-0%), )

where 0 is a regular fraction, 0 < 06 <1.

Now we need only to pass to the limit for
x — 1-0, Q.E.D.

The solution of Eq. (2), such that the val-
ue of y(1) is zero, y(1) = 0, has the following
form:

12(x,0) =1/6(1-0°)(1-x). 3)

Solution (3) continuously depends on the
magnitude of the fraction 6. Its mean over 0
is the so-called weak solution of the typical
Crocco boundary problem, interpreted as the
distribution over 6 with a distribution density
y(x; 6) [7].

In view of expression (3), the weak solution
of the typical Crocco boundary problem is:

Y(x)=1/3J1-x", 4)
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and then y, = y(0) = 1/3, which is a good
rational approximation for the Blasius constant.
The exact value of the Blasius constant was
calculated in Varin’s study [8]. It can be
seen from formula (4) that the weak solution
can be continued to negative values of x
while preserving the solution smooth and
continuous at the point x = 0.

The solution of the typical Crocco
boundary problem is related to the solution
of a nonlinear integral equation:

y(x)=(1/ 2){1 < _yfz;ds -] (x;f S))S ds}, (5)

which gives the following expression for the
Blasius constant:
=y(0)=(1/2) (=s)sds.
o Y(s)

The solution of Eq. (5) can also be obtained
in the form of a Lagrange series [9]. It was
proved that the convergence radius of the La-
grange number is less than unity and the series
diverges at x — 1—0.

An alternative solution in the form of a La-
grange series is forming an iterative process:

50 =(1/ 2){I I B

k =1(1)o0,

where the subscript k& indicates the iteration
number.

The values of the Blasius constant ob-
tained during the iterative process are found
from the sequence

0 -(1/2)[ =20

We successively find the following values for
different k:

k=1:y,(x)=y, =+/1/12 =0.2887,
k=2:y,(x)y,= (1/12)(1 x),
() =(1-x) /12, 3,(0)=1/4/12;
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k=3:

()= \/—U (1- s)sds j(x S)sdsJ

ln\/§xJ3r21n\/1+x+x2 +

B ) e

-

and so on.
Accordingly, the first three iterated values of
the Blasius constant form a sequence

,(0)=1//12 =0.2887...,
7,(0)=0.2887...,
,(0) = 0.4278...,

and, on average, y(0) for the first three iterations
lies in the range

0.3299 < p(0) < 0.3344.

The iterative process leads to trivial and
lengthy calculations, which is already clear
at the third iteration. Evidently, any iterated
solution has all the basic properties of the

solution to boundary problem (1):
Vx e (0,1), Vk =1(1)oo,

Y (¥) <0, y/(x)<0,
V(X)) =~

x—1-0

The iterative process is inconvenient as
the expressions for the iterated solutions are
cumbersome and there is no proof for the
convergence of the process. Both of these
obstacles can be avoided by using the difference
approximation of boundary problem (1).

Interest in numerical solutions to the
Blasius equation appeared immediately after he
published his study in 1908 [2], due to general
disappointment in the integration method using
power series (see [8] and its preprint detailing
the history of the issue). Modern studies [10, 11,
13—21] mainly consist of attempts to improve
the convergence of predictor-corrector methods
for solving ordinary differential equations of
the boundary layer. Ref. [22] is an exception,
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developing Kaplun’s method interpreted in
terms of homotopy mappings of the integration
interval on a compact set. In the case of boundary
problem (1), the mappings are compact.

Let linear homotopy

Ft,x): (0 < £< 1) x (0 < x <1)) — (0, a)

represent the solution to boundary problem (1).

Then F0,x) represents the solution in the
neighborhood of the point x = 0, and F(1,x)
in the neighborhood of the point x = 1. For
example, for a weak solution,

F(0,x)=(1/3)(1-x*/2-x°/8),
F(1,x)=(1/3)V1-x.

A linear homotopy mapping has the form:
y(x)=F(t,x)=(1-1)F(0,x)+F (1,x) =

1-x
=(1-¢)/3(1-x*/3-x°/8 _
(1-1) ( x x )+t‘/ 3

A weak solution also represents some ho-
motopy with the parameter 6 € (0,1). Indeed,

¥ (x.0)=(1/6)(1-07)(1-x"),
¥ (x.1)=0, y* (x,0)=(1/6)(1-x*).

Finally, [12] reintroduces the method of
power expansions. However, its results coin-
cide with the data given in [8] on flat series,
as well as preprints of this study in Keldysh
Institute Preprints, published earlier.

The computational domain in the numer-
ical solution of problem (1) on the interval x
€ (0,1) consists of N segments with a constant
step h = l/N(x Jjh,j=0,1, .., N). We use a
second-order difference scheme for discretizing
Eq. (1)

e N
h Y,
Equality (6) is a discrete equivalent of the
exact equality
" X
Yy ==r—
y
This expression is linear with respect to
the component y,, and therefore if the
components y, ,, y, (where j = 1(1)) of the
vector y are known a linear system of algebraic
equations is obtarned to calculate Vi
The boundary conditions in problem (D)
take the following form upon discretization:

3y,=4y,+,
2h

If the differences in equalities (6), (7) are
denoted by

fo :3yo
X .
[i=Ya =2y, + v, +yi =, ()

Sy =Vns

then problem (6)—(8) can be written in the
form equivalent to a linear algebraic system

F(y) =0,
where F, y are vectors taking the form
F=1ff-- /I,
= [y, al”

=0, y, =0. (7

=4y +,,

The resulting nonlinear system is solved by
the Newton iterative method:

YD =yl + Apk),

where Ay® is the residual vector,

Ay = [Ap,® Ay, ®... Ay, ©]T.

It is obtained as a solution of the linearized
matrix equation with the Jacobi matrix J (y) of
order N + 1:

Jo (YA =—F ("), )
oy O(foses fy)
JF (k) ~\Jo>sINJ
"= r) (10)

It is assumed that the matrix JJy) is
well-conditioned. Then system (10) is correct
and uniquely solvable:

Ay® =-J! (y("))F(y(")).
Substituting equality (8) into Eq. (9), we
obtain, in view of equality (10), the following
expressions:
3Ay(k) 4Ay(k)+Ay(k) (k),

= -am e,

f(k) _y(k) 2y§k)+y§/3+yhz L (12)

J
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a, AV +b AP + e Ay =0 (13)

J-1 J T

5 X.
a;=1,b;=-2—yh (y(kj) )2 ¢ =1, (14

j

Ay ==y

Evidently, system of equations (11)—(14)
contains three unknowns in each of the equa-
tions and is similar to a tridiagonal system. The
first and the last equations in such systems usu-
ally contain only two unknowns. However, the
first equation in this system contains three un-
knowns: Ay, Ay,®, Ay,®.

To eliminate the unknown Ay ®, Eq. (11)
can be represented as follows:

] as)

Next, substituting expressions (13) and
(14) into Eq. (15) with j = 1, we obtain the
expression:

M =LA -l

bay® +ean =— 1), (16)
where X
b =b+4/3a,
¢, =¢, —1/3a, (17)

j?l(k) _ fl(k) _1/3f0(k).

The matrix of system of equations (11),
(15), (16) is tridiagonal. This system can be
solved by sweeping with respect to the indices j:

AW =p,—q,00%). (18)

It follows from equality (16) that

p=—f"7b,q =¢1b,. (19)
It follows from Egs. (15), (19) that
(k) (k)
alp._,—q.. A )+b Ay +
/( J-1 J1T ) JT (20)

(k) L (0
+e, Ay + f; =0.

In view of the boundary condition y, = 0,
we obtain the following equalities for all &:

W =) =o0.

66

>

After calculating 12 and g, for j =1, 2,...,
N — 1 using expressions (18) and (19), we can
calculate Ay® forj= N—1, N— 2, ..., 0 using
expression (’ 18).

Calculations continue until a predetermined
accuracy ¢ is reached:

.

where ||*|| denotes, for example, sup that is the
norm of the residual vector or any equivalent
norm of the matrix.

Fig. 1 shows the numerical solution of prob-
lem (4), (5) on the interval x ¢ [0, 1] fory =1
with a different number of steps N for ¢ = 107¢.
The fiber bundle of numerical solutions is small
on the scale of the figure even when changing
the number N of the nodes into which the in-
tegration interval 0 < x < 1 is divided by 4(!)
orders, 102< N < 10°. The following expression
is considered as the initial approximation:

Yo =(1/2) (1 = x>

The bold solid line in Fig. 1 corresponds to
a weak solution (4) with the Blasius constant
of 0.4714 (the exact value is 0.4696).

Table 1 lists the Blasius constants y(0),
calculated with y = 1 and different numbers
of steps N, and the values obtained by other
authors [12—16].

It follows from the data given in Table
that the first three exact significant digits of
the Blasius constant can be calculated with
a small number of nodes, with N > 10,000.
The derivative of the numerical solution at
the right endpoint of the integration interval,
i.e., at x =1 — 0, is bounded from below and
no numerical solution curve has a vertical
tangent (see Fig. 1). It is to be expected that
the values of numerical derivatives should
be bounded, since one-sided differences are
used.

To extend the solution of problem (1) to
the domain x < 0, a second-order difference
scheme (6) is used with the following
boundary conditions:

y(0)-7,='(0)=0, (1)

where j, is the value of y(0) from the solution
obtained on the interval x ¢ [0, 1], i.e., the
Blasius constant of the numerical solution.
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Fig. 1. Numerical solution of Crocco problem on interval x ¢ [0, 1] with y = 1, with a different
number of steps N: 100, 1000, 10 000, 100 000, 10°¢ (fiber bundle of lines 7);
line 2 is the initial approximation y, = 1/2, line 3 is weak solution (4)
with the Blasius constant y, = 0.4714

Table
Calculated values of Blasius constant y(0)
with varying parameters and number of partitions
of integration interval

Number of Value of y(0)
Source Steps N
p =05 y=10
100 0.339566 0.472865
. 1000 0.335198 0.471984
This 10,000 0.332051 0.470430
paper
100,000 0.332053 0.469855
1,000,000 0.332053 0.469676
[13] 0.332057 0.469600
[14] - 0.3320573362 | 0.4695999889
[15] 0.332057 0.469599
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Upon discretization, boundary conditions
(21) take the form

Yo = Yo :(yo_yf1)/h:03

and it follows then that y, = 5, = y_,.
Therefore,

yj :2yj+] _yj+2 _yhzxjﬂ /yj+]’
=223, -M,

where M is the number of calculation steps
in the region x < 0 (a natural number).

Fig. 2 shows a positive numerical solution of
boundary problem (1), extended to the negative
semi-axis. The extended solution is preserved
continuous and smooth at the point of contact
x=—0.

Extension of the positive and negative
branches of the weak solution to the negative
semi-axis has the following form:

y(x):iam, a=1/(3\/§)

Evidently, if —x >> 1, a weak solution has
an order that coincides with the order of the
exact solution of boundary problem (1):

y(x) = ()"

>

Conclusions

The study we have carried out allows us to
draw the following conclusions.

1. The weak solution of the Crocco problem
has all the properties of an exact solution: there
is a zero derivative at x = 0, an unbounded de-
rivative at x = 1, the solution can be extended
to the negative semi-axis x < 0 while preserving
continuity and smoothness at x = 0.

2. The values of the Blasius constant that we
have obtained for the weak solution were: y(0)
= 1/3 with y = 1/2 and y (0) = 0.4714 with vy
= 1; the approximate value of the Blasius con-
stant differs from the exact value

(1(0) = 0.332059, y = 1/2 and
1(0) = 0.4696, y = 1)

by less than 0.4%.

3. The numerical experiment revealed that
the numerical approximation of the solution
uniformly converges on the interval 0 < x < 1
to a weak solution with a small discretization
of the interval (of the order of N = 10* nodes).

4. The derivative of the numerical solution
is bounded from below at the right endpoint of
the integration interval, x =1 — 0, and the nu-
merical solution curve does not have a vertical
tangent. It is to be expected that the values of
numerical derivatives should be bounded, since
one-sided differences are used.

\

-1.0 -0.8 -0.6 -0.4 -0.2

X

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2. Solution of Crocco problem on interval x ¢ [—1, 1] with y =1
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Introduction

There is growing interest in synthesis
and study of nanoparticles and nanoparticle
suspensions. While existing methods such as
electron and atomic force microscopy have
been recognized as effective, they do not allow
to monitor changes in size and dynamics of
particle aggregation in real time [1, 2]. Besides,
these methods have severe limitations in studies
of biological suspensions.

Methods based on dynamic light scattering,
including laser correlation spectroscopy
(LCS) [1, 3], have proved their efficiency
in this situation. LCS is widely used in
synthesis of nanoparticles and biomolecules
for rapid analysis of particle size distributions.
Unfortunately, commercially available laser
correlation spectrometers cannot reliably
analyze multicomponent polydisperse solutions
with sufficient accuracy [4]. Furthermore, all
sizes are calculated under the assumption that
the scattering particles are spherical, while in
fact nanoparticles of other shapes are often
found, and biomolecules frequently form
non-spherical clusters [5, 6]. In view of these
limitations, it isimportant to improve the existing
method of laser correlation spectroscopy and
the data processing algorithms for increasing
the accuracy with which particle sizes can be
measured in polydisperse suspensions and for
determining the longitudinal and transverse
dimensions of non-spherical particles.

This paper describes the hardware and
software system we have developed based on

laser correlation spectroscopy. This system
makes it possible to solve the problems posed,
obtaining the distributions of sizes and their
evolution trends for non-spherical particles in
polydisperse suspensions.

Implementation scheme of
modified LCS method

The LCS method is based on detecting and
analyzing the light scattered by particles in
Brownian motion in liquid. The scattered light
forms a dynamic speckle pattern in the obser-
vation plane [7]. The intensity of this pattern at
a point varies with time due to motion of scat-
tering particles in liquid. Monitoring the inten-
sity variation of the speckle pattern in a small
region, we can assess the motion of particles
and their sizes [8]. In this case, the motion of
particles is characterized by the diffusion coef-
ficient.

The scheme of the hardware and soft-
ware system developed is shown in Fig. 1. A
single-mode laser module / with 5 mW con-
tinuous-wave output power and a wavelength
of 650 nm was chosen as the radiation source.
Power was supplied to the module through a
rechargeable battery, providing highly stable
lasing output. An aspheric short-focus lens 3
is used, allowing to focus the beam to a di-
ameter of 500 um, with a caustic length in
solution equal to 5 mm. Scattered radiation
can be detected in a range of angles from 5 to
175°. The aperture and multimode fiber serve
to limit the region from which radiation is

Fig. 1. Scheme of laser correlation spectrometer:
laser I, screen 2 with aperture, focusing lens 3, polarizer 4,
cell 5 with test solution, output rotary analyzing polarizer 6,
collimating system 7, input connector & of single-mode optical fiber,
photomultiplier 9, ADC module 70,
computer /7 with processing software
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scattered (setting the effective scattering vol-
ume). The effective scattering length, calcula-
ted for a scattering angle of 90°, is 4.8 mm. The
signal from photomultiplier 9 is digitized by
ADC module /0 at frequencies of 50 kHz—50
MHz and processed with the software.

The hardware components could be fit in a
small package with the given modification of the
LCS method (the dimensions were 25 x 15 x 5
cm), allowing to construct a portable laser cor-
relation spectrometer (weighing up to 2 kg) [9].

Polarizing plates 4 were added to the scheme
for analyzing non-spherical nanoparticles [10].

The scattered radiation was detected in two
orthogonal positions of the analyzing polarizer,
so that the translational and rotational diffusion
coefficients could be calculated separately. The
longitudinal and transverse dimensions of non-
spherical particles were estimated by both of
these components.

Analysis of nanoparticle sizes
using autocorrelation functions

The signal recorded using the given scheme
is a pseudo-random dependence of the intensi-
ty of scattered radiation on time. The frequen-
cy of this signal depends on intensity fluctua-
tions in the light scattered in the observation
plane, which depend, in turn, on the coeffi-
cient of Brownian diffusion of particles in the
solution. Fourier transforms can be used to
find the characteristic frequencies but this ap-
proach does not yield accurate results because
signals from several particles are recorded si-
multaneously and noise is generated. As a rule,
time-domain rather than frequency-domain
representation of the signal spectrum is used in
such cases, i.e., the autocorrelation function is
calculated.

