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Научная статья
Original article
DOI: https://doi.org/10.18721/JPM.16401

CURRENT–VOLTAGE CHARACTERISTICS  
OF MAPBI3 PEROVSKITE FILMS FORMED  

BY THE SINGLE-STAGE SPIN-COAT METHOD

M. K. Ovezov1✉, A. A. Ryabko1, A. N. Aleshin1,  
V. A. Moshnikov2, V. M. Kondratyev3,4, A. I. Maximov2 

1 Ioffe Institute of RAS, St. Petersburg, Russia;
2 St. Petersburg Electrotechnical University “LETI”, St. Petersburg, Russia;

3 Alferov University of RAS, St. Petersburg, Russia;
4 Moscow Institute of Physics and Technology (National Research University), Moscow, Russia 

✉strontiumx94@gmail.com
 Abstract. In the paper, the properties of MaPbI3 films made with or without a precipitant 

have been investigated. The samples had a planar geometry based on ceramic substrates with 
interdigitated gold electrodes and also based on glass substrates. The samples were irradiated 
with green light from an LED source, and a special setup was used to measure current–
voltage (I–V) characteristics. The polycrystalline films exhibited high sensitivity (an increase 
in current by about 2 orders upon irradiation). The width of their optical band gap was the 
same regardless of the use of the precipitant but the maximum trap-filling voltages turned out 
to be very sensitive to such use. According to optical microscopy, the film microstructure was 
characterized by a growth of large long dendritic structures, i.e., the nucleation occurred in the 
solution mass during the films’ making. This growth mechanism may be convenient for the use 
of MaPbI3 films in photodetectors.

Keywords: organometallic perovskite, semiconducting polymer, transport mechanism, solar 
cell

Funding: The reported study was funded by Russian Science Foundation (Grant No. 23-42-
10029; https://rscf.ru/en/project/23-42-10029/).

Citation: Ovezov M. K., Ryabko A. A., Aleshin A. N., Moshnikov V. A., Kondratyev V. 
M., Maximov A. I., Current – voltage characteristics of MaPbI3 perovskite films formed by the 
single-stage spin-coat method, St. Petersburg State Polytechnical University Journal. Physics 
and Mathematics. 16 (4) (2023) 9–19. DOI: https://doi.org/10.18721/JPM.16401

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.
org/licenses/by-nc/4.0/)
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ВОЛЬТАМПЕРНЫЕ ХАРАКТЕРИСТИКИ  
ПЕРОВСКИТНЫХ ПЛЕНОК MAPBI3, СФОРМИРОВАННЫХ 
ОДНОСТАДИЙНЫМ МЕТОДОМ ЦЕНТРИФУГИРОВАНИЯ

М. К. Овезов1✉, А. А. Рябко1, А. Н. Алешин1  
В. А. Мошников2, В. М. Кондратьев3,4, А. И. Максимов2 

1 Физико-технический институт им. А. Ф. Иоффе РАН, Санкт-Петербург, Россия;
2 Санкт-Петербургский государственный электротехнический университет

«ЛЭТИ» имени В. И. Ульянова (Ленина), Санкт-Петербург, Россия;
3 Академический университет имени Ж. И. Алфёрова РАН, Санкт-Петербург, Россия;

4 Московский физико-технический институт
(Национальный исследовательский университет), Москва, Россия 

✉strontiumx94@gmail.com
Аннотация. В работе исследованы свойства пленок MaPbI3., изготовленных с 

применением осадителя либо без него. Образцы обладали планарной геометрией на 
основе керамических подложек со встречно-штыревыми золотыми электродами, 
а также на основе стеклянных подложек. Образцы облучали зеленым светом от 
светодиодного источника, а для измерения вольтамперных характеристик использовали 
специальную установку. Поликристаллические пленки продемонстрировали высокую 
фоточувствительность (увеличение тока примерно на 2 порядка при облучении). Ширина 
их оптической запрещенной зоны была одинаковой вне зависимости от использования 
осадителя, однако предельные напряжения заполнения ловушек оказались весьма 
чувствительными к такому использованию. По данным оптической микроскопии, для 
микроструктуры пленки характерно образование крупных дендритных структур, т.е. при 
ее изготовлении происходило зародышеобразование в толще раствора. Этот механизм 
может быть удобным для использования пленок MaPbI3 в фотодетекторах.

Ключевые слова: металлорганический перовскит, полупроводящий полимер, 
механизм транспорта, солнечный элемент

Финансирование: Исследование проведено при финансовой поддержке Российского 
научного фонда (РНФ), грант № 23-42-10029; https://rscf.ru/en/project/23-42-10029/.

Ссылка для цитирования: Овезов М. К., Рябко А. А., Алешин А. Н., Мошников В. 
А., Кондратьев В. М., Максимов А. И. Вольтамперные характеристики перовскитных 
пленок MaPbI3, сформированных одностадийным методом центрифугирования // 
Научно-технические ведомости СПбГПУ. Физико-математические науки. 2023. Т. 16. 
№ 4. С. 9–19. DOI: https://doi.org/10.18721/JPM.16401

Статья открытого доступа, распространяемая по лицензии CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/)

Introduction
Organometallic perovskites such as (Fa)(Ma)MX3, where Fa is formamidinium CH(NH2)2, 

Ma is methylammonium CH3NH3, metal M = Pb, halogen X = Br or I, have been attracting 
increasing attention recently for applications in solar cells (SC) and photodetectors, X-ray 
detectors as well as memristor structures [1–3]. SC based on organometallic perovskites 
exhibit efficiency comparable to silicon solar cells (25.8%) [4]. In addition to organometal-
lic perovskite films, films of inorganic perovskites CsPbX3 are used for SE [5]. In this case, 
CsPbX3 perovskite films are formed not only from a solution, but also from suspensions of 
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colloidal quantum dots, allowing to control the absorption spectrum of the SC by adjusting 
the size of the quantum dots [6–8]. Interest is also growing towards lead-free perovskite 
materials, primarily due to their low toxicity [9]. Even though SC based on lead-free per-
ovskites exhibit lower efficiencies compared to lead-based ones (by about 6%), their stabilities 
are close to 2,000 hours of operation in a nitrogen atmosphere [10]. Finally, a promising 
direction is fabrication of tandem structures based on various SC combined with perovskite 
photovoltaic elements [11].

One of the best materials with a perovskite structure for creating SC is organometallic per-
ovskite CH3NH3PbI3 (referred to as MaPbI3 from now on), also widely used to create photode-
tectors and X-ray detectors. Single-crtstal MaPbI3 perovskite has been used for these detectors, 
demonstrating trap densities of the order of 1010 cm–3 and a carrier diffusion length exceeding 175 
µm [12, 13]. Although single-crystal MaPbI3 perovskite is also applicable for photovoltaic struc-
tures, it is economically impractical to use it for SC, as it is too difficult to produce a single crystal 
with a large diameter. Polycrystalline films are used to create SC, deposited from a solution by 
such methods as spray-coating, inkjet and screen printing, spin-coating and others [14].

As a rule, polycrystalline layers of MaPbI3 are deposited by spin-coating in two steps if PbI2 
and CH3NH3I solutions are deposited separately, or in one step if CH3NH3PbI3 solution is depos-
ited. Studies producing the materials discovered that the two-step method allows to obtain more 
homogeneous films, but it is more technologically complex, while films made by two different 
methods yield comparable characteristics, some (for example, grain size) even better for films 
prepared by the one-step method [15, 16].

Analyzing the available data, we opted for the one-step method. A precipitator is often used 
for depositing the film, allowing to considerably improve the quality of the film [17–19]. Many 
reagents can be used as precipitators, but ethyl acetate (EA) stands out in that it allows to achieve 
a sufficiently high efficiency of the photosensitive layer (up to 19.53%). In addition, this layer 
can preserve up to 84.8% of the initial efficiency in an SC operating in an open air environment 
for a long time (over 1900 hours) [20]. Additionally, ethyl acetate has low cost and low toxicity, 
offering greater prospects for commercial applications.

In this paper, we considered the influence of the technology for manufacturing the MaPbI 
perovskite film on its current–voltage characteristics in planar structures was investigated; ethyl 
acetate was deposited in a one-step procedure in this case.

Materials and methods

Powders of MaPbI 3 organometallic perovskites purchased from Xi’an Polymer Light Technology 
Corp. (China) were used to prepare the samples. The films were applied by spin-coating from a 
solution of dimethylformamide and dimethyl sulfoxide (4:1 volume ratio) with a MaPbI3 mass 
concentration of 300 mg/ml with subsequent annealing at a temperature of 110 °C for 10 minutes. 
The spin-coating rate was 3000 rpm (for 30 s) with pre-centrifugation at 1000 rpm (10 s). The 
samples were obtained by two techniques: using ethyl acetate as a precipitator and without it. The 

precipitator was introduced at the acceleration 
stage of spin coating.

The current–voltage characteristics were 
measured by depositing the perovskite films on 
ceramic substrates with interdigitated gold elec-
trodes (sensor platform from Tesla Blatná, Czech 
Republic). The thickness of the electrodes and 
the distance between them was 25 µm (Fig. 1).

The sample morphology was studied by optical 
and scanning electron microscopy, also deposit-
ing layers of MaPbI3 perovskite film on silicon 
substrates. To determine the band gap width by 
processing the optical absorption spectra, such 
layers were deposited on glass substrates with 
ITO coating. The latter is a solution consisting 
of indium, oxygen and tin, i.e., indium oxide 
In2O3 and tin oxide Sn2O3.

Fig. 1. Photo of ceramic substrate 
with interdigitated NiCr/Ni/Au electrodes

(sensor platform, Tesla Blatná)
The size of the region with these electrodes is 

4.2 × 4.2 mm
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The current–voltage (I–V) characteristics of the samples were measured with a Keithley 
6487 picoammeter (USA) in the dark and under illumination with an LED source at a wave-
length of 535 nm. The absorption spectra were measured with a PE-5400UF spectrophotometer 
(Russia). The microstructure of the objects was studied with a POLAM-312 polarizing micro-
scope (Russia). The morphology of the coatings was also studied with a Zeiss Supra 25 scanning 
electron microscope (Germany).

Results and discussion

The samples of thin polycrystalline MaPbI3 films obtained in this study exhibit a characteristic 
optical absorption spectrum (curve 1 in Fig. 2,a). The optical band gap of the samples was deter-
mined as a Tauc plot, (αhν)1/r versus hν, by extrapolating the linear section to the abscissa axis, 
where the value of r expresses the type of dependence of the semiconductor’s absorption coef-
ficient on the irradiation wavelength (greater than the semiconductor’s absorption edge). Since 
MaPbI3 is a direct band gap semiconductor, the absorption coefficient is described by the root 
dependence on the wavelength (r = 1/2).

According to the results obtained, the optical band gap Eg of the manufactured films was 
Eg ≈ 1.58 eV, and this value did not depend on whether a precipitator was used; it is characteristic 
for polycrystalline MaPbI 3 films.

The results of I–V measurements in the dark and under illumination are shown in Figs. 3 
and 4. The samples exposed to irradiation with green light leads exhibit a change in the current by 
about two orders of magnitude, while using a precipitator does not have a noticeable effect. The 
current–voltage characteristics in the dark exhibit hysteresis, which is associated with migration 
of ions (primarily I–), as well as the space-charge limited current (SCLC) [20]. The influence of 
the technology by which the samples were prepared is also observed: the maximum trap-filling 
voltages VTFL differ for samples obtained with and without the precipitator.

We also found a slight increase in VTFL after the samples were irradiated with light (a green 
LED was used), pointing to an increase in trap concentration during exposure.

It was found in [20] that such irradiation can significantly accelerate or induce ion migra-
tion, and such migration is observed over a wide temperature range. A five-fold decrease in the 
activation energy of ion migration is also reported (from 0.82 to 0.15 eV with an increase in the 
irradiation intensity from 0 to 20 MW/cm2) [21].
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Fig. 2. Analysis of MaPbI3 layers (curve 1 in Fig. 2,a, curves 3, 4 in Fig. 2,b), 
and LED source (curve 2 in Fig. 2,a): 

typical optical absorption spectrum 1; optical absorption spectra 3, 4 as Tauc plots for determining 
the optical band gap; dependences are shown for samples prepared with a precipitator (3) and without it (4); 

2 is the electroluminescence spectrum of a green LED used to record the photo response of samples
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The maximum trap-filling voltage VTFL is directly proportional to their concentration:

2

TFL
0

,
2

teN LV =
εε

(1)

where e is the electron charge, Nt is the trap concentration, L is the distance between the elec-
trodes (25 µm for our case), ε is the permittivity of the material (ε = 32 for MaPbI 3), ε0 is the 
dielectric constant [18].

The concentration of traps can be calculated from this using the formula

0 TFL
2

2 .t
VN

eL
εε

= (2)

Nt values equal to 3.68, 3.81, 6.09 and 7.01 (1014 cm–3), respectively, were obtained for a voltage 
VTFL of approximately 0.65–0.70 V for a sample without precipitator and about 1.13 – 1.30 V for 
a sample with precipitator.
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Fig. 3. I–V curves of the samples prepared without precipitator (a) and with it (b) 
in the dark (lower curves) and under irradiation with green light (upper curves) 

The arrows indicate the variation modes of the voltages applied to the samples
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Fig. 4. Fragments of I–V curves of the samples prepared without precipitator (a) and with it (b) 
in the dark, obtained before (black curves) and after (red curves) irradiation with light. 

A difference in VTFL values is observed.
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The values of VTFL and, consequently, the trap concentrations turned out to be lower for the 
sample obtained without precipitator, which is inconsistent with the literature data [16, 22].

The results obtained by scanning electron microscopy (Fig. 5, c, d) indicate that using the pre-
cipitator (ethyl acetate) under these conditions produces an increase in the size of film crystallites, 
compared with the film prepared without the precipitator. There are also pores in the films due 
to the conditions of solvent evaporation. The optical microscopy data (Fig. 5,a) for the sample 
obtained with a precipitator indicate that some substrate regions are not covered by the perovskite 
film, however, the regions covered by the MaPbI3 film are homogeneous. On the other hand, 
not only heterogeneous nucleation is observed for the sample obtained without precipitator at 
the interface with the substrate, but also growth of large elongated (~50 µm) dendritic structures 
(Fig. 5,d).

Evidently, as the solvent evaporates from the MaPbI3 solution under heating, this can lead to 
an increase in the solute concentration near the surface. Moreover, the temperature gradient from 
the substrate surface to the film surface leads to a decrease in the solubility of the MaPbI3 film in 
the near-surface region.

Thus, the conditions for nucleation are fulfilled near the surface of the solution film, with sub-
sequent growth of dendritic structures. Nucleation at the phase boundary is energetically favor-
able, inducing growth of polycrystalline film directly on the surface of the substrate (Fig. 5,b). 
Consequently, the precipitator leads to an increase in the size of the film crystallites formed at 
the phase boundary, however, the conditions of film growth without precipitator lead to growth 
of elongated MaPbI3 structures of a larger scale.

Although the conditions for film growth are different if polished surfaces of silicon sub-
strates and ceramic substrates are used, due to the different concentrations of nucleation sites 
on the substrate surface and hydrophobicity, we assume that the character of film formation 

c) d)

a) b)

Fig. 5. Micrographs of MаPbI3 layers for samples prepared with precipitator (a,c) 
and without it (b,d) obtained by optical (a, b) and scanning electron (c, d) microscopy
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should be similar. Thus, the film consisting of elongated structures has a lower concentration 
of grain boundaries, which leads to a decrease in the trap concentration and the voltage VTFL. 
Although this growth mechanism hinder the application of polycrystalline films in photovoltaic 
structures, it may be convenient for using MaPbI3 films in photodetectors. On the other hand, 
using a precipitator is preferable from the standpoint of morphology of such a film for creating 
photovoltaic structures.

Conclusions

Films of organometallic perovskite MaPbI3 produced for the study exhibit a high response 
to visible-light irradiation (with a green LED) as well as to the characteristic mode of space 
charge limited current. The dark current–voltage (I–V) characteristics exhibit hysteresis due to 
ion migration.

We found that MaPbI3 films prepared by the described procedure without the precipitator con-
tain large dendritic structures providing a decrease in the maximum trap-filling voltage We believe 
that films with such morphology can be successfully used as photodetectors.
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Аннотация. В работе проанализированы особенности структуры перовскитоподобных 

материалов вида ABO3, ответственные за формирование антисегнетоэлектрических фаз. 
С этой целью сопоставлено описание ряда монокристаллов с помощью трех моделей: 
адаптированной дипольной Слэтера (I), оболочечной Каули (II) и модели Борна – 
Кармана, дополненной учетом диполь-дипольных сил и параметризованной на основе 
первопринципных расчетов Госеза (III). Определены параметры модели I, при которых 
наблюдается качественное согласие с данными по неупругому рассеянию рентгеновского 
излучения из экспериментов с гафнатом свинца. Анализ всех результатов привел к 
заключению, что модель I и параметризация Госеза подтверждают гипотезу о ключевой 
роли латеральной компоненты поляризуемости атомов кислорода над ее аксиальной 
компонентой для формирования антисегнетоэлектричества. Однако результаты 
использования модели II этого не подтверждают.
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Introduction
Structural instabilities in perovskites are the focus of much attention, since perovskite crystals 

and thin films based on them find numerous technical applications in electromechanical sensors 
and drives, pyroelectric sensors, electrocaloric coolers, energy storage and memory devices [1–5].

When the crystal becomes unstable with respect to one of the phonon modes, a structural 
phase transition occurs. This process can be described as follows. A crystal consisting of N atoms 
has 3N degrees of freedom associated with displacements of these atoms from fixed equilibrium 
positions (three degrees of freedom for each atom).

The internal energy can be expressed in quadratic form in the harmonic approximation:

1 ,
2

T ⋅ ⋅u U u (1)

where u is the displacement vector with the length 3N, U is the matrix of force constants for the 
vector u.
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Some quadratic eigenvalues are necessarily zero, for example, the eigenvalues corresponding to 
homogeneous displacement of the crystal as a whole. However, the remaining eigenvalues must 
be positive so that the crystal tends to return to the state of equilibrium under an external pertur-
bation. This theory is outlined in a number of papers and textbooks on lattice dynamics [6, 7]. 
When a structural phase transition from a cubic phase to a low-symmetry phase (characterized 
by some kind of distortion of the crystal lattice) occurs in perovskite-like crystals, the eigenvalue 
corresponding to this distortion becomes zero or negative. As for ferroelectric phase transitions, 
then this eigenvalue should correspond to the zero wave vector, i.e., the Г point of the cubic 
Brillouin zone. The eigenvalues for other transitions, for example, antiferroelectric, correspond to 
another point in the Brillouin zone.

Thus, the question of why Perovskites undergo phase transitions and why all these transitions 
are so different can be broken into more specific questions, namely, why some of the eigenvalues 
could turn out to be negative and why this negative number corresponds exactly to this, and not 
to any other point in the Brillouin zone. For example, an approach outlined in John Slater’s 
study [9] for barium titanate BaTiO3 proposes to divide all forces acting on ions into two groups.

The first group includes short-range repulsive forces arising (in the simplest interpretation) 
because electron clouds of the ion crystal tend to reduce the degree of mutual overlap. These 
repulsive forces tend to stabilize the high-symmetry cubic phase, in other words, preserving all 
eigenvalues of the quadratic energy form positive.

The second group of forces are dipole–dipole forces resulting from the Coulomb interaction. 
Unlike the first group, dipole–dipole forces are long-range. If the influence of such dipoles on 
each other is taken into account, it turns out that such dipoles tend to line up along the O–B 
bonds in the ABO3 structure in perovskite-like crystals. Such a tendency towards forming bonds 
by dipole–dipole forces can lead to a negative value of the eigenvalue corresponding to this 
distortion. The above-mentioned distortion induces ferroelectricity, since the displacements are 
arranged identically in each of the ABO3 cells. This structural rearrangement is formed due to 
predominant influence of dipole–dipole forces specifically on the center of the Brillouin zone [8].

Thus, Slater’s theory answers both questions posed for a ferroelectric such as BaTiO3: why an 
eigenvalue becomes negative, and exactly which one it is.

However, John Slater’s views have been regularly re-examined critically since the 1990s. For 
example, it was discovered through advances made in quantum mechanical calculations that 
these crystals are far from absolutely ionic, i.e., the overlap of electron clouds leads not only to 
repulsion but also to attraction due to orbital hybridization and formation of partially covalent 
bonds. In other words, destabilization of the cubic phase occurs not only due to the action of 
dipole–dipole forces, but also due to the influence of partial covalence of the bond. The role of 
dipole–dipole forces is preserved in this case, since covalent forces are short-range. Otherwise, it 
is difficult to explain exactly how long-range ordering of the structure can be achieved and estab-
lish the specfic point of the Brillouin zone that the resulting distortions correspond to.

A recent paper by Burkovsky [10] uses the Slater model [9] to describe mismatched anti-
ferroelectric phases: it is found that dipole–dipole forces can enhance not only homogeneous 
polarization (center of the Brillouin zone) but also incommensurate distortions; however, this 
requires more complex characteristics of short-range forces that could cancel the tendency of 
dipole-dipole forces towards enhancing polarization along O–B bonds. This is possible if the 
crystal structure is such that it is extremely energetically unfavorable to form a dipole along such 
a bond even in the presence of dipole–dipole forces. For example, considerable energy costs are 
required if the ions are packed very closely and cannot shift much along these O–B bonds, and 
their electron clouds also cannot stretch in this direction. The tolerance factor acts as a measure 
of atomic packing for perovskite-like crystals: when its values are less than unity, the atoms are 
tightly packed along the O–B chains [11]. The tolerance factor for a PbZrO3 crystal of the lead 
zirconate family is equal to 0.756, corresponding to the following case: the ionic radius of the 
B-ion (Zr4+) is large, and the oxygen anions O2– are ‘sandwiched’ between zirconium cations. If 
the ability to form O–B dipole bonds is suppressed, other pathways emerge for dipole ordering. 
For example, if strong polarizability of oxygen atoms in the O–A planes (perpendicular to the 
O–B bonds) is combined with strong polarizability of ion A, such loss of cubic symmetry for 
which the dipoles form an incommensurate modulation wave propagating in the O–A plane may 
be energetically favorable.
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Slater’s model is by no means the only one capable of explaining why incommensurability and 
antiferroelectricity arise in perovskites. We should consider the shell model describing the total 
energy of the lattice rather than that of its dipole subsystem as well as the Born–Karman model 
taking into account dipole–dipole forces, also used earlier to parameterize the lattice energy of 
perovskite-like crystals. These two models have not been compared before, and we propose to 
take the first steps in this direction.

Objectives and experimental procedure

To find out how significantly the combination of the polarizability of oxygen atoms in the O–A 
planes with the strong polarizability of ion A affects the formation of experimentally observed dis-
proportionate and antiferroelectric phases in crystals of the lead zirconate family, we compare the 
values of the polarizability of various groups of atoms in the cubic phase of lead hafnate (PbHfO3). 
To this end, we analyzed experimental data on inelastic X-ray scattering on single crystals of lead 
hafnate antiferroelectric in the framework of two models: dipole [10] and shell [12, 13].

In our opinion, the mathematical framework based on the shell and dipole models, used to 
describe the phenomena under consideration, is too extensive to be considered in its entirety in 
this paper, especially since an explicit mathematical representation of these models was given by 
Cowley [13] and Burkovsky [10]. We compare the existing results with the polarizabilities obtained 
from the first-principle (ab initio) quantum mechanical calculations by Ghosez et al. [14].

The shell model was first proposed by Dick and Overhauser [15] and adapted for the Perovskites 
by Cowley [13]. Polarizability consists of the sum of ionic and electronic polarizabilities within 
the framework of the model. The first one is associated with displacement of the entire ion from 
the equilibrium site. The displacement of an ion under the action of external forces is prevented 
by short-range forces between the ion shell and the shells of its neighbors. In addition to dis-
placement of the entire ion, the charged core is displaced inside the electron shell. This process 
is equated to the second, electronic, polarizability.

The dipole model is considered a simplification of the shell model. The simplification is that 
it is sufficient to account for the long-range forces and only parts of short-range ones describing 
the polarizability of atoms in the crystal lattice to describe the internal energy in the crystal [10].

The study by Ghosez et al., with whose results we compare the polarizabilities, performed 
decomposition of interatomic interactions into short- and long-range components for several 
perovskite-like crystals: antiferroelectric lead zirconate (PbZrO3) and ferroelectrics barium 
titanate and lead titanate (BaTiO3 and PbTiO3). We recalculated the polarizabilities from the 
Ghosez parameters as Z2/k, where Z are the Born effective charges and k are the corresponding 
force constants.

The main results of the analysis are presented below.
Experimental phonon dispersion curves and their description based on the shell model are 

shown in Fig. 1,a and b [12]. Apparently, the shell model adequately reproduces the anisotropy 
of phonon dispersion curves for transverse phonons.

The acoustic phonon branches were converted into dipole stiffness α using the dipole model to 
describe the experimental data (see Fig. 1, a, b) by the formula 

α = СE2,
where E, J, is the phonon energy; C, C2/J2·m3), is the dimensional coefficient.

We consider this conversion to be fairly reasonable, since the frequency of transverse acoustic 
phonons and dipole stiffness are symmetric quantities: the higher the value of dipole stiffness, the 
greater energy the phonons creating such dipole waves should have. Fig. 1,c shows a three-di-
mensional graph of dipole stiffness in the hk0 plane of the Brillouin zone: qualitative agreement 
with experimental data on inelastic scattering by single crystals of lead hafnate was achieved at 
C = 0.12 C2/(J2·m3). To represent stiffness within the framework of the dipole model in this 
manner, the polarizability of the A-ion αA should be higher than the polarizability of the B-ion 
αB; it is obtained that the anisotropy parameter of oxygen atoms δ = αO-A/αO-B is equal to 1.40 in 
this case.

Analyzing the results in Fig. 1, we can conclude that both models adequately reproduce the 
anisotropy of phonon dispersion curves along different directions, which means that a certain 
coincidence can be expected when dipole and shell models are used.



St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023. Vol. 16. No. 4

24

The table shows the polarizabilities of atoms obtained by the three models, as well as similar 
data for barium titanate BaTiO3 obtained by Turik and Khasabov [16] using the shell model and 
the Slater model [9].

a) b) c)

Fig. 1. Experimental phonon dispersion curves of lead hafnate in cubic phase (symbols) 
and their approximations by the shell model (solid lines) for transverse phonons 

propagating in the directions [100] (a) and [110] (b); description of acoustic 
phonon branch (TA) by the dipole model (c) 

Tab l e

Comparison of polarizabilities obtained by different calculation models for 
the oxygen anion in two crystal sites and for various cations 

ABO3 Model 
Polarizability, Å3

αA αB αO-A αO-B

PbHfO3
Shell [12, 13] 4.90 0.37 2.74 3.63
Dipole [10] 3.90 2.78

PbZrO3

Ab initio calculations by Ghosez [14]

177.43 22.33 55.80 12.48

PbTiO3 89.86 52.73 21.70 32.39

BaTiO3

10.07 52.17 9.97 38.86
Shell [16] 1.95 0.18 0.64 3.80
Slater [9] 1.94 0.19 2.38

Nota t i on s :  αA, αB are the polarizabilities of the A2+ and B4+ cations; αO-A, αO-B are the polarizabilities 
of the О2– anion in O–A planes and along O–B bonds. Note. The values of electronic polarizability are 
given for the shell model, and those of total polarizability for the other models.
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According to our estimates, the polarizabilities αA and αB of A- and B-cations in lead hafnate 
turned out to be very similar for the dipole and shell models (the case in the table when they 
are strictly equal is accidental), but the polarizabilities of oxygen anions are different. Moreover, 
different predictions were obtained for the ratio of polarizabilities of oxygen atoms along different 
directions within the framework of the two models: the anisotropy parameter δ = αO-A/αO-B = 0.75 
for the shell model, and δ = 1.40 for the dipole model.

This is an unexpected result, which can be explained by the simplification of the shell model, 
namely, that the dipole model does not account for all the particulars of the effect of short-range 
forces on atoms. However, the problem requires extensive research, and it is impossible to make 
an unambiguous choice in favor of any model at this stage.

According to the ab initio calculations by Ghosez, the value of the anisotropy parameter δ of 
oxygen atoms exceeds unity only for antiferroelectric PbZrO3, while for ferroelectrics BaTiO3 and 
PbTiO3 this parameter is less than unity. This suggests that the anisotropy of oxygen polarizability, 
when dipole formation along the O–B bonds is suppressed and enhanced in the O–A planes, is 
a major factor in the origin of antiferroelectricity.

Notably, there is a large numerical difference between the polarizabilities obtained by Ghosez 
by calculations from first principles (ab initio) and those based on model predictions. In our 
opinion, the reason for the difference may lie in the instability of the crystal assumed by the 
Ghosez model (in contrast to the assumptions of the dipole and shell models), implying that 
the polarizabilities obtained by this model may be higher. In addition, we used Born charges to 
calculate polarizabilities using the Ghosez model; however, constraints are sometimes imposed 
on such charges in calculations of local crystal properties, which include the polarizability of 
individual atoms.

Discussion

In this paper, we analyzed the particulars of the structural configuration of perovskite-like 
materials to identify its specific properties inducing antisegnetoelectric states during structural 
phase transitions.

To this end, we described the experimentally observed phonon spectrum of lead hafnate 
(PbHfO3) using two models: shell [12] and dipole [10]. These models are essentially similar: the 
internal energy of the crystal structure consists of two forces of a different nature that affect ions, 
the short-range and long-range ones. The former arise due to overlap of electron clouds of neigh-
boring ions and include both repulsive forces aimed at maintaining the highly symmetric phase in 
the crystal and attractive forces caused by hybridization of electronic orbitals and the formation of 
partially covalent bonds. The latter, i.e., long-range forces are Coulomb in nature, determining the 
internal organization of the crystal at long distances, due to the ordering of dipoles in the crystal. 
The dipole model is a certain rationalization of the shell model and is convenient for representing 
incommensurate phases in antiferroelectrics. The simplification is that the description of internal 
energy in the crystal is limited, only accounting for a part of the short-range forces affecting the 
polarizability of the atoms of the crystal lattice (accounting for the long-range forces remains).

In general, both models adequately reproduce the experimental data, the descriptions are in 
agreement with respect to the polarizabilitiesof A- and B-cations, however, they yield different 
estimates for the polarizability of oxygen anions: according to the shell model, the polarizability of 
oxygen atoms αO-A along the O–A planes is less than that for oxygen atoms along the O–B bonds; 
the results turn out to be exactly the opposite within the framework of the dipole model.

Comparison of the obtained parameters with the results of ab initio calculations by Ghosez et al. 
[14] for ferroelectric and antiferroelectric perovskites confirms the hypothesis of the key role that 
the special nature of polarizability anisotropy of oxygen atoms in the crystal plays in the structural 
phase transition into antiferroelectric or incommensurate phase. According to the results obtained 
by ab initio calculations, as well as by the dipole model, the value of αO-A must exceed the value of 
αO-B to achieve the transition of the crystal to the antiferroelectric phase. At the same time, there 
is no quantitative agreement between the parameters: the parameter values obtained by Ghosez 
are much higher than those for the dipole–dipole model. We attribute this discrepancy to the fact 
that we used Born charges to calculate local polarizabilities by the Ghosez model, which, strictly 
speaking, are determined for displacements of entire sublattices, and not individual ions, i.e., the 
polarizability calculated using Born charges may be significantly overestimated.
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Conclusion

Each of the model descriptions obtained has some advantages over the others. The bene-
fit of the dipole model is that the role of each of the parameters governing the experimental 
three-dimensional distribution of dipole stiffness is clear. The benefit of the shell model is that 
the calculated results can be directly compared with the experimental data on inelastic X-ray 
scattering. Meanwhile, the description by the Born–Karman model accounting for dipole–dipole 
forces allows to correlate the experimental data with the results obtained by calculating the 
electronic structure of many-particle systems (based on density functional theory (DFT)), i.e., 
DFT calculations.

The reasons for incommensurability and antiferroelectricity in perovskites are yet to be fully 
understood; attempts at interpretation include macroscopic models and atomistic models with 
varying degre of detail [10, 17–21]. In this paper, we limited ourselves to three models for which 
we were able to establish the role that the ratio of polarizabilities of various atoms plays in the 
given phenomenon. The predictions of two models are similar in this aspect, but contradict the 
predictions of the third one. So far, it seems premature to make an unambiguous choice in favor 
of any of the models, since each has its advantages with sound arguments to support them.
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Аннотация. В температурном диапазоне 400  –  100 K исследованы вольтамперные 
характеристики двух типов структур соединительных туннельных диодов (ТД) n++-GaAs-
(δSi)/i-(GaAs/Al0,2Ga0,8As)/p++-Al0,2Ga0,8As-(δBe), отличающихся температурой роста и 
толщинами эпитаксиальных слоев. Определены температурные зависимости основных 
параметров ТД: пикового значения плотности туннельного тока Jp, плотности тока долины 
Jv и дифференциального сопротивления Rd. Образцы ТД структуры А, выращенной при 
температуре 500 °С, обеспечивают в диапазоне 100 – 400 K наибольшие значения пикового 
тока Jp ≤ 220 A/см2 при температурной стабильности величины около 93 %. ТД структуры 
В, выращенные при температуре 450 °С, показали меньшие значения плотности пикового 
туннельного тока: Jp ≤ 150 А/см2, с существенной линейной температурной зависимостью. 
Полученные результаты могут быть использованы при разработке и создании монолитных 
многопереходных фотопреобразователей мощного лазерного излучения.

Ключевые слова: вольтамперная характеристика, туннельный диод, эпитаксиальный 
слой, дифференциальное сопротивление, пиковый туннельный ток 

Ссылка для цитирования: Контрош Е. В., Калиновский В. С., Климко Д. В., Бер Б. Я., 
Прудченко К. К., Толкачев И. А., Казанцев Д. Ю. Температурная характеризация 
соединительных туннельных диодов GaAs/AlGaAs // Научно-технические ведомости 
СПбГПУ. Физико-математические науки. 2023. Т. 16. № 4. С. 30–41. DOI: https://doi.
org/10.18721/JPM.16403

Статья открытого доступа, распространяемая по лицензии CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/)

Introduction
High-power monolithic multijunction photovoltaic (PV) cells converting monochromatic light 

have potential for applications in optoelectronics systems operating both on Earth and in space. 
Such systems include a radiophoton phased array antenna array [1], energy-independent trans-
ceiver stations for free-space optical communication [2], batteries for autonomous optoelectronic 
devices, etc. [3, 4]. Depending on the optical power and the field of application, multijunction 
PV cells can operate in a wide temperature range (100–400 K) [5, 6]. Monolithic multijunction 
PV cells include several series-connected photoactive p–n junctions, i.e., semiconductor-based 
subunits with the same band gap width but with different geometries and doping levels of the lay-
ers. The subunits in the PV cell are connected via backward tunnel diodes (TD). The efficiency 
and reliability of multijunction PV cells significantly depends on the temperature stability of the 
parameters of the connecting TD: peak tunneling current density Jp, differential resistance Rd of 
the tunnel branch and high optical transparency over a wide range of operating temperatures. 
A distinct characteristic of connecting TD is the high degree of degeneration of sub-nanosized 
layers, achieved by the delta-doping method. However, interdiffusion of donor and acceptor 
impurities occurs in degenerate layers of TD during epitaxial growth of the entire structure of 
the PV cell, leading to profile smearing and a decrease in free charge carrier concentration. 
These factors have a significant impact on the parameters of the TD and the behavior of their 
temperature dependence.
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In this paper, we experimentally measured the current–voltage (I–V) characteristics of 
GaAs/AlGaAs connecting tunnel diodes in the temperature range from 100 to 400 K, establishing 
the temperature dependences of the parameters Jp and Rd and analyzing the results obtained.

Experimental

Connecting p++–i–n++ TD were considered for two types of structures: A and B, grown by 
molecular beam epitaxy (MBE). The distributions of atomic concentrations in the given struc-
tures, determined by secondary ion mass spectrometry (SIMS) are shown in Fig. 1. ‘Quasi-
neutral’ i-regions were formed between the degenerate regions of both TD structures, consisting 
of two layers of different thicknesses: i-GaAs and i-Al0.2Ga 0.8As. Both TD structures were grown 
on GaAs (100) p-type substrates with a beryllium concentration NA = 1·1019 cm–3. After the buffer 
layers were grown, the epitaxial temperatures were decreased to 500 and 450 °C for structures A 
and B, respectively.

A significant diffusion of the beryllium dopant into the degenerate region of n++-GaAs doped 
with silicon was observed in both TD structures (see Fig. 1).

Analyzing the data in Fig. 1, we can conclude that diffusion of beryllium in structure A con-
tributed to a decrease in the thickness of the n++-GaAs and the concentration of free charge 
carriers in it, due to overcompensation of donor and acceptor impurities. The thickness of this 
layer, uncompensated by beryllium impurity, was approximately 5 nm with the concentration of 
silicon atoms varying from 1·1019 to 3·1019 cm–3 in structure A, and approximately 20 nm with 
the concentration varying from 9·1018 to 6·1019 cm–3 in structure B. Diffusion of beryllium atoms 
caused compensated quasi-neutral regions to appear between degenerate n++- and p++-layers. This 
is the co-doped region in Figs. 1,a and b. This region has a slightly larger thickness (about 25 nm) 
in structure A, consisting of two layers, GaAs:(Si, Be) and AlGaAs:(Si, Be) (see Fig. 1,a). This 
region consists of only one AlGaAs layer: (Si, Be) in structure B, with the thickness not exceeding 
10 nm (see Fig. 1,b).

The measured peak concentrations of silicon and beryllium atoms approximately coincide in 
the overlap region of structure A, amounting to no more than 8·1019 cm–3. A different situation 
evolves in structure B, where the concentration of silicon atoms in the AlGaAs overlap region 
prevails over the concentration of beryllium atoms, with ND = 5·1019 cm–3, NА = 2·1019 cm–3.

Diode arrays with the mesa diameter of 225 µm, equipped with multilayer Ohmic contacts 
with n and p regions of AuGe-Ni-Au and AgMn-Ni-Au annealed in hydrogen at 500 °C, were 
formed on the TD structures by the post-growth technology.

I–V measurements of TD samples with structures A and B were performed at forward-bias 
voltages up to 1 V.
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A (a) and B (b), determined by secondary ion mass spectrometry.
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Results and discussion

Unlike structure B, structure A exhibited a spread in Jp values from 90 to 220 A/cm2 at 300 K 
over an epitaxial wafer with a diameter of about 6 cm. The Jp values in the center of this wafer 
were close to the average of 116 A/cm2, increasing to about 220 A/cm2 at the periphery. A sig-
nificantly smaller range of values, namely Jp = 125–150 A/cm2, was obtained for samples in the 
center and at the periphery of the epitaxial wafer of structure B.

We selected TD samples from the central and peripheral regions of the epitaxial wafers of both 
structures to study the parameters Jp and Rd in the temperature range of 100–400 K. The I–V 
characteristics of the selected samples measured in the given range are shown in Fig. 2.

Linear dependences are observed for the most part of the tunneling region in the experimental 
I–V curves obtained for any samples of structure B and peripheral structure A with a temperature 
decrease to 100 K (see Fig. 2). At the same time, an exponential dependence appears in the tun-
neling region of the I–V curves for samples from the center of structure A with a decrease in tem-
perature. This behavior of dependences may be due to simultaneous influence of several factors.

As established in [7], the tunneling current in TD is determined by two transport mechanisms: 
interband quantum tunneling and trap-assisted tunneling. Both contribute to peak tunneling cur-
rent density. The first mechanism is that electrons tunnel from occupied states of the conduction 
band to free states in the valence band through a potential barrier. The second, trap-assisted, 
transport mechanism, is due to the presence of localized impurity states (traps) in the band gap 
of the semiconductor. In this case, the tunneling electron is trapped, subsequently tunneling into 
the allowed states of the valence band. A decrease in temperature contributes to active freeze-
out of charge carriers in traps; therefore, an increase in the electric field is required to overcome 
localized impurity states, leading to an exponential current-voltage dependence [8].

SIMS measurements for structure A (see Fig. 1,a) indicate that this transport mechanism may 
be predominant due to high degree of overlap of donor and acceptor impurities in the central 
region of the p++–n++ tunnel junction.

We used the experimental data and expression (1) [9] to calculate the normalized temperature 
coefficient of the peak tunneling current density:

100%,
j RT

RT

T T
p p

p T
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J J
J

J
−

∆ = ⋅ (1)

where ΔJp is the temperature coefficient; JTj
p, J

TRT
p are the peak tunneling current densities at fixed 

Tj and room temperature (TRT = 300 K), respectively.
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Fig. 2. Measurements of forward I–V characteristics in TD samples with two types of structures: 
A (a) and B (b) at different temperatures. Samples were taken at the periphery (curves A1p–A3p) 

and in the centers (A4c–A6c, B1c–B3c) of epitaxial wafers; T, K: 353 (A1p, A4c, B1c), 
223 (A2p, A5c, B2c) and 123 (A3p, A6c, B3c)
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A positive value of ΔJp indicates an increase, and a negative value a decrease in the parameter 
Jp relative to its value at room temperature.

The dependences of Jp and ΔJp for structures A and B are shown in Fig. 3, a, c. TD samples 
from the central (Ac curves) and peripheral (Ar curves) parts of structure A exhibit higher thermal 
stability of peak tunneling current density, compared with samples from structure B (Bc curves). 
The variations in the maximum value of Jp amount to 17% for TD samples of structure A from the 
center and periphery of the wafer (Ac curve in Fig. 3,a) and 7% (Ap curve), respectively. The vari-
ation in the maximum value of Jp was 42% for TD samples of structure B (curve Bc in Fig. 3,a).

The parameter Jp decreases under heating from 300 to 400 K for TD samples taken from the 
center and periphery of the epitaxial wafer of structure A, with the value of ΔJp amounting to 
–9.5% in the center of the wafer and to –6.8% at the periphery(curves Ac and Ap in Fig. 3,c).

As the temperature decreased from 300 to 100 K, samples from the center of wafer A exhibited 
a nonlinear increase in the parameter Jp with the temperature coefficient ΔJp = 7.5%, while the 
parameter J p in peripheral samples decreased with the coefficient ΔJp = –4.0%.

Notably, smooth maxima of peak tunneling currents are observed for the samples of structure 
A in Fig. 3,a in the temperature ranges of 150–250 K (Ac curve) and 200–300 K (Ap curve), 
respectively. The dependence of Jp for samples of structure B exhibits linear growth over the entire 
temperature range (curve Bc in Fig. 3,a). The value of ΔJp under heating from 300 to 400 K was 
14%, and 29% under cooling to about 100 K.