Let us consider the diffusion of particles
in solution in more detail. Brownian motion
is a random process, so when a cell with the
solution is illuminated with a laser beam, the
number of scattering particles in the measuring
volume is random, as is the intensity of the
scattered light.

The scattering signal is processed in LCS by
calculating the autocorrelation function of the
signal:

GV (V) =(Es()Eg(1+1)), (1

where E (7) is the light field in the observed re-
gion; G'V(7) is called the autocorrelation func-
tion of the first kind; t is the correlation time.

Quadratic detectors (photomultipliers) are
typically used in real experiments; they regis-
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ter fluctuations of scattered radiation intensity
rather than the field. In this case, an autocor-
relation function of the second kind is calcula-
ted, taking the following form:

G (1) =(E; (D Ey(DE(t+ DE(t+7)). (2)

If the scattered light is a stationary Gaussian
random process, the autocorrelation function
of the second kind is connected to the auto-
correlation function of the first kind by the
Siegert relation [11]:

GO (0)=|c" ()| +1. 3)

This relation allows to make a transition from the
measured function G\?(t) to the function G\"(t).
The autocorrelation function for identical spher-
ical diffusers whose positions are not correlated
can be rewritten in the following form [11]:

G (1) = S(q.d )" T e ()

In this equation, S(q,d) is the amplitude of the
scattered radiation; q is the scattering vector
whose modulus is calculated as follows:

4nn, . (0
la|= sin| = . 5)
0

This expression is further simplified for free
and isotropic diffusion:

GV (1) = S(q,d)(e e ™. (6)

Here D, is the translational diffusion coeffi-
cient, which, according to the Stokes—Einstein
formula, is given as follows [11]:

D, =2k,T /6mnd, (7)

where n, Pas, is the viscosity of the liquid; &,
J/K, is the Boltzmann constant; 7, K, is the
temperature; d, m, is the hydrodynamic diam-
eter of the diffusers.

The above formulas are sufficient for
calculating the diffusion coefficients and the
size of molecules in equilibrium. Additionally,
agglomerations of biological molecules or metals
can be monitored, allowing to qualitatively
characterize the activity of various molecules,
assessing the composition of the solution.

This theory is only valid for spherical
scatterers and in the absence of polarizability
anisotropy of radiation. Rotational diffusion
also has to be taken into account for more
detailed study. If we abandon the spherical
approximation and assume that the amplitudes
of the scattered light field depend on particle
orientation in space, the expression for the
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autocorrelation function for objects with
rotational symmetry (cylinders, ellipsoids) is
rewritten as follows [10, 12]:

GY(v)=S8,(q,d,,d,)e " +

2
+S2 (q’ dl , d2 )e—(q Dy +6Dg)t ,

where S§,(q,d), S8/(q,d) are the constant and
the variable amplitude of scattered radiation,
respectively, the latter depending on particle
rotation; d,, d, are arbitrary values of diameter
and length of particles, D, is the translational
diffusion coefficient.

The first term in this expression is respon-
sible for ordinary translational diffusion, the
second usually depends on rotational diffusion.

Angular dependences of S (¢,d) and S,(g,d)
suggest that only translational diffusion makes
a significant contribution to the scattering sig-
nal at small angles (in our case, 8 < 60°) [12].
As the viewing angle increases, the contribu-
tion of rotational motion increases as well, but
angular dependences of scattering should be
measured to separate translational from rota-
tional motion.

In case of polarizability anisotropy of the
scatterers (or in case of non-spherical particles),
the autocorrelation function of the depolarized
scattering component can also be measured:

®)

G(l)

Dep

(1) = Sp,, (@, d)e TP (9)

Evidently, the component responsible solely
for translational motion is absent, which makes
it possible to avoid measuring the angular de-
pendences and limit measurement of polarized
and depolarized components at small (in the
range of 20—50°) angles.

The diffusion coefficients depend on the
shape of the diffuser. The diffusion coefficients
for ellipsoids of revolution, which are the main
form of nanoparticles observed in experiments,
can be written as follows [12]:

k. T
D.=—8 _F(d ,d
T 3‘[‘[ d ( a’ b)’

a

2
2—[dbj F(,d,)-1
k.T d,
B
Dy = PR 2 >
md, - ﬂ
da

F(d,.d,)=

(10)

where d , d, are the semi-axes of the ellipsoids.

Based on measuring the translational
and rotational diffusion coefficients, we can
separately calculate the sizes of non-spherical
particles.

Thus, the task of determining the sizes
of nanoparticles consists in constructing the
autocorrelation function of the scattering
signal, solving the inverse ill-posed problem to
find the diffusion coefficients and calculating
particle sizes by Eq. (7) or (10).

Methods for solvin
the inverse LCS problem

As already noted, the problem of
approximating experimental data is simple
for the given case of light scattering by
monodisperse spherical particles. However, it
is more difficult to interpret the experimental
data if the samples are polydisperse. Only two or
three parameters of the polydisperse distribution
can be obtained for achievable measurement
accuracy: the average particle size, the width of
the distribution, and its asymmetry.

The form of the correlation curve of the
field function, which is an exponential function
in case of monodisperse spheres, i.c.,

g (@) = e

(where I' = D,g%), changes for polydisperse parti-
cles and is generally written as a superposition of
exponential functions:

| g (‘c)| - TF (T)e™ar,
0

where F(T') is the contribution to total intensis
ty from the radiation component scattered by
particles of the same size.

Eq. (11) is solved by finding a set of diffu-
sion coefficients for each particle size. The ex-
pression for the function contains experimental
errors, which leads to a systematic error in the
desired distribution F(T).

(11
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There are many methods for finding solu-
tions to equations of type (11) [13]. These
methods can be divided into several main cate-
gories: statistical, variational, iterative and pro-
jective. The specific method selected for a par-
ticular task of LCS depends on its advantages
and disadvantages for each case.

Projective methods. These methods are used
for increasing the stability of the problem and
are based on projection of an unstable func-
tional on a compact. However, it is too difficult
to define a compact for solving the right-hand
side of the equation in real problems. So pro-
jective methods are commonly used to apply
a priori limitations to the desired solution. A
method that can be used for integral equations
is the Fourier transform. If we know the right-
hand side of the equation only approximately,
then the Fourier transform using the filter func-
tion can suppress the effects of high frequency.

Statistical methods. These methods are
based on a priori statistical information about
the properties of the matrix represented as an
approximate integral operator. The discrete
equivalent of integral equations is taken in
these methods:

Ax + &= y.

A common method in industrial operation
is the method of cumulants [14]. It is quick and
easy, so this method is described in the inter-
national standard ISO 13321:1996. However,
only the average diffusion coefficient and its
moments can be found by this method without
a priori information. What is more, the meth-
od of cumulants is verifiable with a unimodal
distribution, yielding distorted results in case of
polydisperse solutions [9].

The distribution of decay rates F(I') is found
from the condition that FI)dI is the fraction
of the total scattering intensity due to molecules
whose D,q” values lie in the interval between T,
I +dl

[F(r)dr=1.

Cumulants K (I') of the distribution F(I') were
calculated by the experimental data in [15]
based on Koppel’s approach. The first cumu-
lant (m = 1) gives the “Z-average” value of
the diffusion coefficient, the second (m = 2)
characterizes the width of the distribution, the
third (m = 3) characterizes the asymmetry, etc.
Cumulants are also used as a sensitive method
for finding deviations from monodispersity.
This method is still the most popular in
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commercial production, but it does not yield ac-
curate measurement results when the expected
particle sizes are unknown. Besides, commercial
spectrometers often produce incorrect results for
polydisperse multicomponent mixtures.

Bayesian methods use a posteriori probabil-
ity density as a function of uncertainty P(x|y)
for the solution vector x and the experimental
data y. This method is very effective and can
provide the required solution with any back-
ground noise in the matrix and on the right-
hand side of the equation. The only problem
is that the most complete a priori information
about the desired solution has to be obtained to
apply the method, which is currently impossi-
ble in experiments with biological fluids.

Iterative methods. The central idea behind
these methods is to formulate an iterative
scheme converging to an exact solution if § =
0 on the right-hand side of the equation or
there are no errors in the operator, or if § #
0 when a divergent iterative process is inter-
rupted for a number of iterations. Nonlinear
optimization (the Levenberg—Marquart meth-
od) can be used for solving the inverse problem
in polydisperse solutions. Unfortunately, this
method requires accurate a priori information
about the form and number of components in
the distribution, so it is not particularly useful
in actual processing.

The non-negative least squares method is also
iterative. It is useful as part of other algorithms
but the data it yields may be too fragmented
[15]. The simplest and most effective of the
iterative methods is the Friedman method [16]
allowing to take into account almost any a
priori information about the required solution.
On the other hand, this method’s robustness
against noise in the original data is poor and,
besides, it is not quite suitable for solving
equations with an exponential kernel.

Variational methods. Substantial progress in
solving ill-posed problems was made through
Tikhonov’s general theory of regularization
[17]. The method consists in finding a
solution not in the class of all integrable
functions but in a narrower class that satisfies
some additional conditions. Until recently,
CONTIN was one of the most popular
methods. However, this method is too specific
for the regularization parameter and does
not allow for narrow peaks to be resolved.
We compared Tikhonov’s regularization and
CONTIN in our previous paper [4].

Tikhonov’s regularization stabilizes the de-
viations of the theoretical curve from the ex-
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Table 1

Comparison of benefits and drawbacks of different methods for solving
inverse ill-posed problems

(e.g., Bayesian)

Methods Benefits Drawbacks
1. Oscillations present
Projection 1. No need for a priori information. 2. Filtering function has to be selected
(e.g., Fourier 2. No need for least-squares 3. Adjacent lines with different
filtering) fitting procedures intensities are difficult to reconstruct
4. Negative values present in solution
1. Yield necessary solution with any
Statistical background noise Greatest amount of a priori

2. Default level can be set individually for

information needed

each matrix element

1. Large number of iterations

Iterati . .. .
(eera ll\greie dman Virtually any a priori information can be | 2. Values of expected results
m'jﬁo d) taken into account. have to be set
3. Possible errors accumulated
y . . 1. Regularizati t
Variational 1. Cross-functionality cgliarization parametet
. , .. .. ) ) has to be chosen

(e.g., Tikhonov’s | 2. Minimum a priori information required . .

. 2. Narrow lines are difficult
method) 3. Smooth solution

to reconstruct

perimental one by means of an additional com-
posite stabilizing functional Q(x). The main
advantage is cross-functionality of the method,
as it uses a minimum of a priori information.
Another variational method is truncated singu-
lar-value decomposition [18]. Its algorithm is
close to Tikhonov’s method, but it can be used
to reduce rounding errors.

Comparison of the methods. The above
methods are summarized and compared in Table
1. As evident from the data, variational methods
are optimal for use in LCS problems with no a
priori information about the scattering particles.
The existing drawbacks of these methods can be
avoided by introducing some modifications in
the common algorithms and conducting model
experiments to refine the regularization parameter.

Algorithm developed for solving
inverse problem of LCS

As noted above, if suspended particles of
different sizes are found in the liquid, their
sizes can be determined by solving the inverse
LCS problem (11), that is, reconstructing the
function K(T') from the known function g'(1).
This inverse problem is ill-posed in the sense
that the small error of the experimental data
produces a large error in the calculated depen-

dence KT).

Because the dependence F(I') is measured
in a discrete and finite set of points, and be-
cause a numerical solution has to be obtained
for (11), the problem is reduced to a system of
equations that is written in matrix form as

Af=g (12)

Certain a priori conditions which differ de-
pending on the problem solved are imposed
on the solution of this system if regularization
is used. The conditions that the solution be
non-negative (bounded in a compact set M
> (0) and smooth (i.e., without outliers) are
commonly accepted.

According to Tikhonov’s method, an ap-
proximate solution of system of linear algebraic
equations (12), resistant to small changes in the
right-hand side, is found by replacing system
(12) with the minimization problem with the
added regularizing term:

| 4f —&| + 0 x(f) — min, (13)

where o is the smoothing parameter (o > 0);
Q(f) is the stabilizing functional that is selected
separately for each problem; § — g.
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The stabilizing functional is chosen in laser
correlation spectroscopy to reduce the jumps
of the zero derivative for obtaining smooth
solutions:

) =

Minimization of this kind stabilizes the solution
of the system, improving its conditioning; the
agreement between the real and desired solu-
tions is also increased. However, this choice
often leads to excessive smoothing of solutions;
if the solution is a combination of several nar-
row peaks, it can be difficult to separate them.

The regularizing parameter o is selected
based on the input data, which is to say that a
too high o produces “smoothed” solutions, and
a too low value makes the problem unstable.

The starting value of the parameter o in our
algorithm was chosen to be 1% of the maxi-
mum diagonal element of the matrix A. After
the first iteration of solving system (13), the
residual ||Af — g|]* was calculated, the parameter
a was reduced by 90% of the initial value and
the system was solved again. After the second
iteration, the residual was again calculated and
compared with the residual obtained at pre-
vious iteration. If they differed by more than
10%, the parameter o was again reduced by
90%, and the next iteration started. Since the
proposed algorithm uses comparison of residu-
als, there is no need to set the noise level in the
experiment, which is often not known exactly
[19].

System of equations (13) is solved by the
modernized Gauss method with the eigenval-
ues of the matrix shifted towards higher values
because a regularizing term is introduced; this
makes the solution more robust to noise.

After the solution cycle ends and the fi-
nal distribution f is obtained, the solution is
checked for negative components. Two differ-
ent methods for eliminating negative solutions
are included in the software.

In the first case, with j; < 0, we take f =0
for all extreme values of jin thlS Gaussian and
exclude these points from further calculations.
After that, we return to setting the initial value
of a.

Values of f exceeding 60% of the minimum,
rather than extreme points, are excluded from
the calculations in the second method. This
calculation is faster, but yields less accurate
results, therefore it is suitable for preliminary
analysis of particle size distributions. System
(13) is recalculated until all negative compo-
nents are completely eliminated.
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Setting a fairly high initial value of o could
produce unnecessarily smoothed solutions,
however, the regularization algorithm elimi-
nates positive values in addition to discarding
negative values. Extreme points in the Gauss-
ian are excluded from the solution one by one
until a given width is reached, which makes
it possible to calculate the sizes in highly
polydisperse mixtures with resolutions up to
0.5 nm.

There is constant background illumination
in addition to the variable component in real
experiments. As a result, the autocorrelation
function does not drop to zero at infinity, but
rests on a pedestal whose height is proportion-
al to the intensity of the background noise. A
cycle removing the constant component was
added to the program’s algorithm to eliminate
background noise.

The algorithm can be described as follows:

Step 1. Set initial (sufficiently high) value of a.

Step 2. Solve system of equations (13) and
find the solution f.

Step 3. Calculate the residual

|t -

(decrease o by 90% after the first iteration and
return to Step 1).
Step 4. Compare the residuals by the inequality
[t gl <o.1-|af -g[:
if it is satisfied, reduce a by 90% and return to
Step 1, if not, go to Step 5.

Step 5. Check for negative components of the
solution f. If there are f; <0, assume that f 0and
return to step 1. The correspondmg component
is excluded from further calculations.

Step 6. If there are no f, < 0, check the
number of distribution points # > N (set prior
to solution); if yes, then set /. = 0 and return
to Step 1; if no, end the calculation.

The domain of expected solutions and the
desired accuracy should be set before start to
speed up the calculations. Solution in the entire
range of permissible values is also possible but
it takes much longer because there is a cubic
relationship between the time to solve the
problem by the Gauss method and the number
of points. The method for eliminating negative
values (as described above) and the number of
points left at the peak (more are taken if there
are weak components) should be also chosen.
The correlations obtained from experimental
data can be averaged for greater accuracy.
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Verification of the method

We tested the developed hardware and
software system using computer simulation
and experiments with objects of known
diameters, polydisperse biological suspensions
and suspensions containing non-spherical
clusters of particles.

The first stage of testing involved analyzing
model signals with different noise levels
(from 0 to 10% of the useful signal) and
with a different number of components. The
results indicate that the accuracy with which
the center of the Gaussian is reconstructed
for unimodal distributions is close to 100%
for any values of the noise level. The noise
value of 10% for model signals corresponds
to a signal-to-noise ratio of 21.6 dB in actual
experiments (for a single measurement).
To increase the signal-to-noise ratio, we
recorded from 50 to 100 signals whose

autocorrelation functions were averaged.
This considerably reduced the contribution
of the noise component to the useful signal.

Since the main purpose of the hardware
and software system was to study the
dynamics of cluster formation in polydisperse
biological fluids, we found it interesting to
calculate the accuracy with which model
signals  containing information about
polydisperse particles with sizes from 1 to
100 nm are reconstructed. {Fig. 2 shows the
reconstructed size distributions (calculation)
for a signal with the given particle sizes, nm:
4, 10 and 21 (model).

Evidently, relative concentrations are
not always reconstructed correctly but the
position of the central peak and its width is
calculated with an error not exceeding 5.7%.

The actual experiments were carried out
using a quasi-monodisperse suspension of

—r T T T T T

14 16 18 20 22 d, nm

Fig. 2. Reconstructed distributions of model concentrations for particles with sizes of 4, 10 and 21 nm
Black columns correspond to calculated values, gray columns to model values

N, a.u. ,

0.05+

0.00

T T T
2 3 5

6

nm

Fig. 3. Calculated particle size distribution in aqueous suspension
of albumin protein at neutral pH
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egg albumin protein in water. According to
theoretical data, the albumin molecule has a
diameter d = 6 nm in equilibrium (at neutral
pH) [20]. Fig. 3 shows the size distribution
of albumin in an aqueous suspension. It can
be seen that the central position of the peak
corresponds to the theoretical value, and the
shape is described by the Gaussian curve.

To confirm that it was possible to describe
the dynamics of particle aggregation in
solutions, we measured the sizes of albumin
protein aggregates in solutions with a varying
pH. Albumin tends to aggregate forming large
clusters near the isoelectric point (pH = 4.8)
[21]. As the pH of the solution decreases
further, protein aggregates disintegrate and
the protein denatures [22]. The pH value in
our experiments varied from 8.0 to 1.6 [23].
The calculated average sizes of aggregates are
given in Table 2.

Table 2

Average particle sizes
in albumin solutions
with different pH values

pH R, nm
8.0 6.00.4+
7.0 6.00.4+
6.0 9.00.5%
5.0 29.02.3%
4.2 30.02.4+
3.6 20.02.2+
2.5 16.01.8+
1.6 5.00.4%

As evident from the data in Table 2, when
the pH of the solution changes from acidic
to alkaline, albumin aggregation is observed
near the isoelectric point, followed by de-
aggregation with further increase in acidity.
Thus, the proposed hardware and software
system allows not only to detect particle siz-
es the size of particles, but also to observe
their variation.

To confirm that this method can be ap-
plied to studying the composition of real
biological fluids, the distribution of particle
size in serum was measured in [24]. The re-
sult is shown in Fig. 4.

It is known that the sizes of particles in
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serum are different for different types of pro-
teins. For example, albumin and amino acids
have particle sizes from 1 to 10 nm, globu-
lins from 11 to 30 nm; high-density lipopro-
teins and low-molecular circulating immune
complexes have sizes from 31 to 70 nm;
high-molecular circulating immune com-
plexes have sizes greater than 150 nm [25].

Thus, we can divide the obtained size dis-
tribution into separate groups of proteins,
analyzing their relative concentrations and
tracing the dynamics of cluster formation
in case of certain effects, and determine
some important diagnostic parameters [26,
27]. Since the sizes of proteins in circulating
immune complexes are drastically different
from the sizes of other components, we can
draw certain conclusions about the state of
human immune system in terms of the size
distribution and relative concentration of
circulating immune complexes [24].

All of the results given above were ob-
tained assuming that the scattering particles
were approximately spherical. We used a
solution of the magnetic fluid Fe O, to as-
sess non-spherical particles. Magnetic fluid
in equilibrium consists of an aqueous sus-
pension of particles with diameters of about
10 nm [28]; however, it was found that mag-
netic particles lose equilibrium upon dilu-
tion, forming clusters of elongated ellipsoidal
shape. The magnetic fluid in our experiments
was diluted to a concentration of 0.15 mg/ml
and tested using the proposed hardware and
software system.

The translational and rotational diffusion
coefficients for the agglomerates of magnet-
ic particles and for single nanoparticles were
calculated using the obtained values of the
exponents G for polarized and depolarized
components of scattered light. The diameters
of the ellipsoids in two orthogonal sections
d, and d were calculated by Egs. (10). We
ultimately concluded that the nanoparticles
were non-spherical judging from the calcu-
lated aspect ratio ¢ = d,/d_(Table 3). The
obtained data show that single nanoparticles
predominantly have shapes close to spheri-
cal; this is confirmed by the results of scan-
ning electron microscopy [29], while their
aggregates have more elongated ellipsoidal
shapes. Similar data were also obtained us-
ing other methods but the exact dimensions
were not calculated. The size ranges given
in Table 3 indicate that the given magnetic
fluid is polydisperse and describe the sizes
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0.03

32 64 128

d, nm

Fig. 4. Experimentally obtained particle size distribution in blood serum

and shapes of the clusters forming, which
complicates analysis related to determining
the shapes of nanoparticles. At the same
time, the obtained result indicates that the
classical spherical approximation cannot be
applied to study of aggregates in magnetic
fluids.

Table 3

Calculated sizes
of magnetic particles and their aggregates

Value
Parameter Aggregates pgiE%iZS
D_, (um)?/s 2.8-3.5 58-80
D, s 700-1060 (4-6)-10°
d ,nm 73-94 4.1-5.0
d,, nm 48-70 3.5-4.7
€ 0.50-0.96 0.85-1.00

Notation: d,, d, are the diameters of ellipsoids
in two orthogonal sections, D, is the translational
diffusion coefficient; D, is the rotational diffusion

coefficient; e = d,/d,

Conclusion

We have introduced a modified method of
laser correlation spectroscopy and a hardware
and software system developed based on this
method, making it possible to detect the sizes
of individual molecules and nanoparticles, as
well as the dynamics of their clusterization in
liqguid media, including in blood serum [30].
The algorithm for solving the inverse problem of
laser correlation spectroscopy described in this
paper allows to calculate the sizes of polydisperse
particles with an error not exceeding 6%. The
modification proposed for the scheme of the laser
correlation spectrometer and the approaches used
to analyze the experimental data made it possible
to determine the longitudinal and transverse
dimensions of non-spherical nanoparticles in
polydisperse solutions for the first time ever.

Testing the developed hardware and software
system, we have proved that the accuracy with
which dimensions are measured is not inferior
to the commercially available spectrometers
(Zetasizer Nano ZS and Photocor) for single-
component solutions [4] and is considerably better
that the known equivalents for multicomponent
solutions.

The study was financially supported by the

Innovation Promotion Fund (contract no.
13463GU/2018 of 20/07/2018).
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This article provides a brief overview of the existing methods and approaches to analyzing the
dendritic spines morphology playing an important role in the functioning of synaptic plasticity
and memory formation mechanisms. Both various mathematical algorithms that classify spines
according to their shape (thin, mushroom and stubby) and emerging alternative approaches have
been considered. The reported scientific results point to uniform distribution of the main mor-
phological parameters of dendritic spines; a number of authors cast some doubt on the often used
division of spines into types and argue in favor of the existence of a shape continuum. Relying
on this, a new approach to an analysis of dendritic spines morphology and to data presentation
was advanced. It combines classification with the study of the distribution of dendritic spines by
key morphological parameters.
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Introduction

A synapse is commonly understood as
the zone of specialized contact between two
neurons, serving to transmit information from
cell to cell. An intrinsic property of neurons
is that they can form synaptic connections,
transmitting signals through them by means
of electrical impulses that trigger the release
of neurotransmitters. Most synapses form
between the axonal bouton and the dendritic
spine, which is a specialized protrusion from
the dendritic membrane.

Dendritic spines come in a variety of shapes
and sizes, differing greatly across different brain
areas, cell types, and animal species [1]. The
dendritic spine is an active element of synaptic
transmission, capable of functional and
morphological rearrangements in response to
changes in the incoming signal. Synapses can
modulate the efficiency of information transfer;
for this reason, they are believed to serve as sites
for memory formation and storage, initiating
memory consolidation through mechanisms
of potentiation and depression of synaptic
activity [2—5]. Detailed analysis of synaptic
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morphology, reflecting the functional state of
neurons, is an important task for neurobiology.

Dendritic spines are traditionally grouped
into four large classes according to their
morphological features: mushroom, thin,
stubby and filopodia (Fig. 1).

Mushroom spines have a large head and a
small neck, are relatively stable, form strong
synaptic connections and supposedly act as
memory storage sites [3, 6].

Thin spines have a small head and a long
narrow neck, are more dynamic and are
believed to be “learning spines”, responsible
for forming new memories [3].

Stubby spines typically do not have a
neck. They are known to be the predominant
type in early stages of postnatal development
but are also still found in small amounts in
adulthood, where they are likely formed due to
disappearance of mushroom spines [7].

Filopodia are long, thin spines without a
clear head, commonly observed in developing
neurons. These spines may also be found in
mature neurons, but under specific conditions,
for example, induction of plasticity after

1

(N b

e

4 | - i
e
Fig. 1. Morphology of dendritic spines: micrograph of hippocampal neuron
in vitro (confocal microscopy, x60) (a);
schematic representations of main types of dendritic spines
with key morphological parameters (b).
Types of spines: thin (/), mushroom (2), stubby (3), filopodia (4);

L, L, are the lengths of the spine and its neck, respectively;
d, is the head width; H and w are the height and width of the base of the stubby spine
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different types of brain injury [8]. Compared
to other types of dendritic spines, filopodia
are very mobile and flexible structures with a
short lifetime. Electron micrographs show that
filopodia mostly lack postsynaptic density and
the apposing axon terminal contains only a
few synaptic vesicles. Because of this, it was
proposed to exclude filopodia from spine
counts used to estimate synaptic density [9].

The morphology of the dendritic spine
corresponds to its functional role and
developmental stage at a given time, and the
changes in its shape and size reflect changes
in the activity of the given synaptic connection
or in the environment surrounding the neuron
and physiological processes in the neuron.

Various psychiatric and neurodegenerative
diseases, such as Alzheimer’s disease (AD) [10,
11], Parkinson’s disease [12], Huntington’s
disease [13], schizophrenia [14], autism [15],
depression [16], etc., are characterized by
changes in the density and shape of dendritic
spines of neurons in brain areas affected by
these diseases. For example, it is believed that
Huntington’s chorea stems from dysfunction
of the corticostriatal pathway [17]. Progressive
memory loss in Alzheimer’s disease is associated
with a decrease in the number of mushroom
spines in brain areas involved in memory
formation, such as the hippocampus and the
cortex [18].

Notably, synaptic degeneration is the initial
stage of irreversible changes in the affected
neuron, followed by atrophy of neurites and
subsequent cell death. A recent study found
that the number of mushroom and thin
spines in pyramidal neurons of the prefrontal
cortex was significantly lower in patients with
Alzheimer-type dementia than in cognitively
normal controls with AD pathology [19]. It
was suggested that such spine morphology
helps prevent the onset of dementia, despite
the presence of characteristic AD pathology
in the brain. These data are another
argument supporting the position that using
pharmacological agents to restore or stabilize
dendritic spines in AD patients can prevent
memory loss [18, 20—22].

Analysis of the number and shape of
dendritic spines can provide insights into
molecular mechanisms and signaling pathways
involved in formation and functioning of
synapses, the functional state of neurons, and
mechanisms of neurodegenerative diseases,
serving as a tool for assessing the effectiveness
of pharmacological agents for treating these
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diseases [23—27]. Developing methods that can
make this analysis accurate and quick is of key
importance.

This paper provides a brief overview of the
existing methods and approaches to studies of
morphology of dendritic spines and suggest a
new approach to classification of spines and
presentation of the data obtained.

Review of existing methods for
analysis of synaptic morphology

Analysis of morphology of dendritic spines
is important for neurobiological studies, as it
can shed light on the relationship between the
structure of synaptic contacts and their function.
There is currently no reliable automated software
yielding accurate results, which means that
experimenters have to resort to manual analysis
of neuron images. This method is extremely
time-consuming, and also completely depends
on the opinion of the expert performing the
analysis, which means that it lacks objectivity.
In view of this, attempts were made to develop
semi-automated and automated algorithms
for analysis and subsequent classification of
dendritic spines on images obtained by both
confocal and multiphoton laser scanning
microscopy [28—34].

One of the first attempts at automated
classification of spines with software methods
was undertaken in 2002, when advances in
technologies for laser scanning microscopy
made it possible to obtain high-resolution
images of neurons on a spatial scale sufficient
to visualize such small cell structures as
dendritic spines [28]. The proposed approach
to classification of spines [28] was based on
the results discussed in [35], performing
manual analysis of synaptic morphology on
a series of slices of spine images obtained by
electron microscopy. The authors found that
neck diameter d, head width d, and spine
length L (see Flg 1) were the most important
morphological characteristics for classifying the
spine into a specific category. The classification
was based on the assumption that the length of
thin spines is much greater than the diameter of
their neck (L >> d ), while head width cannot
be substantially greater than neck diameter.
Head width should be considerably larger than
neck diameter (d, >> d ) for mushroom spines,
and neck diameter is comparable to spine
length (d = L) for stubby spines. Ratios L/d,
and L/d, were used as criteria in the algorithm
developed by the authors for assigning spines to
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one of four classes [28].

Later, another research group developed
the NeuronStudio software, classifying spines
using a decision tree based on parameters
such as the aspect ratio, head-to-neck ratio,
and head diameter [29]. This software module
subsequently became part of Neurolucida
360, a commercial package for analyzing the
morphology of neuron cells [30]. Another
classification based on a decision tree used
such spine parameters as neck diameter, head
diameter, shape criterion, area, spine length
and perimeter [31]. The 2dSpAn software
[32] also uses a set of rules incorporated in
the decision tree for classification; the key
parameters are neck length, the ratio of the
locally deepest point to spine length and the
ratio of base-to-head distance L /L to spine
length. Notably, the authors excluded thin
spines from consideration, regarding them
as an intermediate type, but included spine-
head protrusions as a separate type, combining
them with filopodia in subsequent analysis.
The software was later improved with a new
algorithm for spine segmentation and extraction
of morphometric data, but the principle of
classification remained unchanged [33].

An algorithm for analyzing spines proposed
in 2014 was based on semi-supervised learning
(SSL) [34]. In this approach, spines are first
segmented in three-dimensional space using
wavelet functions, with the object’s boundary
defined as the position where the response of the
wavelet on the spine section changes quickly.
Spine parameters such as length, volume, neck
and head diameters, etc., constituting the matrix
of parameters, are calculated after segmentation.
To form a training set, a neurobiology expert
decides which class a small portion of the total
number of detected spines belongs to, and the
system sorts each of the remaining spines into
the given classes at the final stage following
training. One of the benefits of this approach is
that it requires minimal operator intervention
(only at the training stage), so, accordingly,
the errors resulting from the experimenter’s
personal assessment of spine types that we have
mentioned earlier are eliminated. However, a
drawback of this approach is that the method’s
accuracy and performance strongly depend on
the size of the training set and on the parameters
included in the training vector.