The behavior of the temperature dependence of Jp in TD samples with structures A and B 
depends on several factors with opposing influences on the value of Jp [6, 9]. Firstly, the band 
gap Eg of the semiconductor decreases with increasing temperature, leading to a decrease in the 
height of the potential barrier and an increase in the probability of quantum tunneling and the 
magnitude of Jp. Secondly, an increase in temperature reduces the degree of degeneracy of energy 
levels due to redistribution of electrons along them. The number of electrons in the conduction 
band at levels below the Fermi level EF in the n-region Ec decreases, as some of the free electrons 
move to higher energy levels, and the Fermi level shifts downwards. As a result, the number of 
electrons capable of tunneling decreases, and the value of Jp decreases as well.

SIMS profiling (see Fig. 1) indicates that the doping level of the beryllium acceptor impurity in 
the degenerate p++-AlGaAs region for both TD structures is approximately the same and is at least 
2·1019 cm–3; in this case, the n++-GaAs region has the predominant influence on the temperature 
characteristics of TD. As the concentration of free charge carriers decreases (below 1·1019 cm–3) in 
the n++-GaAs region, the change in the position of the Fermi level starts to have the predominant 
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Fig. 3. Experimental (curves Ac, Ap, Bc) and calculated (A, B) temperature dependences 
for key parameters of TD samples of structures A and B: Jp (a), ΔJp (с), Jv (b), Rd (d). 

The samples were taken from the center (Ac, Bc) or from the periphery (Ap) 
of epitaxial wafers of structures A and B.

The calculated curve (CC) from [17] for a two-barrier resonant 
AlGaAs/GaAs tunnel diode is given for comparison
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influence on the tunneling current Jp with an increase in temperature. The latter shifts closer to 
the bottom of the conduction band, and the value of Jp decreases. The change in the band gap has 
the predominant influence on the value of Jp in the range of 100–400 K at a higher concentration 
of free charge carriers (above 1·1019 cm–3), while the change in the position of the Fermi level has 
little effect; as a result, the value of Jp increases with increasing temperature.

We calculated the temperature dependences of ΔJp in TD similar to structures A and B (see 
Fig. 1) by the model described in [10]. The behavior of the calculated dependences of ΔJp (com-
pare curves A and B in Fig. 3,c) is in qualitative agreement with the experimental ones (curves 
Ac, Ar, Bc in Fig. 3,c).

The presence of a negative temperature coefficient in the range of 300–400 K for the TD 
samples of structure A, in contrast to TD of structure B, indicates that the concentration level 
of free charge carriers of the n++-GaAs region in the center and at the periphery of structure A 
is significantly lower than in structure B, due to the greater thickness of the overlap region and 
compensation of silicon and beryllium impurities (see Fig. 1,a and 2,a). Since the temperature 
coefficient of structure A from the center of the wafer is higher in absolute value for TD samples 
(ΔJp = –9.5%) than for TD samples from the periphery (ΔJp = –6.8%) at 400 K, the concentra-
tion of free charge carriers in the n++-GaAs region of peripheral samples is slightly higher than in 
the center of the wafer with structure A but lower than in the center of the wafer with structure 
structure B. This is because the value of Jp increases for TD with structure B under heating with 
the temperature coefficient ΔJp = 13.6%. The difference in parameters between the peripheral 
and central TD samples in the wafer of structure A may be due to a temperature gradient along 
the wafer even during the growth of the structure (the temperature at the periphery is several 
degrees lower than in the center). This leads to a decrease in the degree of overcompensation at 
the periphery.

The value of Jp of the TD considered is determined by the doping level and the degeneration 
degree of the n++-GaAs TD layer. However, the Jp value in peripheral samples of TD with struc-
ture A is approximately 220 A/cm2, while the corresponding maximum value for TD with struc-
ture B is about 150 A/cm2. Our hypothesis is that this may be due to both the thickness of the 
‘quasi–neutral’ overcompensated silicon-beryllium region [10] and the presence of a higher defect 
concentration in it due to overcompensation of impurity atoms [11–16]. This is also confirmed by 
the densities of valley currents in the dark I–V curves of the samples of the considered structures 
(see Figs. 2 and 3,b). As the forward bias voltage is increased (see Fig. 2), the current density first 
increases to the Jp value at a Up voltage, and then decreases to the minimum value of the valley 
current density Jv at a Uv voltage due to a decrease in the degree of overlap of the conduction band 
with the valence band [9]. The valley current density is associated with the excess component of 
the current density of TD I–V characteristic. In turn, this excess component is determined by 
the concentration of deep levels inside the band gap of the semiconductor and the presence (or 
absence) of various types of structural defects. The defects contribute to dominance of an addi-
tional charge carrier transport mechanism associated with the resonant tunneling mechanism.

Since the overcompensation region is located between the degenerate n++ and p++ regions, it is 
depleted of the main charge carriers and is an ‘effective’ i-layer. We used numerical simulation [10] 
to establish that the dependence of Jp in tunnel diodes

n++-GaAs-(δSi)/i-(GaAs/Al0.2Ga0.8As)/p++-Al0.2Ga0.8As-(δBe) (p–i–n)
on the thickness of the i-region is nonmonotonic. The peak current density first increases, reach-
ing a maximum, and then decreases due to an increase in the thickness of the potential barrier 
through which the charge carriers tunnel.

Thus, the thickness of the ‘effective’ i-region caused by overcompensation of donor and accep-
tor impurities can affect the magnitude of Jp.

In addition, due to high concentration of silicon donors and beryllium acceptors, a higher 
concentration of defects and associated localized impurity states is present in the overcompen-
sated ‘effective’ i-layer. Interband quantum tunneling acts as the main mechanism for transport 
of charge carriers in tunnel diodes with a sharp doping profile [11]. However, resonant tunneling 
(RT) begins to prevail in the presence of a sufficiently large region with overcompensation of 
donor and acceptor doping profiles and a high concentration of localized impurity states in the 
potential barrier [12]. In this case, resonance occurs if the energy of the states in the conduction 
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band coincides with the energies of the impurity states in the potential barrier and the allowed 
states in the valence band. The theory of RT through two localized impurity states is described 
in [13]. According to [14–16], localized states coinciding in energy and induced by a donor-ac-
ceptor pair contribute to a significant increase in Jp at low positive bias voltages in the TD. These 
assumptions are confirmed by the temperature dependence of Jp in resonant tunnel diodes.

For comparison, Fig. 3,c (CC curve) shows the temperature dependence of ΔJp for an 
AlGaAs/GaAs two-barrier resonant tunnel diode (RTD), simulated by the Hartree model, 
obtained in [17]. Analyzing this dependence, obtained under heating from 300 to 400 K, we can 
observe a decrease in the value of Jp at a negative temperature coefficient ΔJp = –5%, the same as 
for structure A (see curves Ac, Ap). On the other hand, Jp increases smoothly under cooling from 
300 to 100 K, giving the value of ΔJp = 7%. The presence of a negative temperature coefficient 
in the I–V curves of RTD heated to 400 K is explained in [17] by scattering of charge carriers by 
phonons and electron-electron interaction.

We calculated the differential resistance responsible for parasitic losses at a voltage drop in TD 
in multijunction PV cells at different temperatures from the experimental I–V curves of the TD 
(Fig. 3,d). The connecting elements must provide resistances below 10 mOhm·cm2 for effective 
operation of multijunction PV cells [6]. The dependences of differential resistance of the studied 
TD samples on temperature, accounting for resistance of the electrical circuit in the cryostat 
(about 0.7 mOhm·cm2), are shown in Fig. 3,d. The best temperature stability Rd is observed for 
TD samples of structure B (see Fig. 3, d, curve Bc). The value of Rd varies from 0.58 to 0.42 
mOhm·cm2 over the entire temperature range for TD samples of structure B. The value of Rd 
varies from 1.59 to 0.67 mOhm·2 for TD samples from the central part and from 0.58 to 0.34 
mOhm·cm2 for samples from the peripheral part for structure A heated from 100 to 400 K.

The conducted temperature studies of forward I–V characteristics lead us to conclude that the 
developed connecting TD with structure A ensure the temperature stability of the parameters Jp, 
ΔJp at about 93% and the parameter Rd at about 59%, while structures B provide about 83% and 
72%, respectively.

Conclusion

Forward current–voltage characteristics were studied for connecting tunnel diodes (TD) in the 
temperature range of 100–400 K, taking the form 

n++-GaAs-(δSi)/i-(GaAs/Al0.2Ga0.8As)/p++-Al0.2Ga0.8As-(δBe)
for two types of structures obtained by molecular beam epitaxy. The type A structure contained 

an overcompensated ‘effective’ i-layer with a thickness of ≤ 25 nm, formed by interdiffusion of 
silicon and beryllium at an epitaxial growth temperature of 500 °C. The type B structure had an 
‘effective’ i-layer with a thickness of ≤ 10 nm, formed similarly at a growth temperature of 450 °C.

We observed a smooth decrease in the tunneling current density Jp for the TD with the struc-
ture A under heating to 400 K, while a linear growth of Jp was characteristic for the structure B. 
The change in Jp was 7% for TD samples with the structure A, and 42% for TD samples with the 
structure B. This Jp dependence on temperature for structure A is associated with the influence of 
temperature diffusion of the predominantly acceptor beryllium impurity from the layer

p++-Al0.2Ga0.8As-(δBe)
to the region

n++-GaAs-(δSi)/i-(GaAs/Al0.2Ga0.8As).
This diffusion contributed to a decrease in the degeneracy of the n++-GaAs-(δSi) layer of the 

TD due to formation of an overcompensated silicon and beryllium region.
The linear increase in Jp with an increase in temperature for structure B is due to a lower thick-

ness of the ‘effective’ i-layer, a smaller diffusion depth of beryllium impurity into the n++-GaAs 
region and, accordingly, the higher doping and degeneracy levels of this region.

The maximum values of Jp obtained in the temperature range of 100–400 K were about 220 
A/cm2 for structure A and about 150 A/cm2 for structure B. Such values of Jp can be due to 
both the thickness of the ‘effective’ i-layer and by the level of localized impurity states initiating 
resonant tunneling.
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Analyzing the measured I–V characteristics, we found that the differential resistances for TD 
samples of structure A lie within Rd = 0.58–0.34 mΩ·cm2 in the temperature range from 100 to 
400 K, and within 0.58–0.42 mΩ·cm2 for structure B.

The TD samples collected at the periphery of the epitaxial wafer of structure A grown at 500 
°C exhibit higher temperature stability and maximum values of Jp at minimum values of Rd. A high 
degree of overcompensation of doping impurities in the active region of the TD located in the 
center of the wafer leads to a decrease in the peak tunneling current density. Samples of structure 
B grown at 450 °C provide better stability of the peak current density across the wafer, but with a 
lower maximum value of Jp and worse temperature stability. We assume that the optimal condi-
tions for growth of the TD structure of type

n++-GaAs-(δSi)/i-(GaAs/Al0.2Ga0.8As)/p++-Al0.2Ga0.8As-(δBe)
with the maximum values of Jp, minimum values of Rd and high temperature stability lie in the 

epitaxial growth temperature range of 450 < T < 500 °C.
The temperature diffusion of impurities in highly doped layers of connecting TD must be 

taken into account in designs of multijunction photovoltaic cells converting high-power optical 
radiation Including an undoped i-layer up to 10 nm thick between the highly doped TD layers as 
well as optimizing the epitaxial growth temperature can prevent parasitic diffusion of the impu-
rity. Furthermore, it is important to use a dopant with a lower diffusion coefficient, for example 
carbon as an acceptor impurity.

We should note that taking into account the contribution of resonant tunneling in connecting 
TD with high optical transparency has potential for constructing highly efficient multijunction 
photovoltaic converters of high-power laser radiation.

SIMS studies were performed using the equipment of the Center for Collective Use “Materials 
Science and Diagnostics in Advanced Technologies” (Ioffe Institute).
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Abstract. In the paper, the distributions of structure damage created in alpha-phase of 
gallium oxide by keV fluorine, phosphorus and xenon ion irradiation, have been obtained at 
room temperature. A noticeable effect of the average individual collision cascade density on 
the stable damage production efficiency at the surface was established. In contrast to many 
other semiconductors, an intermediate damage peak appeared in the alpha-Ga2O3 between the 
surface and bulk maxima. This intermediate peak visible in the RBS/C spectra at low damage 
levels was discovered for the first time. Characteristic peculiarities of the discovered maximum 
were investigated.
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Аннотация. В работе получены распределения структурных нарушений при облучении 

альфа-фазы оксида галлия ионами фтора, фосфора и ксенона с энергией, измеряемой 
килоэлектронвольтами (температура комнатная). Установлено заметное влияние 
усредненной плотности индивидуальных каскадов столкновений на эффективность 
введения стабильных нарушений для поверхностного пика радиационных дефектов. В 
отличие от случаев ионной имплантации во многие другие полупроводники, впервые 
обнаружено, что в альфа-Ga2O3 между поверхностным и объемным максимумами 
структурных нарушений возникает дополнительный пик. Этот промежуточный максимум 
ясно виден на спектрах резерфордовского обратного рассеяния при малых уровнях 
повреждения. Изучены характерные особенности впервые обнаруженного максимума.

Ключевые слова: оксид галлия, ионная имплантация, радиационный дефект, каскады 
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Introduction
There are diverse modern technologies and tools for studying the properties of various materi-

als; a crucial method is ion irradiation, allowing to modify the structure of matter. Implantation 
of ions into semiconductors is always accompanied by stable structural damage. Analysis of 
ion-stimulated processes, in particular the occurrence of structural damage in materials is mainly 
required for two applied problems. Firstly, radiation damage is the main limitation to ion beam 
machining technologies for manufacturing electronic devices. Secondly, it is often necessary to 
determine the durability of electronic devices operating under high radiation loads, finding ways 
to improve it. Studies into these problems have long been underway, however, radiation defects 
in binary or more sophisticated materials have a complex nature and remain poorly understood.

Damage accumulation in the crystal structure under ion bombardment is often studied by 
Rutherford backscattering by MeV helium ions in combination mode (RBS/C). The method 
was used to establish that the depth distributions of the accumulated damages have a bimodal 
nature for many semiconductors irradiated by light ions at least [2–5]. A bulk defect peak (BDP) 
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appears, typically located at the depth of the maximum elastic energy loss of stopping ions [3, 4], 
i.e., in the region where the majority of the primary point defects are generated. In addition, the 
crystal structure becomes disordered directly at the surface of the bombarded target. This surface 
defect peak (SDP) occurs due to diffusion of primary defects to the surface of the semiconductor 
and their subsequent coagulation on this surface (see, for example, [6]). In addition, sometimes 
another maximum is found in the depth distribution of defects, located between SDP and BDP; 
an example is the result obtained by irradiation of zinc oxide with heavy ions. Such a defect peak 
is commonly defined as intermediate (IDP) [7–9]. In the case of irradiation of zinc oxide with 
500 keV xenon ions, IDP appears do to a highly Zn-rich layer [9].

One of the most promising semiconductor materials for high-power electronics and optoelec-
tronics of a new generation is gallium oxide Ga2O3, offering such advantages as a wide band gap 
(4.5–5.3 eV for different phases), high breakdown voltage (about 8 MV/cm), etc. [10]. Some of 
the earliest data were obtained for the accumulation of structural damage in αGa2O3 [11, 12] and 
βGa2O3 [11, 13] for bombardment with accelerated atomic ions. The detected distribution of sta-
ble structural defects for both the stable βphase and the metastable αpolytype has a bimodal char-
acter. The ion dose required to achieve approximately the same level of disordering for αGa2O3 is 
about 10 times higher than for the stable βphase [11]. Further investigations established conditions 
for IDP to appear are observed under ion irradiation of alpha gallium oxide.

The goal of this study was to describe the detection of IDP in an αGa2O3semiconductor mate-
rial under ion irradiation and to find out the conditions under which this peak appears.

Experimental procedure

We considered epitaxial layers of alpha gallium oxide (α-Ga2O3) with a corundum structure 
approximately 2 µm thick with the orientation (0001) grown on the c-plane of a sapphire substrate 
by hydride vapor-phase epitaxy (HVPE).

The samples were irradiated with fluorine, phosphorus and xenon ions at room temperature on 
a 500 kV HVEE implanter (Netherlands). The irradiation was carried out at an angle of 7° from 
the direction [0001] to minimize the channeling effects. The irradiation parameters were selected 
in such a way that the generation of primary defects by inhibited ions was approximately the 
same over the depth of the target in all cases. For this purpose, the ion energies and fluxes were 
chosen such that the depth distribution profiles of displaced atom concentrations were similar and 
differed only in the height of the peak under irradiation with different ions.

Displacement generation profiles were calculated in the binary collision approximation (BCA) 
[14]. Ion doses were expressed as displacements per atom (dpa), calculated at the maximum depth 
of the generation function. The dpa magnitude was calculated by the TRIM code (version SRIM-
2013, http://www.srim.org) [14]. The ion flux during irradiation with various ions was maintained 
the same in dpa/s units. The doses were selected such that the damage levels near the SDP were 
not too high and close to each other so that we could conveniently compare the distribution pro-
files of structural defects during irradiation with different types of ions. In addition, irradiation 
with different ions (phosphorus) and with a higher energy (65 keV) was carried out at the same 
doses and fluxes (in dpa and dpa/s units) that were used earlier for more detailed comparative 
analysis of the detected effect.

The disordering degree of the crystal structure after irradiation was measured by RBS/C. A 
0.7 MeV He++ beam probe in the direction [0001] was used for the measurement. The scattered 
particle detector was positioned at an angle of 103° relative to the direction of the incident beam. 
The obtained RBS/C spectra were processed using a standard algorithm to construct the distribu-
tions of relative depth disordering [15].

Experimental results and discussion

Fig. 1,a shows the distributions of structural defects along the depth of the α-Ga2O3 target 
obtained after implantation of ions with different masses. As already noted, the radiation doses 
were chosen in such a way that the resulting damage levels near the SDP were not too high and 
sufficiently close to each other. Clearly, the doses that meet these requirements are the lower the 
greater the ion mass. Indeed, a dose of 0.30 dpa is required to achieve a disordering of the order 
of 0.15 in SDP by irradiation with Xe ions, a dose of 0.44 dpa is required in the case of irradiation 
with P ions, while in the case of irradiation with F ions it is as high as 1.50 dpa. Recall that the the 



45

Condensed Matter Physics

conditions for ion bombardment were chosen 
such that the generation rates of primary defects 
in the BCA [14] and the depth distributions of 
defects coincide for ions of different types.

It follows from these results that the level of 
damage to the α-Ga2O3 crystal structure can be 
greatly affected by another parameter that varies 
from ion to ion in such an experimental setting; 
this parameter is the average density of individ-
ual displacement cascades. Previous experimen-
tal studies found that irradiation with molecular 
ions is more efficient for producing the SDP; 
this was indicated by the results obtained for 
irradiation of gallium oxide with higher ion doses 
[12]. We earlier proposed to calculate the value 
of this parameter based on the binary collision 
approximation [16].

Fig. 2 shows the calculated density depen-
dences of the cascades generated by ions along 
the depth of the alpha gallium oxide target. 
Evidently, the density of cascades generated 
by fluorine ions is less than that generated by 
phosphorus and xenon ions. Thus, an increase in 
the density of displacement cascades leads to an 
increase in the SDP production efficiency even 
in this case, at rather small ion doses and fluxes.

Notably, another pronounced peak appears 
between SDP and BDP on the curve shown in 
Fig. 1,a (distribution of defect concentration 
during bombardment with 25 keV F ions). This 
intermediate peak is located at a depth about 
17 nm in the α-Ga2O3 target. In our opinion, a 
similar peak is present in the distribution obtained 
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Fig. 2. Density distributions of individual displacement cascades over the depth of the α-Ga2O3 
target after irradiation with ions of different masses with different energies (given in the caption).

The calculations were performed based on the binary collision approximation [14] 
by the technique proposed in [16]
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by irradiation with 40 keV phosphorus ions. This peak is not detected in the case of bombardment 
of gallium alpha oxide with heavier xenon ions. We should note that the appearance of the IDP 
is a new phenomenon that we have not observed for implantation of ions to higher doses.

To further investigate this phenomenon, irradiation of phosphorus ions with higher energy 
(65 keV) and the same dose (0.44 dpa) was carried out. The resulting distribution of structural 
defects is shown in Fig. 1,b. Evidently, the width of the surface peak becomes slightly smaller with 
an increase in the energy of phosphorus ions. Furthermore, a rather pronounced intermediate 
peak is observed in gallium alpha oxide in this case, approximately at the same depth as the one 
previously observed for fluorine ions (see Fig. 1, a and b). Thus, the IDP is produced not only by 
irradiation with fluorine ions, but also with phosphorus ions. The IDP becomes more pronounced 
with an increase in the energy of phosphorus ions.

As noted above, the IDP was previously detected during implantation of ions into zinc oxide. 
However, the mechanism by which this peak is produced in this case (α-Ga2O3) is likely different 
than for ZnO. Indeed, the IDP in zinc oxide appears under irradiation with heavy ions and is 
noticeable in a wide range of doses. The magnitude of the IDP in zinc oxide did not depend on 
the type of the ion. In the case of α-Ga2O3 oxide, we observe the IDP only under irradiation with 
light ions and at low doses. The magnitude of IDP in gallium oxide under the same conditions of 
ion bombardment is different for phosphorus and fluorine ions, increasing with increasing energy 
for phosphorus ions.

Notable differences are observed in the behavior of density distribution curves of individual 
displacement cascades for all experimental cases (see Fig. 2). It can be seen that the highest value 
of the parameter is detected for stopping of heavy xenon ions near the surface. Phosphorus ions 
with an energy of 40 keV produce cascades with a lower density, and the densities are even lower 
for fluorine ions. The density of the displacement cascades decreases with an increase in the 
energy of phosphorus ions from 40 to 65 keV. Thus, the IDP in the α-Ga2O3 target appears at a 
low cascade density rather than at a high one as is the case with ZnO.

The reasons why the IDP appears in the spectrum are not yet clear. Further in-depth studies 
covering all aspects of the phenomenon are necessary for understanding the behavior and mech-
anism of IDP production in α-Ga2O3.

Conclusion

We experimentally obtained the depth distributions of structural damage under implantation 
of small doses of fluorine, phosphorus and xenon ions into the α-Ga2O3 semiconductor material 
in the keV energy range. The average density of individual displacement cascades was calculated; 
the calculation results, along with experimental data, indicate an increase in the efficiency of 
radiation damage to gallium oxide with an increase in such density.

We found that ion bombardment of a gallium oxide target (unlike other target materials) causes 
an additional structural defect peak to appear for the ions with the average masses and selected 
technological doses; this peak is located between the surface and bulk peaks on the corresponding 
distribution curves.
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Аннотация. В работе впервые проведено прямое сравнение двух основных подходов к 
вычислению якобиана уравнений Навье – Стокса: континуального (КП) и дискретного 
(ДП). На базе собственного конечно-объемного кода для моделирования течений 
реализован ДП к вычислению якобиана (в дополнение к уже существующему КП). 
ДП был успешно верифицирован путем сравнения полученного численного результата 
с решением нестационарных уравнений Навье – Стокса. Сравнение двух подходов 
проведено на примере ламинарного обтекания цилиндра идеальным газом при 
околокритических числах Рейнольдса (Re = 50 и 60). Установлено, что КП точнее 
предсказывает показатель роста возмущений, а ДП – их частоту и амплитуду в целом. 
Полученные результаты позволяют утверждать, что КП и ДП равнозначны по порядку 
точности и выбор конкретного подхода для проведения анализа устойчивости может 
определяться другими критериями (например, простота реализации, вычислительные 
затраты и др.).
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Introduction
One of the most powerful and advanced tools for studying the stability of viscous fluid flows 

is the linear theory of stability, which considers the development of small perturbations that do 
not interact with each other. Most 20th century studies were based on the linear theory of hydro-
dynamic stability within the framework of the locally parallel approach (the Orr–Sommerfeld 
equation) or two-dimensional parabolized equations (see books [1, 2] and a review [3]). By the 
end of the 20th century, the advances in computer technologies made it possible to conduct linear 
stability analysis of two-dimensional and even three-dimensional solutions of the Navier–Stokes 
equations; this approach came to be known as global stability analysis (GSA) in the literature [4].

The dynamics of the evolution of small perturbations within the GSA is determined by the 
matrix of derivatives of the governing equations with respect to all variables, i.e. the Jacobian 
of the stationary Navier–Stokes equations (more precisely, its discrete form). Currently, two 
different approaches are used to calculate this Jacobian. For example, [5–9] covering a wide 
range of problems of GSA for two-, three- and quasi-three-dimensional flows used the approach 
called continuum in [10]. It consists in the initial linearization of the Navier–Stokes equations, 
which leads to an analytical expression for their Jacobian, for which a discrete approximation is 
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then formed using one or another finite-difference scheme. In contrast to this method, [11–18] 
used an approach called discrete, in which the governing equations are initially discretized and 
then linearized.

The Jacobian matrices obtained using these approaches differ, since in general the lineariza-
tion and discretization operations are noncommutative [10]. However, as the mesh is refined, 
the difference between the results of these approaches should decrease. Different aspects of the 
continuum and discrete approaches have been studied in the context of solving conjugate equa-
tions for optimization problems [19, 20]. However, these approaches were not compared within 
the framework of GSA in the literature and the choice of a specific approach in [5– 18] was 
not substantiated.

The goal of this study consists in comparing the results of GSA using various methods for 
calculating the Jacobian matrix using the example of laminar flow around a cylinder with perfect 
gas at near-critical Reynolds numbers.

Global stability analysis of steady laminar flows

The procedure for studying the global stability of laminar flows contains two main stages.
The first one is finding a numerical solution of a generalized system of steady Navier–Stokes 

equations, including equations of continuity, conservation of motion and energy, which can be 
written in operator form:

( ) 0,R q = (1)

where { , , , }Tq u v E= ρ ρ ρ ρ  is the vector of conservative variables; R is the nonlinear differential 
operator of steady Navier–Stokes equations.

The solution of the steady Navier–Stokes equations satisfying Eq. (1) and obtained by analyz-
ing the stability of the flow is often called the basic one. The stability of this solution, denoted as 
q , is in fact the subject of our analysis.

At the second stage, the evolution of perturbations of the basic solution over time is consid-
ered. The equation for perturbations can be obtained from the transient Navier–Stokes equations; 
they are written in the following operator form:

( ).q R q
t

∂
= −

∂
(2)

GSA uses the traditional approach for linear stability analysis, which is based on representa-
tion of the solution of the system of equations (2) as the sum of its steady solution q  and small 
perturbations qʹ:

.q q q′= + (3)

To obtain equations that are linear with respect to qʹ, linearization of the operator R(q) is car-
ried out in the vicinity of the basic solution for these perturbations:

( ) ( ) ( ) ,RR q q R q q q
q

∂′ ′+ = +
∂

(4)

where ( ) ( )R q J q
q

∂
≡

∂
 is the Jacobian of the Navier–Stokes equations (a differential operator  

depending on the basic solution).
The equation of relatively small perturbations is obtained by substituting expansion (3) into 

Eq. (2), taking into account Eqs. (1) and (4):

( ) 0.q J q q
t
′∂ ′+ =

∂
(5)
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Due to linearity of the system of differential equations (5), its general solution is represented 
as a sum of terms (modes of perturbations), each of which is also a solution of system (5). Each 
mode can be represented as

' ˆ( , , ) ( , ) exp( ),q x y t q x y t= ω (6)

where q̂  is the complex vector of the perturbation amplitudes; ω is the complex number ωr + iωi, 
whose real part ωr is the rate of growth/attenuation of the perturbation, and the imaginary part ωi 
is its frequency (only the real part of relation (6) has a physical meaning).

Substituting equality (6) into system (5) leads to the eigenvalue problem for the Jacobian of 
the governing equations:

ˆ ˆ.Jq q= ω (7)

The numerical solution of this problem is carried out on a finite difference mesh, so all continu-
ous vectors and operators are replaced by their discrete approximations. Discretization of deriva-
tives at each point of the computational mesh in accordance with an existing stencil of a numer-
ical scheme determines the dependence of these derivatives on the values of variables at adjacent 
points. Thus, problem (7) is reduced to the eigenvalue problem of the discrete approximation of 
the Jacobian J, that is, the matrix Mkl:

ˆ ˆ .kl l kM α = ωα (8)

Here, the vector ˆ lα  is the discretized field of the amplitude of perturbations q̂ , and the dis-
cretized Jacobian Mkl is the matrix of derivative equations with respect to all variables at all points 
of the computational mesh, therefore, the indices k and l in Eq. (8) take values from 1 to Np × 
Nv, where Np is the number of nodes of the computational mesh, Nv is the number of variables.

It should be noted that instead of linearization of expression (7) at the boundary points of the 
computational domain, linearization of the corresponding boundary conditions is used, therefore, 
the following equation is used for these points, instead of expression (8): 

ˆ 0.kl lM α = (9)

Eqs. (8), (9) can be combined if we formulate a generalized eigenvalue problem:

ˆ ˆ ,kmkl l mM Tα = ω α (10)

where Tkm is a diagonal matrix with Tii = 0 at the boundary points and Tii = 1 at the inner points.
Thus, the determination of the stability of the flow within the framework of GSA is reduced to 

solving the generalized eigenvalue problem (10). The eigenvalues of the matrix Mkl correspond to 
different modes of perturbation, and the real part of the eigenvalues is equal to the rate of growth 
of perturbations, and the imaginary part is the frequency of their vibrations.

The eigenvectors correspond to the spatial distributions of the mode amplitudes. The flow is 
unsteady if at least one eigenvalue has a positive real part (i.e., there is a growing perturbation 
mode), and stable otherwise.

As already noted in the introduction, two different approaches are currently used to determine 
the elements of the Mkl matrix at the inner points of the computational domain. According to the 
method for calculating this matrix, the GSA is called continuum or discrete, respectively.

Within the framework of the first of approach (see, for example, [5]), called continuum 
in [10], an analytical expression is derived for the Jacobian J, and then its discretization is carried 
out using some numerical scheme, which, generally speaking, may differ from that used to solve 
system of equations (1) obtaining the basic solution.

In contrast, within the second approach (see, for example, [11, 12]), called discrete in [10], the 
calculation of the Jacobian in problem (7) is carried out not at the differential, but at the discrete 
level, i.e., it is not the operator R itself that is differentiated, but its discrete form, used to obtain 
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a basic solution, called the right-hand side of system (2) ( traditionally denoted as RHSk); index 
k takes values from 1 to Np × Nv, as in Eq. (10).

The discrete form of the Jacobian in this case is the matrix of partial derivatives RHSk with 
respect to the variables αl (the discrete form of the vector of the principal variables q) at each inner 
point of the computational mesh:

RHS .k
kl

l

M ∂
=

∂α
(11)

There are two approaches to differentiating Eq. (11). Within the framework of the first, the 
explicit dependence RHSk(αl) is formulated for the numerical scheme used, and then differen-
tiated analytically. Even though this problem is very time-consuming, especially for modern 
schemes with high-order accuracy, it was solved in [21], and the developed approach was suc-
cessfully applied in [11, 13, 16, 18].

This paper uses an alternative approach based on the technology of automatic differentia-
tion (AD). Even though AD as a concept has appeared quite long ago [22], interest in it arose 
only in the last two decades, with efforts to solve related problems on optimizing the shapes of 
airfoils [23].

The basis for the AD is that the algorithm for calculating any complex function (including 
RHS) consists of sequential application of elementary operations φ1 (addition, multiplication, 
exponentiation, etc.):

1 2RHS ... .n= ϕ ϕ ϕ   (12)

The values of the derivative of the elementary function at each step are known analyti-
cally, so the Jacobian of the RHS function can be calculated by the rule of differentiation of a 
complex function:

1 2 ... .nJ ′ ′ ′= ϕ ϕ ϕ   (13)

Libraries implementing AD (see, for example, [24, 25]) accumulate the results of this dif-
ferentiation during the calculation of the initial function and calculate the discretized Jacobian. 
Notably, the AD method is not automatic in the full sense of the word and requires editing the 
source code of the program.

In the absence of gas-dynamic discontinuities, theoretically (i.e., with computational meshes 
that provide grid-independent solutions for emerging perturbations), the continuum and discrete 
approaches should provide the same result. However, in practice, the results obtained using dif-
ferent approaches on finite grids may differ dramatically.

It should be noted that the evolution of perturbations can be considered not only within the 
GSA, but also within direct numerical simulation of transient Navier–Stokes equations (2). In 
this case, the solution of the steady Navier–Stokes equations (1) is used as an initial approxima-
tion. The initial perturbations are determined by the error of the numerical solution of transient 
equations. If the flow is unsteady, then an increase in the amplitude of perturbations is observed 
as a result of the calculation. At the linear stage, when the exponential nature of the growth of 
perturbations is observed, their evolution should be consistent with the results of the GSA in the 
discrete calculation of the Jacobian.

In this paper, we verified our implementation of the discrete approach to calculating the 
Jacobian based on such a comparison.

Statement of the problem on the stability of steady flow 
around a cylinder and its computational aspects

The results of two stability analysis methods were compared using the example of the problem 
on laminar flow around a cylinder with perfect gas, using meshes that are sequentially refined in 
both directions. The problem was considered in a compressible statement with the Mach number 
M = 0.2 and two values of the Reynolds number, Re = 50 and 60, slightly exceeding the Reynolds 
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number for the stability threshold, Re ≈ 47 (see, 
for example, [26]), when the Reynolds number 
is constructed from the velocity of the incident 
flow U0 and the diameter of the cylinder D.

The size of the computational domain was 
120D. This size was sufficient to eliminate the 
influence of boundary conditions on the basic 
solution and the results of the GSA. A series of 
O-type computational meshes was constructed 
in this region (an example of such a mesh is 
shown in Fig. 1) with a uniform distribution of 
nodes along the angular coordinate and cluster-
ing towards the wall along the radial coordinate 
(the parameters of the constructed meshes are 
shown in Table 1).

In this paper, the finite volume Numerical 
Turbulence Simulation (NTS) CFD code was 
used for calculations [27]. In this code, the 
finite-difference relaxation method is used to 

find steady solutions to the governing equations. A hybrid scheme is used to approximate inviscid 
flows in calculations of compressible flows:

41( ) ,    – H U Roe U C∆ =α ∆ + α ∆ (14)

where αU is the weight of upwind approximation; ∆Roe, Δ4C are the finite difference operators of the 
third-order upwind-biased Roe scheme and the fourth-order central difference scheme, respectively.

The viscous components of the flows are approximated using a second-order central 
difference scheme.

To calculate the evolution of small perturbations by solving transient Navier–Stokes equations, 
numerical time integration was carried out using an implicit second-order Euler scheme with a 
time step Δt = 0.3·D/U0, which provided values of the Courant number less than unity in almost 
the entire computational domain and approximately 1,000 steps per Kármán vortex street for 
all meshes.

The indicators of the growth or attenuation of perturbations and their frequency were deter-
mined by processing the dependences of the transverse velocity on time obtained by unsteady 
calculations at several points in space. A linear stage of perturbation evolution was identified, 
when their amplitude increases exponentially.

Solving the spectral problem, the calculation of the discrete form of the Jacobian was carried 
out by both methods (discrete and continuum). Within the framework of the continuum method 

Fig. 1. Example of O-type computational 
mesh (L1 mesh)

Tab l e  1

Parameters of O-type computational meshes used and their values

Mesh Nφ Nr ∆h1/D ∆hi+1/∆hi ∆hmax/D

L1 80 1.0·10–2 1.098 2
L2 160 5.0·10–3 1.040 2
L3 240 2.5·10–3 1.028 2
L4 320 1.0·10–3 1.023 2
L5 800 1.0·10–4 1.011 1

Nota t i on s :  Nφ, Nr is the number of nodes in the circumferen-
tial and radial directions, respectively, ∆hi is the grid pitch, ∆hmax 
is its maximum value, D is the diameter of the cylinder.
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implemented earlier in the NTS code, a finite-difference scheme was used to discretize the 
Jacobian J (it is described in more detail in [5]), which is a combinations of a third-order upwind 
scheme and a fourth-order central difference scheme:

3 4( ) ,   1 – H U U U C∆ =α ∆ + α ∆ (15)

where αU is the weight of the upwind approximation; Δ3U, Δ4C are the finite difference operators of 
the upwind scheme and the central difference scheme, respectively.

To use the discrete approach, we implemented in this paper, we applied the automatic differ-
entiation method (using the ADF95 library [25]). For the numerical solution of the eigenvalue 
problem, the Krylov–Schur method was used, which is implemented using the open library 
SPEPc/PETSc [28]. This method is designed to solve eigenvalue problems with sparse non-Her-
mitian matrices of large size (this is the type of matrix considered). It is a modification of an 
implicitly restarted version of the Arnoldi method, which belongs to the class of Rayleigh–Ritz 
methods based on projection onto the Krylov subspace (see, for example, monograph [29]). The 
Krylov–Schur method allows to obtain the requested number of the eigenvalues the largest in 
absolute value and their corresponding eigenvectors. Therefore, to use it, the initial matrix is 
pre-transformed in such a way that the most important eigenvalues in terms of stability with 
the largest real part become the largest in absolute value. This transformation is a combination 
of shifting and inverting the matrix (this approach is called the “Shift-Invert Approach” in the 
literature [30]).

Verification of the GSA results obtained with the discrete approach  
to calculating the Jacobian

Fig. 2 shows the spatial distributions of perturbations of the longitudinal velocity U’ at the 
Reynolds number Re = 60 on the L4 mesh, obtained by discrete GSA and direct numerical solu-
tion of the transient Navier–Stokes equations. For the latter, the local amplitudes of perturbations 
are obtained as a result of subtracting the fields of the instantaneous and basic solution with nor-
malization to the maximum value |U’max|.

In the framework of a discrete GSA, the spatial distribution of perturbations is determined by 
the real component of the eigenvector corresponding to the most unstable eigenvalue. For com-
parison, the complex components of the EU vectors corresponding to the longitudinal velocity 
perturbations were reduced in phase and amplitude to the value at the point where the amplitude 
of the perturbations |U’max| is maximum. The analysis of the data in Fig. 2 allows us to conclude 
the discrete GSA not only correctly predicts the shape of perturbations developing due to insta-
bility on the L4 mesh but also provides good quantitative agreement.The growth rate and the 
frequency of development of the most unstable perturbations at Re = 60 on a series of meshes 

a) b)

Fig. 2. Spatial distributions of longitudinal velocity perturbations obtained on the L4 mesh by direct 
numerical solution of the transient Navier–Stokes equations (a) and using discrete GSA (b) 

Reynolds number Re = 60, Mach number M = 0.2
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L1–L5 are shown in Table 2. The growth rate and frequency obtained by the discrete approach 
coincide with high accuracy (on all meshes for the flow, the error does not exceed 0.4%) with 
the solution of the transient Navier–Stokes equations, which indicates that the approach was 
implemented correctly.

Comparison of the results of two methods of global stability analysis
The direct comparison of the discrete and continuum approaches implemented in the NTS 

code is complicated by differences both in the methods for calculating the Jacobian and in the 
numerical schemes used to calculate the inviscid part of the flows.

The discrete GSA uses the same computa-
tional scheme as for calculating the basic flow, 
i.e., a hybrid upwind Roe scheme. This correc-
tion is significantly nonlinear, which does not 
allow it to be used within the framework of con-
tinum GSA, therefore it uses a simplified linear 
upwind term. It would be possible to avoid dif-
ferences between the schemes by using identical 
central difference schemes, but in practice this is 
impossible due to loss of stability when obtaining 
a basic solution. Nevertheless, if we reduce the 
weight of the upwind term, this can drastically 
reduce the difference in the schemes used.

This possibility is illustrated in Fig. 3, which 
shows the dependence on the grid step of the 
modulo difference in growth indicators 

d c
r r−ω ω  

in the vicinity of the cylinder obtained from the 
results of discrete and continuum GSA. If the 
weight of the upwind term is reduced, the dif-
ference decreases. The following are the results 
obtained using hybrid schemes with the weight 
of the upwind term α = 0.05.

The growth rate and frequency obtained on the smallest L5 grid using the continuum and 
discrete approaches (Table 3) practically coincide. The same table shows a comparison with the 
results from [26, 31], confirming that the GSA results are representative.

Fig. 3. Effect of the grid step on the difference 
in growth rates ωr calculated using discrete (d)

and continuum (c) GSA methods
Hybrid schemes with two weights 
of the upwind term α were used

Tab l e  2

Comparison of computational parameters of the most unstable 
perturbations obtained by two methods on a series of meshes 

Mesh
Computational value of parameter
Growth rate ωr Frequency ωi

I II I II
L1 0.0132 0.754 0.753
L2 0.0389 0.740 0.741
L3 0.0420 0.0421 0.738
L4 0.0430 0.0431 0.737
L5 0.0437 0.736

Nota t i on s : I corresponds to direct numerical solution 
of transient Navier–Stokes equations; II to GSA, discrete 
approach. Note. Reynolds number Re = 60, Mach number 
M = 0.2.
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The arithmetic mean of the eigenvalues obtained using discrete and continuum approaches was 
used as a "reference" value of ( ),ref ref ref

r iω = ω ω  to estimate the error in calculating the growth 
rate and the frequency of unsteady perturbation mode on on the coarser mesh L5.

Dependences of the error of the GSA results

0

( )ref D
U

ω − ω
∆ω =

on the characteristic step of the mesh Δh, defined as the average step along the angular coordinate 
at a distance of 4D from the surface of the cylinder, are shown in Fig. 4 and allow us to draw 
the following conclusions.The calculation error is almost the same for both considered Reynolds 
numbers. The real order of accuracy of the GSA, which was determined by power-law approxi-
mations of the dependence of the error on the grid step, turned out to be approximately the same 
for both approaches: its value is approximately 3.1 for the growth rate, and 1.8 (discrete GSA) 
and 2.0 (continuum GSA) for frequency. These values are consistent with the formal order of the 

a) b)

Fig. 4. Stepwise dependences of errors in calculating the growth rate (a) and frequency (b). 
The dependences were obtained by discrete (DA) and continuum (CA) approaches on meshes L1 – L4, 

with varying Reynolds numbers (dependences are given by symbols), and their approximation 
by exponential functions (straight lines on a logarithmic scale)

Tab l e  3

Comptutational parameters of unsteady perturbation mode obtained 
by two methods on the L5 mesh with varying Reynolds numbers, 

as well as comparison with the literature data

Computational approach
Computational value of parameter

ωr ωi

Re=50 Re=60 Re=50 Re=60
GSA,                   discrete approach

continuum 
–0.01099 –0.04368 0.72965 0.73637
–0.01093 –0.04372 0.72955 0.73633

[26], GSA, discrete approach –0.013 –0.047 0.745 0.754
[31], direct numerical solution
of Navier–Stokes equations –0.012 –0.050 0.750 0.757



59

Simulation of Physical Processes

schemes used, in which convective terms are approximated by the third order, and viscous ones 
by the second. In addition, it should be borne in mind that the actual order of the schemes may 
decrease on non-uniform meshes (that is, the meshes are used in this work). The analysis of the 
data in Fig. 4 also allows us to conclude that the error in predicting the growth rate was about 
three times less when using the continuum approach, and the error in predicting the frequency of 
perturbations was less when using the discrete approach.