Another new approach to classical methods
of morphological analysis described above is
classification of dendritic spines by appearance
and shape [1]. Spine shape was represented in

parametric form as a result of segmentation of
the dendrite image using the recently proposed
disjunctive normal shape model (DNSM). A
histogram of oriented gradients (HOG) was
used to extract the appearance parameters. The
authors suggested kernel density estimation for
classification based on the selected parameters,
calculating three non-parametric density
estimates for three spine classes based on the
training set assigned by the expert. The accuracy
of classification using a similar combination
of methods significantly exceeded that of the
above-mentioned classical approaches [28, 29,
32]. The highest accuracy, which was 87%, was
obtained by combining DNSM segmentation
and HOG with a classification using a neural
network.

To validate the accuracy of their approach,
the authors compared spine types detected by
the program with the labels manually assigned
to the spines by one or several experts [I,
29, 31, 32]. Notably, there was significant
variation in classifications of spines made by
different experts. In some cases, the expert
had difficulties in assigning the type of spine;
moreover, the same expert could assess the
given sample differently on different days (the
percentage of coincidences is 82.9%) [29].
This is to say that it is difficult to estimate the
accuracy of classification algorithms due to
lack of objective reference.

Continuum of spine shapes

The common approach to analysis of
morphology of dendritic spines is dividing spines
into the subgroups described above: stubby,
thin, mushroom, and filopodia. Even though
this classification is used in many studies,
the question remains open whether there are
actually different classes of spines or whether
they should be modeled using a continuum of
shape variations. It is also important to note
that the existing classification of spine shapes
does not provide a clear standardized definition
for each group. Experimenters are free to select
their own criteria, which introduces significant
uncertainty to interpreting the data obtained by
different research groups.

The study carried out by Yuste et al. [36]),
analyzing the morphology of neurons in layers
IT and III of mouse visual cortex, found that
a continuous distribution rather than several
discrete peaks (which would have been an
argument in favor of separate classes of spines)
was observed for each of the morphological
parameters of the spines. Another study
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analyzing the morphology of neurons in
cortical layer III [37] also found a continuous
and smooth distribution of spine length and
head diameter in the sample.

The authors of [38], where clustering
of parameters which could be indicative of
distinct spine types was not detected (similar
to the above-mentioned works), suggested that
classical categories of spines are just typical
examples from a continuum of shapes. A recent
review [9] also concluded based on data on the
dynamics of dendritic spines that the shapes of
synaptic contacts are a continuum; the stability
of the spine and the strength of the synaptic
connection it forms increase with increasing
spine size. A multi-method study of the link
between spine shape and compartmentalization
of synapses [39] also observed a great diversity
in spine morphology, which is further evidence
against standard classification systems.

A radically new approach to analysis of spine
shapes was proposed in 2016 based on these
data. The authors applied a clustering method
to study subpopulations of spines. Spines were
not divided into predefined types; instead, spine
groups (clusters) with similar features were
detected by mathematical methods, and the
distribution of their morphological parameters
was analyzed.

To get a full picture, the authors of [40] used
the data given in literature to compose a set
of eleven most frequently used morphological
parameters, which were reduced, using the
method of principal components, to two
parameters that were a linear combination of
the initial ones. The first parameter included
the components describing spine size and,
accordingly, it was interpreted as a generalized
size descriptor. Similarly, the second parameter
was interpreted as the contour descriptor. After
all spines from the sample were distributed
into a two-dimensional orthogonal space
formed by descriptors, hierarchical clustering
was performed. Ten clusters were obtained,
including both small peripheral clusters
and clusters with insufficient separation.
The authors selected three images of spines
from each cluster, most closely reflecting
the empirical morphological features of this
group, to illustrate the results. Predictably, the
clusters corresponding to the classical thin and
mushroom types turned out to be the most
dense and poorly separated, and stubby spines
were represented by a single cluster with only
a few spines. Importantly, the number and
composition of the clusters obtained strongly
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depend on the chosen clustering algorithm and
the properties of the initial data. The authors
also proposed a model for analyzing the
transitions between clusters under chemically
stimulated long-term potentiation. Thus, it was
proved mathematically that there are might
be much more groups of spines similar in
morphological structure than the four classical
types. While the approach proposed in [40] can
be extremely useful for fundamental study of
synapses, it is ill-suited for wide practical use,
where analysis of synaptic morphology is part
of general analysis of the functional state of
neurons, since presenting and interpreting data
can be difficult. In view of the above, we can
conclude that developing alternative automated
methods for classification is an urgent task.

New approach to collection and
presentation of numerical data on
morphology of dendritic spines

Since an increasing number of studies
indicate that there is a continuum of spine
shapes, it is important to develop a new simple
method of analysis for practical purposes that
could be used to present the experimental data
most fully, reliably and clearly.

Most errors in classification of spines happen
in separating thin and mushroom spines, as
these two types have the same shape and the
only critical parameter by which they can be
differentiated is the size of the head. Studies
indicate that head size is directly proportional to
the area of postsynaptic density and is correlated
with the number of postsynaptic receptors and
synaptic strength [36, 41—43], while neck length
and width of the spines are directly related to
the magnitude of postsynaptic potential [39].
The morphology of synapses varies depending
on the strength of synaptic contact. Changes in
synaptic strength during long-term potentiation
and long-term depression are associated,
respectively, with enlargement or shrinkage
of the spine head [44, 45]. Thus, the shape
of the dendritic spine determines the strength
of synaptic connections; changes in spine
shape are believed to be involved in coding
information and storing memory in the brain.

As discussed above, the head size distribution
has a continuous shape [9, 36—39], which
casts doubt on whether such classes as thin
and mushroom spines actually exist. For this
reason, we propose to categorize all spines with
a pronounced head in a separate group called
“headed spines”. According to our observations,
confirmed by another research group [32], one
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of the potential critical parameters for this type
of spines is the ratio L /L of neck length to
total spine length. This parameter is of interest
because the proportion of the neck from total
spine length is more often smaller in spines
with large heads than in spines with smaller
heads.

Stubby spines have a pronounced shape,
completely lacking a neck, and thus stand out
clearly among diverse synaptic morphologies.
This is confirmed by results of cluster analysis
carried out earlier in [40], where stubby spines
could be clearly detected as a separate group.
It is difficult to determine the head width of
the stubby spine because of this shape, since its
widest part coincides with the base in most cases.
We assume that spine length L and base width
b, can serve as critical parameters for stubby
spines, and we plan to test this hypothesis in
future studies. Electron microscopy of synapses
revealed another structure, the filopodia, which
are thin hair-like protrusions of the dendritic
membrane [9]. As filopodia are characterized
by very rapid changes in shape and do not form
active synaptic contacts, there are probably no
critical parameters for their morphology. In
view of this, methods of intravital microscopy
should be wused for focused analysis of
morphology of this type of dendritic spines,
allowing to analyze their behavior in dynamics.
Notably, the total content of stubby spines
and filopodia in mature neurons does not
exceed 10%, according to estimates [9], and,

therefore, synaptic contacts of this type are few
in number.

A histogram is obtained by dividing spines
into classical groups, showing either the
percentage of spines of a certain type or their
density. Standard methods like the 7- test
or ANOVA are used to identify statistically
significant differences between the control and
experimental groups. A reasonable question,
then, would be how to visualize the data,
since they are characterized by a continuous
distribution.

We propose to combine a pie chart (Fig.
2), where the size of the sector corresponds to
the percentage of the group it contains, with a
plotted distribution by parameters, which makes
it possible to represent the most important
parameter that is the change in the size of
spine heads as a continuum. It is proposed
for spines with pronounced heads to plot the
head width d, normalized to the average value
along the inner circumference, and the point
corresponding to the ratio L /L (neck length
to total spine length) in the range from 0 to
1 along the radius. If there are enough spines
without necks (stubby type), their distribution
can be also represented as follows: spine height
H is plotted along the inner circumference,
and the point corresponding to the ratio H/w
(spine height to base width) along the radius.
Another sector should correspond to filopodia
(if there are any). We also propose to introduce
a sector reflecting the percentage of spines with

Fig. 2. Proposed model for presentation of experimental data,
showing percentage of different types of dendritic spines
and their distribution by key morphological parameters (see the explanations in the text)
Types of spines: filopodia (1), stubby (2), headed (3),
with anomalous shape (4)
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anomalous shapes that cannot be classified as
any of the types by algorithm.

We offer the software tool we have
developed for detecting and recording the
metric of dendritic spines. At the first stage
of its operation, the image is processed using
the Otsu filter to eliminate noise and noisy
areas. At the second stage, a neuron stem
model is constructed using binarization and
subsequent skeletonization of the image, while
spine detection is performed by subtracting the
resulting stem model from the filtered image
with the necessary correction determined
algorithmically. The obtained data on the
morphology of dendritic spines is used to
perform classification with help of a previously
trained neural network. We plan to use the
opinion formulated in consultation with a
group of neuroscientists to generate a training
set and monitor the performance and accuracy

>

of the algorithm. Such critical morphological
parameters as head size, neck length and neck
height are carried out after classification using
mathematical algorithms specially adapted to
a certain type of spines, which should reduce
potential errors. Subsequent manual analysis
of the shape of anomalous spines recorded in
experiments with the control and experimental
groups might reveal new processes and changes
in the morphology of synapses that could not
be detected in studies using rigid classification
methods. The diagram in Fig. 2 illustrates our
model for representing the experimental data;
its efficiency and practical value are to be
assessed in forthcoming studies.

This study was supported by the RFBR grant
no. 18-34-00183 (E.I. Pchitskaya). E.I. Pchitskaya
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Invariant spectra of n mesons production and nuclear modification factors of n u =°
mesons produced in binary collisions of uranium nuclei at energy of 192 GeV have been
presented in the paper. This data was obtained using the PHENIX spectrometer of RHIC.
These experimental results were analyzed and compared with similar data on binary collisions
of gold nuclei at 200 GeV. The n u n° mesons yields in central collisions of both uranium
and gold nuclei (at energy values mentioned) were established to be suppressed equally. In
the peripheral collisions, the nuclear modification factors of n u n° mesons measured in the
uranium nuclei collisions were suppressed more than those obtained in the gold ones. An
analysis of a ratio of the n meson to n’ meson production spectra in the uranium nuclei col-
lisions (at 192 GeV) revealed that the ratio was independent of the centrality class and the
transverse momenta.
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U3MEPEHUE ®AKTOPOB AAEPHOU MOOAUDUKALUU
3TA-ME30OHOB INPU CTOJZIKHOBEHUAX AAEP YPAHA

1.B. PadzeBuuy, A.5. bepdHukoB, A.A. bepdHuUKoG,
1.0. Komo@, C.B. XKapko

CaHkT-lNeTepbyprckuii NoNUTEXHUYECKUI YHUBEpcUTET MeTpa Benukoro,
CaHkT-MeTepbypr, Poccuiickas deaepauus

B cratbe mnpencraBieHbl MHBApPUAHTHBIE CIEKTPHI POXACHUS NM-ME30HOB M (haKTOPHI
siIepHON Moaup UKy n- U °-Me30HOB, POXKIACHHBIX B MAPHBIX CTOJKHOBEHUSIX SIAEP ypaHa
nipu s3Hepruu 192 B, DTu nannsie nosyuensl Ha ciektpomerpe PHENIX, pacrionoxennom
Ha penstuBuctckom komnaiimepe RHIC. TlpoBeaeH aHanu3 3TUX BKCIIePUMEHTaTbHBIX
pe3yJbTaTOB, U OHU COITOCTABJICHBI C AaHAJOTUYHBIMU TaHHBIMU JUISI MTAPHBIX CTOJIKHOBEHUMA
aaep 3osota Tipu sHeprum 200 I'3B. YcraHoBiIeHO, YTO BBIXOABI M- U m’-ME30HOB B
LICHTPAJIbHBIX ITapHBIX CTOJKHOBCHUSX SAep KaK ypaHa, TaK M 30yi0Ta (IIpM yKa3aHHBIX
3HAUCHUSIX SHEPTUM) MOAABJICHBI B paBHOU CTeIeHU. B mepudepuitHBIX K€ CTOTKHOBEHMSIX
akTOphl siAepHON MOAM(UKAIIMU M- U ©’-ME30HOB, U3MEPEHHBIC B CTOJKHOBEHMSIX SIep
ypaHa, IOJABJIEHbl CHJIbHEE, YeM JaHHble (DAKTOPbI, IOJyYEHHbIE B CTOJKHOBEHUSIX sIEp
30J10Ta. AHaJW3 OTHOIICHMS CIIEKTPOB POXIEHUS m-ME30HOB K CIIEKTpaM m’-ME30HOB,
DOXIEHHBIX B MapHBIX CTOJKHOBEHUSX siiep ypaHa npu 3Hepruu 192 I'sB, mokasan, 4yTto
OHO HE 3aBHUCHUT HU OT KJlacca LIEHTPaJbHOCTHU, HU OT IMOIIEPEYHOTO MMITYJIbCa.

KioueBble cjioBa: KBapK-TJIIOOHHAsl IUIa3Mma, 3Ta-Me30H, 3(P@eKT rameHus cTpyit, dakTop
siIepHOM MoauduKauu
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Introduction

Transition of nuclear matter to quark-gluon
plasma (QGP) at high energy densities and/or
temperatures (¢ = 1 GeV/fm?, T = 170 MeV)
was first predicted in 1970 using calculations
of quantum chromodynamics (QCD) [1-5].
Phase transitions from colorless hadronic mat-
ter to QGP are studied in experiments on col-
lisions of ultrarelativistic nuclei. QGP studies
contribute substantially to modern understand-
ing of the evolution of the early Universe, as
the temperature of the Universe was at one
stage equivalent to the temperature of QGP (T
=~ 10" K) [6]. The behavior of nuclear matter at
high temperatures and energy densities carries
information on the nature of forces between
quarks and gluons; these studies are in great
demand in cosmology, providing insights on
the properties of neutron stars [7, 8].

The properties of QGP in collisions of ultra-
relativistic nuclei are detected by analyzing the
effects of the initial and final states of nucle-
ar matter. The effect of quenching of hadronic
jets is related to phenomena occurring in the
final state of nuclear matter and manifests itself
in collisions of heavy nuclei with high energy
[9]. Jet quenching is a result of hard scattering
of partons produced in collisions of heavy ul-
trarelativistic nuclei. This effect is studied by
measuring the production spectra and nuclear
modification factors of the hadrons produced
in interactions of nuclei. It is convenient to use
n mesons to estimate the degree of suppression
of hadron yields in the region of high transverse
momenta.

Production spectra and nuclear modifica-
tion factors of n mesons are measured with the
purpose of studying the jet quenching effect in
a specific system of colliding nuclei. Compar-
ing the production spectra and nuclear modi-
fication factors of n mesons with those for =’
mesons allows to obtain the dependence of jet
quenching on the masses of produced particles
and on their quark composition.

The binary system of colliding uranium nu-
clei (U + U) with the energy Vs,, = 192 GeV is
particularly interesting. Uranium nuclei have a
non-spherical shape, so the effects of QGP can
be studied with different geometrical configu-
rations of colliding nuclei. In central collisions,

The U + U system of colliding nuclei has the
maximum energy density available at the Rela-
tivistic Heavy Ion Collider (RHIC) [10].

Problem statement and description

The goal of this study has been to investi-
gate the production of n mesons in collisions
of uranium nuclei (U + U) at an energy \/sNN
= 192 GeV.

To identify the mechanisms for produc-
tion of particles in scattering of hard partons
produced in collisions of U + U nuclei at
\/sNN = 192 GeV, we had to measure the pro-
duction spectra of n mesons and calculate
their nuclear modification factors. The in-
variant production spectra and nuclear mod-
ification factors of n mesons were analyzed
taking into account their centrality class and
depending on the transverse momentum.

The transverse momentum p, character-
izes the interaction energy in a system of
colliding nuclei. Centrality, measured as a
percentage, is the degree of overlap of col-
liding nuclei with a fixed impact parame-
ter. Collisions with the maximum degree of
overlap correspond to a centrality of 0—20%
and are called central, and collisions with
the minimum degree of overlap are called
peripheral and correspond to a centrality of
60—80%.

Study procedure

We have developed a procedure for studying
the effect of jet quenching with the help of n
mesons produced in collisions of U + U nuclei
at \/SNN = 192 GeV. The procedure includes the
following steps:

processing the experimental data;

measuring the yields of n mesons in differ-
ent p, ranges and centrality classes;

calculating the particle reconstruction effi-
ciency for the detector;

measuring the invariant spectra of 1 meson
production in collisions of U + U nuclei at
\/sNN =192 GeV in different p, ranges and cen-
trality classes;

assessing the systematic measurement errors;

measuring the nuclear modification factors
of n mesons in U + U collisions at Vs,, =

192 GeV in different p, ranges and centfvejlvlity
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classes.

The experimental data used in the study
were obtained with the PHENIX spectrometer
at RHIC. Electromagnetic calorimeters were
used to detect the decay products of n mesons
in the n — yy channel. Such devices measure
the energy and coordinates of photons, elec-
trons and hadrons emitted from the region of
nuclear interaction. The electromagnetic cal-
orimeter system at the PHENIX experiment
provided an overall acceptance ¢ = 2 * xn/2 in
the azimuth and |n| < 0.35 in pseudorapidity.

The system of electromagnetic calorimeters
consisted of two subsystems: the lead scintilla-
tion sampling calorimeter (PbSc) and the lead-
glass Cherenkov calorimeter (PbGl). Each of
the devices had its own segmentation. Using
both types of calorimeters made it possible to
cross-check the results obtained separately for
the PbSc and PbGl subsystems within a single
experiment.

Processing the experimental data. The data
were prepared by establishing the criteria for
selecting the desired events recorded by the
electromagnetic calorimeter.

Constraints were imposed on the shape of
detected electron showers yo separate the sig-
nals recorded during interaction of hadrons
and photons with the active volume of the
electromagnetic calorimeter. The constraint y?
<3 was imposed in the PbSc subsystem, and
photon_prob > 0.02 in the PbGI subsystem.
Here y? and photon_prob are statistical variables
described in [11].

The average energy transferred by charged
hadrons is £ = 300 MeV. Therefore, to better
separate the signals from hadrons, we impose
an additional constraint on the energy of re-
constructed clusters: EY > 400 MeV.

To improve the signal-to-background ratio,
we use the constraint on energy asymmetry be-
tween the photons combined in reconstruction
of 1 mesons:

LA _E”|< 0.8.
E,+E,

Particles were detected in collisions of
uranium nuclei for 22 days. Equipment mal-
functions could have occurred for a variety of
reasons during this period. In view of this, we
discarded data segments with a small number
of recorded events in our analysis.

The interaction vertex (z,,) is one of the
main parameters in the system of colliding nu-
clei. This parameter was determined using the

100

beam-beam counter in the PHENIX experi-
ment. To select the data, we used a constraint
on the vertex

—20< ¢

coll

< +20,

since the efficiency of the collision counter,
measured in U + U collisions, is constant in
this interval.

Measuring the yields of n mesons in different
p,ranges and centrality classes. This procedure
is done by constructing the effective mass dis-
tribution of two gammas, selected after pro-
cessing the experimental data, in different p,
ranges and centrality classes. To find the yields
of n mesons, the useful signal recorded as a re-
sult of decay of 1 mesons is separated from the
background, which is divided into the correlat-
ed (a pair of y quanta is the product of particle
decay) and uncorrelated (random combination
of y quanta) components.

To separate the uncorrelated background, vy
pairs taken from two different events with sim-
ilar characteristics (vertex and centrality) are
combined. The distribution of effective mass of
combined y quanta (background) is construct-
ed, normalized in the range

0.7 < M <0.8 GeV/¢

by the distribution of effective mass of real
events (signal and background) and subtracted
from it.

The result of subtracting two distributions
is approximated by a Gaussian function to de-
scribe the signal from the reconstructed n me-
sons and by a second-degree polynomial to
describe the residual correlated background, in
the interval

0.40 < M_<0.75 GeV/¢?

in the range p, < 10 GeV/c
and
0.35 <M _<0.75 GeV/c?

in the range p, > 10 GeV/c.

Yields of 1 mesons are measured by count-
ing the number of samples and subtracting the
integral under the second-degree polynomial.
The region where n meson yields are counted
lies in the range

0.48 <M <0.62 GeV/c.

Calculating the particle reconstruction effi-
ciency for the detector. This procedure allows to
separate the number of n mesons reconstruct-
ed in the electromagnetic calorimeter from the
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number of 1 mesons in the active volume of
the detector.

The reconstruction efficiency is found by
simulating the passage of n mesons in the
PHENIX spectrometer by the Monte Carlo
method. The specialized PISA package im-
plemented in GEANT-3 [11] is used for this
simulation.

The reconstruction efficiency is calculated
as the ratio of the number of particles recon-
structed during simulation to the initial number
of particles.

Measuring the invariant spectra of n meson
production in collisions of U + U nuclei at Vs,
= 192 GeV in different p7 ranges and centrality
classes. The following formula is used for these
measurements:

]n(pT) =dN ,,(p;) =
_ 1 N,(Pr) ()
2in NeventAstrec.ef (pT) ’

where N is the yield of neutral n mesons; ¢ s 18
the reconstruction efficiency; N, is the num-
ber of events analyzed.

Invariant spectra of particle production are
measured in different centrality classes.

Assessing the systematic measurement errors.
This is done by varying different parameters (en-
ergy scale, energy resolution, weighting factors,
parameters of detected particles, boundaries of
detected vy clusters, conversion, geometry of the
experimental setup and model) used to measure
the yields of n mesons.

Statistical and systematic errors of nuclear
modification factors are calculated as the sum of
the squares of statistical and systematic errors of
the numerator and denominator of formula (1).

Measuring the nuclear modification factors of
n mesons in U + U collisions at \/sNN =192 GeV
in different p, ranges and centrality classes. The
following formula is used for this purpose:

1 dN
R = AA
“ < coll > dN (2)

where dN,, dN are hadron yields in (4 + A)
and proton (p £ p) collisions, respectively, in a
given range of transverse momenta; <N_ > is the
average number of inelastic nucleon—nucleon
collisions.

The value of <N, is found by Monte Carlo
simulation based on the Glauber theory taking
into account the geometry of colliding nuclei.
Normalization to this number is based on

the assumption that hadrons are produced in
elementary parton-parton interactions.

To study collective effects (effects of the
final and initial states of nuclear matter) in
the system of colliding nuclei, we used nuclear
modification factors R, . If R, , = 1, then there
are no collective effects in the system of colliding
nuclei. If R, is different from unity, this points
to either suppressed or excessive particle yield.

Results and discussion

Fig. 1 shows invariant spectra of n mesons
production measured in collisions of uranium
nuclei (U + U) at \/SNN = 192 GeV depending
on the transverse momentum for different cen-
trality classes.

The spectra were measured in a wide range
of transverse momenta in central collisions (up
to 14 GeV/c). There were limitations to mea-
suring the production spectra in the region of
low transverse momenta due to small capacity
of the detector setup. The limitations in the re-
gion of high momenta were due to insufficient
statistical data.
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Fig. 1. Invariant spectra of n mesons
measured in U + U collisions
as function of transverse momentum
for different centrality classes, %:
0—80 (1), 0—20 (2), 20—40 (3), 40—60 (4), 60—80
;
Vs, = 192 GeV.
The vertical bars and the horizontal grey rectangles on
the points here and below correspond to statistical and
systematic measurement error, respectively
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Fig. 2 shows a comparison of nuclear mod-
ification factors of 1 mesons measured in colli-
sions of uranium (U + U) and gold (Au + Au)
nuclei [12, 13] at energies \/SNN = 192 and 200
GeV, respectively, with close values of N_,
(see Table). The nuclear modification factors
of n mesons (see Fig. 2) were calculated by
formula (2) using two different sets of average
number N_, of nucleon-nucleon collisions in

coll

different centrality classes in U + U collisions

Number of collisions N

>

at \s,, = 192 GeV. Two sets of N_, are used
because of uneven distribution of nucleons in
spherically asymmetric uranium nuclei.

The nuclear modification factors measured
in collisions of uranium and gold nuclei at
\/sNN = 192 and 200 GeV, respectively, coincide
for high values of N_,, which indicates that the
jet quenching effect does not depend on the
geometric shape of colliding nuclei.

The nuclear modification factors obtained in

Table

as function
coll
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of centrality for different types
of interactions (see Fig. 2)

Centrality, % ol Fig. 2
Au + Au (set 1), 200 GeV
0—5 1065.4105.3t | a)

20—40 300.832.6+ b)
40—50 120.313.7t c)
60—92 17.13.9% d)

Au + Au (set 2), 200 GeV

0—10 967.392.9+ a)
60—92 17.23.5¢ d)
U + U (variant 1), 192 GeV

0—20 934.597.5+ a)
20—40 335.033.0+ b)
40—60 95.913.0% c)
60—80 17.53.8+ d)
U + U (variant 1), 192 GeV

0—20 999.0114.0+ a)
20—40 375.045.0+ b)
40—60 110.014.6t c)
60—80 19.74.4% d)

Note. Different variants possible for collisions
of uranium nuclei are due to different degrees of
deformation of uranium nuclei in calculations of the

nucleon number N_, in the Glauber model [12, 13].
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Fig. 2. Nuclear modification factor R, as function of transverse momentum p.,
for n mesons in (U + U) interactions (solid circles and squares)
and (Au + Au) interactions (circles and diamonds) [12, 13]
with energies of 192 and 200 GeV, respectively (see Table)
Rectangles over the dashed lines indicate the systematic error for N,
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Fig. 3. Nuclear modification factor R,, as function of transverse momentum p.,
for n° mesons (squares) and n mesons (circles) in (U + U) interactions

with energies of 192 and 200 GeV, respectively, for different centrality classes, %:

0—20 (a), 20—40 (b), 40—60 (c), 60—80 (d).

Rectangles over the dashed lines indicate the systematic error for N,
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Fig. 4. Ratios for n meson production spectra to = ° meson production spectra
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=192 GeV

NN

as function of transverse momentum for different centrality classes, %:
0—80 (1), 0—20 (2), 20—40 (3), 40—60 (4), 60—80 (5)

collisions of uranium and gold nuclei at Vs o — 192
and 200 GeV, respectively, are somewhat different
for small values of N_,; however, the given
quantities cannot be clearly separated due to large
systematic error.

Fig. 3 shows a comparison of nuclear modifica-
tion factors for n” and n mesons measured in colli-
sions of uranium nuclei (U + U) at \'s w192 GeV,
in different centrality classes. Evidently, these val-
ues coincide within systematic and statistical error
in the entire range of transverse momenta and in
all centrality classes.

Ultimately, the behavior of the ratios of n/n’
spectra measured in collisions of uranium nuclei
at \/SNN = 192 GeV (Fig. 4) does not depend on
centrality and transverse momentum within the

systematic error.

Conclusion

Invariant spectra of n mesons have been
measured in this study in five classes of cen-
trality and nuclear modification factors of n
mesons have been measured in four classes of
centrality depending on the transverse momen-
tum at an energy of \/SNN = 192 GeV in pair
collisions of uranium nuclei (U + U).

Coinciding nuclear modification factors of

104

n mesons have been obtained for colliding ura-
nium (U + U) and gold (Au + Au) systems
with equal average numbers of inelastic nu-
cleon-nucleon collisions in the region of high
transverse momenta for central and semi-cen-
tral collisions, which indicates that the effects
of the final state do not depend on the geomet-
ric properties of the colliding nuclei.

We have established that the vyields of
n mesons in peripheral collisions of urani-
um (U + U) at \s,, = 192 GeV were sup-
pressed more strongly than in collisions of gold
(Au + Au) at Vs, = 200 GeV, but it proved
impossible to clearly separate the obtained val-
ues due to large systematic and statistical error.

Analyzing the data for the ratios of n/z°
spectra and comparing the nuclear modifica-
tion factors of n° and n mesons, we have found
that fragmentation of hard partons does not de-
pend on the mass and composition of n’ and
n meson quarks produced in pair collisions of
uranium nuclei at Vs, = 192 GeV.

The results of this study were obtained within
the framework of State Task of the Ministry of
Education and Science of Russian Federation
3.1498.2017/4.6.
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This paper presents invariant spectra, nuclear modification factors and ratio of invariant
spectra of light mesons, obtained in collisions of heavy uranium nuclei at 192 GeV. These
values are studied with respect to transverse momenta, numbers of nucleon-nucleon collisions,
numbers of participants and centrality. Light mesons production measurements are important
in the study of heavy ion collisions, serving as hard probes of the quark-gluon plasma (QGP).
The research of light mesons in U + U collisions at 192 GeV allows discriminating the effects
of hot matter depending on the geometric characteristics of the colliding heavy nuclei. The
obtained results showed independence of the fragmentation of hard partons on the mass and
composition of quarks and the absence of the influence of the geometric form of the colliding
nuclei on the jet-quenching effect.

Keywords: quark-gluon plasma, light meson, nuclear modification factor, collision of heavy
nuclei

Citation: Radzevich P.V., Berdnikov A.Ya., Berdnikov Ya.A., Zharko S.V., Kotov D.O., Sup-
pression of the hadronic yields in the uranium nuclei collisions at the different quark’s compo-
sition of the produced particles, St. Petersburg Polytechnical State University Journal. Physics
and Mathematics. 12 (2) (2019) 108—117. DOI: 10.18721/JPM.12209

NMOAABJIEHUE BbIXOA4OB AAPOHOB B CTOJIKHOBEHUAX
AOEP YPAHA NMPU PA3JINMHOM KBAPKOBOM
COCTABE POXAOAOWUXCH YACTUL

1.B. PadzeBuu, A.8. bepdHukoB, 5.A. bepdHukoB
C.B. Xapko, [].0. KomoG

CaHKT-MeTepbyprcknin NONIUTEXHUYECKMIA YHUBEPCUTET MNeTpa Benukoro,
CaHkT-MeTepbypr, Poccuiickas deaepauus

B crathe mpencTaBiIeHB SKCIEPUMEHTAJIbHBICE WHBApUAHTHBIC CIIEKTPHI POXICHMUS,
daxkTopsl sAmepHONl MoOAMGUKAIIUM M OTHOIICHMS WHTEHCUBHOCTEM CHEKTPOB JETKUX
ME30HOB, IIOJIyUYCHHbIE B CTOJKHOBEHUM TSIKEJBIX SAep ypaHa Ipu sHepruu 192 I'3B.
JaHHBIE XapaKTepPUCTUKM YaCTMYHO OTpaXaloT CBOMCTBA KBapK-IJIIOOHHOW IIa3Mbl
(KTTI), poxnatouieiicss B CTOJKHOBEHMU TSKEJBIX SAep ypaHa MNpU pa3ivuyHOM pa3Mepe
B3aMMOJICMCTBYIOIIEH CUCTeMbl 1 KBAPKOBOM COCTaBe poxkaarouiuxcs yactull. [IpuBeaeHHbIe
MaHHBIC MIPEACTABICHBI B 3aBUCUMOCTH OT ITOTIEPEUHOT0 UMITYJIbCa, CPEAHETO YMcia HyKIOH-
HYKJOHHBIX CTOJKHOBEHUI, CpeIHero 4Yucjia YYaCTHMKOB CTOJKHOBEHMSI M KJacca IO
HeHTpaabHocTU. [Ipeamonaraaoch OMBITHBIM MyTeM TUCKPUMUHUPOBATH 3(PGeKThl ropsiueit
W TUIOTHOW MaTepuM B 3aBUCHMOCTH OT T€OMETPUUYECKUX XapaKTePUCTUK CTAIKUBAIOLIUXCS
TSDKEJIBIX s1Iep U3-3a chepruuyecKoil HECUMMETPUUYHOCTU siAep ypaHa. AHaau3 TMOJYyYeHHBIX
JaHHBIX IIPUBEJ K BBIBOAAM O HE3aBUCUMOCTHU (PparMeHTALIMM KECTKUX ITAapPTOHOB OT MAacCChI
U COCTaBa KBapKOB JIETKMX ME30HOB U 00 OTCYTCTBUM BIMUSIHUS T€OMETPUUECKOI (HOPMEI
CTAJIKMBAIOIIMXCS SAep Ha MposiBIeHUe 3¢ deKTa raleHus aipoOHHbBIX CTPYIl.
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Introduction

The generally accepted definition of
quark-gluon plasma is a state of matter where
the degrees of freedom are color-charged
quarks and gluons. Systematic observations
of quark-gluon plasma forming in collisions
of ultrarelativistic heavy nuclei (A + A) were
first carried out at the Relativistic Heavy lons
Collider (RHIC) at collision energies \/sNN =
130 and 200 GeV (per nucleon) [1—4] and later
at the Large Hadron Collider (LHC) in colli-
sions of lead nuclei at \s,, = 2.76 TeV [5].