Conclusion

Two approaches to global stability analysis (GSA) were compared using the example of the 
problem on laminar flow around a cylinder at Reynolds numbers close to critical, differing in the 
methods for calculating the Jacobian of the Navier–Stokes equations: discrete (linearization of 
these discretized equations) and continuum (discretization of these linearized equations).

The discrete GSA approach we implemented was verified by comparison with the results of 
direct numerical simulation of unsteady laminar flow around the cylinder at Reynolds number 
Re = 60. The results of the comparison showed that the growth rate and the vibration frequency 
of the most unsteady mode coincided with high accuracy on all the considered meshes.

The order of accuracy of the GSA turned out to be the same for continuum and discrete 
methods for calculating the Jacobian, and corresponded to the formal order of accuracy of spa-
tial discretization by the numerical schemes used to obtain the solution whose stability was ana-
lyzed The error in predicting the growth rate of perturbations is less when using the continuum 
approach, and the error in predicting the vibration frequency of perturbations is less when using 
the discrete approach.

Thus, it can be argued that the continuum and discrete approaches are equivalent in order of 
accuracy and the choice of a specific approach for conducting stability analysis can be determined 
by other criteria (ease of implementation, computational costs, etc.).

This study was supported by the Russian Science Foundation (grant 21-72-20029). The simu-
lations were run on the Polytechnic RSC Tornado cluster of the Polytechnic Supercomputer 
Center (http://www.scc.spbstu.ru).
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Аннотация. В работе описана конструкция и принцип действия клапана, 
предназначенного для испытаний прототипов ключевых элементов системы массивной 
газовой инжекции: седла и сверхзвукового сопла. Приведены результаты расчетов 
параметров сверхзвукового сопла, близких к оптимальном для выбранной конструкции 
клапана. Выполнено моделирование газовых потоков через седло и сопло, рассчитаны 
параметры формируемой струи на выходе системы инжекции в ближнем поле сопла. 
Обоснован выбор «ступенчатой» формы профиля сопла для первых испытаний. Сделана 
оценка требований к точности изготовления прототипов сопел.
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Introduction
One of the fundamental tasks in thermonuclear energy is to prevent or significantly reduce the 

probability of disruption of the tokamak discharge. Efforts are currently underway to solve this 
problem [1].

Let us briefly outline it. If disruption of the discharge current is unavoidable, rapid mitigation 
measures should be taken as a last resort to reduce the likelihood of significant damage to the vac-
uum chamber and other structural elements of the tokamak reactor. Since the thermal and mag-
netic energy of the plasma is effectively stored in the chamber during disruption, it can only be 
redistributed inside the chamber, but cannot be removed. This redistribution can be achieved, for 
example, by introducing a sufficiently large amount of impurities. A group of noble gases (helium, 
neon and argon) is commonly used as such impurities, which is designed to generate isotropic 
radiation of plasma energy on the first wall and is aimed at preventing concentrated loading.

The most common injection technology used for rapid delivery of impurities is massive gas 
injection (MGI). One of the prototypes of the MGI is described in the following section of 
this article.

An important element of the MGI system is the supersonic Laval nozzle, which ensures 
the formation of a jet of injected impurity into the tokamak vacuum chamber [2]. The nozzle 
parameters determine the velocity and distribution of the injected gas, which affects the pene-
tration depth of the impurity and determines the distribution of the radiation source inside the 
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plasma filament. Gas flow in the subcritical (tapering) section of the nozzle occurs at subsonic 
speeds. The local gas velocity in the critical (narrowest) section of the nozzle reaches sonic levels, 
and gas flow moves at supersonic speeds in the supercritical (expanding) section. The internal 
energy of the gas is converted into the kinetic energy of its directional motion. In addition, the 
gas passing through the nozzle at a significant speed does not have time to transfer a noticeable 
amount of its thermal energy to its walls. This feature of the process allows to consider it adia-
batic, which greatly simplifies its modeling.

The goals of this study included modeling the process of outflow of a massive gas jet from the 
MGI system for various types of nozzle and choosing its optimal type.

The criterion for the effectiveness of the nozzle is to achieve the maximum gas velocity with 
a minimum jet angle at the nozzle outlet (this allows increasing the penetration depth of the 
injected gas into the plasma).

Another important criterion for choosing a prototype nozzle is the simplicity of its manufactur-
ing technology. The small size of the critical section and the complex shape of the nozzle profile 
require laser and electroplating technologies. The possibility of manufacturing a nozzle without 
complex metalworking procedures creates a significant advantage with comparable parameters of 
the jet formed by the nozzle.

The simulation was performed to support bench tests of a prototype valve for massive gas injec-
tion and did not involve changes in gas flow parameters and nozzle geometry over a wide range.

The main purpose of the calculations was to find the optimal distribution of gas flow parameters 
in the near field at the nozzle outlet. The optimal values of the set of parameters are necessary for 
designing the diagnostics of the MGI test system, as well as for modeling the interaction of gas 
jets with high-temperature plasma of magnetic confinement setups.

The obtained results are presented as follows. First, the operating principles and configuration 
of the gas valve designed to form a supersonic jet are described. Then the calculation results of 
the main parameters of the supersonic nozzle are presented. Next, we describe the algorithm for 
constructing the computational grid and the results obtained during the simulation, as well as 
analyze the gas flow through a supersonic nozzle. In conclusion, the main conclusions of the work 
are formulated.

Gas valve for testing seat and nozzle prototypes

The MGI method is relatively simple to implement, but tends to form a local source of 
impurity radiation in the peripheral regions of the plasma, which can lead to low efficiency 
of impurity injection into the central regions of the plasma cord [3]. According to the origi-
nal design [4], the positioning of the MGI valve allows it to be brought closer to the plasma, 
which increases the efficiency of impurity injection. The main idea of the design is to ensure 
the mobility of the valve at a considerable distance from the actuator, which allows to shift the 
outlet section of the valve nozzle up to the last closed magnetic surface (LCMS). The valve sys-
tem allows for it to move from a position outside the gate valve to the nozzle to a position next 
to the LCMS. The movement of the nozzle can reach a distance of more than a meter, which 
usually exceeds the size of the neutron protection of neutron setups, including the ITER reactor 
(International Thermonuclear Experimental Reactor). Such movement can be quite fast, which 
opens up prospects for using such a configuration of MGI in the radiation environment of a 
tokamak reactor. This eliminates the need for guide tubes to deliver the jet from the valve noz-
zle to the plasma, reduces the system response time, and reduces the angular expansion of the 
gas jet.

The following calculated characteristics of a massive helium gas jet injector are set:
gas flow is at least 1023 atm/s (maximum);
total number of injected particles is at least 5·1023;
response time of the system (appearance of gas at the nozzle outlet after receiving the trigger 

signal from the system predicting the disruption of the discharge current) is no more than 3 ms;
gas delivery time from the nozzle outlet to the plasma is less than 1 ms (when the nozzle is 

located at a distance of less than 10 cm from the LCMS).
For the purpose of experimental studies of the formation of a gas jet, a special valve was devel-

oped that provides relatively easy access to the nozzle, as well as to the seat that is a structural 
element designed to securely attach the nozzle and block the gas flow.
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Fig. 1 shows a general view of the valve for testing the seat and nozzle prototypes. Both a 
replaceable seat 4 and a replaceable nozzle 2 can be independently installed in the valve. The 
valve allows operation with gas pressures up to several tens of atmospheres. Outlet nozzle 1 pro-
vides connection to the vacuum circuit of the setup through a port with a poppet valve, used to 
install vacuum sensors of the PMT-6M type.

The valve design includes a solenoid, whose magnetic circuit consists of armature 6, stop 10 
and a set of magnetic cores. The working gap of the magnetic circuit is located between the 
armature and the stop. Solenoid 9 is mounted on stainless tube 8, into which the stop is soldered. 
The coil is connected to an external switching power supply via terminals mounted on the printed 
circuit board 12. External gas line 11 is connected to the inlet fitting of the stop to supply the 
working gas to the valve. Spring 7 is located inside the stop and armature, which ensures that the 
valve closes at the end of the electrical pulse.

The operating principle of the gas valve is as follows. The working gas flows from the inlet line 
into the inner channel of the stop, then through the channels in the armature, enters the volume 
surrounding the armature inside the stainless tube and is fed through separator 5 to replaceable 
seat 4, whose channel is closed by the plate of armature 6. When the solenoid is triggered, the 
valve plate moves away from the seat and the gas passes through the seat into replaceable nozzle 
2, in which a supersonic gas jet is formed, flowing through nozzle 1 into the vacuum volume on 
which the valve is installed. To replace the seat and/or nozzle, it is enough to turn off the gas 
line and fill the vacuum volume with atmosphere, then unscrewing the outlet nozzle from lower 
magnetic core 3. After that, new seat and nozzle can be inserted, replacing the seals (if necessary).

The operating cycle of the valve includes the following sequence of actions.
At the stage of preparing the valve for operation, it is necessary to connect it to a switching 

power source and check the operation of the solenoid.
The next step is to connect inlet gas line 11 and pump it out and the internal volume of the 

valve, consisting of channels in stop 10, anchor 6 and separator 5, to remove the working gas and 
air that filled the main and the internal volume of the valve before operation starts.

After pumping, the inlet gas line and the inlet internal volume of the valve should be filled 
with new working gas.

Then, in compliance with safety procedures, it is necessary to check the operation of the valve 
with the working gas and its exhaust into the atmosphere.

Next, the valve is installed on a vacuum volume, into which the working gas is injected, and 
it is necessary to pump out the vacuum volume.

During operation, the switching power supply discharges the capacitor bank to solenoid 9. As a 
result, magnetic flux is formed through a chain of magnetic conductors, stop 10 and armature 6. 
The armature is attracted to the stop and detaches the plate from seat 4. At the outlet of the seat, 
the leading edge of the gas flow is formed, which passes through replaceable nozzle 2, where a 
supersonic gas jet is formed.

Fig. 1. Gas valve circuit for testing seat and nozzle prototypes: 
outlet nozzle 1, replaceable nozzle 2, lower magnetic core 3, replaceable seat 4, separator 5, 

armature with plate 6, spring 7, stainless separation tube 8, solenoid coil 9, stop 10, gas inlet 11, 
printed circuit board 12
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The calculation of parameters and optimization of gas flows formed by these structural ele-
ments is the subject of this study. As the source battery is discharged, the magnetic field in the 
solenoid weakens and the valve closes with spring 7, which forms the trailing edge of the gas pulse 
and completes the operating cycle of the valve.

Calculation of supersonic nozzle parameters for MGI

The Laval nozzle parameters were calculated using methods and formulas for one-dimensional 
steady flows of ideal gas in channels [5, 6]. A variant of the Laval nozzle with a conical profile 
was calculated, which was taken as a basis for the manufacture of prototypes of the nozzle and 
seat. Well-known gas-dynamic relations and conservation laws were used:
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where p0, ρ0, T0 are the pressure, density and temperature of the resting gas; γ is the adiabatic 
index; λ is the reduced velocity,
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The gas parameters should take their extreme values in the narrowest section of the Laval 
nozzle, called the "critical section". The designed nozzle should provide a mass flow of helium 
G = 3,8∙10–4 kg/s. In accordance with the law of conservation of flow and the set values of pres-
sure, temperature and flow at the nozzle inlet, the diameter of the critical section is determined:
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We obtain the value dcrit = 0.73 mm in this simulation for helium.
When designing a conical nozzle, it is also necessary to choose the correct opening angle of the 

subsonic and supersonic sections of the nozzle [7–9]. The recommended values of the opening 
angle β of the supersonic section of the nozzle in conical nozzles should not exceed 15° [9].
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For the calculations presented below, the angles of the subsonic and supersonic sections of the 
nozzle were selected (α and β, respectively: α = 26°, β = 12°), which determined the lengths of 
these sections as 10 and 20 mm, respectively.

When calculating the diameter of the outlet section, the gas dynamic function of the reduced 
flow rate is commonly used:

11 1
11 1 2

0* *
.1 1 1( ) 1

2 2 1S

vq
c

γ−γ− γ−     
    

     

ρ γ + ρ γ + γ −λ = = λ = λ − λ
ρ ρ γ +

(5)

It follows from the condition of conservation at steady flow that
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and the cross section at the nozzle outlet is expressed as
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In the case under consideration, the diameter of the outlet section d2 = 4 mm was set by the 
design parameters of the valve (see Fig. 1). Therefore, the value of the gas-dynamic function of 
the reduced flow rate, found from equations (5), allows to obtain the value of the reduced velocity 
λ2 and the velocity v2 at the nozzle outlet:
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Simulation results
The conical profile of the Laval nozzle calculated in the above manner had the following 

parameters: 
diameter of inlet section d1 = 4.0 mm;
diameter of critical section dcrit = 0.7 mm;
diameter of outlet section d2 = 4.0 mm;
length of supersonic section of the nozzle l2 = 20 mm;
total opening angle of the walls β = 12°;
length of subsonic section l1 = 10 mm;
total opening angle of the walls α = 26°.
We chose the geometry of the conical nozzle with these parameters for the first experiments 

with the prototype of the MGI valve, simplified for manufacturing. A nozzle with stepped sub-
sonic and supersonic sections, close to a conical profile, was designed, which can be achieved 
technologically by sequential drilling of the workpiece (the term «stepped nozzle» is used from 
now on for brevity). Seven steps were set for both sections of the nozzle. The step diameter was 
chosen to be 0.5 mm, the step length was 1.4 mm for the subsonic section and 2.8 mm for the 
supersonic section. A cylindrical seat was installed in front of the inlet section of the nozzle, with 
the length equal to the diameter of the inlet section, 4 mm, necessary to lock the gas flow and 
anchor this element in the valve structure.

A sketch of the nozzle with the seat and an example of a constructed computational grid for 
simulation is shown in Fig. 2. The computational domain was divided into two zones. A more 
refined grid was built near the nozzle and seat, where the gas flow parameters change faster, with 
the element size of 0.05 mm; the size of the grid cell was reduced to 0.01 mm for 10 cells adjacent 
to the wall to improve the resolution of the boundary layer in the main volume in the near-wall 
region. The size of the grid element was 0.15 mm in the area of the diagnostic chamber, where 
the jet is injected.
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This section presents the results of numerical simulation of helium flow through such a nozzle. 
The computational domain was divided into similar zones, with the same characteristic dimen-
sions of the grid element for calculations with other nozzle profiles (their main results are given 
in the next section).

The simulation was performed using the ANSYS Fluent CFD package, where a stationary 
system of continuity and momentum balance equations was numerically solved. An axisymmetric 
problem was solved using an implicit integration scheme, with second order approximation. The 
k-ε Realizable turbulence model was included in the calculations [10]. The following boundary 
conditions were imposed for solving the problem: 

nozzle inlet pressure ...................................................10 atm (1 MPa);
nozzle outlet pressure .................................................1 Pa;
temperature at the inlet and outlet of the nozzle .......300 K;
no-slip condition for the walls assumed to be smooth.
The choice of the calculation method was based on the following considerations. The estima-

tion of the Knudsen number for the given problem parameters gives values not exceeding 2∙10–3 
inside the nozzle and 3∙10–2at a distance of 5 cm from the nozzle, which allows using a continuum 
approach for this problem with reasonable accuracy at sufficiently small distances from the nozzle 
exit. The valve design assumes it is placed in close proximity to the plasma, at a distance of no 
more than 10 cm from the LCMS of the setup, which allows to expect a high degree of reliability 
of the calculated results obtained.

Fig. 2. Example of computational grid for stepped Laval nozzle with seat (highlighted in red). 
The region with the diagnostic chamber (highlighted in yellow) is shown

b)

a)

Fig. 3. Calculated distributions of velocity (a) and density (b) 
of helium jet at steady flow from stepped nozzle with seat
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Fig. 3 shows the calculated velocity and density distributions for the stepped prototype of the 
Laval nozzle after steady flow is established. Inside the supersonic section of the nozzle, periodic 
jumps in gas parameters can be observed, resulting from the reflection of shock waves from the 
steps inside the nozzle. This behavior of gas outflow can lead to a turbulent gas flow regime inside 
the nozzle and affect its performance.

It is logical to assume that an increase in the number of steps in the nozzle profile will cause 
a decrease in the amplitude of these jumps and, accordingly, a more uniform behavior of the gas 
flow inside the nozzle. In this case, the risk of transition to a turbulent gas flow regime will be 
reduced. It should be noted that a jet with uniform outflow profiles of gas velocity and density is 
obtained at the outlet of the nozzle with such a profile with 7 steps, and the divergence of the jet 
is not large.

The velocity and density distributions along the jet injection axis are shown in Fig. 4. The 
figure clearly shows the nature of the flow parameter jumps along the injection axis inside the 
nozzle. The amplitude of fluctuations in density does not exceed 80% of the maximum value, 
and in terms of flow velocity it is about 40%. The maximum oscillations are concentrated near 
the critical region of the supersonic section of the nozzle. The oscillation amplitude decreases 
approaching the nozzle outlet.

Despite the peculiarities of the distribution of gas flow parameters inside the stepped nozzle, 
the general pattern of the distribution of jet parameters behind the nozzle remains the same as 
that of a conventional conical nozzle, except for a slightly larger gas expansion angle. The velocity 
directly at the nozzle outlet decreases to about 1.5 km/s, but the jet in the diagnostic chamber 
accelerates to the velocities vmax = 1.7 km/s, which is close to the theoretical maximum (see 
equations (8)). The pressure at the nozzle exit at the problem parameters set is about 800 Pa, 
which leads to a significantly underexpanded jet flow mode [11]. The characteristic dimensions 
of the hanging bow shock, obtained from empirical formulas [12], are about 10 cm and are com-
parable to the dimensions of the diagnostic chamber, which fully corresponds to the calculated 
flow pattern. Studies of the large-scale structure of the jet are beyond the scope of this work. The 
calculation results for nozzles with other profiles, including smooth conical ones, are given in the 
next section of the study.

Optimization of the nozzle profile

The conical shape of the nozzle is the limit for a nozzle with a stepped profile, with an increase 
in the number of steps to infinity. Theoretically, a parabolic nozzle should give optimal values 
of the velocity and gas expansion angle at the outlet [7]. The computational grid for the para-
bolic nozzle was constructed as follows: the dimensions of the inlet, outlet and critical sections 
were assumed to be the same as when designing a conical nozzle (to preserve mass flow), and 
the shapes of the profiles of the subsonic and supersonic sections were parabolical along the axis 

Fig. 4. Distributions of velocity (yellow curve) and density (black curve) 
of the jet along the nozzle axis for stepped nozzle with seat
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of the nozzle. The shape of the profiles of the subsonic and supersonic parts was «merged» near 
the critical section, using the method with the first derivative of the shape of the nozzle profile 
tending to zero along its axis. Otherwise, a kink appear in the nozzle profile, which can lead to 
shock waves in this region.

To compare the angle of expansion for three types of nozzle, the half-width of the jet was esti-
mated. The distribution of the jet density was calculated in the plane transverse to the axis of the 
jet injection, at a distance of 3 cm from the outlet section of the nozzle. Next, the distance from 
the injection axis was determined, at which the gas density drops by half relative to its maximum 
value, which determines the half-width of the jet, characterizing the scale of gas expansion at the 
nozzle outlet.

Density distributions along the cross section of the jet for the three types of nozzle for which 
calculations were performed are shown in Fig. 5, and the main characteristics of the jet in the 
diagnostic chamber are shown in the table. The results obtained indicate the smallest expansion 
of the helium jet and its highest exit velocity for a smooth conical nozzle. The parabolic shape of 
the nozzle section gives intermediate values of speed and width, which is apparently due to the 
suboptimal choice of the profile of this type of nozzle at given cross-section values.

The selection of the optimal nozzle profile with a parabolic cross section is a complex multi-pa-
rameter problem, whose solution is beyond the scope of this study. The stepped nozzle provides 
a less than 10% decrease in the jet velocity at the outlet and leads to an increase in the jet angle 
of expansion by about half, compared with the conical nozzle profile. Such a deterioration in the 
parameters of the jet is acceptable and is fully compensated by the technological simplicity of 
its manufacturing.

Analysis of Fig. 5 allows us to conclude that the density distributions of the jet in the cross 
section are monotonous, with maxima on the injection axis for all types of nozzles. The absolute 
density value on the injection axis for a stepped nozzle drops by 4 times relative to a conical 
one. There is also a significant increase in the angle of expansion of the jet for the case of a 
stepped nozzle.

During the simulation, the diameter of the critical section for the stepped nozzle was also 
varied to assess the effect of the nozzle manufacturing accuracy on the parameters of the formed 
jet. The computational grid corresponded to the one shown in Fig. 2, with accuracy up to the 
diameter of the critical section, which was set to ±0.2 mm from the calculated optimal value of 
0.7 mm (obtained by formula (4). As a result, the velocity and density distributions of the gas 
at the outlet of the nozzle were calculated. The main parameters of the jet are summarized in 
the same table.

Fig. 5. Density distribution of helium jet along its cross-section for three types 
of nozzles at a distance of 3 cm from the exit from the outlet section. 

The calculations were carried out for conical (curve 1), 
parabolic (2) and stepped (3) nozzle shapes
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Thus, an increase in the mass flow rate of gas by 1.7 times was obtained with an increase in 
the diameter of the critical section to 0.9 mm. If this diameter was decreased to 0.5 mm, the 
mass flow rate decreased by 1.9 times. Calculations also show that the jet velocity in the diagnos-
tic chamber does not significantly depend on the type of nozzle, while the smallest jet angle is 
obtained for a standard stepped nozzle. The drop in velocity at the nozzle outlet and the broad-
ening of the jet profile with varying critical cross-sectional area do not exceed several percent. 
However, a significant change in the mass flow rate of gas with varying critical cross-sectional 
area indicates that high manufacturing accuracy is required for the dimensions of the stepped 
nozzle profile (diameter tolerance should be at least 0.01 mm).

Conclusion

The optimal parameters of the supersonic nozzle were calculated for a given mass flow rate of 
helium of 3.8∙10–4kg/s. The diameters of the inlet and outlet sections were 4 mm, the diameter of 
the critical section was 0.7 mm, the lengths of the subsonic and supersonic sections of the nozzle 
were 10 and 20 mm, respectively; the total opening angle of the walls for the subsonic section was 
26°, and 12° for the supersonic section. The outflow of gas through nozzles of various profiles into 
the diagnostic chamber was simulated using the ANSYS Fluent CFD package. The parameters 
of the gas flow through a stepped nozzle with a seat in the near field of the jet were calculated in 
detail. It was found that such a nozzle allows to obtain a gas flow rate of about 1550 m/s on the 
injection axis, with a half-width of the jet of 11 mm at a distance of 3 cm from the nozzle exit.

The simulation confirmed that a stepped nozzle with a seat gives an insignificant difference in 
the values of the velocity and half-width of the jet, compared with a nozzle without a seat. The 
maximum outlet velocity and the minimum jet angle can be achieved at the given cross-sectional 
values with a nozzle with a conical profile shape, while a stepped nozzle with a seat shows a 
decrease in quality by no more than 10% in terms of the jet velocity parameter, and a decrease by 
about 3 times in terms of the half-width of the jet, which is quite acceptable if the technological 
simplicity of manufacturing is taken into account.

Thus, the best option is the design and manufacturing of a stepped nozzle with a seat to 
be used in the first experiments with the prototype of the MGI valve in setups with magnetic 
plasma retention.

The critical cross-sectional area of a stepped nozzle with a seat was varied during the simulation. 
The calculation results showed a strong dependence of the mass flow rate on the critical section 
of the nozzle; the velocity and half-width of the jet at the outlet changed insignificantly.

In general, the conducted study confirms the stringent requirements for the manufacturing 
accuracy of nozzle profiles. The diameter tolerances of the nozzle profile must be no worse than 
the grade of 10.

Tab l e

Calculated key parameters of the nozzle

Nozzle type Jet outlet 
velocity, m/s

Jet half-width,
 mm

Mass flow 
rate, g/s

Conical 1715 5.0 0.32
Parabolic 1666 7.0 0.32
Stepped ......................................................standard 1551 10.3 0.32

.....................................................with seat 1549 11.0 0.32
...with critical section increased to 0.9 mm 1551 10.6 0.55
...with critical sectiondecreased to 0.5 mm 1531 10.9 0.17
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Аннотация. В работе выполнено моделирование взаимодействия ускоренных ионов 

фуллерена С60 с монокристаллом кремния. Исследовано влияние размеров модельного 
монокристалла на получаемые параметры кратера, образующегося в мишени при ударе, 
и распыление веществ мишени и фуллерена. Предлагаются причины возникновения 
вычислительных артефактов: это возврат энергии ударной волны через периодическую 
границу и не вполне корректное описание распределения принесенной энергии 
между атомами мишени. Установлено, что для получения достоверных (без размерных 
эффектов) результатов моделирования акта падения на монокристалл ионов С60, 
обладающих энергиями 8 – 14 кэВ, необходимо использовать монокристаллы с 
размерами поверхности не менее 11 × 11 нм.
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Introduction
Molecular dynamics (MD) simulation is widely used in modern science to study various phe-

nomena at the micro level. It consists in simulating the time evolution of a system of objects 
(atoms), calculated by numerical integration of equations of motion. The motion of a particle 
ensemble can be uniquely given by a Hamiltonian in the classical-mechanics approximation, 
determined by a set of generalized coordinates and momenta. This Hamiltonian characterizes the 
total energy of the system and fully describes its dynamic nature. The MD method can be applied 
to analyze both simple crystal structures and complex biological molecules [1]. The MD method 
is also often used to study the effects occurring under irradiation of various targets with accel-
erated ions. Studies based on MD simulation established the mechanisms behind the evolution 
of structural defects [2] and the relief of the target surface [3] under ion bombardment. In par-
ticular, the dependences of the mass transfer function and the surface morphology on the initial 
beam incidence angle were determined [3]. Additionally, numerous papers focused on sputtering 
of ions incident on the surface: the number and composition of outgoing particles, their angular 
distribution over incident energies of bombarding ions [4].
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Simulations are generally aimed at determining the forces with which particles interact with 
each other, since their values are necessary to calculate the atomic coordinates and momenta at 
subsequent points in time. The resulting force depends on the interaction potential and the spatial 
configuration of the particles and is calculated for each point in time.

Many functions have been developed to describe the interaction between particles, for example, 
the Lennard–Jones pairwise potential [5], allowing to calculate the force of interaction between 
two atoms depending on the distance between them. This is often used to simulate two-di-
mensional structures such as graphene or transition metal dichalcogenides. However, pairwise 
potentials do not take into account the dependence of the binding force on the directions and 
positions of neighboring particles in space, which narrows the scope of their applicability. For 
this reason, multiparticle potentials have been developed, in particular, the Tersoff potential [6] 
and Stillinger–Weber potential [7]. These potentials adequately describe the properties of silicon 
single crystals at certain parameter values, so they are often used in calculations.

An important aspect to be taken into account in MD simulations is the limited size of the 
system under consideration, which means it is nearly impossible to model the behavior of macro-
scopic objects by this approach. For example, beam diameter in experiments on bombardment of 
the surface with fullerene ions [8] ranged from 0.1 to 5 mm, while the sizes of the irradiated sam-
ples were even larger. The exposure times range from tens of seconds to several hours. However, 
simulating the motion of such a large number of atoms requires too much computing power, so 
only models with tens or hundreds of thousands of atoms have to be used. Periodic boundary 
conditions are imposed on the sides of the target, while thermostatic conditions are additionally 
imposed on the motion of external atomic layers in the crystal to match the model to the real 
sample, allowing to regulate heat flows, further reducing the computational time.

Earlier studies [9] found that a crater appears in the region around the cluster ion’s impact 
point, with a small cluster of atoms forming above the surface along the crater’s edge, known as 
its rim. In addition, was found that С60 ions impinging on the surface of a single silicon crystal 
completely destroy the cluster structure if their initial energy exceeds 1 keV [10]. Carbon atoms 
penetrate deep into the target and are distributed in a certain way, while some of the particles 
escape from the surface. Such particles are called sputtered and can consist of both single atoms 
and their agglomerates, i.e., clusters.

As an accelerated ion impinges on the surface, its energy is transferred to the target atoms, 
while part of it (especially in the case of molecules or clusters consisting of dozens or more atoms) 
can propagate deep into the crystal as a shock wave. As noted above, the dimensions of the cell 
used in calculations significantly affect the computing power and time. On the other hand, prop-
agation of a shock wave in a small crystal model and the dissipation of the energy brought by an 
ion in this model may differ significantly from those in a real target. Accordingly, the simulation 
will give incorrect values for the effects obtained, such as sputtering, crater formation, etc.

This paper compares the single cases of С60 fullerene ions with energies of 8 and 14 keV 
impinging on the surface of silicon single crystals with different sizes, analyzing the influence of 
these sizes on the results.

Recommendations were formulated based on the data obtained for choosing the optimal 
dimensions of the computational cell for modeling the interaction of accelerated fullerene mole-
cules with a silicon single crystal.

Description of the model

The open-source Lammps package was used to run the MD simulations [11]. Pairwise interaction 
of all types of atoms was described by the Tersoff potential [6], smoothly splined to the ZBL poten-
tial to describe the interaction of high-energy particles [12]. The initial system consisted of a silicon 
crystal with the (100) open surface, with a C60 fullerene molecule located at some height above it.

Periodic boundary conditions were imposed in the lateral directions; the three lower atomic 
layers were fixed. A Berendsen thermostat [13] consisting of a layer of silicon atoms with a thick-
ness of one unit cell was used on the sides and bottom of the crystal.

The target temperature was approximately 0 K. The energy losses of fast particles due to inter-
action with target electrons (electron losses) were taken into account as a quasi-friction force 
applied to particles with energies over 10 eV. Several configurations of the lateral dimensions of 
the target (in nm) were considered:
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5.4 × 5.4; 8.0 × 8.0; 11.0 × 11.0; 22 × 22; 33 × 33; 44 × 44,
which adequately corresponds to the values (in the unit cell lengths)

10 × 10, 15 × 15, 20 × 20, 40 × 40, 60 × 60, 80 × 80.
The target thicknesses were taken to be 11, 17 and 34 nm, i.e.,20, 31 and 63 in edge lengths 

of the unit cell; the edge length of the silicon unit cell is 0.543 nm.
All atoms of the C60 molecule were given the same velocity in the normal direction to the 

target surface at the initial time instant. The incident energy of fullerene amounted to 8 and 14 
keV, and the initial temperature of the silicon crystal was 0 K. A variable time step was used to 
increase the computational accuracy at the initial stage as well as to speed up calculations after 
the particle energy decreased sufficiently.

The highest value of the time step was 1 fs. The total simulation time was selected depending 
on the initial fullerene energy: specifically, it was 5 and 10 ps for 8 and 14 keV, respectively. 
After the simulation was completed, the structures formed on the surface and the parameters of 
the sputtered particles were analyzed by the techniques described in [14]. Next, the system was 
restored to its initial state: the fullerene molecule was moved to a small random distance in the 
lateral directions (within 2 × 2 unit cells) and the calculation of a new trajectory began. For each 
combination of crystal size and C60 ion energy, 50 independent trajectories were calculated to 
reduce the statistical spread of the results.

Results and discussion

As mentioned in the introduction, MD simulations are performed for crystals with small sizes 
and periodic boundary conditions. Adding a thermostat along the boundary layers provides dissi-
pation of excess energy brought to the target by an accelerated ion. At the same time, if the crystal 
size is too small, various computational artifacts may appear (i.e., results that do not reflect the 
real processes), therefore, it is necessary to avoid such phenomena as much as possible. We per-
formed a series of calculations for molecules with energies of 8 and 14 keV impinging on silicon 
crystals of various sizes.

Fig. 1 shows how the appearance of a 1 nm thick cross section changes in the region where 8 
keV fullerene impinges on it with an increase in the lateral size of the target. Here, the depth of 
the model crystal was 17 nm in all cases (31 is the length of the silicon unit cell). Evidently, the 
shape of the crater changes with increasing size in the lateral directions: it becomes wider and 
more spherical. Furthermore, it is highly likely that the volume of the amorphized target region 
changes to some extent.

Let us consider the changes in the shape of the crater in more detail, using the techniques for 
determining its volume, depth and opening area proposed in [14]. Fig. 2,a shows the dependence 
of the volume of the formed crater on the lateral dimensions of the model crystal at a constant 
thickness of 17 nm. It is clear that the volume of the crater increased by about 2 times at both 
energies, with an increase in the model size from 5.43 to 21.70 nm (from 10 to 40 unit cells). This 
effect turns out to be even more pronounced if the crater’s opening area is increased, determined 

Fig. 1. Cross sections of a region of 10 Å thick silicon target after impact from 8 keV C60 fullerene ion 
with an energy (4 cases of lateral dimensions of the target (in nm))
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at the level of the initial surface of the target 
[14]. The area varies from 3.0 to 5.5 nm2 in the 
case of bombardment with fullerene at an energy 
of 8 keV, and from 3.5 to 8.0 nm2 in the case of 
bombardment with fullerene at an energy of 14 
keV. On the other hand, increasing the lateral 
dimensions of the model to 20 × 20 nm or more 
practically does not affect the formation of the 
crater (see Fig. 2). We should note (see Fig. 2,c) 
that the maximum depth of the crater practically 
does not depend on the lateral dimensions of the 
target used.

In addition to the lateral dimensions, the 
thickness of the target layer considered can also 
play a major role. To clarify this issue, we per-
formed a series of calculations with different 
model depths given that the lateral dimensions 
of the crystal were equal to 11 × 11 and 22 × 
22 nm. The obtained volumes of the crater are 
shown in Fig. 3. Apparently, a decrease in depth 
from 17 to 11 nm leads to some changes in the 
values of the obtained volumes, while its increase 
to 34 nm does not affect the results in any way. 
The opening area of the crater and its depth also 
practically do not depend on the thickness of the 
calculated model in the considered range. Thus, 
the lateral dimensions of the model used in the 
simulation of impinging fullerenes at energies of 
8–14 keV play a more significant role in the for-
mation of possible computational artifacts than 
its thickness, if the latter exceeds 10–15 nm.

As mentioned above, as a fullerene ion 
impinges on the target, some of the silicon atoms 
gain kinetic energy sufficient to overcome the 
forces of interatomic attraction and escape from 
the surface as sputtered particles. It is obvious 
that the dimensions of the calculated model can 
strongly influence the sputtering characteristics 
obtained as a result of the simulated effect.

Fig. 4,a shows the obtained dependences of 
the total number of sputtered atoms and the num-
ber of backscattered carbon atoms on the lateral 
dimensions of the target. Evidently, increasing 
them from 5 × 5 to 11 × 11 nm in the lateral 
dimensions leads to a decrease in the total num-
ber of escaping particles by about 2 times. The 
number of backscattered carbon atoms changes 
even more noticeably. Indeed, the calculation 
with the smallest cell yields 12–13 sputtered 
d carbon atoms and depends on the energy of 
incident fullerene. This number decreases to 6–7 
for a cell with a size of 11 × 11 nm. A further 
increase in the lateral dimensions of the crystal 
does not affect the resulting sputtering.

Analyzing the angular distributions of the 
sputtered particles, we can observe a similar 

c)

b)

a)

Fig. 2. Dependences of volume (a), 
surface area (b) and maximum depth (c) 
of the crater formed in a silicon target 

with a depth of 17 nm on its lateral dimensions
The results are given for the C60 ion energies 

of 8 and 14 keV

Fig. 3. Calculated dependences of mean 
volume of crater formed by impinging 8 and 
14 keV fullerene ions on the depth of the 
model target with lateral dimensions of the 

crystal equal to 11 × 11 and 22 × 22 nm 
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trend (Fig. 4,b). The distribution has a pronounced maximum in the direction of 25° from the 
normal for a crystal with a small surface area. As the size increases, the distribution becomes more 
symmetrical, and the maximum shifts towards 35–40°. A further increase in the size of the cell in 
the range of 22–44 nm does not lead to a change in the resulting distribution.

Notably, the magnitude of the statistical spread in the obtained values of both total and differ-
ential sputtering yields is significantly reduced for targets of 22 × 22 nm and larger. The variation 
in the depth of the model crystal practically does not affect either the absolute number of sput-
tered particles or their distributions.

To understand the causes behind the discovered computational artifacts, we analyzed the prop-
agation of shock waves occurring in the target. Fig. 5 shows the characteristic patterns obtained by 
MD simulation, which can occur during interaction in models with a depth of 17 nm at different 
lateral dimensions. The colors of the atoms (small circles) correspond to different kinetic energies.

a) b)

Fig. 4. Dependence of the total number of sputtered particles and backscattered carbon atoms
on the lateral dimensions of the target (a); angular distributions of sputtered
atoms for different lateral dimensions of the crystal with a depth of 17 nm

Cases of impact from C60 fullerene ions at energies of 8 and 14 keV (a) as well as 14 keV (b) are shown

Fig. 5. Characteristic views of cross section (thickness 10 Е) of model
with the depth of 17 nm, evolving in the interaction of the fullerene ion 
with the target at three different lateral dimensions of the target (in nm)

The colors of the atoms (small circles) correspond to different kinetic energies (see Table); 
the arrows indicate the segments of waves passing through the periodic boundary 

and propagating to the region where the crater forms 



St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023. Vol. 16. No. 4

82

The arrows in the two upper patterns (see Fig. 5, models with sizes of 8 × 8 and 11 ×11 nm) 
show the segments of waves passing through the periodic boundary and propagating towards 
the region where the crater formed rather than away from it. Such a phenomenon could not be 
detected in the case of simulation with a 22 × 22 nm cell: all visible waves propagated from the 
impact point and attenuated near the thermostat.

The table shows the time instants at which the images were taken and the energy ranges used 
to conveniently describe the wave processes in different cases. We should note that the energies 
of silicon atoms reach 0.20 and 0.05 eV in cells with the dimensions of 8 × 8 and 11 × 11 nm, 
respectively, i.e., the calculated temperatures near the crater exceed 900 K. All atoms have an 
energy of less than 0.01 eV in a 22 × 22 nm cell. Thus, the energy transferred by the fullerene ion 
does not have time to dissipate into the target volume at small cell sizes and returns to the impact 
area through periodic boundaries; this leads to increased relaxation of produced defects and a 
decrease in the size of the crater by maintaining an elevated temperature for a longer time than in 
the case of larger model crystals. The effect of the return shock wave may also be associated with 
increased sputtering, including in directions closer to the normal. In the case of large cells, the 
scattering and dissipation of the energy transferred between atoms are more uniform and better 
correspond to the picture observed experimentally.

Conclusion

The paper presents a molecular dynamics simulation of the interaction between the C60 fuller-
ene ions, with energies of 8 and 14 keV, and the surface of a silicon single crystal. In particular, 
we considered the influence of the size of this single crystal on the results obtained.

We found that various computational artifacts arise at an energy of 8 keV and lateral dimen-
sions of less than 11 × 11 nm, both as a crater evolves in the target and during sputtering of 
particles caused by its bombardment. Varying the depth of the model crystal in the range from 
11 to 33 nm had practically no effect on the results obtained. The cell dimensions of 11 × 11 nm 
turned out to be insufficient at the incident energy of 14 keV, since slightly overestimated sput-
tering yields are produced in this case, although no artifacts were observed during the formation 
of the crater.

It was established that the causes of the artifacts were, firstly, the return of energy transferred 
by fullerene through periodic boundaries to the region where the crater formed, and secondly, 
somewhat incorrectly calculated distribution of the energy transferred between the target atoms 
in the case of small models.

Analyzing our findings, we can conclude that a model with the dimensions of 11 × 11 nm is 
preferable for simulating the interaction of C60 ions at a kinetic energy of less than 8 keV with 
the target; it is recommended to use cells with larger lateral dimensions for the case of 14 keV.

Tab l e

Parameters of target atoms (see Fig. 5)

Lateral size 
of target, nm

Kinetic energy 
of silicon atoms, eV Time period, ps

8 × 8 × 17 0–0.20 0.4
11 × 11 × 17 0–0.05 0.5
22 × 22 × 17 0–0.01 1.1

Note s . 1. The time intervals between the instants when the C60 ion impinges on the 
surface and the patterns shown in Fig. 5 are recorded.
2. The C60 ion had an energy of 8 keV.
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Introduction
While the Fourier transformation is not the only method for solving differential equations, it 

is one of the most effective approaches to solving boundary-value problems, when variables are 
separated in a multidimensional problem. However, there is a widespread misconception about 
the inapplicability of Fourier analysis for inhomogeneous media. For example, the following is 
stated in the monograph by Whitham [1, p. 365]:

"For an inhomogeneous medium, or for nonlinear problems where the Fourier transform is 
not applicable...".

A similar statement is found in the book by Lighthill [2, p. 425]:
"... the need to use Fourier decomposition limits us to homogeneous [italicized by the author] 

systems usually described by equations with constant coefficients, so that each Fourier component 
(a sine wave of constant amplitude) individually can be a solution to the equations of motion."

The authors of these and many other monographs (see, for example, [3, 4]) believe that 
Fourier analysis can be used only in cases where the coefficients of the differential equation are 
constant and, conversely, it cannot be applied if these coefficients are not constant.

In this paper, we prove that Fourier analysis can be applied in problems containing differential 
equations with variable coefficients. Moreover, the problem can be two-dimensional and with 
inseparable variables, but Fourier analysis is still applicable.

Thus, the goal of this study is to expand the boundaries of the field of applicability of Fourier 
analysis, extending its approaches to problems in inhomogeneous media.

Definition and basic properties of the Fourier transform

The Fourier transform is defined as follows.
Forward transform:

( ) ( ) ( )1 exp ;
2

k ikx x dx
+∞

−∞

ϕ = − Φ
π ∫ (1)

inverse transform:

( ) ( ) ( )1 exp .
2

x ikx k dk
+∞

−∞

Φ = + ϕ
π ∫ (2)

The properties of the Fourier transform can be found, for example, in monograph [1]. They 
are derived by differentiating with respect to the parameter or by integration by parts (see, for 
example, [5]). In this case, it is assumed that the function Φ(x) decreases at infinity faster than 
any degree of |x|–1. Let us briefly list the properties of the transform that we will consider below.

Fourier transform of derivative function. We derive this property by integration of the formula 
of the forward Fourier transform (1) by parts:

( ) ( ) ( ) ( )1 exp exp .
2 2

ikikx dx ikx x dx ik k
x

+∞ +∞

−∞ −∞

∂Φ
− = − Φ = ϕ

∂π π∫ ∫ (3)
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Note that the same result can be obtained by differentiating with respect to x as a parameter 
using Eq. (2) of the inverse Fourier transform:

( ) ( ) ( ) ( ) ( )
22

2
2

1 exp exp .
2 2

ik
ikx dx ikx x dx k k

x

+∞ +∞

−∞ −∞

∂ Φ
− = − Φ = − ϕ

∂π π∫ ∫ (4)

For brevity, this property of the Fourier transform can be written as follows:

2, , .x xxik kΦ → ϕ Φ → ϕ Φ → − ϕ (5)

Properties (5) are often used in problems with constant coefficients for homogeneous media.
Fourier transform of function with a linear multiplier. To represent this property, let us first 

integrate the transformation (2) by parts:

( ) ( ) ( ) ( ) ( ) ( )1 1exp exp .
2 2

ikx dk ix ikx k dk ix x
k

+∞ +∞

−∞ −∞

∂ϕ
+ = − + ϕ = − Φ

∂π π∫ ∫ (6)

An identical expression can be obtained by differentiating by the parameter k of relation (1). 
We multiply both parts of expression (6) by an imaginary unit and write it as follows:

.kx iΦ → ϕ (7)

Fourier transform of second derivative with a linear multiplier. We show this property by inte-
gration by parts and parametric differentiation of relation (2), repeated twice; then we obtain the 
following formula:

( ) ( ) ( ) ( ) ( ) ( )
2 2

2
2

1 1exp exp ,
2 2

k
ikx dk ix ikx k k dk ix

k x

+∞ +∞

−∞ −∞

∂ ϕ ∂ Φ
+ = − + ϕ =

∂ ∂π π∫ ∫ (8)

which we rewrite as

( )2 .xx k
x i kΦ → − ϕ (9)

One-dimensional reference equations
Finding a solution using the Fourier transform is divided into two stages. At the first stage, we 

construct a formal solution of the differential equation in Fourier space using operator analysis 
(see the previous section). At the second stage, we solve the question of the conditions under 
which this formally constructed solution converges. We define the integration path in the complex 
space and find asymptotic expressions in each sector [6, 7].

Example 1. Let us consider an inhomogeneous differential equation that arises in the analysis 
of wave processes in inhomogeneous plasma as well as in the study of instability in the Orr–
Sommerfeld problem [6], [8, equation (1.28)]:

2 0.yyyy yyy Φ + λ Φ + γ Φ =  (10)

Let us construct a formal solution for this example. The transform of equation (10) in Fourier 
space (denoted as l) has the form

( )4 2 2 0.
l

l i l ϕ + λ − ϕ + γ ϕ =  (11)

Let us rewrite Eq. (11) in the following form:

2 2
2 2

1 0,  .ll P i P P P l
l
γ

− + = = ϕ
λ

(12)

It is a homogeneous differential equation of the first order (such equations are called quadra-
ture in the mathematical literature (see, for example, [9]).
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Integrating equation (11), we obtain the following expression:

3
2 2

1 1exp .
3

i l i
l l

γ ϕ = − + λ 
(13)

The inverse Fourier transform gives the solution:

3
2 2

1 1 1exp .
32

i l i ily dl
l l

+∞

−∞

γ ϕ = − + + λπ  ∫ (14)

Next, we should perform a change of the variable t = il converting the Fourier integral into the 
Laplace integral. It is important to note here that many consider the Laplace transform a special 
case of the Fourier transform (see, for example, [5, Eqs. (1.4.1), (1.4.2)]).

For convergence of integrals, we use Cauchy’s theorem on the analytical function and replace 
the integration limits by some paths in the complex plane. We do not consider the specifics of 
bypassing the pole and the choice of sectors that the integration path crosses in this study, since 
these issues are discussed in detail in many monographs, in particular in [12], where the author 
relies on the Laplace transform, unlike the discussion in [5].

Thus, we obtain the following integral, which is commonly called the Laplace integral in 
the literature:

3
2 2

1 1 1exp .
2 3C

t ty dt
i t t

γ ϕ = − + π λ ∫ (15)

Monograph [6] gives this integral without calculations. In our work, we show how to inde-
pendently derive this formal solution with the help of the Fourier rather than Laplace transform.

Example 2. Let us consider an equation describing topographic waves on an inhomogeneous 
continental shelf on the f-plane. Monograph [19] claims that the solution of this inhomoge-
neous equation can be constructed using the Laplace transform, and the reader is invited to do 
this independently.

We in turn construct a formal solution using the Fourier transform and prove the identity of 
the approaches to both Fourier and Laplace transformations. Consider the equation

2 0.xx xx F F k k x F + + µ − =  (16)

We introduce a dimensionless variable χ = kx > 0. Eq. (16) then takes the form

[ ] 0.F F k Fχχ χχ + + µ − χ = (17)

The image of equation (17) in Fourier space with respect to the variable χ (we denote it as l) 
has the form

( )2 0.ll
i l i l i− Φ + Φ + µ Φ − Φ = (18)

Let us introduce a new variable s = il. Eq. (18) then takes the form

( ) ( )2

1 1 .
1 2 1 2 1

s s
s s s

Φ µ − µ − µ +
= = −

Φ − − + (19)

Integrating equation (19) and performing the inverse Fourier transform, we obtain the follow-
ing formal integral:

( ) ( )( )

( )( ) ( )
1 /2

1 /2

11 exp .
2 1C

s
F x skx ds

i s

µ−

µ+

−
=

π +∫ (20)
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The integral constructed here coincides with Eq. (25.20) in monograph [19] up to a multiplier; 
the monograph also presents analysis of integral (20) with the choice of integration paths.

Results obtained in the section "One-dimensional reference equations". Following the approach 
outlined in monograph [5], we can change the variable, and then the properties of the Fourier 
transform are transferred to the properties of the Laplace transform. Thus, according to the 
statement made in [5], the Fourier transform is a kind of basic transformation, from which other 
transformations, for example, Laplace and Mellin types, follow. A similar approach is followed by 
the authors of monograph [9], who constructed fundamental solutions to the thermal conductiv-
ity operator, the Laplace and Helmholtz operators, as well as the wave operator in terms of the 
Fourier transform.

Thus, there is no fundamental difference between Fourier analysis and the Laplace transform 
in one-dimensional inhomogeneous media. It can be assumed that the solution is constructed 
in terms of the Laplace transform, but it can also be argued that the solution is derived in terms 
of the Fourier transform and Cauchy’s theorem. Following [5] from now on, we adhere to the 
second approach.

Unsteady Cauchy problem for Rossby waves in zonal current

As the first example of a two-dimensional Fourier transform in inhomogeneous media, con-
sider the unsteady Cauchy problem for Rossby waves. Yamagata solved this problem in 1976 
using convective coordinates [20]. Convective coordinates are a common way for an operator of 
the type ∂t + U(y)∂x for the case of a linear velocity profile U(y) = Uyy, convective coordinates 
transform an inhomogeneous differential equation into a homogeneous one, and then the Fourier 
transform is applied over spatial convective coordinates (two-dimensional transform). Next, an 
unsteady differential equation with respect to t is obtained.

It is fundamentally important that there is no point in doing the Laplace transform with respect 
to the variable t, as is customary in some mathematical groups (see, for example, [15]). It is easier 
to solve the differential equation with respect to t explicitly than to perform an additional trans-
formation. By solving the differential equation with respect to t and taking the inverse Fourier 
transform in convective coordinates, we can convert convective variables to ordinary ones and get 
a solution in the form of a two-dimensional Fourier transform.

Next, we can find a solution to an inhomogeneous differential equation and, repeating the cal-
culations, obtain the Yamagata solution, but we propose a different approach. We will not adopt 
the convective coordinates to eliminate the inhomogeneity of the differential equation to then 
perform the Fourier transform. We will immediately apply the Fourier transform for an inhomo-
geneous differential equation using its properties. Thus, on the one hand, we will significantly 
reduce the number of operations, and on the other hand, we will arrive at a known result and 
confirm the correctness of mathematical calculations. We will demonstrate this approach for the 
problem solved above, but we will solve it by a new, shorter technique, which allows to immedi-
ately find the Fourier transform of an inhomogeneous differential equation.

Example 3. The linear Cauchy problem for non-divergent barotropic Rossby waves in zonal shear 
flow is considered in [20], and its generalization to the case of divergent waves is considered in [18]:

( ) 0,t y x xx yy xU y  ∂ + ∂ Ψ + Ψ + βΨ =  (21)

where Ψ is the function of current; β is the classical parameter, 
df
dy

β =
 
(f = 2Ωsinφ, Ω is the  

angular velocity of the Earth’s rotation, φ is the latitude); the x axis is directed to the east, the y 
axis is to the north.

Let there be inhomogeneous zonal shear flow U(y) = U yy, where Uy = const. Let us perform a 
two-dimensional Fourier transform for inhomogeneous differential equation (22) with respect to 
two spatial variables x and y (without adopting the convective variables):

( ) ( ) ( )1, , , , exp  .
2

x y t k l t i kx ly dk dl
+∞ +∞

−∞ −∞

Ψ = ϕ + +  π ∫ ∫ (22)
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Then Eq. (21) takes the following form in Fourier space

( ) ( )2 2 2 2 0,yt l
k l U k k l i k   − − ϕ − − − ϕ + β ϕ =    (23)

where the subscripts denote partial derivatives.
This equation is homogeneous, contains only the first partial derivatives and is easily solved.
Let us rewrite Eq. (23) in the following form:

( )2 2
2 2 0,  .t y l
i kP U k P P P k l

k l
β

− − = ≡ + ϕ
+

(24)

Performing a substitution of variables (τ = t, l′ = l + kUyt), we obtain the following equation:

( )22
0.

y

i kPP
k l kU

τ

β
− =

′+ − τ
(25)

Eq. (25) can be integrated explicitly (the exponent of the arctangent), and then the final solu-
tion has the form of a double Fourier integral:

( ) ( )
( )

( )( )

2 2

1 22

1, , ,
2

exp arctan arctan

exp ,

y

y
y

y

k lx y t g k l
k l kU t

l li U t
kU k k

i kx l kU t y dk dl

+∞ +∞

−∞ −∞

+
Ψ = ×

π − −

 β     × − − − ×     
      

 × + + − 

∫ ∫

(26)

where the solution is normalized to the initial condition

( ) ( ) ( )1
1, , , 0 exp .

2
g k l x y t i kx ly dx dy

+∞ +∞

−∞ −∞

= Ψ = − +  π ∫ ∫ (27)

Analysis of the double Fourier integral by the stationary phase method and the construction 
of wave packet trajectories can be found in [20]. It is important to note that these studies do not 
rely on the assumption that the time variable must be large.

Unsteady Cauchy problem for Rossby waves in meridional current

As a second example, consider the unsteady Cauchy problem for Rossby waves in meridional 
current. A solution to this problem using convective coordinates can be found in [20].

Example 4. This is the case of a linear velocity profile of meridional current. The linear Cauchy 
problem for divergent barotropic Rossby waves has the following form [20]:

( ) 0,t x y xx yy xV x  ∂ + ∂ Ψ + Ψ + βΨ =  (28)

where β is the classical parameter; the x axis is directed to the east, the y axis is directed to 
the north.

There is inhomogeneous meridional shear flow V(x) = V xx, where Vx = const. As before (see 
Example 3), we perform a two-dimensional Fourier transform for inhomogeneous differential 
equation (28) with respect to two spatial variables x and y. Then Eq. (28) takes the following form 
in Fourier space

( ) ( )2 2 2 2 0.xt k
k l U l k l i k   − − ϕ − − − ϕ + β ϕ =    (29)

This equation is homogeneous, contains only the first partial derivatives and is easily solved. 
Let us rewrite it in the following form:
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( )2 2
2 2 0,  .t x k
i kP U l P P P k l

k l
β

− − = ≡ + ϕ
+

(30)

Performing a change of variables (τ = t, k′ = k + lUxt), we obtain the following equation:

( )
( )2 2

0.x

x

i k lU P
P

k lU lτ

′β − τ
− =

′ − τ +
(31)

Eq. (31) can be integrated explicitly (the exponent of the logarithm), and then the final solu-
tion has the form of a double Fourier integral:

( ) ( )
( )

( )

( )( )

2 22 2

2 2 2 22

1, , , exp ln
2 2

exp ,

x

xx

x

k lU t lk lx y t g k l i
lU k lk lU t l

i k lU t x ly dk dl

+∞ +∞

−∞ −∞

  − ++ β   Ψ = × π +− +     
 × + − + 

∫ ∫
(32)

where the solution is normalized to the initial condition

( ) ( ) ( )2
1, , , 0 exp .

2
g k l x y t i kx ly dx dy

+∞ +∞

−∞ −∞

= Ψ = − +  π ∫ ∫ (33)

Analysis of the double Fourier integral by the stationary phase method and the construction of 
wave packet trajectories can be found in [20].

The considered examples are simple in the sense that the obtained double integrals are already 
known. The novelty of our solution lies in the fact that the solution is formally constructed 
by a direct Fourier transform of an inhomogeneous differential equation without involving 
convective coordinates.

Let us now move on to a more complex problem, where the solution in the form of the Fourier 
integral of the boundary-value problem was not previously known, but it was considered in terms 
of special functions with respect to complex variables. The very procedure of constructing a cer-
tain complex variable for a special hypergeometric function and integration along a certain circle 
in a complex space suggests that there must be a way to obtain this solution in terms of the direct 
Fourier transform of the original inhomogeneous differential equation with inseparable variables.

Reference equation for a two-dimensional inhomogeneous medium.  
Abnormal focusing of internal waves

In the examples discussed above, the solution was sought in the form of a two-dimensional 
Fourier integral, while the inhomogeneity of the external field (the velocity field of the back-
ground flow, or topography) was one-dimensional.

Now let us consider a more complex example of a problem with two-dimensional inhomoge-
neity of the external field.

Example 5. The theory of anomalous focusing of internal waves in a two-dimensional inhomo-
geneous fluid introduces the following reference equation of elliptical-hyperbolic type for vertical 
displacement in the vicinity of the focus [13, Eq. (2.5)]:

2

2

2 0,zz yy y
y z y

y z
L L L

 
Ψ + + Ψ + Ψ =  

 
(34)

where Ψ is the function of current; (x, y, z) is the rectangular coordinate system; Ly, Lz are the 
lengths of inhomogeneities along the y and z axes.

We will search for solutions localized in a small neighborhood of a certain level along the 
vertical coordinate and exponentially attenuating outside this level; here, for the case of internal 
waves, the following notations are introduced [13]:

2 2

2

1 12 ln ,  ,z z
y

y z

N
L L N

∇ Ω ∇
= ∇ Ω = −

Ω
(35)
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where Ω = ω – kU (ω is the frequency, k is the zonal wavenumber, U(z,y) is the inhomogeneous 

horizontal background shear flow); 2
0( ) ln ( )dN z g z

dz
= − ρ  (ρ0(z) is the density).

The value of all derivatives is taken at the focal point. Since equation (34) is invariant with 
respect to the scale transformation z = az′, y = a2y′, a certain self-similar variable is introduced. 
The solution is constructed as a summation of all partial solutions with respect to hypergeometric 
functions of a complex argument. The procedure for constructing this complex variable is not 
entirely clear. It is also not entirely clear what functions are considered in [13], how these func-
tions appear, what their physical nature is, and what primary and secondary quantization mean in 
construction of asymptotic forms of the solution. Note that the asymptotic forms of the two-di-
mensional function are constructed as one-dimensional only on the waveguide axis.

To interpret these solutions in terms of special functions of complex arguments on the one hand 
and to represent these classes of solutions using the classical Fourier transform and its properties 
(presented above) on the other hand, we will independently construct a solution in integral form, 
find its two-dimensional asymptotic forms and show what primary and secondary quantization 
mean in terms of the classical Sturm–Liouville problem. To do this, we can use the well-known 
integral representations of the hypergeometric function as a basis, and then the approach to finding 
a solution will become more transparent. In a sense, we are using the integral representation as a 
starting point, but it is better to take steps in the opposite direction to search for the solution.

The solution to equation (34) is sought in the form of a Fourier integral. First we confine 
ourselves to the upper half of the integral:

( ) ( ) ( )
0

, , , , , , exp .k y z G k l z ily dl
∞

Ψ ω = ω∫ (36)

In fact, a reasonable question arises whether to take the whole integral or only the upper (or 
lower) part of it. We will further discuss this problem in the final section of the paper.

We use the properties of the Fourier transform again:

( )2 2,  ,  ,  .y yy yy l
G ilG l G y i l GΨ → Ψ → Ψ → − Ψ → − (37)

The first three formulas in this equation are the properties of the Fourier transform of the 
derivative, which are widely known. The latter formula is a special case of equality (21) in mono-
graph [9]. Despite the popularity of this formula, it is not used in applied problems. Our work 
focuses specifically on the practical application of this last formula from Eq. (37).

Substituting integral (36) into equation (34) and taking into account (37), we obtain the fol-
lowing equation for the Fourier transform G:

2 2 2

2 0.zz l
z y

l z lG G i G
L L

− − = (38)

Equality (38) is not an equation with separable variables. To convert it to such form, let us 
perform the following variable substitution 

( ) ( ), , ,z l → η ϕ
where

1/2

1/2 ,  .
z

z l l
L

η = ϕ = (39)

The Jacobian of such a substitution has the form

( )
( )

1/2,
.

,
l

z l
∂ η ϕ

=
∂

(40)
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It should be noted that equations (39) and (40) contain l1/2. Technically, this specific fact 
allows us to consider only one of the parts of the Fourier integral. For simplicity, we first chose 
the upper, positive part of the integration to resolve the question related to the square root.

This however raises the question of why such a variable substitution should be chosen. The 
answer is contained in [17], where the solution is constructed in the WKB approximation. In fact, 
any reasoning about self-similarity turns out to be superfluous, since in a certain sense the entire 
self-similarity of the solution is reduced to a simple substitution of variables of the form (39).

Equality (38) in terms of new variables (η,φ), takes the form of an equation with separable variables:

2 0.
2

z z

y y

L LG G i G i G
L Lηη η ϕ

η ϕ
− η − − = (41)

In this case, we search for a solution with separable variables:

( ) ( ) ( ), .G H Fη ϕ = η ϕ (42)

We obtain the following equation for the function H(η):

( )2
0 0,

2
z

y

LH i H H
Lηη η

η
− − η + µ = (43)

where µ0 is the separation constant.
Next, the term with the first derivative in equation (43) is removed by the following substitution:

( ) ( ) 2exp .
8

z

y

LH P i
L

 
η = η η  

 
(44)

We obtain the following equation for the function P(η):

2
2

021 0.
16 4

z z

y y

L LP i P
L Lηη

  
+ −η − − µ + =      

(45)

Recall that we are searching for solutions localized in the vicinity of the level z = 0. Analysis 
of equation (45) allows to conclude that the coefficient at η2 must be positive, so we obtain the 
following condition for the existence of localized solutions:

2

21 0 0 4 .
16

z
z y

y

L L L
L

 
− > ⇔ < <  

 
(46)

Condition (46) means that the branches of the parabola bounding the inner area of transpar-
ency from the outer area of shadow, must be practically parallel to each other. Otherwise, the ver-
tical mode does not form and the wave does not approach the critical point for an infinitely long 
time. It is important to note that if condition (46) is not satisfied, then other modes of solution 
transformation are formally possible. There is no question of any uniqueness of the solution here.

Evaluation of the parameters for internal waves shows that if we take the scales adopted by the 
authors of [13], we obtain a very good difference in these values (Lz < 4 Ly), so the concept of a 
parabolic trap is valid from a physical standpoint.

Let us define the quantum values of the separation variable µ0 [10, 16]:

( )
1/2

2

0 22 1 / 1 ,  0,1, 2, ... .
4 16

z z

y y

L Lm i m
L L

   
− + = µ − − =      

   
(47)

From here, we can find the eigenvalues
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1/22

0 2

161 1 ;  1 ,  0,1, 2, ...
4 2 2

yz

y z

LL i m m
L L

  δ  µ = − + δ ≡ − =         
(48)

and eigenfunctions

( )
1/4 1/2

2 22

2 2
0

1 exp 1 ,  0,1, 2,...,
16 2 16

z z
m

m y y

L LP H m
L L

∞

=

       η    η = η − − − =                
∑ (49)

where Hm are Hermite polynomials.
Let us now define the second factor F(φ) in solution (42). We obtain the following equation 

from Eq. (41):

0 0.z

y

Li F F
L ϕ

ϕ
− + µ = (50)

The solution of equation (50) has the following form:

( ) 0,  .y

z

L
F i

L
µϕ = ϕ µ ≡ − µ (51)

Finally, we obtain the following eigenvalues:

1 1 .
4 2 2

i mδ  µ = + + 
 

(52)

Substituting all the found composite solutions into the initial integral (36), we find 
the eigenfunctions:

( ) ( )
1/4

21/2

1/2 2
0 0

1/2
22 2

2

, , , , 1
16

exp 1 exp ,
2 16 8

z
m

m z y

z

z y y

Lz lk y z A k l H
L L

Lz l zil y dl
L L L

∞∞
µ

=

     Ψ ω = ω − − ×       
      
 × − − ⋅ +               

∑ ∫
(53)

where A(k,ω) is some constant that determines the spectral density of the initial state.
Further, the obtained eigenfunctions (53) can be reduced by simple transformations to a 

degenerate hypergeometric function with respect to some complex argument. Note that it is the 
integral notation (53) that is preferred for finding the asymptotic forms of eigenfunctions. Despite 
the fact that the constructed eigenfunctions (53) express the dependence on two physical variables 
(z and y), the integral for the eigenfunctions is one-dimensional, which makes it possible to use 
the stationary phase method [16].

Let us write the imaginary part of the integral (53) in the following form:

2 1exp ln .
8 2 2y

zil y i m l
L

   δ  + + +          
(54)

If we differentiate this expression by the variable l and equate the expression in square brackets 
to zero, we obtain the equation for the point lc:

2 1 .
8 2 2y c

zy m
L l

δ  + = − + 
 

(55)
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Let us rewrite this relation in the following form:

2

1
2 .

2
8

c

y

m
l

zy
L

 δ + 
 = −

 
+  

 

(56)

The resulting expression (56) is a kind of generalization of the short-wave WKB asymptotic 
form of the dispersion relation lc = y–1. Then the second derivative of the phase with respect to the 
wavenumber is proportional to lc

–2, and, therefore, the inverse first power root of this derivative 
is proportional to l1c.

The asymptotic form of eigenfunctions in the vicinity of the critical point is as follows:

( ) ( ) 1

1/4
1/2 2

1 1/2 2
0

1/2
2 2

2

, , , , 1
16

1exp 1 exp .
2 16 2 2

c z
c m

m z y

c z

z y

z l Lk y z A k l H
L L

z l L i m
L L

µ+
∞

=

     Ψ ω = ω − ×       
    δ   × − − ⋅ +           

∑
(57)

Analysis of this equality allows us to conclude that the asymptotic form of the solution of the 
reference equation exactly coincides with the WKB solution [17], expressed as a vertical mode in 
the form of Hermite polynomials majored by a Gaussian function, and gives the classical degree 
of 5/4 for the amplitude of the vertical velocity. If the authors of [13] describe a certain mode, 
then we are certain that this is not their vertical mode in the form of a WKB solution along a 
vertical coordinate, but a completely different one, which is constructed in [17].

The solutions we constructed are not functions with respect to the variables z, y, but rather to 
some curvilinear variables taking the following form:

( )
2

1/2
2

, , .
8

8
y

y

z zy z y
L zy

L

 
 
  

→ +       
+   

  

(58)

Thus, in a sense, there is a curvature of space in the vicinity of the focal point. However, all 
this "curvilinearity" was also observed in the solution of the problem in the WKB approximation, 
where formally the following variable substitution took place:

( ), , .zy z y
y

 
→   

 
Therefore, by and large, the asymptotic forms of one-dimensional integrals do not give any 

qualitatively new results other than WKB solutions, with the exception of condition (47), which 
is satisfied with a large margin.

Reduction of the Fourier integral to a hypergeometric function of a complex variable. To com-
pare our solution with the solution obtained by Erokhin and Sagdeev [13], we rewrite the eigen-
functions (54) in the following form:

( )
1/2 2 2

1/2
1/2

0

, , , exp exp .
2 8 8m m

y y y

zl z l zk y z l H il y dl
L L L

∞
µ

      
Ψ ω = δ − δ ⋅ +                 

∫ (59)
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Next, we perform the substitution of variables (l → x), and the argument

1/2
1/2

1/22 y

z l
L

 
δ  

 
of the Hermite polynomial is taken as a new variable

1/2 1/2

1/2 .
2 y

zlx
L
δ

= (60)

It follows from this that 
2 1

2
2 2

0

exp 2 ( ) .m m
xax H x dx
z

∞ µ+

µ+
 Ψ ∝ − ∫ (61)

The complex variable 2а appeared in Eq. (60), depending on two spatial physical variables, z and y:

( )2
2

1 12 8 .
2 2 ya i z yL

z
= − +

δ
(62)

We solved the two-dimensional problem in terms of a one-dimensional integral, but only with 
respect to a complex argument. Apparently,

( )
2

2 2

1 2 *,
2 8 y

z
a z i z yL

δ
= ≡ τ

δ − +
(63)

where τ is the complex variable from the study by Erokhin and Sagdeev [13] (the asterisk corre-
sponds to complex conjugation).

The integral representation of the hypergeometric function in terms of Hermite polynomials 
has the following form [11, Eqs. 7.37, 7.38 ]:

2
2

0

1 1 1; ; ; exp 2 ( ) ,
2 2 2 nF n ax x H x dx

a

∞
νν +   − ∼ −     ∫ (64)

where Rea > 0, Reν > –1;
in addition [11, Eqs. 7.376.3]: 

2
2 1

0

3 1; 1; ; exp 2 ( ) ,
2 2 2 nF n ax x H x dx

a

∞
ν

+

ν   − + ∼ −     ∫ (65)

where Rea > 0, Reν > –2.
Taking into account the eigenvalues (48), we find:

3 12 1 .
2 2

i m ν = µ + = + δ + 
 

(66)

Consequently, the constructed solutions are regular, and the integrals converge. Similarity with 
the solution from Erokhin and Sagdeev [13] was achieved in three of the four parameters. Let us 
determine the last parameter of the hypergeometric function:

7 11 *,
2 4 2 2

i mν δ  + = + + ≡ γ 
 

(67)

where γ is the quantum parameter from [1, Eq. (2.7)].
Similarly, we find that

1 5 1 .
2 4 2 2

i mν + δ  = + + 
 

(68)
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Thus, we obtained a complete agreement of our results with [13]. If we take into account the 
second part of the Fourier integral for negative wave numbers, then by substitution of the variable 
it can be reduced to an integral with respect to positive wavenumbers. But then the imaginary 
unit (i → –i 1) will be replaced in the studied integral, and this will lead to the appearance of the 
second part of the solution, where complex conjugate τ* and γ* will appear instead of τ and γ.

Thus, the general solution of the problem is the sum of solutions with respect to τ and τ*, 
which is physically equivalent to the sum of incident and reflected waves. This means that 
mathematically there is no prohibition on reflection and the hypothesis of infinite focusing is 
greatly exaggerated.

Discussion and conclusions

This study provides basic information on the operator method of Fourier transformation, 
which is necessary for practical solution of specific physical problems in inhomogeneous media. 
The main properties are formulated by two approaches:

integration by parts, which implies attenuation of functions at infinity;
parametric differentiation of the forward or inverse Fourier transform.
Using five specific examples, we established how Fourier analysis works in inhomogeneous 

media. In the first four examples, formal integral solutions are constructed, since their further 
analysis is well known and the reader can consider the references to further explore this. Notice 
that these integrals (see examples 1 and 2) are typically given without derivation and the reader 
is invited to independently obtain this derivation using the Laplace transform. In our work, we 
constructed integral solutions using the Fourier transform and Cauchy’s theorem, showing their 
equivalence with the Laplace transform in one-dimensional inhomogeneous problems.

Examples 2, 3 and 4 consider a two-dimensional problem in which the inhomogeneity of the 
medium is one-dimensional linear in nature. In Example 2, the solution can be obtained in two 
ways: in terms of the Fourier transform and in terms of the Laplace transform. In Example 5, 
we performed a complete analysis of the boundary-value problem. We constructed the Fourier 
integral, found its two-dimensional asymptotic forms using the stationary phase method and the 
properties of a parabolic quantum oscillator, and also identified the Fourier integral found, reduc-
ing it to a well-known degenerate hypergeometric function with respect to a complex argument. 
Thus, we proved that the statement about the inefficiency of Fourier analysis in inhomogeneous 
media is erroneous.

Therefore, in terms of the Fourier integral, we analytically proved the identity of the solution 
of the reference equation for vertical focusing of a monochromatic wave in the vicinity of the 
focus with the solution of the reference equation in terms of a degenerate hypergeometric func-
tion with respect to a complex variable obtained in previous studies. This mathematical solution 
is also successfully used in problems of magnetohydrodynamic instability and in the description 
of internal gravitational waves in two-dimensional inhomogeneous fluid [7, 13].

It is established that the issue of wave absorption in the focal zone is ambiguous and there-
fore both passage and reflection from a singularity can be observed. Specific estimates for typical 
parameters of oceanic gradients of hydrophysical density and velocity fields show that localization 
and, as a rule, amplification of wave movements are quite feasible and take the form of highly 
localized spatial vortex structures.

These aspects should be taken into account in studies of geophysical fields, in particular when 
analyzing mesoscale vortex dynamics in the ocean.

The analytical method described in these five examples can be used to solve other problems of 
mathematical physics.
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для изучения термоэлектрических явлений в точечных контактах разнородных 
материалов и в наноструктурах. Точеные контакты регулируемого размера формируются 
с помощью атомно-силового микроскопа, определяются зависимости термоэдс от 
разности температур и от силы воздействия зонда на образец. Проведено численное 
моделирование распределения температуры в такой системе для различных условий, 
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Introduction
The problem of increasing energy efficiency is becoming more and more urgent for electronics. 

It was reported, in particular, that more than 10% of the world’s electricity is already consumed 
by computers and telecommunications equipment, and this share is growing rapidly [1]. The 
energy consumed by electronic devices is eventually released as heat, and the reverse conversion 
of some of this heat into electricity could significantly increase overall energy efficiency. The most 
natural way to utilize the thermal energy of electronic components is the use of solid-state ther-
moelectric generators (TEG). The development and improvement of TEG has been underway for 
many years (at least since the 1940s), and substantial advances have been made. However, there 
are fundamental physical limitations to increasing the effectiveness of TEG.

Thermoelectric materials are commonly evaluated by the parameter of thermoelectric per-
formance (quality) Z or, more often, the dimensionless quantity of the same name ZT, where T 
is the absolute temperature. This parameter characterizes the difference between the efficiency 
of thermoelectric conversion, achievable using the material, and the efficiency of an ideal heat 
engine. The dependence of the thermoelectric performance on the properties of the material is 
given by the formula [1–4]:
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where S is the Seebeck coefficient (defined as the coefficient of proportionality between the 
thermopower and the temperature drop); σ is electrical conductivity; κel, κph are the electron and 
lattice (phonon) components of thermal conductivity.

According to available estimates, the widespread use of TEG in the energy sector will be 
economically justified when ZT = 3–4 is reached. The ZT values obtained so far for the best 
thermoelectric materials (in particular, bismuth telluride Bi2Te3) at room temperature are close to 
unity. It is obvious from Eq. (1) that to increase the thermoelectric performance, it is necessary 
to reduce the thermal conductivity of the material and increase its electrical conductivity and the 
Seebeck coefficient. Metals, due to their high electrical conductivity, are not optimal materials for 
TEG, since the values of the Seebeck coefficient are small: in most cases they do not exceed10 
MV/K in absolute value. In addition, the heat flow in metals is carried mainly by electric charge 
carriers, so consequently the thermal and electrical conductivity of metals in the denominator 
and numerator of Eq. (1), respectively, are proportional to each other (Wiedemann–Franz law), 
which makes it difficult to optimize the ZT parameter. In contrast, semiconductors have low elec-
tronic thermal conductivity, and the heat flow in them is carried almost exclusively by phonons. 
The Seebeck coefficient of semiconducting materials is usually quite large (hundreds of µV/K), 
which is determined by significant variations in the energy density function of electron states 
near the Fermi level [3–5]. The thermoelectric properties of semiconductors can be optimized 
by choosing the degree of their doping [6, 7] or by shifting the Fermi level in other ways [8]. In 
general, semiconductors are characterized by the best thermoelectric parameters among homoge-
neous bulk materials, but the possibilities for their radical improvement are still limited.

In recent decades, the prospects for the creation of commercially successful thermoelectric 
devices have been associated with nanostructures and nanostructured materials. Many experiments 
(see, for example, [9–12]) have fundamentally confirmed the theoretical predictions made by in 
[4, 13] about the possibility of using size effects to selectively reduce thermal conductivity due to 
the scattering of phonons by interfaces and defects, with less influence on electrical conductivity.

It is equally promising to construct thermoelectric devices using nanoparticles, individual 
molecules or molecular layers [2, 3, 12–16] with a discrete spectrum of allowed electronic states, 
which can be optimized to achieve high values of S and ZT. Nanostructures developed can pro-
vide conditions simultaneously for destructive interference of lattice excitations and constructive 
interference of electronic waves [1, 2]. Calculating the thermoelectric parameters of devices using 
nanoscale elements is a difficult problem, which increases the role of experiment in such studies.

Problem statement

This paper presents the results of the first, initial stage of a new research project, whose purpose 
is to experimentally verify one of the theoretical models predicting the possibility of constructing 
a high-efficiency TEG based on heat transfer characteristics and thermoelectric phenomena in 
carbon-based nanostructures.

Carbon in the state of sp2-hybridization (single-layer and multilayer graphene, carbon nano-
tubes, graphite) has unique characteristics [4, 17, 18]: low effective mass of charge carriers, high 
thermal conductivity, high light absorption coefficient. The electronic properties of graphene and 
carbon nanotubes are easily modified not only by doping and defects, but also by an electric field, 
which makes carbon in the state of sp2-hybridization a promising material for electronics. Among 
other things, the possibility of its use as part of thermoelectric devices was also considered [5, 19].

Eidelman proposed [20, 21] a TEG based on a structure of nanometer layers of diamond-like 
and graphite-like carbon. The principle of its operation is based on the theoretical model pro-
posed in Eidelman’s earlier studies [22, 23], which substantiates the possibility of obtaining 
increased values of the Seebeck coefficient S and the ZT parameter using the phenomenon of 
charge-carrier entrainment by ballistic flow of phonons, even at room and higher temperatures. 
In this case, to achieve a positive result, localization of the electric field and temperature drop 
in a planar sp2-carbon nanolayer is required, where the phonon flow remains ballistic. The dia-
mond-like layer plays the role of a cooler, diverting the unused part of this flow. The presence 
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of sharp (no more than several lattice spacings) interphase boundaries is also seen as a necessary 
condition. In our opinion, the experimental demonstration of the predicted effect in [21] was not 
entirely convincing. The reason for this was probably the objective technological complexity of 
forming the ideal structure required by the theory; the presence of defects, almost inevitable at the 
specified values of thickness and area, could lead to electrical shorting of the real structure and a 
decrease in the thermoelectric voltage recorded for it.

Our study is aimed at conducting an experimental verification of the viability of the concept 
proposed in [20, 21] using a structure that is easier to create, whose main part is, for example, a 
carbon nanostructure on the surface of a silicon substrate (serving in this case as a cooler or, con-
versely, a heater). The second thermal and electric contact with the island should be established 
by means of an atomic force microscope (AFM) probe. We have previously studied island-type 
carbon films of the required structure in connection with their ability to emit electrons [24–26].

The advantage of the proposed approach is the possibility of conducting quick independent 
testing of the thermoelectric properties of many islands, which differ in size and properties of the 
interface with the substrate. This seems necessary because we expect that only a few of the islands 
will show high thermoelectric performance.

Such expectations are associated with important features introduced by thermal contacts of 
small lateral dimensions.

The phenomenon of a decrease in thermopower in nanocontacts is known [27–30], which is 
explained precisely by the suppression of phonon entrainment of charge carriers. Its cause is seen 
in the scattering of nonequilibrium phonons at the aperture of the nanocontact, which reduces 
the likelihood of transmitting their momentum to electrons or holes. Therefore, according to the 
theory outlined in [27], an additional multiplier d/Лp appears in the formula for thermal entrain-
ment for small contact diameters d, where Лp is the phonon path length.

The experiments planned are intended for studying islands whose height is of the order of the 
phonon path length, approximately equal to 5 nm (according to the estimate in [21]). Their lateral 
size will be several times larger, but the size of the contact with the AFM probe may be small and 
poorly controlled.

However, according to many researchers, the boundary scattering of phonons is only one of 
the reasons for the dependence of the Seebeck coefficient and other kinetic coefficients on the 
size of the contact region. In particular, both theoretic predictions and experimental observations 
exist for deviation of the kinetic dependences from the linear form upon violation of the condi-
tion LT > Λp, where LT is the distance at which the temperature changes significantly; it can be 
defined, for example, as

1 grad 
max .T

T
L

T
−  

=  
 

(2)

The reason for this phenomenon is seen in the nonlocality of the interaction of charge carri-
ers with the lattice [31–37]. If the condition LT > Λp is violated, it cannot be assumed that the 
interaction occurs at a point with certain coordinates. Often, the temperature value also cannot 
be correctly determined, since the distributions of phonons and charge carriers turn out to be 
significantly nonequilibrium [5, 38]. One of the manifestations of non-locality is the dependence 
of the thermopower value not only on the applied temperature difference, but also on its distri-
bution profile, on the maximum value of its gradient, i.e., on the characteristics that can hardly 
be predicted for the thermal contact of the probe with the island.

Another region with properties that vary greatly from island to island may be the interface with 
the substrate, since the islands were formed on a layer of natural oxide; notably, it is stated in 
the literature [30, 39, 40] that thin intermediate layers do not affect the results of measuring the 
thermoelectric parameters of coatings and nanostructures.

For these reasons, reliable detection of high values of the Seebeck coefficient (the estimate of 
its expected value in [21] is 50 mV/K) for at least a small part of carbon nanostructures (or other 
similar samples) brought into contact with the AFM probe with an excellent temperature can be 
considered as confirmation of theoretical predictions of [20–23] and will become an incentive 
for subsequent efforts on the practical implementation of the concept of TEG proposed in [21].
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Experimental setup

An experimental setup for solving the above problem is currently developed based on NanoDST 
AFM (Pacific Nanotechnology, USA). This approach should not be considered new: setups based 
on probe microscopes have been successfully used in similar studies, in particular, to map the 
distributions of thermal and thermoelectric parameters [5, 6, 39–44] and to study the properties 
of molecular layers and individual molecules [1, 5, 16, 39, 45]. The novel characteristics of the 
setup developed are minimal improvements to the serial AFM and the use of standard AFM 
probes in its operation, which is possible since a limited range of problems will be solved at the 
initial stage of research.

The experimental setup is shown schematically in Fig. 1. The large positioning stage (X-Y 
stage) and the probe holder play the role of thermostats with the temperature equal to the ambi-
ent temperature T0. The sample substrate considered is placed on the upper surface of the Peltier 
element, whose temperature is maintained (using the Current source feeding the element) at a set 
value T = T0 + ΔT. The temperature values are controlled by thermocouples. During the experi-
ment, the AFM probe, whose initial temperature is T0, is brought into contact with the point of 
the sample selected during a preliminary scan of its surface. The thermoelectric voltage formed 
during contact is recorded by a digital nanovoltmeter synchronized with the AFM controller. 
Simultaneous recording of its reading and the force-distance curve of the AFM allow to deter-
mine the dependence of the thermoelectric voltage on the force of interaction of the probe with 
the surface, and therefore on the size d of their contact region. To isolate the voltage component 
associated with the contact potential difference, the experiment is also carried out for ΔT = 0.

The problem of determining purely thermal parameters, i.e., the values of heat flows, thermal 
resistance, thermal conductance and thermal conductivity, is usually the most difficult from the 
standpoint of measurement technology [38, 46, 47]. At this stage, we neglected to define them, 
since to assess the applicability of the TEG concept proposed in [21], it is sufficient to find the 
maximum values of the Seebeck coefficient S, i.e., temperature and thermopower measure-
ments. If reproducible dependencies S(ΔT) and S(d) are found, the results obtained will provide 
additional information about the physics of heat and electric charge transfer processes in the 
system considered.

In the future, it is planned to expand the capabilities of the setup.

Experimental samples

The following samples were selected for the first experiments (below they are given in sequence 
from simple to more complex).

Nanocontact of AFM probe with a metal plate or thick (Cu, Au) film. Since the values of the 
Seebeck coefficient for silicon significantly exceed its values for metals, when a silicon probe 
comes into contact with a metal plate, it is natural to expect that the value of the thermopower 
will be mainly determined by the processes in the probe. Thus, the main purpose of such experi-
ments is to determine the contribution of probes of different types to thermopower: with a metal 

Fig. 1. Schematic of experimental setup
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coating and without a coating, with a different size of the contact spot. Such data are necessary 
for conducting subsequent experiments with other objects, that is, to take into account the con-
tribution of the AFM probe to the recorded values of thermopower.

Nanocontact of AFM probe with silicon plate. Measurements of the thermoelectric characteristics 
of nanocontacts formed between AFM probes and substrates are very important for the correct 
interpretation of other experimental results, since carbon nanostructures (these are the main 
objects of experiments at this stage of the study) are formed on silicon substrates. However, there 
is an additional motivation for conducting such experiments.

Island films of carbon and metals (molybdenum, zirconium, tungsten) formed on silicon sub-
strates were found to be capable of low-voltage field emission in previous experiments [24, 25, 48]. 
It was suggested that thermoelectric potentials play an important role in the physical mechanism 
of the emission process [26, 48, 49]. At the same time, the absence of significant differences in the 
emission parameters of carbon and metal islands indicated that thermoelectric potentials are formed 
not in the islands themselves, but in substrates near the islands. A theoretical consideration of such 
a process using a model of charge carrier entrainment by ballistic phonon flow [21] made it possible 
to evaluate the effectiveness of thermoelectric conversion by such a structure. The results of this 
analysis will be published later, and they may be important in connection with the objectives of 
this study. This is reason for additional interest in the results of the planned experimental testing of 
thermoelectric characteristics of nanocontacts of metallized probes with silicon substrates.