Production of hadrons in collisions of ultra-
relativistic ions for high transverse momenta,
Py > 5 GeV/e is due to fragmentation of hard
partons produced in deep inelastic collisions.
Cross sections of hadron production in elemen-
tary proton collisions (p + p) are adequately
described by the next-to-leading order formal-
ism of perturbative quantum chromodynamics
(NLO pQCD) [6]. Production of hadrons in A
+ A collisions is influenced by the quark-gluon
medium: hard partons passing through it lose
some of their energy, which leads to suppressed
hadron yield in fragmentation (compared to
their yield in elementary proton-proton colli-
sions). This effect is known as jet quenching [6,
7]. Considering the production of different types
of light mesons (for example, n°, n, K) in (A +
A) collisions is a step towards systematic study
of the effects of quark-gluon plasma and, in par-
ticular, the effect of jet quenching depending on
the main characteristics, such as mass and quark
composition of these particles.

The jet quenching effect is assessed
quantitatively by calculating the nuclear
modification factor found depending on
transverse momentum and centrality according

to the expression:
1 dN,,

M=y, ®

coll

where dN, , dN are hadron yields in (A + A)
and (p + p) colhslons respectively; <N_ > is the
average number of 1nelastlc nucleon-nucleon
collisions in a given centrality class of (A + A)
interactions.

Particle yield in (A + A) collisions is
typically measured as a function of transverse
momentum and collision centrality. Centrality
is measured as a percentage and determines the
impact parameter and the degree of overlap
of colliding nuclei [8]. Collisions with small
impact parameter and centrality in the range of
0—20% are characterized by high multiplicity
of particles and are called central collisions.
Only a small fraction of interacting nucleons
participate in peripheral collisions with
centrality in the range of 60—80%.

Yields of K mesons are measured in the
K, — n'n° channel. Daughter particles of K
meson decay (n° mesons) were measured earli-
er in [9]. K mesons consist of strange quarks,
which makes it possible to study the produc-
tion of light mesons depending on the quark
composition of the given particles in compar-
ing the nuclear modification factors of K, n°
and n mesons [9]. The difference in the masses
of K, n° and n mesons [9] allows to study the
effect of jet quenching depending on the mass
component of the given particles.

The system of colliding nuclei of uranium-238
(U + U) at sy, = 192 GeV is of particular
interest for studying the jet quenching effect.
Uranium nuclei have a pronounced spherical
asymmetry, so collisions of these nuclei have a
peculiar collision geometry, different from that of
symmetric nuclei (for example, gold or copper).
Besides, uranium nuclei are the heaviest used
in collider experiments: their collisions have the
highest energy density and, as a result, the highest
multiplicity of particles among all (A + A)
systems in this energy range [10]. Thus, analyzing
the characteristics of production of neutral light
mesons in (U + U) collisions at \/sNN =192 GeVis
an important part of systematic studies on the jet
quenching effect that should make it possible to
additionally discriminate between free parameters
of different models describing the energy losses of
hard partons in quark-gluon plasma.

This paper reports on jet quenching in pro-
duction of 7°, n and K mesons in collisions of
uranium nuclei at s,y = 192 GeV.
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Study procedure

Raw data on collisions of uranium nuclei
at \/SNN = 192 GeV were collected using the
PHENIX spectrometer at RHIC (Brookhaven
National Laboratory, USA) in 2012. The cen-
tralities and coordinates of the vertex along the
beam axis (z,,,) for each interaction of urani-
um nuclei were found using a system of beam-
beam counters (BBC) [11]. The BBC counters
determine the Minimum Bias trigger, select-
ing all the events of nucleus-nucleus collisions
where at least one inelastic nucleon-nucleon
interaction has occurred. The coordinate z
lies in the range |z, | < 20 cm in this case. The
BBC response together with the spectrometer
response simulated by the Monte Carlo meth-
od based on the Glauber theory [12] is used to
determine the average number of collisions N,
and the average number < Np > of nucleons par-
ticipating in the nucleus-nucleus interaction.

Light K, n° and n mesons are detected in the
K, — n°n® (BR = 30.69£0.05%), n* — yy (BR =
98.82+0.03%) and n — yy (BR = 72.124+0.34%)
channels [10] in the system of electromagnet-
ic calorimeters of the PHENIX spectrometer.
Geometry and characteristics of the calorim-
eters were described in [13]. Some kinematic

>

constraints are imposed to improve the sig-
nal-to-background ratio. In particular, the
constraints imposed on the minimum energy
EY and the photon energy asymmetry are, re-
spectively,

|EY1 —E72|
E, > 400 MeV and 5 <0.8.

vl v2

The procedure for measuring the n° and n
meson yields in collisions of uranium nuclei at
s,y = 192 GeV was described in [8, 14].

To produce candidates for the role of =’
mesons (referred to as n° candidates from now
on) in K ; — n'n’ decay, the invariant mass of
a pair of y quanta should be in the range of
1.5¢ (o is the standard deviation) of the mea-
sured masses of n° mesons, depending on their
transverse momenta, and in the same arm of
the PHENIX spectrometer. A pair of y quanta
should have a total momentum in the ranges

2<p,<Iland 2 <p, < 14 GeV/c

in the PbSc and PbGl subsystems [13] of
the electromagnetic calorimeter, respective-
ly. An additional adjustment is introduced
for all y pairs selected as n° candidates to re-

jX‘,(GeV/(.)-Z 1 02 _[ ] L [ T 1 ] LI T TT7T | T 1 T T LI | T I_
= L) —
m?2
C 3 ]
1072} =
C * ]
| - _
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n
" : ]
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107® - -
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Fig. 1. Invariant spectra of K, meson production
as function of transverse momentum, measured in collisions of uranium nuclei
at \/sNN = 192 GeV for different centrality classes, %
0—80 (1), 0—20 (2), 20—40 (3), 40—80 (4
The vertical bars and the horizontal grey rectangles on the points here and below
correspond to statistical and systematic measurement error, respectively
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duce the mass of the n° candidate to the table + U nuclei is the error related to selecting the
value m_, = 134.977 MeV, which allows to parameters for approximating invariant mass dis-
increase the signal-to-background ratio in the tributions: the approximation range, signal inte-
distributions over the invariant mass of n’r’ gration range and the polynomial degree during
pairs. approximation. The error is 15.0—22.5% in differ-

Distributions over the invariant mass of pairs  ent ranges of transverse momenta and in different
of n° candidates used to determine the yield of centrality classes. A substantial contribution to sys-
K, mesons are formed in different transverse tematic measurement error is also made by con-
momentum ranges and centrality classes and version of y quanta in detector materials (10.4%).
are approximated by the sum of a Gaussian

function (describing the signal from K, mesons) Results and discussion

and a parabola (describing the background). Fig. 1 shows invariant spectra of K, meson
The yield of K; mesons is found by the area production as function of transverse momen-
under the Gaussian function. tum in collisions of uranium nuclei (U + U)

Due to limited acceptance of the detector, at \/SNN = 192 GeV. The spectra were measured
the effects of its operation, and the kinematic in four centrality classes and in a wide range of
constraints used in analysis, K, meson yields transverse momenta: up to 11 GeV/c in central
are corrected using the reconstruction efficien-  collisions.
cy. This quantity is calculated for K; mesons Fig. 2 shows a comparison of nuclear
by Monte Carlo simulation of the detector’s modification factors for K mesons produced
response using the GEANT-3 software package in collisions of uranium nuclei (U + U) at
[15]. \/sMV = 192 GeV, gold (Au + Au) [16] and

Invariant yields of K, mesons in collisions copper (Cu + Cu) nuclei [17] at \/SNN =
of uranium nuclei at \/sNN = 192 GeV in differ- 200 GeV with an equal number of inelastic
ent transverse momentum ranges and centrality — nucleon-nucleon collisions <N, . The values
classes are measured by the formula used in the  of <N_ > for each system of colliding nuclei and
study of n’ meson production [8]. each centrality class are given in Table. The

The main systematic error in measuring the nuclear modification factors of K mesons were
yields of K, mesons produced in collision of U calculated by formula (1).

a) b)
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Fig. 2. Nuclear modification factors R, as function of transverse momentum p,. for K, mesons
in (U + U) interactions (solid circles), (Au + Au) interactions (solid squares) and (Cu + Cu)
interactions (diamonds) [16, 17] at energies of 192 and 200 GeV, respectively (see Table)
Rectangles over the dashed lines indicate the systematic error for N,
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Fig. 3. Nuclear modification factor R, , as function of transverse momentum p, for 7’ mesons (squares),
n mesons (diamonds) and K, mesons (circles) in (U + U) interactions

at \/sNN = 192 GeV for different centrality classes, %:

0—80 (a), 0—20 (b), 20—40 (c), 60—80 for n° and n mesons, and 40—80 for K, mesons (d).

Rectangles over the dashed lines indicate the systematic error for N,
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Table
Number of collisions N_,
as function of centrality
for different types of interactions
(see Fig. 2) [16, 17, 19]
Centrality, % | N, | Fig. 2
Au + Au, 200 GeV
0—20 783.2171.4 a)
20—60 300.84+32.6 b)
60—93 14.5+£2.5 c)
Cu + Cu, 200 GeV
0—20 151.8£16.1 b)
20—60 42.0+3.5 c)
U + U, 192 GeV
0—20 934.5+97.5 a)
20—40 335.0+33.0 b)
40—80 56.7%£5.0 c)

Note.

Different variants possible for collisions of uranium

nuclei are due to different degrees of deformation of the

uranium nucleus in calculations of the nucleon numbers N

in the Glauber model [19].

coll
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meson production spectra (a)

and K meson to 7’ meson production spectra (b),

measured in U + U collisions at \/sNN

=192 GeV,

as functions of transverse momentum for different centrality classes, %:
0—80 (1), 0—20 (2), 20—40 (3), 40—60 for n/n" and 40—80 for K /n° (4), 60—80 (5)
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Fig. 5. Integral nuclear modification factors of n’, n and K, mesons

in collisions of U + U, Au + Au and Cu + Cu

nuclei [16, 17, 19] at \/sNN = 192 GeV and 200

as functions of average number (N ) of collision participants
part

The nuclear modifications factor of K
mesons measured in collisions of uranium,
gold and copper nuclei (U + U, Au + Au
and Cu + Cu) at \s,, = 192 and 200 GeV
coincide within the measurement error for all
given values of <N_ . A similar behavior of
nuclear modification factors was observed in
the study of yields of particles (n° mesons)
that did not include the s quark [9], which
indicates that the jet quenching effect does

not depend on the geometric shape of collid-
ing nuclei and the quark composition of the
given light mesons in (U + U), (Au + Au)
and (Cu + Cu) collisions at \/SNN = 192 and
200 GeV.

Fig. 3 shows a comparison of nuclear
modification factors of n°, n and K mesons,
measured in collisions of U + U nuclei at
s v — 192 GeV in different centrality classes.

The nuclear modification factors of =n°,
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n and K mesons, measured in collisions of
U + U nuclei at \/s = 192 GeV, coincide
within the error in the entire range of trans-
verse momenta and in all centrality classes.

The ratios of n to n° meson yields (n/x")
and of K, to n” meson yields (Ky/n"), mea-
sured in collisions of uranium nuclei at \/sNN
= 192 GeV, in different centrality classes are
shown in Fig. 4.

The behavior of n/a° and K /n" ratios mea-
sured in collisions of U + U nuclel at \/s
192 GeV does not depend on centrality and
transverse momentum within the systematic
error. The ratios n/n° and K /n° for the spec-
tra coincide with the previously measured
ratios within statistical and systematic error
[17, 18]. The fact that the n/zn° and K/’
ratios do not depend on the collision system
indicates that fragmentation of hard partons
does not depend on mass and quark compo-
sition of n°, n and K, mesons.

Fig. 5 shows the integral nuclear modi-
fication factors of n°, n and K, mesons pro-
duced in collisions of uranium, gold and cop-
per nuclei at Vs,, = 192 and 200 GeV |8,
14, 16—18]. The behavior of integral nuclear
modification factors of 7%, n, and K mesons
produced in collisions of U + U nuclei as
functions of (N ) does not differ, within the
systematic error from the behav1or of inte-
gral nuclear modlﬁcatlon factors of n’, n and
K, mesons produced in collisions of Cu + Cu
and Au + Au nuclei.

>

Conclusion

We have measured the invariant spectra of
K, meson production as function of transverse
momentum in four centrality classes and the
nuclear modification factors of K mesons in
three centrality classes in collisions of uranium
nuclei (U + U) at s, = 192 GeV.

Coinciding nuclear modification factors for
the K, mesons produced in collisions of uranium
nucle1 at \/SNN 192 GeV, gold and copper at
\/sNN = 200 GeV, with an equal average number
of inelastic nucleon-nucleon collisions in the
entire measured range of transverse momenta
in all centrality classes indicates the absence of
the jet quenching effect does not depend on the
shape of colliding nuclei. A similar behavior
of nuclear modification factors is observed in
particles with a different quark composition (n°
and n mesons) [8].

The behavior of the n/n” and K /" ratios and
the integral nuclear modification factors of n°, n
and K, mesons indicates that fragmentation of
hard partons does not depend on mass and com-
position of quarks of 7, n and K mesons produced
in collisions of U + U nuclei at \/sNN =192 GeV.

Measurements performed in (U + U) colli-
sions at \/SNN = 192 GeV for 7%, n and K; me-
sons confirm that the geometric shape of col-
liding nuclei has no effect on jet quenching.

The results of this study were obtained within the
framework of State Task of the Ministry of Education
and Science of Russian Federation 3.1498.2017/4.6.
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In the paper, the scope for the search of the Balitsky—Fadin—Kuraev—Lipatov (BFKL)
evolution effects at future proton-proton colliders at center-of-mass energies of 14, 27 and 100
TeV has been analyzed for processes of dijets production with a large jet separation in rapidity
at a dijet. Simulation of proton-proton collisions using Monte Carlo calculations performed
with generator packages PYTHIA8 and HERWIG++ based on Dokshitzer—Gribov—Lipatov—
Altarelli—Parisi evolution and with generator package HEJ+ARIADNE based on BFKL ap-
proach was carried out. The simulation observations pointed to a promise to reveal the BFKL
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Introduction

Hard collisions of partons at extremely high
center-of-mass energies (V s — o), large mo-
mentum transfer (Q — «) and a fixed ratio
Q/~Ns ~ x (this limit is called the Bjorken limit,
and x is the scaling variable) are described in
terms of perturbative quantum chromodynam-
ics within collinear factorization. This provides
factorization of the hadron-hadron cross sec-
tion into a hard subprocess and parton distri-
bution functions. This kinematic mode implies
summation of the diagrams amplified by large
logarithms of momentum transfer, namely, the
terms of the perturbative series proportional to

(o (P)n )",
where o (Q?) is the running coupling constant
of strong interaction, # is the order of the term
in the perturbative series.

Such summation in all orders of per-
turbation theory is achieved in the lead-
ing logarithmic approximation (LLA) in the
Dokshitzer—Gribov—Lipatov—Altarelli—Parisi
(DGLAP) equations [1—5] describing the
evolution of parton distribution functions
with the scale Q. Summing the terms propor-
tional to [a(Q*)|"[InQ*]"" leads to DGLAP
equations in the logarithmic approximation
next to LLA (NLLA).