Admittedly, the properties of silicon point contacts have already been studied before, from the 
1980s to the 1990s. However, these early experiments were carried out mainly with contacts of 
micron and submicron sizes (20–0.3 µm) [29, 30, 50], which were formed between the pointed 
edges of silicon wedges pressed against each other with a force of 1–100 mN [50]. Mechanical 
compression led to the appearance of significant deformations in the near-contact region, which, 
according to the authors [30], were capable of causing additional scattering of phonons and influ-
encing the propagation of heat flows. The size of the contact between the AFM probe and the 
planar surface and the force of their interaction can be significantly reduced to more correctly 
simulate the contact of the substrate with the nanostructure formed on it. The nominal value of 
the elastic constant of the CSG01 AFM probe (NT MDT, Russia), designed for contact mode 
measurements, is 0.03 N/m. The transition from attractive forces to repulsive forces on a typical 
force-distance curve of an AFM probe (when direct contact of the probe with the surface is estab-
lished) occurs at a distance of about 100 nm [41, 42]. These values can be used to estimate the 
strength of the mechanical interaction of the probe with the sample surface as F ≈ 3∙1010 N. The 
diameter of the contact spot d can be calculated by solving the problem of the elastic interaction 
of a sphere of radius R and a plane [41]:

1/36 ,FRd
E

 =  
 

(3)

where E is Young’s modulus (E = 109 GPa for silicon), R is the probe tip radius.
For the nominal value R = 10 nm, this gives an estimate of the minimum diameter of the 

contact spot d ≈ 1.2 nm. When the pressure reaches the plastic limit (for example, in the case of 
a metal plate), this value may increase slightly, but it certainly will not exceed the radius of the 
tip [41]. Thus, the size of the contact spot between the AFM probe and the silicon or metal plate 
can be made significantly smaller than the corresponding values achieved in classical studies [29, 
30, 50]. Comparing their results may be of considerable interest.

Carbon nanostructures and graphene sheets (sp2-carbon). As already mentioned above, the ther-
moelectric properties of carbon nanostructures are considered as the main object of this study. 
Another object are sheets of multilayer graphene with a large interface area with the substrate and 
representing a closer equivalent of the proposed TEG prototype structure. The use of AFM makes 
it possible to establish thermal and electrical contact with the local area of a separate sheet of 
multilayer graphene and vary the force with which it is pressed against the surface of the substrate.

Images and surface profiles of samples of naturally oxidized silicon plates with carbon nanowires 
and graphene sheets of different areas are shown in Fig. 2, a–c. They were obtained using NanoDST 
AFM (Pacific Nanotechnology), which is planned to be used in thermoelectric experiments.



107

Experimental Technique and Devices

Metal nanoparticles. A feature of nanoscale particles in comparison with bulk materials is the 
discrete nature of the spectrum of resolved states. This feature is favorable in terms of the pos-
sibility of achieving high thermoelectric performance. In accordance with the well-known Mott 
formula, the Seebeck coefficient is determined by the value of the derivative of the energy density 
of states at the Fermi level [4]:

( )2 2 ln ( )
,

3
F

B
dk TS

e d
ε=ε

 σ ε π   =  ε  
(4)

where kB is the Boltzmann constant, εF is the Fermi energy, σ(ε) is the value of the differential 
contribution of charge carriers with energy ε to electrical conductivity.

It should be borne in mind that Eq. (4), generally speaking, refers to metals and degener-
ate semiconductors and may not be completely correct for sp2-carbon. However, it is useful for 
understanding general trends: in the vicinity of a discrete energy level, all energy derivatives are 
large, which, at the optimal position of the Fermi level, can provide a large value of the Seebeck 
coefficient [3]. Varying the parameters, namely, particle size, electric potential, etc., allows to 

"adjust" the relative position of the Fermi level 
and the permitted energy levels, optimizing it to 
achieve high thermoelectric performance.

A comparison of the thermoelectric proper-
ties of carbon and metal nanoparticles can make 
it possible to separate the influence of size effects 
from the influence of the electronic structure of 
specific materials. 2,d shows the AFM image and 
the surface profile of tungsten nanoparticles for 
a sample formed on a silicon substrate and pre-
pared for study; the substrate is identical to those 
used in other cases.

Numerical simulation

Numerical simulation of the temperature dis-
tribution over the contact region of the AFM 
probe with a planar substrate was carried out 
during the general planning of the experiment. 
The COMSOL Multiphysics software package 
implementing the finite element method was 
used. The package generally allows searching 
for numerical solutions to systems of differential 
equations of almost any kind with a given geom-
etry and a set of boundary/initial conditions; 
this includes systems that take into account size 
effects and nonlocality; for example, equations 
from theoretical studies [32–37]. However, only 
the temperature distribution (but not the ther-
moelectric potential) was modeled at this stage 
of the research, and standard equations of the 
macroscopic theory of heat transfer and tabular 
values of thermal parameters of materials were 
used. This approach used because the model-
ing problems at this stage (experiment planning) 
were limited.

Let us present the basic requirements for 
these problems.

First, it was necessary to determine whether 
local temperature measurements near the 

d)

c)

b)

a)

Fig. 2. AFM images (left) and surface 
topography profiles of nano-objects (right) 

on naturally oxidized silicon substrates. 
Nano-objects: sheets of multilayer graphene 
of large (a) and small (b) sizes, small carbon 

nanostructures (c) and metal nanoparticles 
of tungsten (d)
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nanocontact region were necessary or whether it was sufficient to determine the temperatures 
of the sample substrate and the massive part of the AFM probe holder. To do this, it was 
actually necessary to estimate how much of the total temperature drop between these parts 
(whose temperature is easy to measure) falls on the cantilever of a standard probe under typical 
experimental conditions.

Secondly, it was necessary to determine whether measurements in vacuum conditions were 
required or an experiment in atmospheric conditions was acceptable. For this purpose, we had 
to assess the degree of influence of the ambient air and the equilibrium adsorbate layer on free 
surfaces on the temperature distribution in the nanocontact region.

Thirdly, it was necessary to determine whether it was possible to use a standard metallized 
probe as a metal electrode of a metal/sp2 carbon or metal/semiconductor nanocontact.

Fourthly, it was necessary to estimate the time to establish the temperature distribution after 
the formation of the nanocontact under the conditions of the planned experiments.

To solve these problems, we estimated the temperature drops primarily on the auxiliary ele-
ments of the experimental device (primarily on the AFM probe cantilever), whose characteristic 
dimensions are large enough for calculations according to standard theory to provide sufficient 
accuracy. Significant calculation errors could be expected for the nanocontact region itself (most 
likely, towards lower thermal conductivity), which was taken into account in analysis of the 
results. We chose an experimental configuration with the requirement that most of the tem-
perature drop created was concentrated in the nanocontact region. In this case, the maximum 
estimate of the expected value of the thermopower can be obtained by simply multiplying the 
temperature drop ΔT by the effective value of the thermoelectric coefficient S given by the theory 
(according to [21], it can reach 50 mV/K for the structure considered there).

Calculations of the temperature distribution were carried out by solving a standard equation of 
thermal conductivity of the form

,p p
TC C T Q
t

∂
ρ + ρ + =

∂
u q∇ ∇ (5)

where ρ, Cp are the mass density and heat capacity of the substance; u is its local velocity (assumed 
to be identically equal to zero); q is the heat flow density; Q is the density of heat sources.

At this stage of the study, a linear relationship of the quantity q with the temperature gradient 
(Fourier’s law) was postulated: 

,T= −κq ∇ (6)

where κ is the thermal conductivity.
The values of the material parameters given in Table 1 were used. The “Heat Transfer in Solids 

and Fluids” module of the COMSOL Multiphysics package was used, and the “Laminar Flow” 
module was also used to calculate heat transfer through the ambient air.

The contact of the AFM silicon probe with a copper substrate (thick plate) was simulated. The 
geometry of the tip and cantilever (Fig. 3,a, Table 2) was set in accordance with the parameters 
and image of the NSG10 probe provided on the manufacturer’s website (NT-MDT, Russia). To 
simplify the calculations, a 2D problem was solved with the axis of symmetry passing through the 
center of the probe’s contact region with a planar substrate. The shape of the tip of the probe was 
set as a cone conjugate to a sphere (Fig. 3,b). The radius of the sphere was taken to be 10 nm. 

Tab l e  1

Thermal parameters of materials used for simulation

Parameter Parameter value for material
Si Cu Pt Adsorbate (water)

Heat capacity, J/(kg∙K) 700 375 133 4,200
Density, kg/m3 2,329 8,960 21,450 1,000

Thermal conductivity, W/(m∙K) 130 394 71.6 0.56
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The same spherical surface was considered to be the interface of the tip with the substrate; it was 
assumed that the mechanical pressing action of the probe was strong enough for plastic deforma-
tion of copper in the contact region. The deviation of the 2D geometry from the true 3D geome-
try was compensated by setting the parameters of the cantilever material: its thermal conductivity 
and heat capacity in the left part (see Fig. 3,a) were set by tabular data, and then decreased along 
the radial coordinate according to the law 1/r.

At the initial time, the substrate tempera-
ture was set to 0 °C, and the temperature of all 
parts of the probe was set to 100 °C (the spe-
cific values of these parameters do not affect 
the type of distribution if linear equations are 
used). Dirichlet boundary conditions were set for 
the lower boundary of the substrate (0 °C) and 
for the right end of the cantilever (100 °C). The 
problem of thermal conductivity was solved by 
simulating the steady-state temperature distribu-
tion, as well as the evolution dynamics of this 
steady state.

Fig. 4 shows the simulation results. The tem-
perature distribution (see Fig. 4,a) was obtained 
for a silicon probe in contact with the clean sur-
face of a copper plate in vacuum; heat transfer by 
electromagnetic radiation was considered insig-
nificant [41]. As expected, under these condi-
tions, the larger part of the temperature drop falls 
on the probe, whose material is characterized by 
lower thermal conductivity; the geometric factor 
(conical shape) also slightly increases its thermal 
resistance. The temperature changes significantly 
only in the probe region near the nanocontact, 
up to distances of the order of several magnitudes 
of its radius. The temperature drop on the can-
tilever is negligible: it obviously does not exceed 
1% of the total temperature difference.

The simulation results for the steady-state 
temperature distribution in the presence of air 
are shown in Fig. 4,b. Heat flows through the 

air due to thermal conductivity and convection were taken into account. We can observe a con-
tinuous and approximately linear temperature variation in the gap between the plate and the 
cantilever. It is known from the literature [41, 51] that the total heat flow between the AFM 
probe and the substrate at atmospheric pressure is largely determined by convection. However, 
the calculation showed that the thermal conductivity of the cantilever is sufficient to prevent the 
convective heat flow from noticeably distorting the temperature distribution near the nanocontact 
and changing the temperature of the base (wide part) of the probe by more than a fraction of a 
percent of its total drop.

b)

a)

Fig. 3. Geometry of the problem of numerical 
simulation of temperature distribution over 
the nanocontact region of an AFM probe 
with a planar substrate: a is the general view, 

b is the nanocontact region

Tab l e  2

Geometric parameters of AFM probe used in the simulation

Cantilever size, µm Tip size, nm Angle at cone 
vertex, degreesLength Width Thickness Height Curvature radius

125 27 3 1.5·104 10 50
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The above also applies to the influence of a layer of water and adsorbed gases covering free 
surfaces under normal conditions [41, 42]. To assess the degree of influence of the adsorbate on 
the temperature distribution, a circular layer (20 nm thick) with thermal conductivity of water was 
introduced into the model in the nanocontact region (see Fig. 4,c). Comparing the calculation 
result shown in Fig. 4,c with the data in Fig. 4,a, we can see that the influence of the liquid layer 
on the temperature distribution in the nanocontact is minimal.

Finally, the impact of metallization of the probe was assessed. The calculated results of the 
temperature distribution for a probe coated with a 30 nm thick platinum layer are shown in 
Fig. 4,d. Evidently, a significant part of the temperature drop falls precisely on the platinum 
layer, which has a relatively low thermal conductivity. Therefore, using platinum-coated probes 
in planned experiments is undesirable. It is preferable to use probes with a different coating, for 
example, made of gold (its thermal conductivity is 317 W/(m∙K)) or another metal with high 
thermal conductivity (for example, copper or silver).

The simulation results for the dynamics of the steady-state temperature distribution evolving 
after the probe was brought into contact with the surface showed that in the absence of air, the 
characteristic time of such a process does not exceed several microseconds (Table 3). Such a delay 
can be neglected in experiments recording the AFM force-distance curve. As for the simulation 
of heat transfer through air, the stabilization time for the temperature distribution in the air to 
establish turned out to be significantly longer, amounting to milliseconds. However, this, appar-
ently, should not interfere with measurements, since the heat flow through the air itself should 
have little effect on the temperature of the probe and the substrate, and temperature stabilization 
time for the contact area still amounts to microseconds. This conclusion is consistent with the 
literature data [45].

Thus, the numerical simulation carried out in a simplified COMSOL model allowed solving 
its main problem: to obtain a positive answer to the question of the possibility of conducting 
experiments to identify the features of the thermoelectric effect in atmospheric conditions using 
NanoDST AFM and standard probes.

Fig. 4. Solution of the problem of thermal conductivity in the nanocontact region 
of AFM silicon probe with copper substrate. 

Temperature distributions under vacuum conditions (a) are presented, taking into account 
thermal conductivity through air (b) and the presence of a liquid layer on the surface (c), 

as well as in the presence of a platinum metallization layer of the probe (d)
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Conclusion

The paper presents the results of the initial stage of the research conducted at the Higher 
School of Engineering and Physics at Peter the Great St. Petersburg Polytechnic University and 
dedicated to the study of nanoscale features of the thermoelectric effect. The ultimate goal is to 
create thermoelectric generators with improved performance characteristics.

An experimental verification of the theory known from the literature describing the possibility 
of achieving high values of thermoelectric performance by using the phenomenon of entrainment 
of electric charge carriers by ballistic flow of phonons in a film nanostructure is chosen as the 
primary objective. We believe that the verification of this concept can be carried out by relatively 
simple means, namely, by measuring the thermoelectric characteristics of nanocarbon nanois-
lands and graphene sheets formed on a silicon substrate.

The results of numerical simulation indicate that such measurements can be carried out using 
an atmospheric atomic force microscope with standard probes after its retrofitting with systems 
for controlling and measuring the sample temperature.

Tab l e  3

Simulated times for steady-state temperature distribution  
to establish under varying conditions 

Condition
Stabilizatiion time, μs

Uncoated probe Probe with 
platinum coating

Basic model (vacuum) 3.0 4.0
Atmospheric air 1.3 4.0

Liquid layer on surface 4.0·103 4.0·103

Air + liquid 4.0·103 –
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Abstract. This study presents the results of a complex physical modeling of a moderate 
power gyrotron operating at the 4-mm wavelength range. The characteristics of electrodes 
and magnetic coils in a four-stage recovery collector were optimized taking into account the 
coordinate and velocity distributions of electrons. These distributions were obtained through a 
trajectory analysis in the electron optical system and calculation of electron-wave interaction 
in the gyrotron cavity. To reduce parasitic effects of the bundles of a toroidal solenoid used 
to create an azimuthal magnetic field in the collector region, a sectioned electron beam was 
employed. The study demonstrated that the gyrotron's total efficiency of approximately 79 % 
could be achieved, being close to the maximum efficiency value achievable with separation of 
electron fractions with different energies, provided that the current of electrons reflected from 
a collector should not exceed 1% of the total current of an electron beam.
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Аннотация. В работе представлены результаты комплексного физического 
моделирования гиротрона средней мощности, работающего на длине волны 4 мм. 
Проведена оптимизация характеристик электродов и магнитных катушек в коллекторе с 
четырехступенчатой рекуперацией с учетом распределения электронов по координатам и 
скоростям. Эти распределения были получены путем траекторного анализа в электронно-
оптической системе и расчета электронно-волнового взаимодействия в резонаторе 
гиротрона. Для снижения паразитного воздействия связок тороидального соленоида, 
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Петра Великого.

используемого для создания азимутального магнитного поля в области коллектора, 
использован секционированный электронный пучок. Исследование показало, что можно 
получить общий КПД гиротрона около 79 %, что близко к максимальному значению, 
достижимому при идеальном разделении электронных фракций с разными энергиями, 
при условии, что ток отраженных от коллектора электронов не должен превышать 1 % 
от общего тока электронного пучка.

Ключевые слова: СВЧ-электроника, гиротрон, винтовой электронный поток, 
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Introduction
In recent years, there has been an intensive search for new ways to improve powerful gyro-

tron-type devices due to the wide possibilities of their practical use. Gyrotrons occupy a leading 
position among effective sources of powerful microwave radiation in the millimeter and sub-
millimeter wavelength ranges. They are irreplaceable in such an important application as elec-
tron-cyclotron plasma heating and current drive (ECH&CD) in magnetic confinement fusion 
systems designed to produce energy through controlled thermonuclear fusion (see, for example, 
Refs. [1 – 3]). The requirements to gyrotrons designed for thermonuclear fusion are exception-
ally high. The ITER project requires gyrotrons operating at a frequency of 170 GHz, delivering 
an output power of approximately 1 MW and achieving a total efficiency exceeding 50 % [4]. 
The development of a new generation of nuclear fusion reactors will require resolving numerous 
physical and engineering tasks to improve gyrotrons performance. The DEMO project envisions 
usage of gyrotrons with a frequency exceeding 200 GHz and a total efficiency greater than 60 
% at megawatt-level power [5]. Enhancement of device’s energy efficiency simplifies dissipation 
of spent beam energy at collector, which is critical for reliable and long-time operation of high-
power gyrotrons operating in the continuous wave (CW) regime. Achieving such high efficiencies 
is one of the primary objectives for developers of powerful gyrotrons today.

Increasing the gyrotrons’ efficiency, as well as other vacuum sources of microwave radiation, 
can be achieved by recovering residual energy of spent electron beam in the collector. Almost all 
megawatt-level gyrotrons used in thermonuclear fusion systems are equipped by collectors with 
single-stage recovery which increase their total efficiency to 50 – 55% [6 – 8]. A further increase 
in efficiency is possible with multistage energy recovery systems. Such systems require spatial 
separation of electron beam fractions with different energies and deposition of these fractions on 
collector sections with different depressing potentials. However, to the best of our knowledge, no 
experiments have been conducted on gyrotrons with multistage recovery collector systems. The 
implementation of such systems has proven challenging due to specifics of velocity and coordinate 
distributions of electrons in helical electron beams (HEBs) of gyrotrons and due to the presence 
of residual magnetic field in collector region. A promising solution for spatial separation of elec-
trons in gyrotron HEBs is the use of crossed electric and magnetic fields [9 – 11]. 

At Peter the Great St. Petersburg Polytechnic University (SPbPU), a possibility of electron 
separation in longitudinal electric and azimuthal magnetic fields has been proposed and investi-
gated theoretically for development of gyrotrons with multistage recovery collectors [12].

The achievement of high gyrotrons’ efficiency implies the high efficiency of transformation of 
electron energy to electromagnetic field energy in the cavity. The efficiency of this transformation 
is determined by quality of the HEB formed in the electron optical system. The research aimed 
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at improving the HEB quality was carried out at SPbPU using an experimental gyrotron with a 
frequency of 74.2 GHz and an output power of approximately 100 kW [13 – 15]. This gyrotron 
was equipped with unique diagnostic complex capable of measuring the HEB parameters and reg-
ulating distributions of electric and magnetic fields in electron optical system. The initial version 
of a four-stage recovery collector for this gyrotron was described in Ref. [16]. In this work, the 
collector system geometry was significantly modified and distributions of electric and magnetic 
fields were optimized, resulting in a noticeable enhancement of residual energy recovery effi-
ciency. The multistage recovery system described in this paper has already been implemented in 
the SPbPU gyrotron.

This article is organized as follows.
Section I presents the results of trajectory analysis of the HEB in the electron optical system of 

the gyrotron. The approach that considers initial spread of electron velocities caused by roughness 
of cathode surface and by thermal velocity spread was implemented [17]. Regulation of electric 
field distribution in the cathode region allowed to increase the HEB's quality and maximum 
average pitch factor. 

Section II describes the results of the Particle-in-Cell (PIC) simulation in the cavity region 
of the gyrotron using the input HEB parameters determined from the trajectory analysis in the 
electron optical system. The output radiation parameters at TE12,3 operating mode and the char-
acteristics of spent electron beam entering the collector region were obtained in this simulation. 

Section III presents the results of trajectory analysis in the four-stage recovery collector, where 
parameters of electrodes and magnetic coils were optimized to achieve the maximum recovery 
efficiency and to minimize the current of electrons reflected from the collector. All calculations 
were performed using the CST Studio Suite software. Specifics of conducting calculations in CST 
Studio Suite, such as model construction, meshing, choice of computational parameters, etc., 
employed in this study, were similar to those described earlier in Refs. [16, 18].

I. Electron optical system

Table 1 shows the parameters of the SPbPU gyrotron operating regime. Fig. 1 shows a sche-
matic drawing of the electron optical system elements in the r–z plane, including calculated 
electron trajectories. An electron beam in the gyrotron is formed using a three-electrode mag-
netron-injection gun (MIG). Thus, it is possible to modify parameters of the HEB by varying 
the voltage Ua between the anode and device's body. The accelerating voltage U0 between the 
cathode and body which determines an average electron energy in the HEB remained constant at 
30 kV during the calculations described below. The cathode assembly includes a control electrode 
positioned behind the cathode emissive strip, which can be used to optimize distribution of elec-
tric field in the cathode region and to minimize the velocity spread of electrons by adjusting the 
voltage at control electrode Ucont [19]. At the values of U0, B0, Bc and Ib indicated in Table 1 and 
in the case of Ua = 0 and Ucont = 0, the average pitch factor of electrons α was approximately 1.3. 
All HEB parameters mentioned in this section were determined in the central plane of the cavity  
z = 260.5 mm (see Fig. 1). The objective of trajectory analysis in the electron optical system was 
to achieve a high pitch factor (α > 1.5) with a low velocity spread and minimal electron reflec-
tion from the magnetic mirror by regulating the voltages Ua and Ucont. Additionally, the magnetic 
compression coefficient B0/Bc was varied by adjusting the magnetic field induction near cathode 
Bc to ensure optimal beam radius in the cavity (see Section II).

The present calculations differ from the previous ones described in Ref. [16] by taking into 
account initial electron velocity spread caused by roughness of cathode surface and thermal 
velocity spread. As shown in Ref. [17], the velocity characteristics of electrons in the beam can be 
made approximately coincided for two cathode models: (a) a rough cathode with inhomogeneities 
on its surface in the form of micron-sized hemispheres with radius r0 and (b) a smooth cathode 
with Maxwell distribution of the initial velocities at an increased effective cathode temperature T* 
and a spread of the angle φ between the direction of the initial velocity vector and direction of 
the normal. The angle φ is uniformly distributed in the range from –Δφ to +Δφ. For instance, an 
initial transverse velocity spread is the same for the model (a) at r0 = 14 µm and for the model 
(b) at T* = 67 000 K and Δφ = ±90°. Therefore, at the appropriate values of T* and Δφ the 
velocity spread factor associated with roughness of the cathode surface can be taken into account 
when performing a three-dimensional trajectory analysis in the electron optical gyrotron system 
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with a smooth cathode. It should be noted that at the T* value being much higher than the actual 
cathode temperature Tc, the average electron energy in the HEB 〈W〉 and the energy spread δW 
additionally increase. An increase in the average energy can be compensated by changing of the 
accelerating voltage. The additional energy spread δW is much less than the energy spread caused 
by the beam potential depression [16]. Since T* >> Tc, an initial velocity spread set within the 
framework of this model can be considered as being caused by the combined effect of rough-
ness of cathode surface and the thermal velocity spread. Further simulations were carried out at  
T* = 67 000 K and Δφ = ±90°. At such T* and Δφ values, the value of the transverse velocity 
spread δv⊥ obtained in the calculations was found to approximately coincide with the correspond-
ing value of velocity spread determined in experiments with hexaboride lanthanum cathode in the 
SPbPU gyrotron [17].

An important aspect of the simulation discussed in this study is implementation of a sectioned 
cathode. Two azimuthal sectors without electron emission were symmetrically located on the 
emissive strip. This cathode sectioning allowed for a significant reduction of parasitic effects near 
toroidal solenoid bundles used to create an azimuthal magnetic field in the collector region, which 
affect efficiency of residual electron energy recovery and electron reflection from the collector 
(see Section III). In the previous simulations [16], the length of each cathode gap sector in azi-
muthal direction was Δθ = 70°. In this study, Δθ was decreased to 45° as a result of optimization 
of 4-stage collector geometry and operating regimes compared to the original version described 
in Ref. [16]. Calculations in the electron optical system were performed using Particle Tracking 
Solver, with number of emission points at the cathode set to 2700. To minimize parasitic effect 
of mesh step on parameters of high-energy beam, particularly on electron energy spread, a tetra-
hedral meshing of calculation domain was used.

Fig. 1. Schematic drawing of the gyrotron model in the r – z plane
 with beam trajectories 

Tab l e  1

The main geometric parameters of the gyrotron 
and the characteristics of its operating regime

Parameter, notation, unit Value

Accelerating voltage U0, kV 30

Beam current Ib, A 10

Magnetic field induction in the cavity center B0, T 2.75

Magnetic field induction at the cathode Bc, T 0.152

Operating mode TE12,3

Operating frequency f0, GHz 74.2

Cavity radius R0, mm 14.45 

Average radius of the cathode emissive strip Rc, mm 35.00



St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2023. Vol. 16. No. 4

122

In the experimental gyrotron, magnetic compression coefficient B0/Bc varies as a result of 
change in a number of turns of cathode coil [13]. The highest microwave output power in simula-
tions was achieved at B0/Bc = 17.01, which corresponds to 26 turns of cathode coil. In this case, 
an average beam radius in the cavity was approximately 8.5 mm. In the optimized regime with 
T* = 67 000 K, Δφ = ±90°, Δθ = 45°, B0/Bc = 17.01, Ua = 7.85 kV and Ucont = –14.5 kV, an 
average pitch factor value α of 1.56 and a transverse velocity spread δv⊥ of 5.32 % were provided. 
The values of velocity and energy spreads were defined as relative standard deviations from the 
average value of corresponding quantities. The accelerating voltage U0, the magnetic field induc-
tion in the cavity center B0 and the beam current Ib had values listed in Table I. In this regime, 
one of 2700 electron trajectories was reflected from the magnetic mirror, resulting in a reflection 
coefficient Kref of approximately 4∙10–4. 

Note that, if we assume a Gaussian distribution of the electron velocities, for α = 1.56 and  
δv⊥ = 5.32%, the reflection coefficient from the magnetic mirror is Kref = 2.1∙10–4 [13]. It should 
be noted that reflection of electrons from the magnetic mirror limits an increase in the average 
pitch factor in the presence of the electron velocity spread. If the coefficient Kref exceeds thresh-
old value, the parasitic low-frequency oscillations (LFOs) can occur in the electron space charge 
trapped between the cathode and cavity. These oscillations lead to a degradation of the HEB 
quality [14, 20 – 22]. Based on the experimental data of the SPbPU gyrotron, the threshold value 
of the reflection coefficient from the magnetic mirror was determined as approximately equal to 
1.7∙10–3. In the gyrotron operating regime described above, the reflection coefficient was lower 
than this threshold value. Values of an average pitch factor α and the transverse velocity spread 
δv⊥ in the case of homogeneous emission from the cathode in the described operating regime 
were 1.57 and 5.21 %, respectively. Therefore, it can be concluded that there was no significant 
change in these HEB parameters in the case of transition from a homogeneous to a sectioned 
distribution of emission from the cathode. 

Fig. 2 presents the data characterizing particle distribution in the central plane of cavity at  
z = 260.5 mm. Azimuthal positions of the HEB sectors with no electrons correspond to angle 
ranges of 115° < θ < 157° and 295° < θ < 337°, where θ = 0° coincides with positive x-axis direc-
tion (see Fig. 2,a). As a result of the crossed electric and magnetic fields, these sectors experi-
enced an azimuthal shift of approximately 18° in clockwise direction viewed along propagation of 
the HEB moving from the cathode to the cavity. An average potential depression due to the space 
charge ΔU is about 1.8 kV, with its minimum value located in the HEB areas adjacent to sectors 
without electrons (see Fig. 2,a). The energy spread δW, which is about 0.5 %, is mainly due to 
nonuniformity of the ΔU distribution in azimuthal direction. In comparison, the similar regime 
of the gyrotron operation with the homogeneous HEB is characterized by δW = 0.1 %. Under the 
action of the crossed azimuthal electric and longitudinal magnetic fields (diocotron effect), par-
ticles in areas close to the sectors without electrons move in the radial direction. This movement 

Fig. 2. Simulation results for particle distributions in the central plane of the 
cavity at z = 260.5 mm: positions of HEB particles with energy W in the x – y 

plane (a) and the histogram of the particle radial positions (b). 
Azimuthal positions of nonemitting sectors on the cathode are shown in Fig. 2,a

а) b)
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causes an increase in the HEB wall thickness ΔRb. As shown in Fig. 2,b, ΔRb is approximately 
equal to 1 mm if it is determined by the full width of the distribution f(r). In this regime, the 
radial spread of the leading Larmor centers is ΔRg ≈ 0.7 mm, and the average Larmor radius is 
r1 ≈ 0.17 mm. In Ref. [23], it was shown that ΔRg in a cavity should not exceed λ/6, where λ 
represents a wavelength of microwave radiation. The efficiency of an operating mode generation 
decreases and there is a possibility of exciting parasitic modes if a value of ΔRg exceeds this limit.

During the electron-optical system analysis, a special Particle Export Interface Monitor 
was employed to collect data including the velocities and coordinates of particles in the plane  
z = 222.5 mm (see Fig. 1). Subsequently, this monitor's output was used as an input interface for 
simulation in the gyrotron cavity.

II. Microwave cavity
The interaction of an electron beam with the electromagnetic field in the cavity of the 

SPbPU gyrotron was simulated using PIC Solver. Calculation domain was defined by the planes  
z = 222.5 mm and z = 320 mm (see Fig. 1). The cavity with a regular part length of 28 mm and a 
radius of 14.45 mm was designed for the operating TE12,3 mode. Simulation results indicated that 
the maximum output microwave power in the operating mode was achieved at B0 = 2.747 T. The 

Fig. 3. Simulation results for interaction of an 
electron beam with the electromagnetic field in 
the cavity: (a) the time dependencies of signals of 
different modes in the output port (z = 320 mm); 
(b) the distributions of the wall radius r and the 

maximum E-value at 74.5 GHz along the z-axis;
(c) electron energy spectrum of the spent beam
( – normalized probability density, W – energy)

а)

b)

c)

results discussed below were obtained at this 
magnetic field induction value.

Fig. 3,a illustrates the time variation of 
the mode signals with the largest amplitude. 
It can be seen that there are two stable gen-
eration regions, namely, the former is with 
a time interval from 20 to 100 ns and the 
latter is with a time interval from approxi-
mately 130 ns to the simulation end at 250 
ns. At t = 100 ns and 250 ns, the average 
output power values of PRF are 15.5 kW and 
134.8 kW, respectively. These two regions 
are distinguished by their mode composition 
in the cavity. In the first excitation region, 
the TE11,3 mode with an azimuthal index one 
less than for the operating mode excited at a 
frequency of 71.5 GHz. Over time, this mode 
is suppressed simultaneously with excitation 
of the operating mode TE12,3 at a frequency 
of 74.5 GHz. In the same time interval, the 
excitation of the parasitic mode TE2,7 is also 
observed. Resonant frequencies of operating 
TE12,3 and parasitic TE2,7 modes were cal-
culated using the Eigenmode Solver in CST 
Studio Suite and were equal to 74.83 and 
74.94 GHz, respectively. All modes exhibit 
two polarization components, and each with 
approximately the same amplitudes, result-
ing in the circular wave polarization within 
the cavity.

At time t = 250 ns, the high-frequency 
power 

12, 3TEP = 133.9 kW in the operating 
mode, and 

2 , 7TEP = 0.3 kW in the parasitic 
mode (see Fig. 3,a). One can also observe 
that the power ratio between operating and 
parasitic modes can be affected by the qual-
ity of mesh in the calculation model. We 
compared the power values of operating 
and parasitic modes obtained for sectioned 
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and homogeneous HEBs under the same gyrotron operating regime and mesh settings. For the 
homogeneous HEB, the power values PRF = 138.7 kW, 

12, 3TEP = 137.6 kW, and 
2 , 7TEP = 0.2 kW. 

Thus, the HEB sectioning has a detrimental effect on the beam quality resulting in a decrease 
of total output power and an increase in the parasitic mode power. Nonetheless, this change 
in power is negligible, and the efficiency of the converting electron energy into the high-fre-
quency field energy remains considerably high for the case of sectioned HEB. Specifically, at  
PRF = 134.8 kW, U0 = 30 kV, Ib = 10 A, the electronic efficiency ηel is determined to be  
44.9 %. The data on trajectory analysis and PIC simulation in the cavity for uniform and sec-
tioned electron beams are combined in Table 2.

Tab l e  2

Comparison of the simulation results 
for homogeneous and sectioned helical electron beams 

Parameter, notation, unit
Helical electron beam (HEB)

Homogeneous Sectioned

HEB parameters in the central plane of the cavity (trajectory analysis)

Beam current Ib, A 10 10

Average pitch factor α 1.57 1.56

Transverse velocity spread δv⊥, % 5.21 5.32

Energy spread δW, % 0.1 0.5

Beam wall thickness ΔRb, mm 1.00 0.75

Coefficient of reflection 
from magnetic mirror Kref

– 4∙10–4

Output radiation parameters (PIC simulation in the cavity)

Average output power PRF, kW 138.7 134.8

Power of the operating mode 12, 3TEP , kW 137.6 133.9

Electronic efficiency ηel, % 46.2 44.9

Fig. 3,b presents a graph depicting the variation of E-field maximum amplitude at a frequency 
of 74.5 GHz with respect to longitudinal coordinate. The profile of the cavity r(z) is also shown 
in Fig. 3,b. In the cone transition region after regular part of the cavity, where the high-frequency 
field converts into a traveling electromagnetic wave, an interaction occurs between the electrons 
and this wave, which is referred to as aftercavity interaction. It is known that this interaction 
causes an alteration in spent HEB energy spectrum, leading to a decrease in minimum electron 
energy [24]. The electron energy distribution of spent HEB, in turn, influences the maximum 
total efficiency that can be achieved through implementation of collector systems with residual 
energy recovery.

Particle 2D Monitor located in the z = 320 mm plane recorded data on the coordinates, 
velocities, and macro-charge of particles in the spent HEB required for trajectory analysis in the 
collector region. The monitor collected particle parameters during time interval Δt = 3∙10–3 ns, 
resulting in an output file containing information on approximately 2∙104 particles for every 
moment in time t. The energy spectrum obtained after processing of monitor data for t = 250 ns 
is presented in Fig. 3,c. The minimum electron energy is approximately equal to 15 % of eU0. 
There is a noticeable number of accelerated particles with an energy exceeding eU0 value. The 
electronic efficiency ηel can be estimated by known energy spectrum f(W) using the formula
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The efficiency obtained for the spectrum is ηel = 44.9 %, which matches the efficiency value 

obtained from the output microwave power.

III. Collector
Collector design. Recovery of the spent beam energy in the SPbPU gyrotron collector is based 

on spatial separation of HEB electron fractions with different energies in the crossed longitudinal 
electric Ez and azimuthal magnetic Bθ fields [12]. Previously, collectors with multistage recovery 
based on this method were developed for various gyrotrons [16, 25 – 27]. These collectors utilize 
a toroidal-type solenoid with outer and inner winding for generation of azimuthal magnetic field. 
Unlike multistage collectors with non-adiabatic fields (see, for example, Refs. [28 – 31]) or col-
lectors with azimuthal electric field (see, for example, Refs. [10, 11]), the developed collectors 
have extended region with crossed Ez and Bθ fields, which allows to reduce negative influence 
of velocity and positional spreads of electrons and uncontrolled misalignment of electrodes and 
magnetic coils on collector efficiency.

The upgraded collector described in this paper differs from its original version presented in 
Ref. [16] by modified geometry of magnetic coils and collector sections. The data from simulation 
of similar collector for prototype gyrotron of the DEMO project [27] was used for moderniza-
tion of the collector for the SPbPU gyrotron. The main elements of the collector for the SPbPU 
gyrotron are presented in Fig. 4. The cylindrical part of the collector body contains sections S1 
– S4 under negative potentials used to create an electric field. Correcting coils C1 – C5, in com-
bination with the gyrotron magnetic system including the main coil, cathode and collector ones, 
provide required distribution of longitudinal magnetic field. A toroidal solenoid is used to create 
an azimuthal magnetic field. The end conductors of this solenoid, from the side closest to the 
cavity, are assembled into two radial bundles located in the tubes providing connection of inner 
and outer winding. The inner radius of cylindrical part of the collector body is 104.5 mm. The 
longitudinal coordinate z corresponding to the end of transition from a conical part to cylindrical 
one of the collector is 667 mm. The coordinate z corresponding to the middle of connecting tubes 
with bundles is 619 mm. The described collector system has been already equipped in the SPbPU 
gyrotron. The sectioned emitter for the gyrotron was created by mechanically removing two azi-
muthal sectors, 45° each, from lanthanum hexaboride emissive strip on the cathode.

Optimization of magnetic field distribution in the collector region. During the process of 
searching for the optimal distribution of the magnetic field, adjustments were made to geometry 
and currents of the toroidal solenoid and the correcting coils C1 – C5. Originally, trajectories of 
“single” electrons starting in the plane z = 320 mm were analyzed. The initial energy and radial 
coordinate of these electrons were equal to 20 keV and 9 mm respectively. The initial azimuthal 
coordinate θ was varied. Fig. 5 shows projections of electron trajectories on the r–z plane for 

Fig. 4. Schematic drawing of the gyrotron collector region:
S1 – S4 are sections under negative potentials, C1 – C5 are correcting coils
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different values of θ from 0° to 180° (Fig. 5,a) and longitudinal distributions of different compo-
nents of magnetic field (Fig. 5,b) obtained after optimization. The relative position of the electron 
emission points with regard to toroidal solenoid bundles can also be seen in Fig. 5,a. The bundles 
are located in the planes θ = 90° and 270°. Due to system symmetry, the electron trajectories 
in the range of θ from 180° to 360° will coincide with those shown in Fig. 5,a. Potentials of the 
collector sections were set to zero during these calculations.

а)

b)

Fig. 5. Simulation results for search for the optimal distribution of the magnetic field B: (a) projections 
of electron trajectories with different azimuthal coordinates θ of the starting point; (b) the distributions 

of the B-field components (B-comps) along the z-axis. 
Fig 5,a: there are azimuthal positions of the starting point of electrons

and the bundles of toroidal solenoid in the x – y plane.
Fig 5,b: there is data on the axial B-comp created by the main gyrotron magnetic system and correcting coils 
(1) as well as azimuthal (2) and axial (3–6) B-comps of the toroidal solenoid; the data was obtained at different 

coordinate values of r, mm and θ, degs: 
80, 0.0 (1, 2); 60, 45.0 (3); 60, 67.5 (4); 60, 112.5 (5); 60, 135.0 (6)

The efficient operation of the multistage collector requires minimizing the spread of radial 
positions of electron trajectories with different azimuthal coordinates at the collector entry in 
the absence of voltages on sections. Calculations for the DEMO gyrotron [27] showed that a 
decrease in the radial spread can be achieved by selecting a positive direction of the azimuthal 
magnetic field (see Fig. 5,a). The decrease can also be achieved by choosing a required magnetic 
induction value of the main gyrotron magnetic system and correcting coils in the area of toroidal 
solenoid bundles at z ≈ 620 mm. The optimized distribution of magnetic field provides the small 
radial position spread in the recovery region (z > 700 mm), where the induction of longitudinal 
magnetic field Bz is approximately equal to 0.032 T and the azimuthal field Bθ is approximately 
0.044 T at r = 80 mm.

However, after optimization, the certain number of electrons which propagate near the bun-
dles of the toroidal solenoid are still present, and their trajectories are noticeably perturbed under 
the action of bundles’ parasitic field. These electrons cannot reach the sections with potentials 
corresponding to their energies and settle on other electrodes of the collector. Alternatively, 
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they may be reflected from the collector towards the cavity, reducing electronic efficiency. In 
either scenario, the total gyrotron efficiency is diminished. For example, an electron with the 
initial coordinate θ = 112.5° settles on the connecting tube in which the bundle is located  
(see Fig. 5,a). It can be seen that the total longitudinal magnetic field determined by the sum 
of Bz values at azimuth θ = 112.5° (curves 1 and 5) is close to zero in the bundle region  
(see Fig. 5,b). To address this issue, the HEB was sectioned as described in Sections I and II to 
eliminate negative influence of such electrons on operation of the multistage collector. An addi-
tional displacement of the HEB in azimuthal direction during its movement between the planes 
z = 260.5 and 320 mm was insignificant and did not exceed 1°. 

For further calculations, the toroidal solenoid was rotated 19° clockwise to achieve a minimum 
reflection of particles from the collector due to parasitic action of the magnetic field created by 
bundles’ conductors.

Trajectory analysis in the collector with four-stage energy recovery. In the case of ideal 
separation, each fraction of spent HEB with energy W is deposited on the section under the 
most negative potential, the modulus of which does not exceed eW (e is the electron charge), 
and the collector body is under zero potential. The dependency of maximum total efficiency of 
the SPbPU gyrotron ηmax achieved with ideal separation on the number of recovery stages N was 
calculated before the collector modeling. The spectrum of spent HEB shown in Fig. 3,c was used. 
For this calculation, the spectrum was divided into 1000 intervals with different energies. 1 % 
of the HEB current with electrons having the lowest energy was assumed to be reflected from 
the collector. The maximum total efficiency was achieved at optimal potentials of the sections  
Ui (i = 1, 2, ..., N) determined through iterations over the values of these potentials with a step of 
0.2 kV. As in previous studies presented in [16, 25 – 27], the choice of four stages is dictated by a 
balance between the achieving maximum total efficiency of the gyrotron and practical difficulties 
associated with implementing a recovery system with a large number of stages. It should be noted 
that an increase in the number of collector sections does not substantially complicate the design 
of the described collector, unlike other designs with nonadiabatic fields [28 – 31].

Four cone-shaped sections are located in the cylindrical part of collector body (see Fig. 4). 
Changes in geometry of these sections compared with the original design described in Ref. [16] 
are due to modifications made to the collector magnetic system. Specifically, the direction of 
azimuthal magnetic field was changed to positive (see Fig. 5,a), so the sections were located in 
the region of smaller radii along the direction of electron drift in the crossed Ez and Bθ fields. 

It should be noted that in the regime in the absence of the azimuthal magnetic field and zero 
voltage on the collector sections, the beam wall thickness in recovery region (z > 700 mm) is 
approximately 10 mm. With optimized distributions of azimuthal and axial magnetic fields and 
the length of the cathode’s sectors without emission of 45° in the absence of voltages on the 
sections, approximately 94 % of the particles reached the final Section S4, 5 % deposited on the 
collector body, and less than 1 % deposited on Sections S1 – S3.

During a trajectory analysis in the collector, a Particle Import Interface was placed at the input 
plane z = 320 mm. It contained an array of particles that was determined during the simulation 
in the gyrotron cavity (as described in Section II). The initial potentials of collector sections  
US1 – US4 were set equal to the optimal values obtained with ideal separation. Subsequently, 
through a series of electron trajectory calculations of spent HEB in the collector, these potential 
values were adjusted to achieve the maximum total efficiency of the gyrotron with an electron 
reflection coefficient from the collector less than 1 %. At US1 = –7.1 kV, US2 = –10.7 kV,  
US3 = –14.3 kV, US4 = –25.2 kV and Ucoll = 0, the power dissipated over the collector sec-
tions and the body was PS1 = 6.2 kW, PS2 = 6.2 kW, PS3 = 11.7 kW, PS4 = 10.2 kW, and  
Pcoll = 1.2 kW respectively, with the collector reflection coefficient of 0.99 %. Consequently, 
the total power Pdiss dissipated on collector was 35.5 kW. At power PRF = 134.8 kW, the total 
efficiency was

RF

RF

79.2 %,t
diss

P
P P

η = =
+

                                          (2)

and the collector efficiency was 
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Thus, through optimization of the magnetic field distribution and the collector sections' geom-
etry, the total efficiency over 79 % was achieved. This value is about 2 % less than the maximum 
efficiency in a four-stage recovery system with ideal separation of electrons with different ener-
gies. For comparison, the total efficiency was 71.8 % in the initial version of the collector for the 
SPbPU gyrotron [16].

Fig. 6 shows positions of particles in the x – z plane, obtained as a result of intersection of 
the HEB trajectories with this plane. The picture demonstrates the drift of electrons in the radial 
direction by the action of crossed Ez and Bθ fields while propagating in the retarding electric field 
in the recovery region. The direction of field Bθ causes the drift towards smaller radii. Some of the 
electrons are deposited on the back walls of sections after changing their longitudinal movement 
direction. As the initial energy of electrons increases, they propagate a greater distance along the 
z-axis and deposit on sections with a more negative potential.

Fig. 6. Positions of particles in the plane x–z (the color corresponds to the particle energy W).
The directions of the longitudinal Bz and the azimuthal Bθ magnetic fields and the electron drift 

velocity vdr are shown

Conclusion
The present study consisted of complex simulation to investigate the possibility of achieving 

record values of the total efficiency for a moderate-power gyrotron operating in 4 mm wave-
length range. High efficiency was achieved by enhancement of the HEB quality in the electron 
optical system and by recovering the residual electron energy using a multistage collector system. 
Parameters of the spent HEB were determined through a trajectory analysis in the electron optical 
system taking into account the spread of initial electron velocities at the cathode and simulation 
of interaction of formed HEB with a high-frequency field in the gyrotron cavity. Spatial sepa-
ration of electron fractions with different energies in the collector was achieved using a method 
based on electron drift in the crossed longitudinal electric and azimuthal magnetic fields. A 
toroidal solenoid was used as a source of the azimuthal magnetic field. The end conductors of 
toroidal solenoid were assembled in bundles to increase the number of electrons passing to the 
recovery area. The negative influence of the magnetic field created by these bundles on the col-
lector efficiency and the electron reflection coefficient was reduced through the sectioning of the 
electron beam.

It is important to underline the main differences between this study and the one described in 
Ref. [16] where the former version of the four-stage recovery collector for the SPbPU gyrotron 
was analyzed. In this study, a trajectory analysis in the electron optical system of the gyrotron 
has been performed considering the initial velocity spread of electrons on a cathode. As a con-
sequence, characteristics of the beam entering the resonator, output radiation parameters, and, 
importantly for collector modeling, the spent electron beam parameters have undergone changes. 
The main distinction from Ref. [16] lies in the modification of the collector system's design. 
Alteration of the azimuthal magnetic field direction and optimization of the longitudinal mag-
netic field distribution using correcting coils enabled reducing the radial trajectory spread in the 
recovery region. Single-electron trajectory calculations in the collector region were employed for 
this purpose. The collector sections feature a new geometry, and their potentials were selected 
based on calculations of the maximum total efficiency with ideal separation of electrons of 
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different energies. Compared to the results of Ref. [16], performed modernization of the collec-
tor for the SPbPU gyrotron allowed for an increase in calculated total efficiency from 71.8 to  
79.2 % with a reflection coefficient from the collector of less than 1 % and for a reduction of the 
length of cathode gap sectors where emission is absent, from 70 to 45°. With incorporation of the 
new simulation data described in this work, an upgraded version of the collector for the SPbPU 
gyrotron has been manufactured. 

Continuation of this work may involve further improvement of the azimuthal magnetic field 
source, which will simplify the design of the collector.
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Аннотация. В статье рассмотрены аналитические модели высокочастотных 
электрических полей, которые можно эффективно использовать для быстрого 
качественного моделирования процессов фокусировки и транспорта ионных потоков 
в радиочастотных воронках. В частности, применение таких устройств в конструкции 
тандемного трехквадрупольного масс-спектрометра увеличивает количество ионов, 
собираемых в форвакуумной области газодинамического интерфейса электроспрейного 
источника ионов. Проанализированы случаи функционирования воронок с двух- 
и четырехфазными электрическими напряжениями (варианты I и II), а также с 
амплитудно-модулированными электрическими напряжениями, обеспечивающими 
режим псевдопотенциала с архимедовой волной (III). В результате проведенного 
анализа наиболее предпочтительной конструкцией оказался III вариант. Использование 
подобных аналитических моделей позволяет эффективно проверять перспективные 
варианты и тем самым существенно снизить трудозатраты на предварительный выбор 
принципиальной схемы устройства с заданными характеристиками, в том числе и в 
других масс-спектрометрических разработках.

Ключевые слова: масс-спектрометрия, источник ионов, электрораспыление, 
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Introduction

The paper considers one of the elements of a tandem triple-quadrupole mass spectrometer 
with electrospray ionization, namely, a radio frequency funnel placed in the forevacuum region 
of the gas dynamic interface of the ion source. Such a mass spectrometer is currently developed 
at the National Research Nuclear University MEPhI as part of the Federal Project "Development 
of domestic instrumentation for civil purposes" supported by the Ministry of Science and Higher 
Education of the Russian Federation [1–10].
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Focusing RF funnels [11], designed to reduce ion losses in the gas-dynamic interface of the ion 
source, are considered in our study using analytical models. Unfortunately, direct simulation of 
such devices requires vast computing resources. On the other hand, while analytical models only 
provide qualitative rather than quantitative results for funnel operation, they allow to effectively 
select the most promising directions for optimizing the final designs. This way, the labor costs for 
selecting initial candidates are drastically reduced, so better characteristics of the final design can 
be achieved.

The paper considers analytical models of high-frequency electric fields of RF funnels, using 
them to preselect the design for such an element of the gas-dynamic interface of an electrospray 
ion source. Decisions are made for the potential of different designs. The main results briefly 
overviewed in this study will be presented in more detail in the future.

Model electric fields for transport channels  
with circular apertures

SRIG-type (Stacked Ring Ion Guide) RF electric traps, discussed in detail in [12, 13], are a 
chain of circular apertures (Fig. 1), to which high-frequency electric voltages with opposite phases 
at adjacent apertures are applied.

The locking effect of the RF electric field increases exponentially for these devices away from 
the axis and approaching the boundaries of the electrodes, while the locking effect of such an elec-
tric field for standard multipole RF traps with long cylindrical electrodes polynomially increases 
away from the axis and approaching the boundaries of the electrodes. Thus, SRIG traps provide 
more reliable retention of charged particles (in our case, ions) than classical multipole RF traps.

The electric potential U(z, r, t) near the axis in a classical SRIG-type RF electric trap with 
apertures of the same radius (see Fig. 1,a), where the phase difference of RF voltages applied to 
adjacent apertures is equal to π, is described with good accuracy by either of the two formulas:

( ) ( ) ( ) ( ) ( ) ( ), , , cos ,  , , , cos ,C SU z r t U z r t U z r t U z r t= ω + ϕ = ω + ϕ (1)

where 

( ) ( )

( ) ( )

0
0

0
0

, cos ,

, sin .

R
C

R
S

U z rU z r I
I R L L L

U z rU z r I
I R L L L

π π   =    π    

π π   =    π    

(2)

a) b)

Fig. 1. Electrode configurations of SRIG-type RF traps with cylindrical (a) 
and conical (b) channels for ion retention and transport
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UR, ω, φ in Eqs. (1), (2) are the amplitude, circular frequency and phase of RF voltages applied 
to the electrodes; R is the inner radius of circular apertures; L is the distance between adjacent  

apertures; 2 2r x y= +  is the distance in the radial direction to the axis from a point with  

Cartesian spatial coordinates (x, y, z); t is time; I0 is the modified zero-order Bessel function [14].
The electric potential near the axis for a radio frequency trap with a conically narrowing 

transport channel (see Fig. 1,b), in which the phase difference of RF voltages applied to adjacent 
apertures is equal to π, is described with good accuracy by either of the two formulas:

( ) ( ) ( ) ( ) ( ) ( ), , , cos ,  , , , cos ,C SV z r t V z r t V z r V z r t t= ω + ϕ = ω + ϕ (3)

where 
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 π π π π        = +        π         

 π π π π        = −        π         

(4)

In these formulas, I1, a modified first-order Bessel function, is added to the previous notation [14].
If it is necessary to achieve an additional effect, the electric field of the funnel should be mod-

ified in a non-linear way, using additive correction term, quadratic with respect to the z coordi-
nate. When such field distortions are introduced, the design of the funnel, i.e., the positions and 
diameters of individual circular apertures, must be changed accordingly. The problem of calculat-
ing the position and shape of the electrodes from a given electric field is elementary, unlike the 
opposite problem, which once again shows the advantages of an analytical approach using model 
distributions of the electric field.

Any of these formulas can be used for analytical description of the correcting potential W(z, r,t) 
with a quadratic dependence on the z coordinate (along the axis of the device):

( ) ( ) ( ) ( ) ( ) ( ), , , cos ,  , , , cos ,C SW z r t W z r t W z r t W z r t= ω + ϕ = ω + ϕ (5)

where 
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(6)

I2 is a modified second-order Bessel function [14].
To check if the functions (2), (4), (6) satisfy the three-dimensional Laplace equation and, 

therefore, whether they can be considered as electric potentials of some electrostatic field, 
the Wolfram Mathematica program [15] can be used, which provides an effective tool for 
symbolic calculations.
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Note. The assumption of quasi-static high-frequency electric field is used for formulas of model 
electric potentials (1), (3), (5). It is valid when the time of the characteristic change in electrical 
voltages at the electrodes significantly exceeds the time of propagation of an electromagnetic per-
turbation within the device. Typical sizes of electrode configurations used in mass spectrometer 
designs are tens of centimeters. Taking into account the equality of the speed of light and the 
propagation velocity of electromagnetic perturbation, this assumption is obviously fulfilled for 
the frequencies of electrical voltages used in mass spectrometers (they amount to several giga-
hertz). In this case, the high-frequency electric potential, which varies in time and space, can be 
expressed as a product of a time function (it describes the temporal change in electrical voltages) 
by an electrostatic potential (corresponds to DC voltages at the electrodes). Such a step is, in fact, 
neglecting the electrodynamic effects, i.e., the accompanying electromagnetic wave.

Pseudopotential model of ion motion in the presence of viscous friction effect

A qualitative description of the motion of charged particles in high-frequency electric fields 
can be obtained with a pseudo-potential model of motion, according to which motion is divided 
into the sum of two terms: a «slow» component in some effective quasi-stationary force field and 
motion as high-frequency oscillations with a small amplitude.

Let us consider the motion of ions in a high-frequency electric field, whose potential has the 
form [16]:

( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ))

, , , cos , ,

sin , , ,

k
rf k k k

k

k
k k k

U x y z t p t t U x y z

q t t V x y z

= ω + ϕ +

+ ω + ϕ

∑
(7)

where p k(t), q k(t) are «slow» functions of time; ωk are "fast" frequencies far apart from each other 
on the frequency scale; U(k)(x, y, z), V(k)(x, y, z) are electrostatic fields corresponding to DC volt-
ages at the electrodes of the device.

It is worth noting here that such concepts as "slow", "fast" and "far away" correspond to the 
characteristic times T0 of the motion of ions in the transport channel: 

( ) ( )0 0 0 0~ 1 , ~ 1 , 1 , : 1 ),k k k i jdp t dt T dq t dt T T i j Tω >> ∀ ≠ ω − ω >>

in accordance with the pseudopotential model of ion motion (see [16, 18] and references therein).
In the presence of neutral gas, its action can be replaced by the presence of effective viscous 

friction, whose strength is set by Stokes’ law [17]. Then, e, m are the charge and mass of the ion; 
Ω = γ/m is the effective frequency of collisions of ions with neutral gas molecules (γ = γ (x, y, z, t) 
is the Stokes coefficient for the effective viscosity due to collisions of ions with neutral gas mol-
ecules in the vicinity of the considered point in space at the given time; this coefficient varies 
slowly over time and does not depend (in the first approximation) on the relative velocity of ions.

In further calculations, the subscripts for the functions U(k)(x, y, z) and V(k)(x, y, z) denote 
partial derivatives of potentials with respect to the corresponding spatial variables, the arguments 
of potentials are omitted for brevity.

After careful averaging of the equations of motion in a high-frequency electric field, it turns 
out that the above slow motion of the ion is carried out in a pseudopotential electric field with 
the pseudopotential ( ), , ,U x y z t , which is due to the spatial gradient of the amplitude of the 
high-frequency electric field. This pseudopotential is expressed as [18]:

( ) ( ) ( ) ( )( ) ( )( ) ( )( )
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2 2 22
\2 2
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In addition, there is a non-potential pseudo-electric field in the equations of slow motion, with 
components ( ), ,X Y ZE E E  associated with the presence of viscous friction and with the spatial 
phase gradient of the high-frequency electric field:

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )(

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) )
2 2

, , ,
2

,

k k k kk
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k k k k k k k k
y xy xy y z xz xz z
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Ω ω
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∑
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In addition to these pseudo-forces, the equations of slow motion also include the viscous fric-
tion force (originally present in them) with components (FX, FY, FZ):

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

, , , , , , , , , ,

, , , , , , , , , ,

, , , , , , , , , ,

X X

Y Y

Z Z

F x y z t x y z t x t u x y z t

F x y z t x y z t y t u x y z t

F x y z t x y z t z t u x y z t

= −γ −

= −γ −

= −γ −







(12)

where (uX, uY, uZ) are the components of the gas flow velocity (it changes slowly over time) in the 
vicinity of the considered point in space at the considered time; ( ), ,x y z    are the velocity compo-
nents of the slow (averaged over fast oscillations) motion of the ion.

Analysis of the properties of a conical funnel  
with two-phase power supply

We use a pseudopotential model to describe the motion of ions in a high-frequency electric 
field (3). The pseudopotential is calculated using the general Eq. (8). In this case, there is no 
spatial phase gradient of the high-frequency electric field, so we are dealing with a non-potential 
pseudo-electric force. The three-dimensional graph of the pseudopotential has the form of a kind 
of gutter with the edges that grow sharply with distance away from the axis and approaching the 
electrodes, and the slope of the edges of the gutter increases as it approaches the outlet from the 
funnel. This means that such a high-frequency electric field effectively «presses» the ions to the 
axis of the device, and this pressing force increases significantly along the direction of motion, 
making the ion beam progressively narrower.

The presence of pseudopotential corrugation on the axis of the system can be considered an 
unpleasant effect, since it can create parasitic local traps for ions. In addition, in such a design, 
there is no relying on cooling of the ions (discharging their excess kinetic energy), since the 
high-frequency electric field on the axis is not zero and therefore the ions are constantly oscillated 
by this field.
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In addition to these disadvantages, the distribution of the pseudopotential function along the 
funnel axis slowly increases towards its outlet, which slows down the motion of ions and makes 
it difficult for them to escape through the outlet. For such a funnel, it turns out necessary to 
apply an additional pulling electric field. Such a measure can be implemented if additional static 
potentials are applied to the apertures and a constant increase in static electric potential is ensured 
between adjacent apertures.

Analysis of the properties of a conical funnel  
with four-phase power supply

For a radio frequency trap with conical electrodes (see Fig. 1,b), in which the phase difference 
of RF voltages applied to adjacent apertures is equal to π/2, the electric potential near the axis is 
described with good accuracy by the expression

( ) ( ) ( ) ( ) ( )* *, , , cos , sin ,C SV z r t V z r t V z r t= ω + ϕ + ω + ϕ (13)

where 

( ) ( )

( ) ( )

*
0 1

0

*
0 1

0

, cos sin ,
2 2 2 2 2

, sin cos .
2 2 2 2

R
C

R
S

U z r z rV z r z I r I
I R L L L L L

U z r z rV z r z I r I
I R L L L L L

 π π π π        = +        π         

 π π π π        = −        π         

(14)

In this case, a gutter also appears on the pseudopotential graph, which effectively «presses» 
the ions to the axis of the device, and the force of such an impact increases quadratically as it 
approaches the outlet from the funnel. However, there is no pseudopotential corrugation along 
the axis, which guarantees the absence of local parasitic traps for ions along the axis of their 
motion. Nevertheless, the value of the pseudopotential on the axis is still not zero, which means 
that a high-frequency electric field is formed, which oscillates the ions. Therefore, in such a 
design, there is also no relying on cooling of the ions (discharging their excess kinetic energy). In 
addition, the distribution of the pseudopotential function along the funnel axis slowly increases 
with increasing distance from zero in the z coordinate, which somewhat slows down the motion 
of ions and prevents their passage through the outlet, similar to the previous case.

In addition to the described features of the model, in the case of a high-frequency electric 
field of the form (13), there is a spatial gradient of its phase. But it plays a positive role, since the 
non-potential electric pseudoforce that arises in this case only additionally presses the ions against 
the axis of the device and provides a constant pulling force directed towards the outlet from the 
funnel. This factor could make it possible to do without an additional pulling static electric field, 
however, the pulling electric pseudoforce depends on the mass and, therefore, a new obstacle is 
possible, additional ion mass discrimination. A situation may arise for too large masses when the 
pulling of the pseudo-force is unable to overcome the braking of moving ions and an obstacle will 
prevent them from escaping the funnel.

Analysis of the properties of a conical funnel in pseudopotential mode  
with an Archimedean wave

Systems with a traveling pseudopotential wave are considered in [19–21]. In this case, the 
properties of an RF trap with conical electrodes are investigated, for which a high-frequency elec-
tric field forms a slowly traveling pseudopotential wave along the axis of the device. At the minima 
of the pseudopotential wave, the high-frequency electric field is zero, and it is at these points that 
local ion clusters are formed, which then move along the axis of the device to escape the funnel, 
simultaneously with the shift of the local minima of the pseudopotential wave. Importantly, the 
transport of ions is ensured by this, independent of their mass, since the speed with which the 
minima of the pseudopotential wave move is determined by the parameters of high-frequency 
voltages applied to the electrodes of the device (and nothing else).
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For such an RF trap, the electric potential near the axis is described with good accuracy by 
the following formula:

( ) ( ) ( ) ( ) ( ) ( )* *, , , cos 2 , sin 2 cos ,C SV z r t V z r t T V z r t T t = π + π ω + ϕ  (14)

where T is the period of «slow» time that determines the speed of transport; the potentials 
( )* ,CV z r  and ( )* ,SV z r  are given by Eqs. (14).
In this case, the graph also shows a corrugated gutter of the pseudopotential, and as the process 

progresses over time, the corrugation slowly moves along with the transporting pseudopotential 
wave, effectively pressing the ions against the axis of the device. In addition, a slow-moving pseu-
dopotential wave appears on the axis of the system, forcibly transporting ions from the inlet to 
the outlet.

The traveling pseudopotential wave on the axis of the RF funnel is characterized by a variable 
maximum amplitude, which increases quadratically as it approaches the outlet from the funnel, 
but at the points of the minimum, the pseudopotential value is zero. As noted above, ions are 
trapped and their clusters are formed at the points of the minimum, and with the slow motion of 
the pseudopotential wave along the axis of the device, synchronized transport of ions is carried 
out, regardless of their mass. Since the high-frequency electric field in the centers of ion clusters is 
exactly zero, and the high-frequency electric field turns out to be very small for minor deviations 
of ions within the volume of the cluster, it is quite possible to count on at least partial cooling of 
ions during transport through the forevacuum region of the gas-dynamic interface.

The spatial phase gradient of the high-frequency electric field for the electric potential (15) is 
zero, therefore, there are no additional effects associated with the presence of a non–potential 
pseudoelectric force (see Eqs. (9)–(11)) in such a system.

Conclusion

Analytical models of the high-frequency electric field were constructed for radio-frequency 
ion funnels with circular apertures. They were used for qualitative analysis of RF ion funnels in 
different operating modes. We can conclude that the most promising configuration considered is 
the RF funnel with a conical transport channel and electric power supply, allowing to generate a 
pseudopotential Archimedean wave on the axis of the device.
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Abstract. The paper develops a complex approach to accounting for imperfect contacts (IC) 
when determining effective properties of various nature. The IC are assumed to be caused by 
various factors (microstructure features, process’s specifity and so on). To obtain macroscopic 
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Аннотация. В работе развивается комплексный подход к учету неидеальных 

контактов (НК), появление которых вызвано разнообразными факторами (особенности 
микроструктуры, специфика процесса на мезоуровне и т. п.), при определении 
эффективных свойств материала различной природы, представляемых тензорами 
второго ранга. Макроскопические свойства определяются путем решения задачи 
гомогенизации для материала, состоящего из матрицы и изолированных эллипсоидальных 
неоднородностей, на границе которых поля не являются непрерывными. Рассмотрены, 
обобщены и сопоставлены существующие подходы к учету НК: подход, при котором 
НК моделируют, вводя скачок поля на границе раздела фаз через задаваемое отношение 
значений поля по обе стороны границы, а также подход, при котором в рассмотрение 
вводится неоднородность с поверхностным эффектом. С целью учета НК при нахождении 
эффективных свойств материала, рассматривается эквивалентная неоднородность 
с идеальными контактами на границе, вклад которой в макроскопическое свойство 
эквивалентен вкладу исходной неоднородности. В качестве примера решена задача об 
определении эффективной диффузионной проницаемости материала.

Ключевые слова: эффективные свойства, неидеальный контакт, эквивалентная 
неоднородность, эффективная диффузионная проницаемость, задача гомогенизации
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Introduction
The properties of a material that is inhomogeneous at the microlevel directly depend on its 

structure and can be determined within the framework of continuum theory using homogeniza-
tion methods. Physical fields are introduced into consideration, which, as a rule, are assumed to 
be continuous at the interphase boundaries. From a physical standpoint, this means that there are 
"ideal" contacts at the internal boundaries. At the same time, a number of phenomena should be 
described taking into account the presence of imperfect contacts, which can occur both due to 
the peculiarities of the microstructure of the material and in connection with the specifics of the 
described process [1–4].

As a rule, the issues of taking into account imperfect contacts to determine the effective 
properties are considered in the literature separately, in the context of describing processes that 
are different in nature. For example, some authors have drawn attention to the need to take 
into account the phenomenon of segregation when determining effective diffusion coefficients. 
This phenomenon is understood as the sedimentation of impurities in structural defects, which 
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is characteristic for mass transfer [2, 5–8]. Such a procedure was implemented by introducing a 
concentration jump in terms of the ratio of concentrations from the outer and inner sides of the 
interphase boundary (segregation parameter). Using this approach, the authors of [2] obtained the 
Voigt–Reuss and Hashin–Shtrikman boundaries for effective impurity mobility by expressing the 
diffusion flux in terms of a gradient of chemical potential (the potential was assumed to be con-
tinuous), after which the effective diffusion coefficients were determined directly. A constant seg-
regation parameter in [5, 6] was introduced into the equations of the modified effective medium 
method. This parameter was introduced into the equations of effective field methods in [7, 8].

Approaches to accounting for imperfect contacts in determining the effective thermal or electri-
cal conductivity of a material inhomogeneous at the microlevel have been considered separately in 
the literature [9–12]. It was believed that such contacts appear due to the presence of surface defects 
(roughness, delamination, etc.). Modeling of imperfect contacts was carried out by considering 
inhomogeneities with a surface effect (it was assumed that such inhomogeneities were covered with 
a layer with extreme properties, whose thickness tends to zero). The surface effect was taken into 
account either by determining the magnitude of the field jump from solving the problem of isolated 
inhomogeneity in an infinite matrix [9], or by approximating expressions for concentration tensors 
connecting the average fields inside the inhomogeneity with the applied field [10–12].

The similarity of the equations of diffusion, heat and electrical conductivity allows to make an 
assumption about the possibility of developing a unified approach to modeling imperfect contacts 
caused by different factors to determine the effective properties of varying nature for materials.

The goal of this study is to generalize and compare the available approaches to accounting for 
imperfect contacts in determining the effective properties for cases of materials with spheroidal 
and ellipsoidal inhomogeneities.

Statement of homogenization problem

The effective properties of the material are found by solving the homogenization problem for a 
representative volume V, which is a particle of a continuous medium at the macro level. Effective 
properties are expressed using tensor quantities relating the fields that are average in terms of rep-
resentative volume. As a rule, it is assumed that the homogenized material satisfies the simplest 
linear governing relations. Due to the similarity of the equations of diffusion, heat and electrical 
conductivity, below we will limit ourselves to the consideration of the diffusion problem, for 
which Fick’s law holds true: 

,eff
V Vc< > = − ⋅ < ∇ >J D (1)

where Deff is the effective diffusion permeability tensor (the diffusion tensor of an impu-
rity in a homogenized material), J is the diffusion flux, c is the concentration, ∇ is the nabla  

operator, ( )1... ...V V V
dV< > = ∫ .

To find the fields to be averaged, the stationary diffusion problem is solved. The law of con-
servation in the absence of internal sources/sinks has the following form:

( ) 0,∇ ⋅ =J x (2)

where x is the radius vector of a point inside volume V.
The flux and concentration gradient at each point of the representative volume are related by 

a linear governing relation:

( ) ( ) ( ) ,c= − ⋅∇J x D x x (3)

where D(x) is the diffusion permeability tensor of the material at point x.
The independence of effective properties from the conditions at the boundary of the represen-

tative volume allows to choose them arbitrarily. It is convenient to set a homogeneous Hill con-
dition, which in the case of the diffusion problem has the form ( ) 0c

Σ
= ⋅x G x . Then the average 

value of the concentration gradient is completely determined by the boundary condition [13]:
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0.Vc< ∇ > = G (4)

The presence of boundaries within volume V (interphase boundaries Γ) requires imposing addi-
tional boundary conditions. These conditions will vary depending on the method of accounting 
for imperfect contacts.

Next, we consider a material consisting of an isotropic matrix characterized by a diffusion per-
meability tensor D0 = D0I (I is the unit tensor), and ellipsoidal inhomogeneities with the volume 
V1 with the permeability D1 = D1I, giving the conditions at the interphase boundaries.

One of the simplest methods known from the literature to account for imperfect contact is 
the introduction of a field jump at the interface between the matrix (+) and the inhomogeneity 
(–) using a constant ratio of field values from the outer and inner sides of the boundary. In the 
context of the diffusion problem, either the concentration field or the normal component of the 
flow can experience a jump. In the first case, the following conditions hold true at the interface 
of the phases Γ with the external normal nΓ: 

( ) ( ) ( ) ( )0 1 ,  ,c

c c
D D c s c

n n →Γ+ →Γ−
Γ Γ→Γ+ →Γ−

∂ ∂
= =

∂ ∂ x x
x x

x x
x x (5)

where sc is the segregation parameter; the jump is expressed as [c] = (sc–1)c(x)│x→Γ–.
If there is a jump in the normal component of the flux Jn, the following conditions can be 

imposed by introducing the segregation parameter sf into consideration: 

( ) ( ) ( ) ( )0 1 , . f

c c
D s D c c

n n →Γ+ →Γ−
Γ Γ→Γ+ →Γ−

∂ ∂
= =

∂ ∂ x x
x x

x x
x x (6)

In this case, the jump is defined as ( ) ( ) .[ ] 1n fJ s Γ →Γ−
= − ⋅

x
n J x

Another way of accounting for imperfect contact is used for inhomogeneities with a surface 
effect. In the general case, inhomogeneities representing confocal ellipsoids are placed in the 
matrix, for which the conductivity of the inner ellipsoid is D1 = D1I, and the conductivity of the 
outer layer is Ds = DsI.

The semi-major axes of the outer ellipsoid b1, b2, b3 and the inner ellipsoid a1, a2, a3 are related 
as follows: 

2 2 ,i ib a= + ξ

where i = 1, 2, 3; ξ is a constant.
Perfect contacts take place at the inner boundaries Γa of the inner ellipsoid of volume Va with 

the outer normal nΓa
 and Γb of the outer ellipsoid of volume Vb with the outer normal nΓb

:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

1

,  ,

,  .

b b
b b

b b

a a
a a

a b

s

s

c c
D D c c

n n

c c
D D c c

n n

→Γ + →Γ −
Γ Γ→Γ + →Γ −

→Γ + →Γ −
Γ Γ→Γ + →Γ −

∂ ∂
= =

∂ ∂

∂ ∂
= =

∂ ∂

x x
x x

x x
x x

x x
x x

x x
x x

(7)

To take into account the surface effect, it is necessary to pass to the limit at 
ξ → 0, as well as (in the context of the diffusion problem) either at Ds → 0 or at Ds → ∞. In the 

first case, corresponding to insulating coating, it is convenient to introduce an equivalent surface 
resistance into consideration
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( )2 2 2 2 2 2
1 2 1 3 2 3

0, 0
1 2 3

4
lim ,

6 s

s
D

s a a s

a a a a a aV
D S a a a S Dξ→ →

π + + ξ
β = = (8)

where 0lims b aV V Vξ→= − , Sa is the surface area of the inhomogeneity with the volume Va.
In the second case, corresponding to conductive coating, it is convenient to introduce an 

equivalent surface permeability

( )2 2 2 2 2 2
1 2 1 3 2 3

0,
1 2 3

4
lim .

6 s

s s
D s

a a

a a a a a aD V D
S a a a S ξ→ →∞

π + +
λ = = ξ (9)

The inhomogeneity with imperfect contacts can be formally replaced by an equivalent inho-
mogeneity with perfect contacts, which affects the effective properties in the same way as the 
initial one. To carry out such a replacement, it is necessary to determine the properties D* that an 
equivalent inhomogeneity should possess. These properties will vary depending on the method of 
accounting for imperfect contact.

The introduction of equivalent inhomogeneity has the advantage that it becomes possible to 
use existing homogenization methods developed under the assumption of continuity of fields at 
the real interphase boundary. In this case, it is sufficient to substitute the corresponding diffusion 
coefficients of the impurity inside the inhomogeneity into expressions known from the literature. 
Since it is sufficient to take into account the presence of imperfect contacts at the stage of deter-
mining the diffusion permeability of equivalent inhomogeneity in this manner, here we will limit 
ourselves to qualitative and quantitative analysis of expressions for D*.

Note that imperfect contact, modeled by setting a concentration jump or by considering inho-
mogeneity with insulating coating, may occur when an impurity is aggregated at the interphase 
boundary. On the other hand, imperfect contact, which is modeled by setting another jump, 
namely, the normal component of the flux, or by considering inhomogeneity with conductive 
coating, may occur when additional diffusion paths are formed along the interphase boundary.

In view of this, it is of interest for each of these cases to compare two approaches to modeling 
imperfect contacts: 

by setting the field jump in terms of the segregation parameter;
by considering an inhomogeneity with a surface effect.
The effective property can be expressed as a function of various microstructural parameters. 

This article uses the approach developed by Sevostyanov and Kachanov [13], where the role of 
the microstructural parameter is played by the sum of the tensors of the contribution of inhomo-
geneities. Below, we give the expressions for these tensors in the presence of imperfect contacts 
in the material, modeled using the approaches discussed above.

Contribution tensors

The contribution tensors are determined assuming that the inhomogeneities are isolated. If the 
concentration is set at the boundary of the representative volume, then the average gradient c over 
the representative volume is fully determined, while the average flux depends on the microstruc-
ture; it can be represented as a sum 

0 0 ,V< > = − ⋅ + ∆J D G J (10)

where ΔJ is the additional flux due to the presence of inhomogeneity.
Such an additional flux is a linear function of the applied field:

1
0 ,DV

V
∆ = − ⋅J H G (11)

where HD is the tensor of the contribution of inhomogeneity to the diffusion permeability.
The contribution tensor can be found by solving the Eshelby problem for diffusion. The latter 

has an analytical solution only for ellipsoidal inhomogeneity. In this case, the contribution tensor 
can be expressed in terms of the concentration tensor, which linearly relates the field inside the 
inhomogeneity with the applied field.
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Thus, to find the contribution tensor, it is necessary to solve the problem of averaging fields 
and find the concentration tensor. The presence of imperfect contacts should be taken into 
account at both stages.

A brief description of both stages is provided below.

Field averaging

We determine the average fields in the case of perfect contacts at the matrix/inhomogeneity 
interface, which in the framework of this study corresponds to a material with equivalent inho-
mogeneity, as well as modeling of imperfect contacts by various approaches.

According to the Ostrogradsky–Gauss theorem, 

( ) ( )1 1,  ,V Vc c d d
V VΣ ΣΣ Σ

< ∇ > = Σ < > = ⋅ Σ∫ ∫n x J n J x x (12)

where nΣ is the external normal to the surface Σ of the representative volume V.
Expressions (12) can be conveniently rewritten taking into account the interphase boundaries; 

in this case, the corresponding surface integrals should be added and subtracted. Then, with per-
fect contacts at the interface of the inhomogeneity of volume V1, we obtain the known formulas: 

0 1 0 1

1 1 1 11 , , 1V V V V V V
V V V Vc c c
V V V V

   < ∇ > = − < ∇ > + < ∇ > < > = − < > + < >   
   

J J J (13)

where ( ) ( )
0 0 0

1 1 1

1 1
0 1,  .... ... d ... ... dV VV VV V

V V< > = < > =∫ ∫
The case of a material with inhomogeneity with a coating of finite thickness characterized 

by finite properties is a particular case of a three-phase material with perfect contacts at its 
inner boundaries.

In this case, the average fields follow the expressions 

0

0

1 ,

1 ,

a s

a s

b a s
V V V V

b a s
V V V V

V V Vc c c c
V V V

V V V
V V V

 < ∇ > = − < ∇ > + < ∇ > + < ∇ > 
 

 < > − < > + < > + < > 


=


J J J J
(14)

where ( ) ( )1 1 and .... ... d ... ... d
a sa sa s

V sVV VV VaV V< > = < > =∫ ∫
In the presence of a concentration jump at the interface, the average concentration gradient 

should be determined as follows [6]:

[ ]
0 1

1 1 11 ,V V V
V Vc c c c d
V V V ΓΓ

 < ∇ > = − < ∇ > + < ∇ > + Γ 
  ∫ n (15)

whereas the average flux is calculated using Eq. (13).
If the concentration jump is set based on the segregation parameter under condition (5), then 

it is convenient to rewrite Eq. (15) in the following form: 

0 1

1 11 .V V c V
V Vc c s c
V V

 < ∇ > = − < ∇ > + < ∇ > 
 

(16)

The presence of a jump in the normal flux component leads to the need to use the following 
formula for the average flux [6]: 

[ ]
0 1

1 1 11 ,V V V n
V V J d
V V V Γ

 < > = − < > + < > + Γ 
  ∫J J J x (17)

in this case, the average concentration gradient is determined by Eq. (13).
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In the particular case, when the jump of the normal component of the flux is given in accor-
dance with condition (6), the average flux is determined by the expression

0 1

1 11 .V V f V
V Vs
V V

 < > = − < > + < > 
 

J J J (18)

Expressing 
0Vc< ∇ >  in terms of G0, we obtain the following representations for the average flux:

for the material with equivalent inhomogeneity,

( )
1

*1
0 0 0 ,V V

V c
V

< > = − ⋅ − − ⋅ < ∇ >J D G D D (19)

for the material with inhomogeneity and coating of finite thickness (characterized by 
finite properties),

( ) ( )0 0 1 0 0 .
a s

a s
V s V

V Vc c
V V

< >= − ⋅ − − ⋅ < ∇ > − − ⋅ < ∇ >J D G D D D D (20)

The following representations hold true for a material with a inhomogeneity with a field jump 
determined by the segregation parameter occurring at the interface:

if there is a jump in concentration,

( )
1

1
0 0 1 0 ,V c V

V s c
V

< > = − ⋅ − − ⋅ < ∇ >J D G D D (21)

if there is a jump in the normal flux component,

( )
1

1
0 0 1 0 .V f V

V s c
V

< > = − ⋅ − − ⋅ < ∇ >J D G D D (22)

Representation of the contribution tensors in terms of the concentration tensors
The average concentration gradients included in expressions (19)–(22) can be expressed for 

the case of ellipsoidal inhomogeneity in terms of the applied field G0, for which the concentration 
tensors Λ*, Λa, Λs, Λc, Λf are introduced, satisfying the equalities 

1 * 0Vc< ∇ > = ⋅GΛ  (for equivalent inhomogeneity),

0 0 and 
a saV V sc c< ∇ > = ⋅ < ∇ > = ⋅G GΛ Λ  (for inhomogeneity with coating), 

1 0cVc< ∇ > = ⋅GΛ  (for inhomogeneity with a concentration jump, determined in terms of the 
segregation parameter, at the interface),

1 0fVc< ∇ > = ⋅GΛ (for inhomogeneity with a jump in the normal component of the flux, deter-
mined in terms of the segregation parameter, at the interface).

Expressions for these concentration tensors were obtained in [8, 10–14]. Taking into account 
these expressions and Eqs. (10), (11), we limit ourselves here to giving the final expressions for 
the contribution tensors of inhomogeneities:

( )
3

0
0

1 0

*

* 1
D

i i
i i i

ii

ii

D DD
D A D A=

−
=

+ −∑H e e (23)

(for equivalent inhomogeneity with perfect contacts [13]);

( ) ( )

1 0 0 13

0
1

1 0 0 11 1

a
i

D a
i i

i a i
i i i i

a

SD D D D A
VD

S FA D A D A D D A
V H

=

− − β
=

 + − + − β − 
 

∑H e e (24)

(for inhomogeneity with insulating coating);
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( )

( )

1 03

0
1

1 0

1

1 1

a
i

D a
i i

i a i
i i i i

a

SD D A
VD

S FA D A D A A
V H

=

− + λ −
=

 + − + λ − + 
 

∑H e e (25)

(for inhomogeneity with conductive coating)

( )
3

1 0
0

1 1 0 1
D c

i i
i i c i

D s DD
A D s D A=

−
=

+ −∑H e e (26)

(in the presence of a concentration jump determined in terms of the segregation parameter sc [8]),

( )
3

1 0
0

1 1 0 1
fD

i i
i i f i

s D D
D

A s D D A=

−
=

+ −∑H e e (27)

(in the presence of a jump in the normal component of the flux, determined in terms of the seg-
regation parameter sf).

In the case of spheroidal inhomogeneity, for a1 = a2 = a, γ = a3/a, the following equalities 
hold true: 

( ) ( )

( ) ( )( )

( ) ( )( )

1 2 0 3 0

1 2 0 02 2

3 0 02 2

,  1 2 ,

1 1 1 1 2 ,
2

1 1 1 2 ,

A A f A f

F F f f
a

F f f
a

= = γ = − γ

 
= = γ − − γ γ 

 
= − γ − − γ γ 

where

( ) ( )
( ) ( )

2

2

0 2 2

2 2

11 arctan , 1
11

,  
2 1 11 ln , 1.

2 1 1

g
f g g

−

 − γ
γ ≤

γγ − γ− γ γ = = γ = 
− γ  γ + γ −

  γ ≥  γ γ − γ − γ −  

In the case of spherical inhomogeneity, F1 = F2 = F3 = 0, f0(γ) = 1/3.
Note that according to the conclusions presented in monograph [9], where only spherical 

inhomogeneities were considered, the presence of insulating coating leads to a concentration 
jump at the matrix/inhomogeneity interface, and the presence of a conductive layer leads to a 
jump in the normal flux component, determined by solving the problem for composite inhomoge-
neity at the passage to the limit. This corresponds to the physical understanding of the phenom-
enon modeled, as noted above.

For the correct implementation of the procedure for comparing two approaches to modeling 
imperfect contact (by setting the field jump with the appropriate segregation parameter and by 
considering the inhomogeneity with the appropriate type of surface effect), we will determine 
what diffusion permeability D* that an equivalent inhomogeneity whose contribution to the mac-
roscopic property coincides with the contribution of inhomogeneity with imperfect contact mod-
eled within the framework of different approaches should possess.
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Equivalent inhomogeneity

Let us start by considering imperfect contact when an impurity is deposited as sediment at 
the matrix/inhomogeneity interface. When such a contact is modeled by setting a concentration 
jump in terms of the segregation parameter, it follows from the equality of the contribution tensor 
defined by expression (26) and the contribution tensor of equivalent inhomogeneity described by 
Eq. (23) that

* *
1 ,cD D s= =D I I (28)

that is, a material of equivalent inhomogeneity is isotropic.
Evidently, the components of the tensor D* depend only on the segregation parameter and the 

diffusion permeability of the inhomogeneity, but do not depend on its shape. An increase in the 
segregation parameter leads to a decrease in the diffusion permeability of the equivalent inho-
mogeneity. In the absence of impurity sedimentation (at sc = 1) D* = D1. Depending on whether 
the impurity is deposited at the interphase boundary from the outside or inside, the segregation 
parameter takes the values sc > 1 or sc < 1, respectively.

In the first case, D* < D1, which reflects the physics of the process, since the impurity pene-
trates the inhomogeneity to a lesser extent and, in order to achieve the same effect when consid-
ering an equivalent inhomogeneity, it is necessary to reduce its permeability.

In the second case, D* > D1, which is also physically justified, since the equivalent inhomoge-
neity should be more permeable to the impurity due to its accumulation inside the «real» inho-
mogeneity with imperfect contact.

At sc → ∞ D* → 0; this is due to the fact that the entire impurity accumulates outside the inho-
mogeneity and it is impermeable to the diffusant.

At sc = D1/D0, we have D* = D0, i.e., a jump in concentration

( ) ( )1 0 0[ ]c D D D c
→Γ−

= −
x

x

allows to ignore the presence of inhomogeneity when finding effective properties.
In the case of using the second approach to modeling imperfect contact, it follows from the 

equality of the inhomogeneity contribution tensor with equivalent surface resistance (see Eq. (24)) 
and the equivalent inhomogeneity contribution tensor (see expression (23)) that

( )

( )

1 0
3

1
* 1

1 1

1 1

1
;

1

a i
i

a
i i

i a i
i i

a

S a D FR A
V D HD

S a FR A A
V H

=

− −
=

 + − − 
 

∑D e e (29)

Here, for convenience, a dimensionless parameter of equivalent surface resistance R = D1β/a1 
is introduced.