The parton scattered in a hard subpro-
cess emits bremsstrahlung, forming a parton-
ic shower. The parton shower can also be de-
scribed in different logarithmic approximations
of DGLAP splitting functions. The emitting
partons are ordered by the transverse momen-
tum p , while preserving the same order of ra-
pidity y:

y=1/2In[(E+ p)/(E — p)l,

where E is the parton energy, p, is the
longitudinal momentum (momentum along the
beam of colliding hadrons).

Parton shower and hadronization lead
to production of jets. Inclusive production
of jets agrees well with calculations in the
framework of NLLA DGLAP approach in
a wide range of transverse momenta, for all
experimentally available energies currently
obtained in the HERA (DESY, Germany)
and Tevatron (Fermilab, USA) accelerators
and in the Large Hadron Collider (LHC,
CERN, Switzerland). However, agreement
with the experiment deteriorates if jets are
largely separated in rapidity [6].

When the collision energy Vs of the center-
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of-mass system tends to infinity, i.e., greatly
exceeds the finite scale Q of hard interaction,
such that Q/\s ~ x — 0 (the Regge—Gribov
limit), hard partons scatter at large rapidities
y, while parton emission increases rapidly with
an increase in the phase space accessible in ra-
pidity. Such dynamics is due to diagrams en-
hanced by large logarithms:

In s ~ In(1/x).

Summation of these logarithms was
obtained in LLA and NLLA in the Balitsky—
Fadin—Kuraev—Lipatov (BFKL) evolution
equations [7—9].

Searches for BFKL evolution in production of
jets in proton-proton collisions were previously
carried out at the Tevatron in the D0 experiment
[10—12] for the energies Vs = 630 and 1800
GeV, and also at the LHC in the ATLAS [13,
14] and CMS [ 6, 15 — 17] experiments for
the energy Vs = 7 TeV, reached in LHC Run
I. While DGLAP evolution was well confirmed
in the experiment in the Bjorken limit (high
center-of-mass energies and large momentum
transfers), experiments on searches for BFKL
evolution which should dominate in semi-hard
processes (high center-of-mass energies and
moderate momentum transfers) have not yielded
any definitive results. There are several reasons
for this. For one, no Monte Carlo generator can
currently simulate BFKL evolution in NLLA
and no generator can run pure simulation in
the DGLAP approximation. Existing Monte
Carlo generators based on DGLAP equations
include phenomenological model corrections
partially simulating the BFKL effects such as
color coherence phenomena, angular ordering
in parton cascades and dipole parton showers.
Additional uncertainty in searches for BFKL
evolution is the theoretical uncertainty regarding
the energy scale \/so on which the BFKL effects
become dominant. Therefore, energies that are
the most readily accessible experimentally are
required to search for such effects.

In this study, we wused Monte Carlo
simulation to consider possible searches for
BFKL effects at future hadron colliders at
maximum center-of-mass energies, namely, s
= 14 TeV. This is the nominal energy of the
Large Hadron Collider (LHC), which it should
reach in Run III. Energies Vs = 27 and 100
TeV, which are, respectively, the energy of the
planned HE-LHC (High-Energy Large Hadron
Collider) [18] and the planned FCC (Future
Circular Collider), are also of interest [19].
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Monte Carlo generators used

We used Monte Carlo generators based
on DGLAP evolution and BFKL evolution
to simulate proton collisions. The first type
includes the PYTHIAS (8153) generator [20]
with Tune 4C [21] and the HERWIG++
(2.7.1) generator [22] with Tune UE-EE-3C
[23]. The generators compute matrix elements
in leading order of perturbation theory, refined
by taking into account the parton shower in
LLA DGLAP. The difference between the
PYTHIAS8 and HERWIG++ generators is that
they use different phenomenological models for
simulating parton showers and hadronization.

What is important for the purposes of this
study is that these generators use different
methods for accounting for color coherence
effects in parton cascades, which partially
emulate BFKL evolution:

PYTHIAS uses a dipole cascade, ordered by
transverse momentum,

HERWIG++ uses a parfon cascade ordered
by angle.

These effects only partially account for the dy-
namics of BFKL. The Monte Carlo simulation
based on LLA BFKL was performed with the
HEJ generator (1.4.0) [24] at the parton level.
Hadronization at the parton level was performed
with the ARIADNE (4.12J01) generator [25].
Predictions based on LLLA BFKL are referred to
as HEJ+ARIADNE below.

Simulations with Monte Carlo generators give
predictions at the hadron level. Hadrons in the
final state can produce jets carrying information
about the parton subprocess. Infrared and collin-
ear-safe cluster algorithms, including the anti-AT
algorithm are considered to be the best for recon-
structing jets [26]. The anti-k7T algorithm used
in our study was implemented in the FASTJET
software package [27]. The value of the jet size
parameter was chosen to be 0.5 in the space with
pseudorapidty n and azimuthal angle ¢. Pseud-
orapidity n is a dimensionless physical quantity:

n= —In[tg(6/2)],

where 0 is the azimuthal angle.

The selected parameter value corresponds to
that used in measurements at the LHC with the
center-of-mass energy Vs = 7 TeV [15].

Observables sensitive to BFKL effects

One of the main difficulties in detecting
BFKL effects is in selecting a value that can be
actually measured conveniently. It was found
in [28] for proton collisions that measurement
of the cross section for production of dijets
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with large separation in rapidity is sensitive to
BFKL effects. In this case, a pair of jets with
the highest and lowest rapidities (y__and y_. )
among the jets produced in a proton-proton
collision, with transverse momenta above a cer-
tain threshold (p. > p. . ), is called a Mueller—
Navelet (MN) dijet. The BFKL approximation
was used in the study to calculate the ratio of
the production cross section for an MN dijet to
the Born cross section (MN K factor).

Notably, the K factor is defined as the ratio
of the cross section calculated in higher orders
of perturbation theory to the Born cross section.
However, it is virtually impossible to measure
the Born cross section, since it is impossible
to kinematically forbid the virtual corrections.
Nevertheless, an “exclusive” dijet cross section,
i.e., the cross section of the process producing
strictly two jets with transverse momenta above
the threshold p ., can be measured instead of
the Born cross section.

The inclusive K factor, that is, the ratio
of inclusive cross section for production of
a dijet to the Born cross section, was calcu-
lated in [29] in framework of BFKL theory.
All jets with transverse momenta above the
threshold p, . make pairwise contributions to
the inclusive cross section for production of
dijets. It seems preferable to measure the in-
clusive cross section for production of dijets
rather than the MN cross section, since the
rapidity of an MN dijet may fall beyond the
detector’s acceptance at high center-of-mass
energies [29].

Notably, searches for BFKL effects should
be performed at the highest possible center-
of-mass energy and, at the same time, the
lowest possible threshold p, . for the trans-
verse momentum. A lower cutoff is imposed
on the transverse momentum of the jets in
experimental measurements. The detector
should be capable of detecting jets with large
rapidities, because colliding beams cross at
small angles. For example, the ATLAS mea-
surements [13, 14] detected dijet observables
sensitive to BFKL effects for the average pair
transverse momentum

()= (p,, +p,)/2>5060) GeV
with rapidity separation up to
Ay =y, — y| = 6(8),

where y,, y, are the dijet rapidities.

On the other hand, the CMS experiment
[15—16] measured dijets with transverse mo-
menta p, > 35 GeV and rapidity separation
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Ay = 9.4. Thus, CMS measurements are more
sensitive to possible BFKL effects.

Ref. [16] reported on using the CMS de-
tector to measure the quantities R and RMN,
the ratios of cross sections for dijet production
in proton-proton collisions at Vs = 7 TeV as
functions of separation in rapidity Ay:

Rincl = Gincl/Gexcl’ RMN = GMN/ GEXC[, (1)

where o™ is the inclusive cross section for dijet
production with the transverse momentum p, >
35 GeV; 0% is the “exclusive” section for dijet
production; ¢MN is the MN cross section for dijet
production (MN dijet is a pair of jets with max-
imum separation in rapidity among the jets with
transverse momenta p, > 35 GeV produced in the
event).

Events producing a single dijet with the trans-
verse momentum p, > 35 GeV contribute to the
“exclusive” cross section. Measurement results
were compared with Monte Carlo predictions in
[15]. The predictions were obtained with the same
generators that we used in this study. It was estab-
lished in [15] that the PYTHIAS (4C) generator
adequately describes the experimental data, while
HERWIG++ (UE-EE-3C) overestimates them
in the region of large rapidities. The HEJ+ARI-
ADNE generator considerably overestimates the
experimental data. However, since LLA BFKL
predicts a stronger rise in cross sections that actu-
ally observed, it is important to take into account
the contribution of NLLA BFKL, which is known
to predict a slower rise in cross sections.

Computational results and discussion

We carried out predictive calculations of
quantities (1) by the Monte Carlo method as
functions of rapidity separation Ay = |y, — y,|, (,
and y, are the rapidities of the first and second
jets in the dijet) with different generators (see the
section “Monte Carlo generators used” for the
description) for proton-proton collisions with
energies Vs = 14, 27 and 100 TeV, accessible
for future colliders. We used the PYTHIAS
(4C) and HERWIG++ (UE-EE-3C) models,
calculating matrix elements in leading order of
perturbation theory, matched to LLA DGLAP
parton showers, and the HEJ+ARIADNE
model, based on LLA BFKL. The jets were
reconstructed using an anti-k7 algorithm with
the jet size of 0.5. The calculation results are
shown in Fig. 1.

The dependences obtained for the ratios of
cross sections for dijet production R” and RMN
versus rapidity separation Ay = |y, — y,| in the
dijets have the predicted form. R" and RMN

were observed to increase with increasing ra-
pidity separation Ay, which is associated with
the phase space extending for emission of ad-
ditional jets and with dynamic effects. The ra-
tios decrease at the largest rapidity intervals,
which is associated with kinematic restrictions
imposed on production of jets with transverse
momenta above the threshold p . = 35 GeV,
in addition to “exclusive” dijets. The ratios
should equal unity with the maximum value of
Ay, when all center-of-mass energy has been
spent on production of an “exclusive” dijet.

The phase space available with respect to Ay
extends with increasing center-of-mass energy.
The maximum of the ratios is shifted towards
large rapidity intervals.

Calculations with the HEJ+ARIADNE
generator (based on LLA BFKL) predict con-
siderably stronger rise of the rations with ra-
pidity separation Ay, than calculations with the
PYTHIA8 and HERWIG++ generators. How-
ever, LLA BFKL calculations can produce
overestimated values for cross section rise.

Analyzing the results obtained using HE-
J+ARIADNE, we concluded that a faster rise of
ratios with the center-of-mass energy Vs is pre-
dicted in this case than when using the PYTHIAS
and HERWIG ++ generators. Consequently,
an increase in the interaction energy makes the
measurements more sensitive to BFKL effects.

The dynamics of DGLAP equations has
no evolution in rapidity. Emission of partons
(hadron jets) should be equally probable over
the entire range of rapidities. Therefore, the
cross section ratios should remain constant
over the entire range of rapidities. The ob-
served increase in the values calculated using
the PYTHIA8 and HERWIG ++ generators
(based on DGLAP) may be due to the phase
space extending and to the phenomena par-
tially emulating the BFKL effects, such as col-
or coherence, angular ordering in the parton
cascade and dipole cascade. The difference in
the predictions obtained using the PYTHIAS
and HERWIG++ generators is because they
are based on different color coherence models,
in the first case, a dipole cascade ordered by
transverse momentum, and in the second case,
a parton cascade ordered by angle.

The obtained results indicate that these mod-
els predict different behavior of the calculated
values with increasing center-of-mass energies.
A stronger rise of ratios is predicted in the first
case than in the second. Notably, the models
taking into account color coherence were in-
troduced into the calculations in DGLAP-based
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Fig. 1. Calculated R" (a, ¢, ¢) and RMN (b, d, f) as functions of rapidity separation Ay

in dijet events, with different energies s

NN

TeV: 14 (a, b), 27 (c, d), 100 (e, /).

Transverse momentum of jets: p > 35 GeV.

The generators used were HERWIG++ (/), PYTHIAS8 (2) and HEJ+ARIADNE (3).

generators in order to improve agreement with
the experiment in central rapidity regions, i.e.,
for calculations with small corrections. The
simulation results demonstrated the unstable be-
havior of these corrections at large rapidities and
high center-of-mass energies.

Comparing the ratios of R and RMN- we
can conclude that the first of these quantities
always exceeds the second, lying well above the
second for small rapidity intervals and becom-
ing comparable for large ones. A possible ex-
planation for this is that MN dijets constitute
a subset of inclusive pairs. Both MN dijets and
pairwise combinations of jets lying in the rapid-
ity interval between MN jets contribute to the
inclusive cross section for dijet production. As
follows from the results obtained, the rapidity
interval in an MN pair can reach Ay > 11 at
extremely high energies. These events are the
most sensitive to BFKL effects. However, they
are rather difficult to detect experimentally. At
the same time, these events can contribute to
the inclusive cross section due to jets produced
together with an MN dijet, ordered by rapidity
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with smaller rapidity intervals.

Thus, inclusive cross sections for dijet
production should be preferred in searches
for BFKL effects at extremely high energies.

Conclusion

The simulation results obtained indicate
that experimental searches for BFKL effects
at future proton-proton colliders may be a
promising endeavor.

More definitive and clear conclusions
regarding the manifestation of BFKL effects can
be drawn by obtaining pure predictions based
on evolution of DGLAP without corrections
partially emulating the BFKL effects.
Furthermore, both analytical computations and
Monte Carlo estimates should be developed
based on BFKL evolution in the logarithmic
approximation next to LLA (NLLA).

The results of this study were obtained within
the framework of State Task of the Ministry of
Education and Science of Russian Federation
3.1498.2017/4.6.
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THE EXACT SOLUTION OF THE PROBLEM ON A CRACK
EMERGING FROM THE TOP OF TWO DISSIMILAR WEDGES

V.V. Tikhomirov
Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation

A closed connection of two different isotropic wedges has been considered within the scope
of the anti-plane problem. A finite-length crack emerges from the top of this connection at
an arbitrary angle to the symmetry axis of the structure. The exact solution of the problem
was obtained through the problem’s reducing to the Wiener — Hopf scalar equation. The de-
pendence of the stress intensity factor (SIF) at the crack tip on the structural parameters was
studied. The effects of an increase and a decrease in SIF were compared with those known for
the case of a homogeneous medium. It was shown that the stress asymptotics near the junction
vertex could have one or two singular terms determining both strong and weak singularities at
this singular point.
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Mechanics

Introduction
Inhomogeneous structures often have
singularities where geometric parameters

and mechanical properties of the structure’s
components change radically. Such points are,
for example, the edges of interfaces between
several wedge-shaped structures consisting of
different materials. These structures can be closed
if all of their interfaces are connected, or open,
if there are notches. The stresses determined by
linear theory of elasticity grow without bound
at corner points and, therefore, such singularity
points are sources of crack propagation.

A large number of studies starting from
Williams and Bogy [1, 2], focused mainly on
plane problems, have considered elastic fields in
bimaterial and multimaterial wedges. The class
of anti-plane problems has been studied far less.

The characteristics of a stress singularity in a
semi-infinite crack terminating at the interface
between two or three isotropic wedges were
discussed in [3—6] within the framework of the
anti-plane problem. It was found that stress
singularity has a power-law behavior at this
point (symmetric problem), different from the
classical case where the exponent is 0.5 [3, 6].
The asymptotic behavior of stresses near the
vertex can contain two singular terms in the
asymmetric case [5, 6].

The stress singularity at the tip of a semi-
infinite longitudinal crack located in a three-
component medium with functionally gradient
properties was analyzed in [7], finding two real
eigenvalues determining the properties of elastic
fields.

A crack of finite length, emanating from
the tip of a sharp notch located in a composite
wedge-shaped structure, was considered in [8§—
11]. It was established in [8, 9] that the solution
for anisotropic materials of the structure can be
obtained based on the solution constructed for
the isotropic case by using a linear coordinate
transformation.