The diffusion permeability tensor of equivalent inhomogeneity, expressed by Eq. (29), is gener-
ally orthotropic, and its symmetry group is determined by the shape of the inhomogeneity. In the 
absence of the surface effect (at R = 0), the tensor is isotropic and D* = D1 (

* * *
11 22 33 1D D D D= = =

). In general, the diffusion coefficients *
iiD  can take values both greater and smaller than D1. We 

should note that such features as redirection of the diffusion flux due to negative values of the 
components of the tensor D*, as well as the infinite permeability of equivalent inhomogeneity, can 
formally appear at certain values of structural characteristics (the ratio of the diffusion coefficients 
of the impurity in the matrix and in the inhomogeneity, the parameters of the inhomogeneity’s 
shape, the value of equivalent surface resistance). Such cases require separate qualitative and 
quantitative studies, which is beyond the scope of this paper.

Expression (29) is significantly simplified in the case of spherical inhomogeneity: then the 
equivalent inhomogeneity is characterized by an isotropic tensor 

( )*
1 1 .D R= +D I
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It follows from comparing this expression with expression (28) that two approaches to model-
ing imperfect contacts at the boundary of spherical inhomogeneities coincide when 

1 .cs R= + (30)

Let us turn to the consideration of imperfect contact, when additional diffusion paths are 
present in the material at the interphase boundary. When such a contact is modeled by setting 
the jump of the normal flux component in terms of the segregation parameter, it follows from the 
equality of the contribution tensors defined by expressions (27) and (23) that

* *
1 .fD D s= =D I I (31)

The diffusion tensor D*, defined by Eq. (31), depends only on the segregation parameter and 
on the diffusion permeability of the inhomogeneity and does not depend on its shape.

An increase in the segregation parameter leads to an increase in the diffusion permeability of 
the equivalent inhomogeneity. In the absence of surface defects (at sf = 1), D* = D1. At sf → ∞, 
the equivalent inhomogeneity is characterized by infinite permeability, regardless of the properties 
of the inhomogeneity (in this case, the entire impurity will instantly diffuse over the surface). In 
the case when sf = D0/D1, the equality D* = D0 is satisfied.

When imperfect contact is modeled using the second approach, the equality of the contribu-
tion tensors defined by expressions (25) and (23) gives the following result: 

3

* 1
11

0

,
1 1

1

a i
i

a
i i

a ii
i

a

S a FK A
V HD S a FDK A

V D H
=

 + − + 
 =

+
∑D e e (32)

where a dimensionless parameter of equivalent surface permeability K = λ/(D1a1) is introduced.
The diffusion permeability tensor of equivalent inhomogeneity, defined by expression (32), is 

generally orthotropic. In the absence of the surface effect (at K = 0), D* = D1. In the presence of 
the surface effect, the diffusion coefficients *

iiD  can take values both greater and smaller than D1. 
In a certain range of values of structural characteristics, as in the case of an insulating coating, 
components *

iiD  can take values less than zero, which means from a physical standpoint that flux 
is redirected, as well as goes to infinity. Both cases require separate research beyond the scope of 
this study.

Expression (32) in the case of spherical inhomogeneities has the form

( )* 1 1 2 ,D K= +D I

it follows from here, taking into account Eq. (31), that two approaches to modeling imperfect 
contacts are equivalent when

1 2 .fs K= + (33)

To summarize, the following qualitative differences can be observed between the two approaches 
to modeling imperfect contacts.

1. Taking into account imperfect contact by setting the field jump in terms of a constant seg-
regation parameter, the symmetry group of the diffusion permeability tensor of equivalent inho-
mogeneity coincides with that for the initial inhomogeneity (in particular, it was shown above 
that the isotropy of the tensor D1 implies the isotropy of the tensor D*; we presented a more 
detailed study of the general anisotropic case in [8]). As a result, the components of the diffusion 
permeability tensor of equivalent inhomogeneity depend only on the physical properties of the 
inhomogeneity and the segregation parameter. In the case of modeling imperfect contact by con-
sidering inhomogeneity with a surface effect, the components of the tensor D* depend both on the 
properties of the coating and the material of the inhomogeneity and on its shape.
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Two approaches to modeling imperfect contacts produce the same results only in the case of 
a material with spherical inhomogeneities, provided that either equality (30) or (33) is satisfied, 
depending on the type of imperfect contact.

2. When taking into account imperfect contact by setting the field jump in terms of a constant 
segregation parameter, the components of the diffusion permeability tensor of equivalent inhomo-
geneity linearly depend either on the quantity (sc)

–1, or on the parameter sf. In the case of mod-
eling imperfect contact by considering an inhomogeneity with a surface effect, the components 
of the tensor D* depend non-linearly on the characteristics of the coating R or K (or their inverse 
quantities). At the same time, these dependencies, firstly, are different for different directions, and 
secondly, can take negative values at certain values of the characteristics of the structure, which, 
apparently, means redirection of the diffusion flux, as well as going to infinity. These cases need 
to be further investigated for compliance with the physical meaning of the modeled phenomenon.

Simulation results for imperfect contacts

Let us conduct quantitative analysis of the effect of the method of accounting for imperfect 
contact at the interface on the diffusion permeability of equivalent inhomogeneity using the 
example of a polycrystal.

A polycrystal is considered a two-phase material consisting of a matrix that models grain 
boundaries and elongated spheroidal inhomogeneities that model grains of lower diffusion per-
meability [7, 15]. For certainty, we take the values D1/D0 = 0,2, γ = a3/a = 100 (a1 = a2 = a). 
In polycrystals, imperfect contacts can occur for various reasons, which should be modeled in 
different ways. Let us briefly describe them.

1. The phenomenon of segregation, which is characteristic of diffusion and which is understood as 
the sedimentation of impurities along grain boundaries from the outside, can be modeled either by set-
ting a concentration jump using the segregation parameter sc (I), or by considering an insulating coat-
ing with equivalent resistance R  (II). Let us assume that sc = 1 + R, which, on the one hand, is true 
for the case of a material with spherical inhomogeneities, on the other hand, satisfies the condition 
sc = 1 at R = 0 in the case of perfect contacts in a material with inhomogeneities of arbitrary shape.

2. Due to cracking along grain boundaries, additional accelerated diffusion paths can be 
formed; they can be taken into account either by setting the jump of the normal flux component 
in terms of the segregation parameter sf (III), or by considering conductive coating characterized 
by equivalent conductivity K (IV). For the same reasons as when choosing the dependence sc(R), 
we assume that sf = 1 + 2K.

The dependences of the diffusion permeability of equivalent inhomogeneity in the presence of 
segregation, i.e., in the case of imperfect contact modeled by methods I and II, are shown in Fig. 
1,a. An increase in the parameter R leads to a decrease in the components of the tensor D*. This, 
in turn, should subsequently (with further application of homogenization methods not considered 
in this study) lead to a decrease in the effective permeability of the material.

Note that the parameter R can formally take values from zero to infinity. To carry out quan-
titative analysis, however, we limited ourselves to considering a smaller range in which the flux 
does not change direction to the opposite, which would be the case with negative values of the 
coefficients *

iiD  and which, as noted above, requires additional analysis.
It is also worth noting that when using approach II, there is a difference in the behavior of the 

decreasing curves of the diffusion coefficients *
33D  along the symmetry axis of the inhomogeneity 

and the coefficients * *
11 22D D=  in the isotropy plane.

With the selected set of structure parameters, the coefficients * *
11 22D D=  change in the same 

way as the components of the isotropic tensor D* introduced using approach I.
Fig. 1,b shows the dependences of the diffusion permeability of equivalent inhomogeneity in 

the presence of cracking, i.e., in the case of imperfect contact modeled by methods III and IV.
An increase in the parameter K leads to an increase in the components of the tensor D*, which 

vary in different ways, depending on the method of modeling imperfect contact, as well as on 
the direction in the case of approach IV. In the future, this type of change in the permeability of 
equivalent inhomogeneity should lead to an increase in the effective permeability of the material. 
Parameter K, like parameter R, can formally take values from zero to infinity, while at a certain 
value of K the component *

33D  will go to infinity, which, as discussed above, requires additional 
analysis beyond the scope of this paper.
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It is important that the components *
iiD  take values both smaller and larger than D0, depending 

on the value of K ( *
0iiD D  can be either smaller or larger than unity).

Thus, the method of accounting for imperfect contact at the interface of the matrix and 
non-spherical inhomogeneity has a direct impact on the effective properties of the material. To 
choose the optimal approach, it is necessary to compare the results of numerical simulation with 
experimental data. The problem of such a comparison, in turn, involves difficulties in identifying 
the characteristics of the structure and requires separate study.

Conclusion

The paper proposes a generalization of the approaches available in the literature to model-
ing imperfect contacts at the interphase boundary of a material that is inhomogeneous at the 
microlevel in determining its effective properties of various nature.

It is taken into account that such contacts can occur in the material for different reasons: due 
to the particular internal structure and in connection with the specifics of the described process, 
which affects the physical interpretation of the model, but does not affect the mathematical 
framework used. A specific example of a diffusion problem was considered. The general case of a 
material with ellipsoidal inhomogeneities is considered and two approaches to modeling imperfect 
contacts are compared: by introducing a field jump (concentration or normal flux component) in 
terms of a constant segregation parameter and by considering inhomogeneity with a surface effect 
(respectively, with the presence of insulating or conductive coating).

We confirmed that the two approaches are equivalent only in the case of a material with 
spherical inhomogeneities, while in other cases these methods give qualitatively and quantitatively 
different results.
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Аннотация. Данная статья продолжает исследования авторов, направленные на 
построение и развитие математической модели, используемой как для определения 
функции распределения клеток крови человека по размерам in vivo, так и для 
нахождения показателей крови, используемых в медицинской практике. На данном 
этапе работы была учтена несферичность частиц крови и оптимизирована сходимость 
процессов, описывающих многократное рассеяние лазерного излучения кровью за счет 
использования метода расширенных граничных условий, что позволило увеличить 
возможности применения Т-матричного метода. Математическая модель анализа 
биологических процессов получила материальное воплощение в новом программном 
комплексе. Параметры регуляризации определяются автоматически по заданным 
погрешностям ядра и «измеренным» данным с использованием разных критериев. 
Показана возможность, используя разработанную модель, теоретически предсказывать 
количество аномальных по размеру эритроцитов в биоматериале на основе измерения 
ширины найденного распределения эритроцитов по размерам.
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Introduction

Hemorheological and microcirculatory dysfunctions of the human body accompany, as a rule, 
most diseases and complications. Since 99% of the total volume of blood corpuscles are red blood 
cells, the study of the functional characteristics of these cells is crucial. The characteristic sizes 
of erythrocytes, their refractive indices and mechanical properties, as well as the dynamics of 
changes in such indicators of the state of the body should undoubtedly be investigated in cases of 
various pathological conditions; such studies are always of major importance.

The human erythrocyte is an elastic cell that has a rather complex discoid shape in its normal 
mature state. Moreover, under various external influences, with conditions of various kinds, dis-
cocyte (mature normal form of erythrocyte) can undergo a transition to other forms, for example 
platycide, acanocide, etc. [1].

A range of studies (see, for example, [2-5]) have explored the possibilities of theoretical inves-
tigation of the optical characteristics of dielectric bodies of different shapes and structures.
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The classical problem of scattering light radiation by irregularly shaped particles is solved by 
direct numerical methods, which make it possible to reduce this problem to solving a system of 
algebraic equations or to the method of variable separation. In the first case, either an integral 
equation is constructed, or the expansion of fields is introduced with respect to vector spherical 
harmonics, i.e., solutions of the Helmholtz wave equation with their subsequent “joining” on the 
surface of the scatterer.

In our opinion, it is worth listing some successful approximations that allow to obtain rather 
satisfactory results.

First, it is the Rayleigh–Gans–Debye method [6]. Secondly, it is acceptable to use methods 
of geometric optics, especially in cases where particles can be considered large enough relative 
to the wavelength of the incident radiation [7]. Thirdly, these are methods of anomalous diffrac-
tion [8, 9]. Further, iterative methods deserve special mention [10]. We should also consider the 
Wentzel–Kramers–Brillouin method as well as the eikonal approximation [11, 12] as the most 
well-known method of anomalous diffraction. The latter is, in fact, the implementation of the 
approximation of short waves or high energies. Another notable approach is the perturbation 
method [13], which is based on the decomposition of an unknown solution to the scattering 
problem with respect to a small parameter in the vicinity of the exact solution. When applied to 
nonspherical particles, this means that the solution is sought as small deviations from the solution, 
which are caused by small deviations of the shape from the ideal spherical one.

In our opinion, the most convenient and reliable approach to solving the problem of light 
scattering by bodies of arbitrary shape is the method of integral equations, called the method of 
extended boundary conditions [14, 15], since it provides an accurate solution to the scattering 
problem (unlike other methods) by a particle of arbitrary shape; although this solution has the 
form of infinite series, it is acceptable. The maximum number of expansion terms required to 
achieve acceptable accuracy depends on the size, shape and refractive index of the scatterer.

In this paper, we investigate some aspects of the problem of light scattering by dispersed ele-
ments (blood cells in our case), which are irregular in shape and located in a medium of non-triv-
ial structure (here it is the skin, a multilayered structure).

The problem of modeling scattering by dispersed structures with irregular configuration is set.
The study involves considering light scattering by a dispersed system (blood corpuscles), where 

the shape of the inhomogeneities is irregular and their orientation is arbitrary. This takes into 
account the effects of multiple scattering of light incident on a layered medium (human skin).

Such consideration includes several stages.
At the first stage, the problem of light scattering in the system is solved.
At the second stage, the reflection coefficient of a plane wave from a layered surface with a 

wavy shape is studied (the case of reflection of a Gaussian beam is taken).
At the third and final stage, a search is carried out for the size distribution function of blood 

corpuscles (scatterers of irregular shape placed in a layered medium). It is important to take into 
account that the simulated system is assumed to be placed in a layered medium.

Light scattering by the jth individual particle  
of arbitrary shape (matrix formulation)

Let us start considering the problem with the assumption that only red blood cells are present 
in the simulated dispersed medium (blood). It is fairly appropriate and does not contradict the 
problem statement, since the proportion of other blood corpuscles is about 1% of the hematocrit.

In a number of studies, the erythrocyte is considered as a structurally homogeneous sphere 
[16, 17], which can be taken a first approximation. With a deeper analysis (microscopic level), it 
is more correct to consider the erythrocyte as a body of irregular shape.

To find the field scattered by an ensemble of particles with irregular shape, we use the T-matrix 
method. It is rapid compared with most other methods of light diffraction theory based on a rig-
orous solution of Maxwell′s equations.

A dispersed inhomogeneous medium is considered in a three-dimensional coordinate system, 
and a linearly polarized plane wave falls on an ensemble of inhomogeneities. It is assumed that 
the wavelength is smaller than the typical size of red blood cells, that the surface of the dispersed 
scatterer is regular everywhere, so a continuous normal can be determined for it; Green′s theorem 
also holds true.
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We write a system of Maxwell′s equations for the electromagnetic field in the vicinity of a 
particle with the conditional number j0, distorted by the presence of other particles:

, , 0, 0,ik ik∇× = − ε ∇× = µ ∇ ⋅ ∇ ⋅H E E H E = H =

where k is the wavenumber; ε, µ are the dielectric and magnetic permeabilities of the medium.
At the boundary between the particle with the conditional number j0 and the medium sur-

rounding it, we require for the following boundary conditions to be satisfied:

× - , - ,i s I i s I× × × × ×n E n E n E n H n H n H= = (1)

where Ei, Es, EI are the internal, scattered and incident fields, respectively.
The total field can be represented as

( ) ( ) ( ).I sr r r′ ′ ′+E E E=
Let us write corresponding integral equation of the following form [18]:

( ) ( ) ( , )ds (r) ( , )ds 0.I S S

ir r G r r G r r
k

′ ′ ′+ ∇× × + ∇×∇× × × =
ε∫ ∫E n E n H (2)

The Green function in Eq. (2) is defined as follows [18]:

3 1

1
3 1

( ) ( 1) [ ( , , ) ( , , )

( , , ) ( , , )]

n
m

mn mn mn
n m n

mn mn

ikG r,r E kr kr

kr kr

∞

−
= =−

−

′ ′ ′ ′= − θ ϕ ⋅ θ ϕ +
π

′ ′ ′+ θ ϕ ⋅ θ ϕ

∑ ∑ M M

N N
(3)

(for the case r > r′),

1 3

1
1 3

( ) ( 1) [ ( , , ) ( , , )

( , , ) ( , , )]

n
m

mn mn mn
n m n

mn mn

ikG r,r E kr kr

kr kr

∞

−
= =−

−

′ ′ ′ ′= − θ ϕ ⋅ θ ϕ +
π

′ ′ ′+ θ ϕ ⋅ θ ϕ

∑ ∑ M M

N N
(4)

(for the case r′ > r),
where Mmn, Nmn, M–mn, N–mn are vector spherical harmonics.

Note that the choice of vector spherical harmonics should be made based on the invariance 
property (in the sense of closure), namely, that upon rotation of the coordinate system, such 
harmonics Mmn, Nmn should be transformed independently of each other.

The following vector spherical harmonics satisfy the required invariance properties [18]:

( ) ( 1) ( ) ( ) exp( ),J m J
mn n n mnrk d z kr im= − θ ϕM C (5)

( 1) 1( ) ( 1) [ ( ) ( ) z ( )]exp( ),J m J J
mn n n mn n mn

n nrk d z kr im
kr kr

+
= − θ + θ ϕN P B (6)

( ) ( ) ( ),
sin( )

n n
mn om om

d imd d
dθ ϕθ = θ + θ

θ θ
B i i (7)

( ) ( ) - ( ),
sin( )

n n
mn om om

im dd d
dθ ϕθ = θ θ

θ θ
C i i (8)

(2 1)( ) ( ),  .
4 (n 1)

n
mn r om n

nd d
n

+
θ = θ =

+
P i (9)
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Any of the four spherical harmonics of the following form can be selected as a zJ
n function

(1) (2)
1 1
2 2

1 2 2 2 2

( ) ( ),  ( ) ( ),  ( ) ( ),  ( ) ( ),
2 2

( 1) ( )!( ) [ ] (1 cos ( )) [1 cos ( ) ].
2 ! ( )! cos( )

n n z n n z n nn n

n m n m
n m n
om n n m

j z J z y z Y z h j z iy z h j z iy z
z z

n m dd
n n - m d

+ +

− −
−

−

π π
= = = + = −

− +
θ = − θ − θ

θ

Let us write the decomposition of the incident wave EI on the surface of the jth particle with 
respect to vector spherical harmonics:

1 1

1
( ) [ ].

n
j j

I mn mn mn mn mn
n m n

j iE p q
∞

= =−

= − +∑ ∑E N M (10)

Similarly, we can write the decomposition with respect to vector spherical harmonics for both 
the internal field of the jth particle Ei(j) and the scattered field Es(j):

1 1

1
( ) [ ],

n
j j

i mn mn mn mn mn
n m n

j iE d c
∞

= =−

= − +∑ ∑E N M (11)

3 3

1
( ) [ ].

n
j j

s mn mn mn mn mn
n m n

j iE a b
∞

= =−

= +∑ ∑E N M (12)

In accordance with the procedures described in monograph [18], we sequentially substitute 
expressions (10), (11), (12), taking into account Green′s functions (3), (4) and boundary condi-
tions of the form (1), into the integral equation (2); then we obtain:

32
1 1

3
1

32
1 11

3
11

( 1) [ ]

( 1) [ ] .

n
mnm j j

mn m n mn m ns
n m n mn

jn
mn mnm j j

mn m n mn m n js
n m n mn mn

ik c d ds

pik c d ds
q

∞
−

′ ′ ′ ′
= =− −

∞
−

′ ′ ′ ′
= =− −

 
− × + × +  π  

   ε
+ − × + × = −      π µ    

∑ ∑∫

∑ ∑∫

N
n M n N

M

M
n N n M

N

This expression can be rewritten in matrix form as

21 12 22 11
1 1 1 1
22 11 12 21

1 1 1 1

,
j j

j j

I m I I m I d p
i

I m I I m I c q

    + ⋅ + ⋅
= −        + ⋅ + ⋅     

 

 

(13)

where m  is the relative refractive index of the particle.
Furthermore,

12
1 1

1
1

12
1 11

1
11

( 1) [ ]

( 1) [ ] .

n
mnm j j

mn m n mn m ns
n m n mn

jn
mn mnm j j

mn m n mn m n js
n m n mn mn

ik c d ds

aik c d ds
b

∞
−

′ ′ ′ ′
= =− −

∞
−

′ ′ ′ ′
= =− −

 
− × + × +  π  

   ε
+ − × + × = −      π µ    

∑ ∑∫

∑ ∑∫

N
n M n N

M

M
n N n M

N

This expression is written in matrix form as

21 12 22 11
1 1 1 1

22 11 12 21
1 1 1 1

.
j j

j j

I m I I m Ia d
i

b I m I I m I c

′ ′ ′ ′    + ⋅ + ⋅
= −         ′ ′ ′ ′+ ⋅ + ⋅    

 

 

(14)
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Combining expressions (13) and (14) produces the following equation

121 12 22 11 21 12 22 11
1 1 1 1 1 1 1 1

22 11 12 21 22 11 12 21
1 1 1 1 1 1 1 1

.
j j

j j

I m I I m I I m I I m Ia p
b I m I I m I I m I I m I q

−
′ ′ ′ ′     + ⋅ + ⋅ + ⋅ + ⋅

= −          ′ ′ ′ ′ ′+ ⋅ + ⋅ + ⋅ + ⋅     

   

   

(15)

We introduce notations for matrices 11
01Q , 31

01Q  and rewrite expression (15) in a more 
compact form:

11 31 1
1 1 01 1 01 1,  ( , ) [ ( )] ,

j j
j j

j j

a p
T T Q k k Q k,k

b q
−   

= = − ⋅      
   

(16)

where the elements of matrix Tj
1 are expressed as surface integrals.

Consider the normal .x y zn +n n+n i j k=
For a body positioned arbitrarily, we obtain the following expression:

( ) ( ) (x, ) ,
( , ) ( , ) ( , )

y,z z,x ydS ∂ ∂ ∂
= +

∂ θ ϕ ∂ θ ϕ ∂ θ ϕ
n i j k+

where the components of the vector follow the expressions

2 2

2

2 2

2

2 2

[ ( , ) ( , ) sin( ) ( , ) sin ( ) cos( )]

( , ) ( , ) sin ( ) cos( ) ,
[ ( , ) ( , ) cos( ) ( , ) sin ( )sin( )]

( , ) ( , ) sin ( )sin( ) ,
[ ( , ) sin ( )sin( ) c

x

y

z

n dS r r r d d

r r d d
n dS r r r d d

r r d d
n dS r

ϕ

θ

ϕ

θ

′= θ ϕ θ ϕ ϕ + θ ϕ θ ϕ θ ϕ −

′− θ ϕ θ ϕ θ ϕ θ ϕ

′= − θ ϕ θ ϕ ϕ + θ ϕ θ ϕ θ ϕ −

′− θ ϕ θ ϕ θ ϕ θ ϕ

= θ ϕ θ θ 2os( ) ( , ) ( , ) sin ( )] .r r d dθ′θ − θ ϕ θ ϕ θ θ ϕ

The equation of the particle surface in a spherical coordinate system takes the following form:

2 2 2
2 1 2

2 2 2

cos sin cos( , ) [sin ( ) ] .r
a b c

−ϕ ϕ θ
θ ϕ = θ + + (17)

Let us clarify the form of the equation for the ellipsoid of revolution:

2 2
1 2

2 2 2 2 2 2

sin cos( ) [ ] .
cos sin

acr
a c a c

−θ θ
θ = + =

θ + θ
(18)

Note that a spheroid (ellipsoid of revolution) is obtained by rotating an ellipse around the 
semi-minor axis (oblate ellipsoid) or a major axis (prolate ellipsoid). Two of the three semi-axes 
of this ellipsoid have the same length. The aspect ratio of a spheroid is defined as the ratio of the 
semi-major axis a to the semi-minor axis c and describes the shape of a particle that varies from 
a sphere (a/c = 1) to a disk for an oblate ellipsoid or a needle for a prolate ellipsoid (a/c ≠ 1).

For example, the ratio a/c determines an oblate spheroid, and с/а determines a prolate one. In 
this case, a is the length of the semi-axis along the x and y axes, and c is the length of the semi-
axes along the z axis, which is the axis of rotation.

Using the formulas for the conversion between Cartesian and spherical coordinates, we obtain 
the following expressions:

2[sin( ) cos( ) sin( )sin( ) cos( ) ] ( , ) sin( ) ,
[cos( ) cos( ) cos( )sin( ) sin( ) ] ( , ) ( , ) sin( ) ,

[ sin( ) cos( ) ] ( , ) ( , ) .

r x y z

x y z

x y

n dS n n n d d r d d
n dS n n n d d r r d d

n dS n n d d r r d d
θ θ

ϕ θ

= θ ϕ + θ ϕ + θ θ ϕ = θ ϕ θ θ ϕ

′= θ ϕ + θ ϕ − θ θ ϕ = − θ ϕ θ ϕ θ θ ϕ

′= − ϕ + ϕ θ ϕ = − θ ϕ θ ϕ θ ϕ
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Next, we substitute expressions for ndS, N1
mn, M

1
mn, N

3
mn, M

3
mn into the surface integrals and 

obtain explicit expressions for them:

211 ( )

0 0
( 1) [ ( ) ( ) ( ) ( )] [ ( , ) ] ,m m n n n n
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Thus, by using the method of extended boundary conditions, a solution to the scattering prob-
lem is obtained for the case of an irregular shape of the scatterer (ellipsoid).

The expansion coefficients of the scattered and incident electromagnetic fields turn out 
to be related by linear transformations of the T-matrix. The latter depends on a number of 
parameters (the size of the scatterer with respect to the wavelength, the refractive index, etc.), but 
it is invariant with respect to the direction of propagation of incident radiation for the selected 
coordinate system.

It is also necessary to specify the complexity of the application of the T-matrix method for 
biological media with typical optical “softness”. This complexity is associated (in the specified 
cases) with poor convergence of the series corresponding to them in the calculation formulas for 
the elements of the T-matrix. The possibility of highly oscillating behavior of the integrand may 
also reduce accuracy. Moreover, the numerical inversion of the matrix will be poorly conditioned 
for scatterers with a zero (or small) imaginary part of the refractive index.
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Following [22, 23], convergence can be significantly improved if the so-called LU factoriza-
tion based on the application of an extended boundary condition is used. The graphs shown in 
Fig. 1 confirm the validity of this statement.

Multiple scattering by ensembles of nonspherical scatterers

Electromagnetic waves incident on the surface of the jth scatterer form a field Ei(j), which 
consists of two components: the field created initially by incident waves and the field created by 
scattering by an ensemble of particles. The sum of the terms follows the expression

0( ) ( ) ( ).i s
i j

j j l, j
≠

= + ∑E E E (27)

A group of fields scattered by the jth particle is contained under the summation sign; (l,j) 
assigns the conversion from the coordinate system l to the coordinate system j.

Let us write out an expression for the incident field separately:

0 0, ,1 1
0

1
( ) ( ) .

imn
j j j j

mn mn mn mn mn
n m n

eiE p kr q kr
kr

φ∞

= =−

 
= − + 

 
∑ ∑E N M (28)

Note that the incidence of waves relative to the center of each jth particle in its coordinate 
system (j-system) is considered.

The expansion coefficients for the given plane electromagnetic wave take the following form [18]:
0

0

, *
,4 ( 1) ( ) ( ) exp( ),j j m n

mn n mn ink ink ink j j inkp i d , im= π − θ − ϕC E k r

a) b)

Fig. 1. Dependences of relative residual norm on the iteration number 
for the distances of 1 µm (a) and 2 µm (b) between particles

The dependences were btained using the method of biconjugate gradients with preconditioning (see Table 1)

Tab l e  1

Parameters of model medium including 5 particles

Distance between 
particles, µm

Refractive index for particle 
m1 m2 m3, m4, m5

1 1.37 1.34 1.332 1.35 1.33
Note . a = 18 µm, c = 3 µm for the first three particles, a = 5 µm, 
c = 5 µm (a are the lengths of the semi-axes of the spheroid along the 
x, y axes, respectively, and c are the lengths along the z axis).
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0

0

, 1 *
,4 ( 1) ( ) ( ) exp( ).j j m n

mn n mn ink ink ink j j incq i d , im−= π − θ − ϕB E k r

The complex conjugation is marked with an asterisk as standard, the notation Eink(kink,rj0,j
)  

represents the vector of linear polarization.
The following expression holds true for a field scattered by particles:

, 1 , 1

1
,

n
l j l j

s mn mn mn mn mn
n m n

iE p q
∞

= =−

 = − + ∑ ∑E N M (29)

where the expansion coefficients have the form [19].
The next stage consists in constructing an infinite system of algebraic equations based on 

combining expressions (27)–(29), taking into account expressions (16) for each jth particle of 
arbitrary shape:

,

12 ,

( , ) ( , )
.

( , ) ( , )

j i j j
j

j i j j
l j

a p A l j B l j a
T

B l j A l jb q b≠

       
= +                    
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The corresponding coefficients are determined in [19].
To solve the given system, we settled on the reduction method followed by the application of 

the biconjugate gradient method.
After the coefficients of system (30) are found, it becomes possible to record the total field in 

the far zone:

3 3

1
,
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totalq mn mn mn mn mn
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1 1
exp( ) ,  exp( ) .

L L
j j

mn s j mn mn s j mn
j j

a i , a b i , b
= =
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The componentwise notation of the scattered field has the form:
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where the functions of the angle follow the expressions

(cos ),  (cos ).
sin
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mn n mn n

mP P∂
τ = θ π = θ

∂θ θ
The tilde sign (~) here implies the use of an asymptotic approximation.
Moreover, since we believe that scattering processes are considered at sufficiently large dis-

tances from the particle, where the electric vectors of the scattered and incident fields can be 
considered parallel, we can further simplify expressions (33) and (34) (we believe that only the 
component θ is nonzero in the far zone).
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Simulation of the reflection of a plane wave  
from a nontrivial multilayered structure

Consider a nontrivial layered structure (nontriviality here is understood as waviness of the lay-
ers), where each layer has its own refractive index, and use some of the results obtained in [20].

A flat p-polarized wave (a similar case of s-polarization would be simpler) is incident on the 
model considered at an angle θ. Our goal is to find the reflected field. Let us write out expressions 
for the fields formed by light radiation passing through the above layers and reflected from them, 
assuming that the phases of the waves oscillate rapidly, and the amplitudes change slowly:

1 1 2 3 1 1 2 3 1 2 3exp( ( , , )) exp( ( , , )) A( , , , , ),inc ref x y
i iE = τ ξ ξ ξ + τ ξ ξ ξ ξ ξ ξ ε ε
ε ε

(37)

2 2 1 2 3 1 2 3

3 1 2 3 1 2 3
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elap x y

ref x y

iE

i

+

−

= τ ξ ξ ξ ξ ξ ξ ε ε +
ε

+ τ ξ ξ ξ ξ ξ ξ ε ε
ε

(38)
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ε
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5 5 1 2 3 1 2 3exp( ( , , )) ( , , , , ).elap x y
iE E= τ ξ ξ ξ ξ ξ ξ ε ε
ε

(41)

Similar to our earlier study [20], we sequentially found the terms of the series for the required 
amplitudes, as well as the expression for the Gaussian beam.

Distribution function for particles simulated by ellipsoids of revolution

Let us determine the parameters of the model medium corresponding to normal human skin 
(Table 2).

Let the incident plane wave propagate in the x-axis direction (the semi-minor axis for an 
oblate ellipsoid) and have polarization in the z-axis direction.

Fig. 2 shows images of oblate and prolate ellipsoids and the coordinate system used associated 
with them.

The model medium is as close as possible to the real parameters of normal human skin.

a) b)

Fig. 2. Images of oblate (a) and prolate (b) ellipsoids;
a, c are the lengths of their semi-axes directed along the corresponding coordinate axes.

Blue arrows indicate the direction of the incident laser beams
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A number of well-known facts allow us to con-
sider the erythrocyte as a homogeneous scatterer: 
the erythrocyte membrane is thin and does not 
significantly affect the scattering of laser radia-
tion, and cellular organelles are not included in 
the structure of the erythrocyte. Thus, our cal-
culations are performed for an oblate ellipsoid 
(Fig. 3).

The mathematical approach we developed 
allows to detect the aggregation of particles as 
well as to determine their spectral parameters 
for the in vivo case. The illustrations presented 

below (Figs. 4–6) demonstrate the capabilities of the software package we created by based on 
the presented theoretical approach. Evidently, both the numerical parameters and the shapes of 
the curves change with varying distances between the scatterers.

The results obtained indicate the difference in cell sizes, the diversity of their internal struc-
tures, and the effect of interference on the pattern of wave fields scattered by neighboring particles.

Thus, the developed method creates new possibilities, allowing to take into account the effects 
of cooperative interaction of particles in the case of denser packing of erythrocytes.

Fig. 3. General view of oblate ellipsoid 
under consideration with dimensions 

a = 18 µm, c = 3 µm

a) b)

Fig. 4. Functional dependences of intensity versus wavelength 
for the light scattered by particle ensembles located in the layer; 

distances between the particles are 1 µm (a) and 2 µm (b) (see Table 1)

Tab l e  2

Adopted characteristics of the model medium [20]

Parameter Notation Parameter value for layer i
(2) (3) (4)

Layer thickness, µm di 65 565 90

Set of 
distortion parameters

ai –0.0024 0.021 0.041
bi 0.0200 0.030 0.050
ci 0.010

Refractive index
(real part) n0

i 1.50 1.40 1.35

Notes. 1. Distortion parameters are represented by the formula Hi = ci sin (aix + biy). 
2. Refractive index of ambient air n1 = 1,000; we assumed χ2 = χ3 = χ4 = χ5 = 10–5; 
n0

5 = 1.40 for the ith layer of the model absorbing medium with ni = n0
i + iχi .
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The next stage of the study consists of solving the inverse problem: to find the distribution of 
erythrocytes (assuming them to be spheroids) from the aspect ratio of the spheroid (ρ = а/с), 
based on the known intensity of laser radiation scattering (measured with some error) by an aggre-
gated ensemble of particles located in the layer (in vivo case).

Such problems are described by linear first-kind Fredholm integral equations, taking the form
max

( )
min

( , ) ( ) ( ),scatu I u d f
ρ

θ
ρ

≡ ρ λ ρ ρ = λ∫A (42)

c) d)

a) b)

Fig. 5. Results of automatic determination of regularization parameter α 
from the given kernel errors and “measured” data using different criteria: residual (a), 

quasi-optimality (b), L-curve (c) and generalized residual principle (d) 
for a bimodal distribution (see Fig. 7,a)

c) d)

a) b)

Fig. 6. Results similar to those shown in Fig. 5, but for normal distribution (see Fig. 7,b)
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where A is the integral operator, Iscat(θ)(p,λ) is the kernel of the integral equation, u(ρ) is the 
required cell size distribution, f(λ) ≡ Iblood(θ,λ) is the scattering intensity.

The kernel Iscat(θ)(p,λ) is defined as the intensity of light scattered in the direction of the angle θ 
(the angle is chosen experimentally) by a nonspherical particle (see Eq. (35)). We assume that this 
kernel is a function continuous in the rectangle ([ , ] [ , ]),c d a bΩ = ×  and [ ],( ) c df Lλ ∈

 
( min ,a ≡ ρ  

max ,b ≡ ρ  min ,c ≡ λ  maxd ≡ λ ).
The inversion of the integral operator A for the inverse problem (see equation (42)) is unsta-

ble, therefore, it is advisable to use the Tikhonov regularization method for the numerical 
solution [24, 25].

Automatic determination of the regularization parameter based on the given kernel errors and 
“measured” data is possible within the framework of the software package we developed. (This 
package includes the methods of relative residual, the generalized residual principle (GRP), the 
L-curve method and the quasi-optimality criterion.)

Thus, we propose to choose the regularization parameter in accordance with several criteria. 
In a problem with a known model solution, this allows us to find the range of the best values of 
the parameter α. It turned out that the residual principle and the GRP gave the same parameter 
value and when they were used to solve the integral equation (42), a profile close to the model 
was reconstructed.

a) b)

Fig. 7. Bimodal (a) and normal (b) size distributions for spheroidal particles 
with two values of the distance between the scatterers: 1 µm (a) and 2 µm (b).

Graphs of functions from [26] (solid lines) are compared 
with the results of our numerical solution (dotted lines) 

Fig. 8. Case of normal volume distribution of the particles
(Price–Jones curve) obtained for distance of 2 µm

between the scatterers
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Fig. 7,a shows a comparison of the two curves. The solid black curve corresponds to an 
asymmetric bimodal particle size distribution, which is predefined by the function from [26]. 
The given distribution simulates the presence of fractions of normocytes and macrocytes. The 
dotted colored curve corresponds to our numerical solution of the problem and demonstrates 
that both peaks of the size distribution were reconstructed quite satisfactorily. A similar solid 
curve in Fig. 7,b also corresponds to a predefined size distribution, a normal one (see [26]). As 
a result of our numerical solution of the problem (dotted colored curve), where the noise level 
in the right-hand side of equation (42) is assumed to be 5%, a completely satisfactory agree-
ment with the given function is also obtained. Thus, the particle size distribution profiles were 
reconstructed with high accuracy.

The analysis of the graphs in Fig. 7 also allows to conclude that taking into account the non-
sphericity of particles accurately reconstructs the Price–Jones curve (Fig. 8), describing the typ-
ical volume distribution of human blood corpuscles.

Erythrocyte indices

In this section, we consider the numerical evaluation of erythrocyte indices (which are stan-
dard in clinical practice), in particular the mean corpuscular volume (MCV) and the degrees of 
dispersion of red blood cells by volume. These include the deviations of the relative distribution 
of erythrocytes over the volume (red cell distribution width, abbreviated as RDW) from the mean 
(coefficient of variation, or CV) and from the standard (standard deviation, or SD).

In other words, RDW-CV shows a percentage deviation of the erythrocyte volume from the 
mean, and RDW-SD is the difference between the largest and smallest erythrocyte (measured in 
femtoliters, like MCV).

Let us first determine the volume of the body formed by revolution around the axis of the shape:

1

0
4 ( ) ,rotV xy x dx= π∫ (43)

where y(x) represents the family of Perseus curves [27] 

2 2 2 2 2( ) c ( ) ;y x a x p d= − − − (44)

the following shape parameters are given here: a, b are the semi-axes of the ellipse, c = a/b 
(a = 0.150662, c = 1.659376); d is the distance from the origin to the center of the ellipse 
(d = 1.768398); p is the distance from the axis of the torus to the secant plane (p = 1.637922). 
Expression (44) defines families of Perseus curves. They are lines of intersection of the surface of 
the torus with planes parallel to its axis, and represent algebraic lines of the 4th order.

The volume of revolution for this shape is

1 2 2 2 2

0
4 ( ) 1.2799.rotV xc a x p d dx= π − + − =∫

If we assume that the diameter of a human erythrocyte is 7.55 µm on average, then the rela-
tionship between the volume and the radius of the erythrocyte takes the form VMCV = VrotR

3 and 
the mean volume of the erythrocyte is VMCV = 1.2799·68.8536 µm3.

The equation of the form (44) is written in a spherical coordinate system:

4 2
1 2 22 0,r rα − α −β =

and the corresponding solution of this biquadratic equation has the form

2
1 2 1 2 2

1

( )
( , ) ,r

α −α + α β + α
θ ϕ =

α
(45)
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where 
2

2
1 1 2 1 2 22

2sin ,  sin ,  ;db p
a

α = θγ α = θβ β = − γ
here

2 2
2 2 2 2 2

1 2 1 1 22 2 2sin cos ,  (1 ) ,  cos .b p dbb d
a a a

γ = ϕ + ϕ γ = + − β = γ γ − ϕ

Solving the inverse problem allows to find the volume distribution function (see Fig. 8) taking 
into account the equation of the surface (45).

We should note that similar results were obtained in [29].
In this case, it is possible to calculate the size heterogeneity index of the erythrocyte based on 

the obtained theoretical volume distribution.
In medical practice, the RDW-SD indicator is the result of direct measurement of the width 

of the erythrocyte curve at a 20% level (with the height of the curve taken as 100%) [28].
For example, RDW-SD = 118 – 36 = 82 fl. Then values within the range of 80–100 fl charac-

terize the erythrocyte as a normocyte, below 80 fl as a microcyte, and above 100 fl as a macrocyte.
Notably, the RDW-SD indicator is more sensitive to the appearance of a certain number of 

micro- and macrocytes in the erythrocyte population, since it is measured at the lower part of 
the erythrocyte volume distribution curve. If reticulocytosis occurs (an increase in reticulocytes 
(precursors of erythrocytes) in the process of hematopoiesis), this indicator changes faster, since 
there is a certain broadening of the erythrocyte curve.

Results and conclusions

The main goal of the study was to develop and refine an electrodynamic model of the interac-
tion of low-power laser radiation with a dispersed medium, including elements of irregular shape 
(ellipsoid), which are models of blood cells (erythrocytes) located in a medium with a layered 
structure (in vivo case).

Let us overview our main findings.
1. The developed analytical methods for calculating the light scattering characteristics of par-

ticles located in a layered medium are described. It is assumed that these particles are arbitrarily 
oriented and have an irregular shape (nonspherical).

2. Steps were taken to optimize the convergence of processes using the method of extended 
boundary conditions; this increased the possibilities of using the T-matrix method.

3. The mathematical model developed for the analysis of biological processes based on calcu-
lated optical characteristics was implemented in a new software package.

4. The developed approach to the problem made it possible to correctly reconstruct the tra-
ditionally used indicator of the distribution of blood corpuscles (RDW-SD) for the in vivo case, 
taking into account the aspect ratios and the structural features of the biological aggregate.

5. We found an approach to theoretically predicting the number of abnormally sized eryth-
rocytes in a biological material using the developed model, based on the standard measurement 
of the width of the size distribution of erythrocytes. For example, in the case of the presence of 
micro- and macrocytes, it is possible to diagnose the degree of anicytosis, since the width of the 
distribution is higher than the reference value, and the obtained curves of the volume distribution 
of erythrocytes clearly indicate the difference in cell size.