The critical loads at which cracks evolve at
the tip of a sharp notch under anti-plane loading
were estimated in [12, 13].

However, the problem of cracks emanating
from a closed interface between wedge-shaped
structures under anti-plane deformation still
remains largely unexplored.

As a first step to solving this problem, this paper
considers a crack of finite length, emanating from
the top of the interface between two connected
wedges composed of different materials. Its exact
solution is constructed by reducing the problem
to the scalar Riemann problem. An analytical

representation is obtained for the stress intensity
factor (SIF) at the crack tip, and its dependence
on the structure parameters is studied.

Aside from its own significance, the obtained
exact solution of the problem is one of the basic
elements in analysis of brittle fracture based on
the so-called finite fracture mechanics [14],
using approximate analytical methods for plane
problems due to lack of exact solutions.

Problem statement; reducing the problem
to the Wiener—Hopf equation

Let us consider a rectilinear mode III crack
of length ¢, emanating from the top of the inter-
face between two wedge-shaped regions (Fig. 1).
The materials of the wedges are assumed to be
isotropic, homogeneous, and with shear moduli
y, and p, (u, = p,) in the regions Q (k= 1, 2,
3). The materials are assumed to have perfect
contact. A self-balanced load g(r) is applied to
the edges of the crack (r is the polar radius).

The geometry of the given elastic composite
can be conveniently described by two parame-
ters: the vertex angle o (0 < o < 27) of the region
Q, and the angle B between the direction of the
crack and the axis of symmetry of the region Q.
Evidently, |p| < — o/2. Varying the angle p with
a fixed o causes the region Q, to rotate around
its vertex. Thus, the angle B characterizes the
mutual orientation of the crack and the region
Q,. For example, the problem is symmetric for
B = 0. An interfacial crack corresponds to the
values B = =(n — a/2), and a crack emanating
from the vertex along the interface to p = *a/2.

It is known that the displacements w, in the
regions Q,_ are harmonic functions in this case:

0w, iazwk +16wk _0
or* oo r or (1)
(k=1,2,3),

and the stresses in polar coordinates » and 0 are
found by the formulas

n, ow ow
ook = Tkﬁ_ek’ T = My 8_rk

Elastic fields at the interfaces should satisfy
the conditions of perfect contact:
W =Wy, T, = T, With 6 =B + a/2,  (2)
W= Wy, Ty = T, With 8 = B — a/2,
and the following mixed conditions along the
crack line:
T, (1, ) = 15(r, — 1) = g(r) (0<r=<e), (3)
T, (1, M) = 1y5(r,— @) = 1(r),
wy(r, m) = wy(r,—m) (e <r<o)  (4)
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Fig. 1. Crack emanating from top of interface
between two inhomogeneous wedges:
g(r) is the load on the edges of the crack; u, and
u, are the shear moduli of materials; Q, Q,, Q,
are the wedge-shaped regions; ¢ is the distance
from the top of the interface to the tip of the
crack; a and B are the vertex angles of the wedges;
rand 0 are polar coordinates

Here t(r) is an unknown function.

As in [15], we search for the solution to the
problem in the form of Mellin integrals:

1 _
W (7,0) = —— [, (p,0O)r "dp,
L

1 . 5
O = [T oy dp O
L
(k = ]‘, 2’ 3)’

where the transforms of displacements and
stresses are found by the following formulas:

W, (p,8) = A (p) sin p6 + B _(p) cos
(6)
po,
T, (p,6) = p, plA(p) cos p& — B,(p) sinpd]
(1, =p,).
Since regularity conditions are imposed for the
solution with » — 0 and r — oo, the integration
path L is parallel to the imaginary axis in the strip
=3, < Re p <3, (5, 8,>0).

Mixed conditions (3) and (4) lead to equalities

T ,(pn) = T, ,(p,—m) = [T (p) + G.(p)lg™",(7)
—plWy(p,m) — Wi(p,—m)] = U,(p)¥,
where

T (p)=[x(ep)p"dp, G.(p) = [ g(ep)p"dp, (8)

U.(p)=| %[wxsp, 1) - wi(ep,—m)]p"dp.
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The function 7 (p) is regular and has no zeroes
in the half-plane Q to the left of the path L
and the functions G,(p) and U,(p) have no ze-
roes in the right half-plane Q, [16].
Substituting expressions (6) into the left-
hand sides of equalities (7) and conditions
(2) modified by the Melling transform, after
eliminating the quantities 4,(p) and B,(p), we
obtain the scalar Wiener—Hopf equation:

F(p)IT(p)+G.(p)]+ %wp) =0 (pel).(9)

Here, the imaginary axis can be taken as the
path L, while the function F(p) has the form

Fp) = fip)/Ap), (10)
Ap) = 2[sin’mp — m? sin? (x — a)p], (11)
A(p) = sin2ap + 2msin ap cos2pp — (12)

m?sin 2(m — a)p.

The elastic properties of the composite are re-
produced in these formulas through a single
bielastic constant

m=(,—w)/(+ ) ={E-—1D/(+1),

where pu = p /u, is the relative hardness of the
inclusion (0 < p <o0).

This quantity satisfies the inequality
|m| < 1 for all combinations of shear moduli
of materials. If the inclusion material is harder
than the matrix material, then 0 < m < 1;
otherwise (for a soft inclusion), this parameter
lies in the interval —1 < m < 0. The value m =
0 corresponds to a homogeneous medium, and
the values m = £1 correspond to an absolutely
hard inclusion and a wedge-shaped notch.

Notice that the zeroes of function (11) are
eigenvalues of the anti-plane problem for an
interface between two wedge-shaped regions
with symmetric and antisymmetric (with re-
spect to the ray 6 = 0) stress distributions. The
zeroes of function (12) determine the charac-
teristics of the stress singularity at the tip of
a semi-infinite crack terminating at an elastic
wedge-shaped inclusion [6].

Solution of the Wiener—Hopf equation

Factorization of the coefficient of Eq. (9) is
carried out similarly to the procedure in [15]:

F(p)=pF.(p)F~'(p), (13)
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F.(p)=0.(p)X ' (p),

[ Ta+p) |
[ T'(/2+p)

@)
t—p

X.(p)=

q)i(p) =&Xp

2mi -!

(pel),
where
DO(p) = [1— m? sin? (z — a) p sin Zxp|x

x[2 + 1m sin ap cos 2Bp sin™! 2ap

— m? sin 2(x — a)p sin”! 2np| !,
and I'(p) is the gamma function.

From here, using formulas (13) and apply-

ing the Liouville theorem [16] from Eq. (9),

taking into account the behavior of the terms
at infinity, we obtain:

O~ (p)X_(P)T (p)+0.(p) =

M, -1 (14)
B _2_U+(p)®+ (pX.(p)-0.(p)=0,
ep
where
Qi (p) = I Q(t) dt
(15)

o) = %Xit)@f(t)F(t)Q(t)-

1.5

Then we find from Egs. (14)

T (p)=—D_(p)X_(p)O_(p). (16)
Given that, with p T oo, c
X (p)~——.0.(p)~——,
p N P . "
_ 1 IX*(t)G*(t)F(z)dt
2miy 1D (1) ’

we obtain the asymptote
T (p)~—C/Gyp).

Then, by the Abel-type theorem [16], we con-
clude that the stress asymptote at » — ¢ + 0 has
the form

T(r)~ _c . C\/E# (18)
iyn(l-p) T Ar—g

Stress intensity factor
Let us find the stress intensity factor (SIF)
at the crack tip r = ¢ by the formula

K, = 11m \/271(7’ e)t(r).

Then, using asymptote (16), we obtain that
K, (a,B,m, &) =~/2¢C. (19)

Let self-balanced concentrated forces 7| be
applied to the edges of the crack at a distance
r, from the top of the interface, i.e.,

g(r) = Tp(r — ry),

where 8(r) is the Dirac delta function, and
e < T, < 0.

Fig. 2. Normalized stress intensity factor (NSIF) as function
of parameter m at p = 0 and r,/e = 0.5 for different angles a:
/4 (1); n/2, 3n/2 (2); 3n/4, Sn/4, Tn/4 (3)
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Then, calculating the function G, (7) by for-
mula (8), combining the integration path with
the imaginary axis in formula (17) and using
the residue theorem in the region Q,, we ob-
tain, according to equality (19):

_ 20 X () f(p) (roj”
Klll - _To - ' — . (20
€ ; 2@ (pIA(p)\ € 0

Here the prime denotes the derivative with re-
spect to the variable p, and p, are positive ze-
roes of function (12).

In case of a geometrically symmetric struc-
ture, with p = 0, series (20) is summed for
some values of the bielastic constant m, and
the expressions for SIF can be represented in
a simple closed form. They have the following
form for different cases:

/2 r/€
KI(}I:Z) —_ °
ns\/l—ro/s

for a crack in a homogeneous medium (m = 0);
2 1
nea \/1 —(1,/e)"

for a crack emanating from the tip of a notch
B=0,m=-1);

/ 2 f (r,/&)"
g nea\1-(r, /)"

for a crack emanating from the vertex of an
absolutely hard inclusion (B = 0, m = 1).

21)

K;IZTE)

K7 =

m

>
In these formulas,
a=1—a/(2n), r,/e < 1.
Using formulas (20) and (21), let us

introduce the normalized stress intensity factor
(NSIF), which describes the variation of the
SIF in a heterogeneous composite compared
to the SIF at the tip of a similar crack in a
homogeneous medium:

N:ﬁ:— n(l_ij X
K}, €
pos (22
Xi X, (p)f(py) (”_o]
o p @ (p)A(p)\ €
Roots of the characteristic equation
A(p) = 0, (23)

located in the strip 0 <Re p <1, were analyzed
in detail in [6]. It was established that, depend-
ing on the parameters of the composite a, f and
m, Eq. (23) can either have one root p, <0.5 or
p, > 0.5 in this strip, as well as two roots:

0<p <05<p, <1,
or
0.5<p <p, <L
The characteristic equation in case of a
symmetrical structure (B = 0) takes the form
A(p) =cosap+ mcos(m—a)p=20

and has a single root in the interval (0, 1).

Fig. 3. NSIF as function of parameter m with o = n/2 and r,/e = 0.5
for different angles B: 0 (1), n/4 (2), n/2 (3)
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This root is larger than 0.5 with m > 0, and
lies in the interval 0 < p, < 0.5 with m < 0.

In this case, the NSIF exhibits a typical be-
havior depending on the parameter m at differ-
ent values of the angle o and is a monotonical-
ly decreasing function over the entire variation
range of the bielastic constant (Fig. 2). At the
same time, an increase in NSIF compared with
a homogeneous medium is observed if a crack
is located in a harder material, when p, > p,
and, therefore, m < 0. In contrast, there is a
decrease in NSIF for a crack located in a rel-
atively softer material (m > 0). These effects
become more pronounced as the vertex angle o
of the region Q, increases. It follows then that
a “symmetric” crack emanating from the top of
the interface always propagates in a relatively
harder medium.

The behavior of NSIF is less unambiguous
in case of an asymmetric structure (B # 0). If
the dimensionless parameter r,/e (characteriz-
ing how close to the top the load is applied) is
not too small, then NSIF at the crack tip has
a qualitatively similar behavior as in the sym-
metric case. Fig. 3 shows the variation of NSIF
for the angle o = n/2 and r,/e = 0.5 depending
on m for different values of the asymmetry pa-
rameter B. These data indicate that the effects
increasing and decreasing the NSIF intensify

with increasing angle B.

However, when 7,/e — 0, the dominant term
of series (22) is its first term. NSIF asymptote
in this case takes the form

N _r_oj X.(p)f(p) H .
n( e)p@ (p)A(p)\ e ()

It follows then that if p, > 0.5 and r/e << I,
then (r/e)"'™*> < 1, (r,/e)?'™*3 > 1, this leads
to a decrease in NSIF. If p <0.5, then, for
small values of the relative distance r,/¢ in ex-
pression (24), the factor (r,/e)”'~*° > 1, which
leads to a decrease in NSIF.

An example of increasing NCIN for small
r,/e is shown in Fig. 4 for the case a = B =
n/2. The first root of Eq. (23) is less than 0.5
with these values of the angles, both if m <
0 and if m > 0 [6, 15]. Analysis of the be-
havior of the curves indicates that the depen-
dence N(m) is not monotonous. The increase
in NSIF becomes more pronounced with a
decrease in the distance r/e. Besides, if the
crack is located in a softer medium, the SIF
values may exceed those for a similar crack
located in a homogeneous medium with a suf-
ficiently small ratio r,/e, due to the influence
of heterogeneity and geometry of the structure
(as opposed to the symmetric case).

Fig. 4. NSIF as function of parameter m with o = p = /2
for small relative distance r,/e: 0.1 (1); 0.01 (2); 0.001 (3); 0.0001(4)
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_
I
Stress singularity at the top of the . pi-l
interface between the wedges T (r10) = 27T, [Z T,(=p4.9) [ r ] B
0z '

Based on Egs. (6)—(8), it is easy to obtain ’ hLa ACpd) 5
representations for the stresses in the regions Q, © 1 (=p,.0) D (—
G=1,2,3): hy (PO @ (-p) o7

17, (p.0)
R ey

+G+(p)]@ dp,

[T (p)+
(25)

where
T, (p,6) = a, (p) cos pb —bj (p) sin po;

a,(p) = (1 + m)[sin pr — m cos 2pp sin p(n — a)];
b,(p) =

a (p) = sinpn + m sin pa cos[p(n +

(1 + m)m sin 2 pf sin p(nx — a);

+ (—1)"2B)] — m? cospa. sinp(n — a);
b, = (—=1)" m sin pa{sin p(n — a) —
— sin[p(z + (—1)"2B]} (n = 2, 3).

Substituting representations (15), (16) into
integrand (25) and given that the transform of
the concentrated load at the edges of the crack
has the form

G.(p) = T)/e(r/e),

we obtain the following expression for

stresses:
T,(p.0)
Tezj(”' ) STUJ. A(p) l:( J_

®_(p) Ud
X()Q()} p,

(26)

where

. 1 ¢ F(t) X.(p)(n)
0'(p) = [ p)(—ojdt
2niy t(t=p) @, (p)
By applying the theorem of the residues
(calculated by the zero roots p, of function (12)

located in the left half-plane of the path L) to
integral (26) we obtain with r <r,
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A(=p,) X_(=p,)

in(—pk)(ﬁj k }
e

Notably, the first sum in this formula determines
the stress distribution in case of a semi-infinite
crack emanating from the top of a closed inter-
face between the wedges [6]. The second sum is
due to finite length of the given crack.

It follows from representation (27) that the
stresses at the top of the interface have a sin-
gularity described by the power law. Depend-
ing on the structure parameters, the asymptotic
behavior of stresses with » — 0 can have one or
two singular terms, determined by the roots of
Eq. (23), located in the interval (0, 1). The sin-
gularity exponents A, = 1 — p, (k= 1, 2) can be
both larger and smaller than 0.5 and, therefore,
generate both strong and weak singularities at
this point.

€ k=0

Conclusion

We have obtained an exact solution for
the problem of an anti-plane crack emanating
from a closed interface between two wedge-
shaped regions based on the Mellin integral
transform and the Wiener—Hopf method.
We have analyzed the behavior of the stress
intensity factor (SIF) at the tip of a crack upon
variation of elastic properties and geometry of
the structure, which can lead to an increase or
decrease in SIF, compared with a homogeneous
medium. We have observed a dependence of
SIF on the relative hardness of the materials
that is not characteristic for the symmetric case
in the absence of geometric symmetry of the
structure, for some values of the composite
parameters and a concentrated load applied
at a sufficiently small distance from the top
of the interface. In particular, the SIF for a
crack located in a relatively softer material
may exceed the SIF for a similar crack in a
homogeneous medium. Examining the stress
singularity at the corner point of the interface,
we have confirmed that this singularity can be
both strong and weak.
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