Thus, the RDW index is an informative and convenient marker for laboratory diagnostics.
The results obtained serve as the basis for the proposed new method of rapid analysis of whole 

blood. According to this method, it is necessary to find the distributions of bloody corpuscles by 
characteristic indices, the RDW index as well as the geometric characteristics of red blood cells 
related to their volume and shape, for the in vivo case.
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Аннотация. В работе рассмотрено применение генеративно-состязательной сети 
(ГСС) для создания генератора глубоко неупругого лептон-протонного рассеяния. 
Отмечена сложность эффективного обучения генератора на основе ГСС, которая 
связана с использованием сложных схем распределения физических характеристик 
(энергий, компонентов импульсов и т. п.) частиц в процессе глубоко неупругого 
лептон-протонного рассеяния. Показано, что ГСС позволяет точно воспроизводить 
распределения физических характеристик лептона в конечном состоянии.
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Introduction
The results of experimental studies of deep inelastic lepton-proton scattering are generally pro-

cessed and analyzed by modeling both the actual process of particle interaction and the operation of 
detector setups; the Monte Carlo method is the most convenient for this purpose. The problem is 
that simulation involves complex physical models, requiring high computational costs and much time.

Machine learning methods provide an alternative, allowing to build event generators. The 
advantage of these methods is that they can be trained on heterogeneous data, i.e., both experi-
mental results and data obtained by modeling the entire process under consideration (for example, 
inclusive deep inelastic scattering). The resulting event generator can be capable to collect the 
necessary data quickly and with minimal computational costs.

In this paper, we consider one of these machine learning models, the generative-adversarial 
network (GAN) [1].

The advantage of the considered model is its ability to faithfully reproduce the real data on 
which it was trained.

The GAN model includes two neural networks: a generator and a discriminator. The first net-
work is intended for generating some quantities, such as particle characteristics. The second net-
work identifies the differences between the values obtained by the generator and the real values.

The discriminator tries to distinguish the real values from those created by the generator, thus 
training it. The generator gets better at producing data with each training iteration, which in turn 
trains the discriminator [1].

While the GAN method has been successful for diverse applications (for example, generating 
photos and videos that are indistinguishable from real ones [2, 3]), it has certain drawbacks asso-
ciated with complications in the training process of the model.

The reason for these complications is the strong dependence on the parameters of the model, 
often causing the following issues: 

instabilities during training,
discrepancies, 
parameter variations, 
retraining of models.
There are many approaches to solving these problems, for example, those outlined in [4].
In this paper, we used the approach proposed in [5], described in detail below in the 

following section.
Applying GANs in high energy physics and elementary particle physics comes with additional 

difficulties. The most crucial are the multiple strict constraints dictated by conservation laws. 
Consequently, not every generation output can be considered suitable.

The prediction accuracy is also important; otherwise, the relationships between the derived 
quantities may be violated, which is also unacceptable. Similar problems are described, for 
example, in [6].

Conservation laws can produce significant irregularities in the distributions of physical quanti-
ties (for example, angles, momenta, energies, etc.) characterizing the interaction of particles. An 
example is the distribution of the pz momentum component of the final-state lepton (Fig. 1,a). 
Multiplicity is understood (in Fig. 1 and below) as the number of events in the bin normalized by 
the total number of events, i.e., a dimensionless quantity. As evident from Fig. 1,a, the distribu-
tion has a sharp edge associated with the laws of conservation of energy–momentum: energy (or 
momentum) in the final state cannot exceed the level of energy (or momentum) in the initial state. 
The existence of such an irregularity negatively affects the training of GAN, as discussed in [6].
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It was proposed in [7] that the problems associated with irregularities in the distributions of 
quantities with respect to specific physical parameters can be solved by generating transformed 
‘twins’ of the quantities rather than the quantities themselves, modified in such a way that the 
new distribution becomes smoother.

The following transformation is used in this study for the pz momentum component of the 
final-state lepton [7]:

0( ) log[( ) (1  GeV )].z zT p E p c= −

As a result, a smoother distribution is obtained (see Fig. 1,b).
A similar transformation was applied for the total energy of the scattered lepton El: 

0( ) log[( ) (1  GeV )].l lT E E E c= −

Methodology
Since this paper considers inclusive scattering of charged leptons (e+, e–, µ+, µ–) by protons, the 

scattered lepton is characterized by four-momentum in the lepton–proton center-of-mass frame:

( ),l lp = E ,p

where p is the lepton’s three-dimensional momentum vector, given by the components px, py, pz; 
El is the total energy of the scattered lepton.

Additional parameters are the total energy E0 of the incident lepton in the lepton–proton cen-
ter of mass frame and the type of lepton (e+ or e– or µ+ or µ–). These parameters allow the GAN 
to predict the final state of various leptons at different initial energies considered.

The energy E0 is defined as

0 ,2
lNsE ≈

where √slN is the initial energy in the lepton–proton center of mass frame.
The initial energies E0 = 10, 20, 30, 40, 50 GeV were considered for training.
The PYTHIA8 program was used to obtain the final states of leptons [8]. 100,000 events were gen-

erated at initial energies √slN = 20, 40, 60, 80 and 100 GeV for each type of lepton: (e+, e–, µ+, µ–). The 
four-momenta of the final-state lepton were recorded in each event (referred to as the real values).

a) b)

Fig. 1. Distributions of momentum component pz of final-state  lepton (a) 
and transformed quantity T(pz) (b)
Initial electron energy E0 = 30 GeV
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Using the quantities T(pz) and T(El) (the transformed quantities) allows the generator to 
avoid predicting unphysical values, and the discriminator to distinguish the real data from the 
generated ones.

The following quantities are fed to the discriminator input to increase its accuracy: 

2 2,  ,  ,  arctan ,  arctan yz
T x yl

T x
z

ppp p p   pp pE   = + ϕ = θ =      

(these are referred to as additional quantities).
A 128-dimensional noise vector (a vector of values obtained from a Gaussian distribution 

with the mean equal to 0 and the variance equal to 1), energy E0 and lepton type are fed to the 
generator input. The generator network consists of 4 hidden layers of 512 neurons each with a 
Leaky ReLU activation function and a dropout of 0.2 [9]. The output layer consists of 4 neurons 
with a linear activation function. The output is four main predicted quantities: px, py, T(pz) and 
T(El). In addition to these, the model includes the prediction of additional quantities: pz, El, pT, 
φ, θ, obtained based on the predicted ones. The main and additional quantities are then fed to 
the discriminator input.

The discriminator network consists of 4 hidden layers with 512 neurons each, a Leaky ReLU 
activation function and a dropout of 0.2 [9]. A so-called dropout layer with a rate of 10% [10] 
is applied to each of the layers, randomly dropping 10% of the layer weights. This helps prevent 
overfitting in classification procedures [11]. Spectral normalization is also applied to each layer 
[12], allowing to achieve a 1-Lipschitz mapping for the discriminator [13]. The output layer con-
sists of a single neuron with a linear activation function. The higher the value obtained, the more 
confident the discriminator is in identifying the given values as realistic.

The paper uses the type of generative-adversarial network with a least square loss function.
The following expressions are valid for the loss functions of the discriminator (LD) and the 

generator (LG) in such networks [5]: 

2 2
~ ( ) ~ ( )

1 1[( ( | ) ) ] [( ( ( | )) ) ],
2 2dataD p pL E D b E D G a= − + −x x z zx y z y (1)

2
~ ( )

1 [( ( ( | )) ) ],
2G pL E D G c= −z z z y (2)

where D(...) is the discriminator network; G(...) is the generator network; x are the real data; 
z is the noise vector; D(x) are the values obtained by the discriminator based on the real data; 
D(G(z)) are the values found by the discriminator based on the data obtained by the generator; 
E is the expected value; a, b are the hyperparameters of this loss function, equal to 0 and 1, 
respectively [5].

GAN was trained for 400 epochs in our study. RMSProp was used for gradient descent optimi-
zation, with ρ = 0.9 [14], 1·10–4 training steps for the generator and 5·10–5 for the discriminator. 
Using different training steps contributes to better training convergence, as shown in [15].

Simulation results 

Due to the large number of possible scattering configurations (different types of leptons and 
different initial energies E0), only some configurations are given below to illustrate the operation 
of the GAN.

Fig. 2 shows the distributions of the momentum components for the muon µ+ and the elec-
tron e– in the final states, obtained by GAN and the PYTHIA8 program. It can be seen that the 
model generates quantities with virtually identical distributions, as evidenced by the χ2 values in 
the graphs and the corresponding momenta (p-value) [17].

Fig. 3 shows the distributions of the pz momentum components of final-state electrons at dif-
ferent energies, obtained by GAN and the PYTHIA8 program. Analyzing the results obtained, we 
can conclude that the model can predict the correct distributions both at the energies at which 
the network was trained (10, 20, 30, 40, 50 GeV), and at interpolated energies (15, 25, 35, 45 
GeV). Notably, the model can also predict the pz values at high energies E0 (60, 70, 80, 90 GeV).
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Aside from lepton momenta and energies, let us consider the quantities derived from them, 
used to characterize scattering. Such quantities include the squared momentum transfer Q2 = –q2 
(q is the momentum of the virtual photon) and the Bjorken variable xBj = Q2/2Pq (P is the 
momentum of the incident proton).

Fig. 4 shows the joint distributions of Q2 and xBj at energies E0 = 10 and 40 GeV, obtained 
based on data from PYTHIA8 and GAN. Comparing the distributions in Fig. 4, a and b and 
those in Fig. 4, c and d, obtained by two approaches at two values of E0 (10 and 40 GeV), we can 
see good agreement between the distributions obtained using PYTHIA8 and GCC. The χ2 values 
calculated for all distribution bins are given as a quantitative assessment of this agreement.

Fig. 2. Predicted distributions over momentum components рx, рy, рz 
for the muon µ+ (a, b, c) and electron e– (d, e, f) at the same initial energy 

E0 = 30 GeV, obtained using GAN (gray curves) and PYTHIA8 (black curves).
The corresponding values of χ2 and the graphs for the ratio of GAN 
to PYTHIA8 (GAN/PYT) predictions are given for each distribution

Fig. 3. Distributions of pz momentum component of the electron, predicted using the PYTHIA8 
program (gray curves) and using GAN (black), at different initial energies E0

Triangles indicate the energies at which the model was trained
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Conclusion

The paper considers a generative-adversarial network (GAN) to generate the final state of 
leptons in inclusive deep inelastic lepton–proton scattering in the 20–100 GeV center-of-mass 
energy range.

We confirmed that the developed model can generate the distributions of various characteris-
tics of different final-state leptons, including the quantities calculated based on the initially gen-
erated ones. The GAN can generate distributions not only at initial center-of-mass energies on 
which it was trained but also at interpolated energies (GeV): 15, 25, 35, 45.

In addition, we found that the model can generate the required distributions at extrapolated 
initial energies (GeV): 120, 140, 160 and 180.

In the future, there is a clear interest in considering semi-inclusive deep inelastic scattering, 
generating the characteristics of an additional particle, in particular a pion.
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Аннотация. Данная работа продолжает цикл статей, посвященных развитию 

возможностей генератора событий глубоко неупругого лептон-протонного рассеяния на 
основе генеративно-состязательной сети (ГСС). Здесь рассмотрены полуинклюзивные 
реакции глубоко неупругого рассеяния с регистрацией адрона. Показано, что ГСС позволяет 
с высокой точностью генерировать распределения физических характеристик конечных 
лептона и адрона в диапазоне начальных энергий 100 – 20 ГэВ в системе центра масс.

Ключевые слова: полуинклюзивное глубоко неупругое рассеяние, машинное обучение, 
нейронная сеть, генеративно-состязательная сеть 

Ссылка для цитирования: Лобанов А. А., Бердников Я. А. Моделирование 
полуинклюзивного, глубоко неупругого рассеяния лептона на протоне при энергиях 
20 –100 ГэВ на основе генеративно-состязательной нейронной сети // Научно-
технические ведомости СПбГПУ. Физико-математические науки. 2023. Т. 16. № 4. 
С. 189–197. DOI: https://doi.org/10.18721/JPM.16415

Статья открытого доступа, распространяемая по лицензии CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/)

Introduction
Modern experimental research in high energy physics deals with increasingly large datasets [1], 

collected from large-scale experiments or simulation results. Processing these data requires high 
computational costs and much time.

Machine learning methods offer an approach to solving the above-mentioned problems [2], 
allowing to construct computer simulation software (called event generators) with the following 
new capabilities:

using the experimental results on interactions of particles and nuclei at discrete points to pre-
dict the characteristics of secondary particles at any energies in the given range based on interpo-
lation (and possibly extrapolation) quickly and without high computational costs;

the above-mentioned software can be developed even without experimental results, using the 
simulation results for interactions of particles and nuclei obtained by the Monte Carlo method [3].

A generative-adversarial network (GAN) was described in [4] to create a generator for inclu-
sive deep inelastic lepton–proton scattering.

This paper continues the research in this direction, extending the capabilities of the given event 
generator [4] to semi-inclusive deep inelastic scattering with hadron production.

The goal of the study was to build a generator that can be trained on experimental data (or 
those obtained by computer simulation), allowing to collect intermediate data based on interpo-
lation and extrapolation, since the experiment cannot be carried out at arbitrary initial energies.

There are several reasons for the interest in semi-inclusive processes.
First, the production of an additional hadron allows to learn more about the structure of the 

proton. Thus, the type of hadron produced by lepton–proton interaction depends on the flavor of 
the quark in the proton that the virtual photon emitted by the charged lepton interacted with [5].
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Secondly, the characteristics of an additional hadron can carry information about the processes 
of parton hadronization [5].

Thirdly, various spin and azimuthal asymmetries can be measured during semi-inclusive pro-
cesses, allowing to gain an understanding on the spin structure of the proton [6].

Methodology

The characteristics of the final state of the charged lepton (e+, e-, µ+, µ-) and hadron (π0, π+, 
π-, K+, K–) are their four-momenta pl = (El,pl) and ph= (Eh,ph) respectively, where El is the total 
energy of the scattered lepton; pl, pl are the four- and three-dimensional momentum vectors of 
the lepton, the latter determined in terms of its components pxl, pyl, pzl; Eh is the total energy of 
the hadron, ph, ph are four- and three–dimensional momentum vectors of the hadron, and also 
the components of the latter, pxh, pyh, pzh.

For GAN to predict the four-momenta of various hadrons (π0, π+, π–, K+, K–), their types (as 
well as the types of lepton) are fed to the input of the GAN as additional parameters along with 
the initial energy E 0, defined as E0 ≈ √slN/2, where √slN is the initial energy in the lepton–proton 
center of mass frame [4].

Since it is currently impossible to experimentally obtain the characteristics of final-state lep-
tons and hadrons (due to the lack of experiments), the finite states of leptons and hadrons were 
obtained using the PYTHIA8 software package [7].

For each type of lepton (e+, e-, µ+, µ-) and hadron (π0, π+, π–, K+, K–), 100,000 events were 
generated at initial energies √slN = 20, 40, 60, 80 and 100 GeV. The four-momentum values of 
the final-state lepton and hadron were obtained from each event (real data).

Following the approach in [4], we solved the problems associated with irregularities in the 
distributions of the quantities El, Eh and pzl by generating, instead of the actual quantities El, Eh, 
pzl, the quantities obtained by their transformation (transformed quantities):

0( ) log[( ) (1  GeV )],zl zlT p = E p c−

0( ) log[( ) (1  GeV )],l lT E = E E c−

( ) log[( ) (1  GeV )].h hT E = E c

As established in [4], the distribution over the transformed quantities becomes smoother, pre-
venting predictions of unphysical values.

Also similarly to [4], the event generator in this study is based on GAN with a least square 
loss function [8].

The generator consists of 5 layers of 512 neurons each with a Leaky ReLU activation function 
and a dropout of 0.2 [9]. A 128-dimensional noise vector (a vector of values obtained from a 
Gaussian distribution with the mean equal to 0 and the variance equal to 1), energy E0, lepton 
type and hadron type are fed to the generator input. The generator outputs 8 characteristics:

pxl, pyl, T(pzl), T(El), pxh, pyh, pzh and T(Eh),
corresponding to lepton and hadron.

Based on these characteristics, the model calculates additional values used to increase the 
accuracy of GAN predictions [4]:

2 2= ,Tl xl ylp p + p  2 2=Th xh yhp p + p  are the lepton and hadron transverse momenta,  

respectively; 
= arctan( ),l zl Tlp pϕ  = arctan( )h zh Thp pϕ   are the lepton and hadron azimuthal angles, 

respectively; 
= arctan( ),l yl xlp pθ  = arctan( )h yh xhp pθ  are the lepton and hadron polar angles, respectively.

All additional quantities are then fed to the discriminator input during training.
The discriminator also consists of 5 layers of 512 neurons each with a Leaky ReLU activation 

function and a dropout of 0.2 [9]. A dropout layer with a rate of 10% [11] is applied to each of 
the layers to prevent overfitting of the discriminator, randomly dropping 10% of the layer weights. 
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Spectral normalization is additionally applied to all layers for more stable training [12]. The 
output layer consists of a single neuron with a linear activation function. The higher the value 
obtained, the more confident the discriminator is in identifying the given values as realistic.

The model was trained for 400 epochs. RMSProp was used for gradient descent optimization, 
with ρ = 0.9 [13], 1·10–4 training steps for the generator and 5·10–5 for the discriminator. Using 
different training steps contributes to better training convergence, as shown in [14].

The Kullback–Leibler (KL) divergence was used as a measure of the divergence between the 
real data and those generated by GAN [15]. This measure was used to compare the histograms 
of the obtained distributions. In this case, the Kullback–Leibler divergence DKL is defined as 
follows [15]:

1
( ) log ,

n
i

KL i
i i

pD P Q p
q=

= ∑

where P, Q are the distributions of the real and generated data, respectively; pi, qi are the proba-
bilities of the ith bins of histograms for real and generated data; n is the number of bins.

Simulation results 

Since there is a wide range of scattering scenarios (different types of leptons and hadrons as 
well as different initial energies E0), only some of the individual cases are given below to illustrate 
GAN’s predictive capabilities.

Fig. 1 shows the distributions of pT, θ, φ for the positron e+ and the negative kaon K–, obtained 
using GAN and PYTHIA8. Multiplicity is understood (in Fig. 1 and below) as the number of 
events in the bin normalized by the total number of events. Evidently, the model generates quan-
tities whose distributions are almost identical, as indicated by the values of the Kullback–Leibler 
divergence shown in the graphs as well as the logarithmic ratios of GAN to PYTHIA8 predictions 
given for each graph.

Fig. 1. Distributions of quantities pT, θ, φ for positrons e+ (a, b, c)
and negative kaons K– (d, e, f) at initial energy E0 = 50 GeV.

The data were obtained using GAN (gray curves) and PYTHIA8 (black). 
The corresponding values of KL divergence (kl-div) and graphs of the logarithmic ratio 

of GAN to PYTHIA8 (GAN/PYT) predictions are given for each distribution.
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Fig. 2. Graphs similar to those shown in Fig. 1, but for muons µ– (a, b, c) 
and positive kaons K+ (d, e, f) at the initial energy E0 = 20 GeV 

Fig. 3. Distributions of quantities xBj, z, Q
2 for the reactions e-p→e-π-X (a, b, c) 

and e-p→e-π0X (d, e, f), respectively, at initial energy E0 = 40 GeV. 
The corresponding values of KL divergence (kl-div) and graphs of the logarithmic ratio 

of GAN to PYTHIA8 (GAN/PYT) predictions are given for each distribution.
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Fig. 2 shows the distributions of the quantities pT, θ, φ for the muon µ– and the positive kaon 
K+, obtained using GCC and PYTHIA8. These data demonstrate that the model can operate just 
as accurately with different leptons and hadrons at different initial energies.

Fig. 3 shows the distributions of squared momentum transfer Q2 = –q2 (q is the momentum 
of the virtual photon), as well as the Bjorken variable xBj = Q2/2Pq (P is the momentum of the 
incident proton) and the fraction of the energy of the virtual photon transferred to the had-
ron, z = P·Ph/P·q (Ph is the momentum of the proton) for nuclear reactions e–p → e–π–X and 
e–p → e–π0X, where X denotes all other reaction products.

It follows from the presented results that the distributions generated by the model only differ 
slightly, as indicated by the values of the KL divergence obtained for each distribution.

Fig. 4 shows the distributions of the quantities xBj, z, Q
2 for the reactions e+p → e+π+X and 

e+p → e+K–X. Analyzing the obtained data, we can conclude that the accuracy of GAN predic-
tions is preserved relative to real data from PYTHIA8 for different types of leptons and hadrons 
and different initial energies.

Conclusion
We developed a generative-adversarial network model that can predict the characteristics of 

final-state leptons (e+, e–, µ+, µ–) and hadrons (π0, π+, π–, K+, K–) in semi-exclusive deep inelastic 
lepton–proton scattering in the initial energy range of 20–100 GeV.

We established that the above-mentioned GAN model is capable of faithfully reproducing 
four-momentum components of final-state leptons and hadrons.

It was confirmed that the model constructed can calculate the distributions for particles with high 
accuracy based on the transverse momentum pT of the particles, the azimuthal (φ) and polar (θ) angles, 
the Bjerken variable xBj, the energy fractions zof the virtual photon and the square momentum Q2 trans-
ferred by the lepton to the hadron. The distributions of these quantities show high accuracy relative to the 
real data, proving that the model is capable of preserving the internal relationships between the values.

We also established that the GAN model accurately predicts the characteristics of leptons 
and hadrons both for the initial energies at which the model was trained and for the interpolated 
energies (intermediate values).

Fig. 4. Distributions of quantities xBj, z, Q
2 for reactions e–p → e– π–X (a, b, c) 

and e–p → e–π0X (d, e, f) at initial energy E0 = 30 GeV
The corresponding values of KL divergence (kl-div) and graphs of the logarithmic ratio 

of GAN to PYTHIA8 (GAN/PYT) predictions are given for each distribution.
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Introduction
The improvement of fiber-optic technologies has contributed to the active development of 

various types of specialized optical fibers. One of the directions in this field is the development 
of a unique class of spun-type fibers, which have a particular internal anisotropy structure. Such 
fibers have the same internal structure as fibers with linear anisotropy, however, upon shifting 
along the longitudinal axis of the fiber, the direction of the polarization axes undergoes regular 
rotation. This is achieved by twisting a preform with a birefringent structure (polarization-main-
taining fiber) during fiber drawing.

The type of intrinsic polarization modes of such a fiber depends on the ratio of two key 
parameters in the resulting fiber structure. The first parameter, VL, rad/m, is the increment of the 
phase difference of the linear polarization modes of the local fiber segment, which characterizes 
the linear anisotropy caused by the transverse deformation of the core induced during manufac-
ture. The second one, V〈, rad/m, is the linear velocity of the longitudinal rotation of the direction 
of the polarization axes.

Depending on the achieved ratio Vα/VL, the eigenmodes of the spun fiber may have a different 
character, but it is important to note that with an increase in the value of Vα/VL, the proper modes 
of the spun fiber tend to orthogonal circular polarizations [1].
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Two types of spun fibers are known: with low (LoBi) and high (HiBi) birefringence.
The first type is characterized by the fact that a high value of the ratio Vα/VL is due to a low 

value of VL. These fibers are made from preforms without a PM structure twisted under drawing 
and have polarization eigenmodes with a fairly small phase difference [2–4]. With limited length 
and small bends, they function as isotropic optical fiber that preserves the polarization state of 
incident radiation. Spun-LoBi fibers are used, for example, to amplify light in high-power fiber 
lasers to overcome the drift of the polarization state of light in the fiber due to its heating during 
pumping [5, 6]. However, these fibers are significantly affected by induced anisotropy during 
bends and other external perturbations of the fiber.

On the contrary, the second type, spun-HiBi fiber, has a relatively high value of VL and is 
made from preforms with a significant transverse PM structure by rapidly rotating the workpiece 
during fiber drawing [7]. Due to the relatively high Vα/VL ratio, these fibers also have polarization 
eigenmodes close to circularly polarized modes [8], and the intrinsic anisotropy of such fibers is 
slightly distorted by bending, compression and other impacts. The second type of fiber is used for 
various purposes, for example, to create sensitive elements of high-precision fiber-optic current 
sensors [9–12]. Such an application is among the most promising, widely known and researched.

The interest in the use of spun fibers, especially with high birefringence, is caused by their 
potential to preserve circularly polarized modes. However, such polarization eigenmodes corre-
spond only to the limiting case with an increase in the value of Vα/VL. In practice, this ratio is 
limited, therefore for a number of reasons, even without taking into account the internal fluc-
tuations of the structure that arise during manufacture and induced during fiber placement, the 
polarization eigenmodes of real spun fibers only approach circular modes and may differ markedly 
from the idealized case.

Many studies were dedicated to the analysis of the polarization properties of real spun fibers 
[1, 4, 8, 10, 12–15]. However, these studies are generally aimed at analyzing the complex mech-
anisms of regular and random transformation of light polarization during its propagation in 
inhomogeneous anisotropic fiber structure and are based on the application of the mode coupling 
formalism and the equations of coupled waves [4, 10, 12, 13]. Models of the formation of the 
Jones matrix of the spun fiber have also been considered in a number of works, both for the dif-
ferential matrices of the segment and the resulting integral matrix [1, 8, 14, 15]. Such models have 
a complex structure in the form of a product of matrices, and they must take into account (even 
when reduced to an integral matrix) rigorous values of Vα, VL and fiber lengths, which are usually 
unknown. In addition, such models do not allow to take into account the influence of possible 
fluctuations in parameters and anisotropy induced by external perturbations of the fiber for the 
Jones matrix of spun fiber. Therefore, although the results of such studies describe the properties 
of spun fibers, they are difficult to apply to the analysis and modeling of practical devices based 
on these fibers.

The goal of this study is to obtain the structure of the Jones matrix of a real spun fiber in the 
simplest possible integral form without using the parameters of the internal structure of the fiber, 
based only on the condition of a small difference in the polarization modes of such a fiber from 
an idealized representation, and to analyze the properties of the resulting matrix.

It is this case of the Jones matrix of spun fibers that is effective for analyzing and modeling 
devices based on these fibers; in addition, it is very useful to study the effect of imperfections 
(differences between real spun fibers and idealized ones) on the operation of these devices.

Jones matrix of idealized spun fiber

First of all, it should be borne in mind that there are different options in the literature for 
determining a polarized wave with a right or left direction of rotation as well as different options 
for taking into account the phases of components in Jones vectors and, as a result, in Jones 
matrices. It is important to understand these features in further analysis, so the Appendix (given 
at the end of the paper) contains the refinements we adopted.

As noted above, the polarization modes in the idealized representation of the spun fiber are 
considered to be circular. A device with circular eigenvectors in the linear Cartesian basis of Jones 
vectors is described by a rotation matrix. Therefore, we assume that the Jones matrix of idealized 
spun fiber has the form
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( ) ( )
( ) ( )0

cos / 2 sin / 2
.

sin / 2 cos / 2
ϕ ϕ 

=  − ϕ ϕ 
M (1)

It is important to emphasize that the concept of idealized spun fiber described by a rotation 
matrix is not related to the idea of spun fiber with an ideal structure, in which regular rotation of 
the direction of the axes of linear anisotropy is introduced. In such a structure, even with regular 
parameters without fluctuations, the form of the matrix will differ from the presented form (1). 
The idealized spun fiber described by the rotation matrix implies precisely the idealized concept of 
converting the state of polarization of light in such fiber, when it is preferable to have an element 
with circularly polarized eigenmodes in the optical circuit.

Under the refining conditions described in the Appendix, matrix (1) rotates the azimuth of 
the polarization state by an angle φ/2 clockwise when observed towards the direction of wave 
propagation. At the same time, the phase difference of the eigenmodes φ is taken into account 
here, but the general phase shift Φ of the eigenwaves is not included, which is not difficult to take 
into account by introducing the factor e–jΦ, although this factor is not needed to consider only the 
transformation of the polarization state of light. From this point of view, matrix (1) belongs to the 
class of special unitary matrices with a determinant equal to unity.

The eigenvectors J01 and J02 of matrix (1), corresponding to the eigenvalues λ1 = ejφ/2 and 
λ2 = e–jφ/2 (φ here and below is assumed to be positive), correspond to waves with right and left 
circular polarization, which are generally written as follows [17 ,16]:

01 02

1 11 1, .
2 2j j

   
= =   −   

J J (2)

According to the accepted rules, the vectors J01 and J02 for matrix (1) refer respectively to the 
fast and slow polarization modes of the idealized spun fiber.

It is important to note here that an alternative case of idealized spun fiber can be formulated, 
which rotates the polarization state of the light passing through the fiber counterclockwise. In 
practice, this is set by the direction of rotation of the preform during drawing. Such a case of 
idealized fiber will be described by the matrix M0′ = M0

T, which also has eigenvectors (2), but 
the first will correspond to the slow mode, and the second to the fast one. In general, if this case 
needs to be considered, then all the expressions listed below can be used by replacing φ with –φ 
(again, it is assumed that φ is positive).

Jones matrix of real spun fiber

Real spun fibers do not correspond to an idealized representation and are described by a Jones 
matrix different from the rotation matrix. At the same time, there is a fundamental difference from 
fibers with linear anisotropy (i.e., polarization-maintaining (PM) fibers), where the imperfection 
of the fiber is associated with fluctuations in the magnitude and direction of core deformations 
that arose during the manufacture of the fiber or induced by subsequent external perturbations.

Spun fiber with regular rotation of the orientation of the polarization axes differs from the 
idealized representation discussed above, even without fluctuations in the anisotropy parameters, 
since circular polarization eigenmodes are achieved only in the case of a limiting value of the ratio 
of fiber parameters, which cannot be done in practice. The intrinsic and induced fluctuations of 
the anisotropy parameters additionally distort the final polarization properties of the fiber, but are 
not the main reason for the deviation from the idealized representation.

In order to formulate a relatively simple representation of the Jones integral matrix for a seg-
ment of real spun fiber, we propose to use only the condition of a slight deviation in the polar-
ization properties of such fiber from the idealized representation, i.e., a slight deviation in the 
polarization eigenstates from circular ones.

We assume that the spun fiber remains an element with phase anisotropy and is described by a 
unitary Jones matrix. This circumstance can be explained by the low loss of optical power in fibers of 
relatively short length (in practice, spun fibers up to several tens of meters in length are commonly 
used), which makes it possible to neglect the possible dichroism. We also do not take into account 
the total phase shift Φ of eigenmodes, which means we will consider a special unitary matrix.
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In view of the above, the Jones matrix of real spun fiber should correspond to the matrix of an 
elliptical phase plate, whose eigenvectors are close to vectors (2) for circular polarizations.

Due to the importance of the properties of the eigenvectors of the optical element matrix, 
first consider the properties of the eigenvectors corresponding to the condition of proximity to 
the vectors (2). In the general case, in terms of the basic parameters of the polarization ellipse 
(ellipticity angle ε and azimuth Θ), two orthogonal Jones eigenvectors in the Cartesian basis are 
generally written as follows [16, 18]:

1 2

cos cos sin sin sin cos cos sin
= ,  = ,

sin cos cos sin cos cos sin sin
j j
j j

Θ ε − Θ ε − Θ ε + Θ ε   
   Θ ε + Θ ε Θ ε + Θ ε   

J J (3)

where the parameters ε and Θ are set directly for vector J1, and vector J2 is obtained as orthogonal 
to J1.

Form (3) defines normalized vectors with unit length, and in general, orthogonal vectors 
are written to a constant complex factor, i.e., they can have different values of both length and 
initial phase.

It is useful to consider the transition to the idealized case with circular polarizations, for which 
it is necessary to take the value ε = π/4. Integrals (13) are then transformed to the form

1 2

1 1
= ,  = .

2 2

j je je
j j

− Θ Θ   
   −   

J J (4)

The difference between the obtained expressions (4) and form (2) lies only in the factors 
depending on the azimuth; the latter give some additional arguments for Jones complex vectors. 
Such factors do not affect the shape of the polarization ellipses, which in this case are degenerated 
into a circle and formally do not have a definite azimuth. An additional factor does not change 
the unit length of the vector, but, strictly speaking, it still has meaning, since it determines the 
initial position of the end of the electric field strength vector of the wave on a circular hodograph. 
Thus, it is evident from the analysis of expressions (4), that the common representation of circular 
polarization vectors (2) formally corresponds to ε = π/4 and Θ = 0.

Let us assume that the polarization eigenstate differs little from circular polarization; this is 
characterized by an elliptical angle ε = π/4 – δ, where the deviation δ is assumed to be small 
(δ << 1). Then, approximations for trigonometric functions can be applied in the general form 
of Jones vectors (3) and approximate equalities can be used preserving the components of only 
first-order smallness:

( ) ( )1 1sin 1 ,  cos 1 .
4 42 2
π π   − δ ≈ − δ − δ ≈ + δ   

   
(5)

If we substitute expressions (5) into form (3) and apply the known trigonometric transforma-
tions, we obtain the eigenvectors of the matrix of imperfect spun fiber in the following form:

( )
( )2 2

1 22 2

1 1
,  .

12 2 1

j jj j

j j

e j ee e
j e e

Θ − Θ− Θ Θ

Θ − Θ

 + δ ⋅  − δ ⋅
= =   

− δ ⋅  + δ ⋅   
J J (6)

The polarization states described by vectors (6), taking into account the smallness of δ, are 
elliptical, although close to circular. Here, Θ has a clear meaning, the direction of the semi-ma-
jor axis of the polarization ellipse and can have an arbitrary value in the full range of azimuth 
variation [0; π]. The considered polarization eigenstates of the spun fiber are shown in Fig. 1, 
illustrating the deviation of the polarization state of the vector J1 from the idealized representation 
(from point A to some point B) on the Poincaré sphere. The vector J2 corresponds to diametrically 
opposite points of the sphere.
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Two approaches can be proposed to obtain the Jones matrix of real spun fiber MSPUN. The first 
is to use the general form of the phase anisotropy matrix expressed in terms of the eigenvalues λ1, 
λ2 and eigenvectors [18, 19]:

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 2 2 1 11 2 1 2

( )1 ,
( )
x y x y x x

y y x y x yx y y x

λ − λ − λ − λ 
=  λ − λ λ − λ−  

j j j j j j
M

j j j j j jj j j j
(7)

where j1x, j1y are components of the Jones vector J1; j2x, j2yare components of the vector J2
If we consider a special unitary matrix that describes a system without losses and has eigenval-

ues λ1 = ejφ/2 and λ2 = e–jφ/2, then we obtain from the general form (7):

( )
( )

/2 /2
1 2 2 1 1 2

/2 /2
1 2 1 2 2 11 2 1 2

2 sin / 21 .
2 sin / 2

j j
x y x y x x

j j
y y x y x yx y y x

e e j
j e e

ϕ − ϕ

− ϕ ϕ

 − − ϕ
=  ϕ −−   

j j j j j j
M

j j j j j jj j j j
(8)

The required matrix of real spun fiber MSPUN, which has eigenvectors (6), can be obtained by 
substituting expressions (6) into form (8).

Another way to obtain the required matrix MSPUN is to use the expression for the Jones matrix 
of an arbitrary elliptical phase plate: 

( )

( )
EPP

cos cos 2 cos 2 sin sin 2 sin 2 cos 2 sin
2 2 2 .

sin 2 sin 2 cos 2 sin cos cos 2 cos 2 sin
2 2 2

j j

j j

ϕ ϕ ϕ + Θ⋅ ε ⋅ ε + Θ⋅ ε 
=  

ϕ ϕ ϕ − ε − Θ⋅ ε − Θ⋅ ε ⋅  

M (9)

Expression (9) was obtained in [20] by substituting expressions for orthogonal Jones vectors 
written in the general form (3) into form (8). To obtain the matrix MSPUN, it is necessary to take 
into account ε = π/4 – δ in matrix (9) and use simplifications (5).

In both cases, the result is a matrix of the form

Fig. 1. Displacement of position of polarization eigenmode of spun fiber 
on the Poincaré sphere, taking into account its real characteristics: 

point A corresponds to polarization with the Jones vector J1 for the case of idealized spun fiber, 
point B for the case of real spun fiber; Θ, ε are the azimuth and ellipticity angle parameters; 

2δ is the angular deviation of the polarization eigenmode from the point of circular polarization 
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( )
SPUN

cos 2 cos 2 sin 1 2 sin 2 sin
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1 2 sin 2 sin cos 2 cos 2 sin
2 2 2

j j

j j

ϕ ϕ ϕ + δ Θ⋅ + δ Θ ⋅ 
=  

ϕ ϕ ϕ − − δ Θ ⋅ − δ Θ⋅  

M (10)

Notably, the determinant Δ of matrix (10) is expressed as

Δ = 1+ 4δ2∙sin2(φ/2)
and it is real, but not equal to unity.

To obtain a strict correspondence to a normal unitary matrix, a multiplier of 1/∆ can be intro-
duced into expression (10), but in practical calculations it is advisable to neglect the second-order 
correction for a small parameter δ and use matrix (10) without additional factors.

As mentioned above, for the idealized representation of the fiber, we could choose not the 
rotation matrix M0, given by Eq. (1), but the matrix M′0= MT

0 (formally, this can be justified by 
replacing φ with –φ), rotating the azimuth of polarization counterclockwise. Both options are 
equivalent, since they are given by the direction of rotation of the fiber preform during drawing. 
In this case, the right circular polarization will be the slow mode of the matrix, and the left one 
will be the fast one.

Expressions for the eigenvectors J1′ and J′2 of the matrix M′SPUN can be obtained if we assume 
that ε = –π/4 + δ in form (3), since the vector J1′ is close to the left circular polarization. As a 
result, we obtain the following expressions:

( )
( )2 2

1 22 2

1 1
,  ,

12 2 1

j jj j

j j

e j ee e
j e e

− Θ ΘΘ − Θ

Θ Θ

 + δ ⋅  δ ⋅ −
′ ′= =   

δ ⋅ −  + δ ⋅   
J J (11)
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cos 2 cos 2 sin 1 2 sin 2 sin
2 2 2 .

1 2 sin 2 sin cos 2 cos 2 sin
2 2 2

j j

j j

ϕ ϕ ϕ + δ Θ⋅ − − δ Θ ⋅ 
′ =  

ϕ ϕ ϕ + δ Θ ⋅ − δ Θ⋅  

M (12)

It can be seen from expression (12) that the matrix M′SPUN, as expected, corresponds to the 
matrix transposed to MSPUN, similarly to the matrices M′0 and M0 for idealized spun fiber.

Specifics of applying the Jones matrix for real spun fiber  
in analysis and modeling of fiber optic circuits

The Jones matrix representation of real spun fiber can be used to analyze and model systems 
containing such fibers. As a rule, such analysis is aimed at clarifying the effect of imperfection 
of fibers and other polarization elements on the operation of the system as a whole. The models 
obtained within the framework of the Jones formalism usually contain many parameters charac-
terizing polarization mismatches, which must be varied in analytical or numerical calculations. 
Therefore, the obtained expression (10), which is a simple explicit form of the Jones matrix 
of real spun fiber and takes into account the small difference between the polarization eigen-
modes of the fiber and their idealized representation using a small parameter δ, is attractive for 
these calculations.

Matrix (10) contains three parameters: δ, Θ and φ; all of them can affect the transformation of 
the polarization state when light passes through the spun fiber and, as a result, the formation of 
signals in the optical circuit. Therefore, when performing analysis or numerical calculations, it is 
necessary to determine which parameter values to use.

The small parameter δ sets a quantitative measure of the deviation of the real spun fiber from 
the idealized representation. This deviation can be related both to the limited value of the ratio 
Vα/VL, which is provided during the creation of the fiber, and to fluctuations in parameters that 
occur during the manufacture or placement of the fiber. As a result, the specific value of δ for 
real fibers can be difficult to predict. The most appropriate approach for analysis is to determine a 
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certain threshold value of δmax for the fiber in question. Such a value can be obtained by separate 
theoretical consideration of the specific structure of the spun fiber or determined empirically. 
Further, the calculations should consider the effect of mismatches by varying the parameter δ in 
the range from 0 to δmax.

The azimuth of the eigenstates in a certain orientation basis, depending how the spun fiber is 
connected and using which elements, must be generally considered unknown, uncontrolled and 
any possible value of the parameter Θ in the range from 0 to π.

The phase difference of the polarization modes φ, formed when light passes through the fiber, 
also turns out to be a virtually unknown and uncontrolled parameter. Even if the key parameters 
of spun fiber are known, in the case of sufficiently long (several meters or more) spun fiber 
with high birefringence, the phase difference of eigenmodes is difficult to calculate or determine 
precisely; taking into account fluctuations of the parameters and possible significant changes of 
temperature, the value of φ may actually be random in the range from 0 to 2π. Therefore, in the 
analysis and calculations, it should also be varied in the specified range.

As for the phase difference φ, we should make one more important remark. We noted above 
that spun-HiBi fibers are most commonly used in fiber-optic sensors as sensitive elements. The 
most common example of using such fibers are fiber-optic current sensors, where it is assumed 
that due to the Faraday effect, the phase difference in spun fiber wound around a current-carry-
ing conductor changes between two circularly polarized orthogonal modes. Thus, when analyzing 
such schemes, it should be borne in mind that the phase difference φ must also contain a com-
ponent induced by the measured effect. In this case, the non-reciprocal anisotropy induced by 
the measured magnetic field as a consequence of the Faraday effect is circular. If the spun fiber 
corresponded to the idealized representation and was described by the matrix M0 (or M′0), then, 
obviously, during modeling, the phase difference φ should be given as 

φ = φ0 + φ(t),
where φ0 is the quasi-stationary component of the phase difference between circularly polarized 
modes in the fiber.

The value of φ0, as indicated above, can actually be any in the range of 0–2π. But since the 
real spun fiber differs a priori from the idealized representation and the eigenmodes of such 
fiber are not strictly circular, setting the phase difference φ in the form of the above sum will be 
approximate. Such an approximation may be quite acceptable in practice in the analytical study 
and numerical modeling of signals in measuring circuits with spun fiber.

Experimental

To analyze schemes with spun fiber based on the obtained form of the Jones matrix, it is nec-
essary to estimate the possible range of values of the main parameter characterizing the deviation 
of the fiber from the idealized representation, the parameter δ. Such an estimate can be made 
both based on additional studies of fiber anisotropy factors and experimentally. The following are 
the results of experiments that allow us to estimate the parameter δ for specific spun fiber and 
illustrate the analysis presented above.

For measurements, we used the fact that if two polarization modes are excited during propa-
gation through an element with phase anisotropy (for example, through anisotropic optical fiber), 
then when the phase difference φ of the modes changes by 2π, the evolution of the polarization 
state at the output from the element on the Poincaré sphere forms a circle [17, 19]. The change in 
φ leads to the rotation of the sphere around the axis, which is set by the points of the polarization 
eigenstates, and the angular radius R of the circle is determined by the ratio of the amplitudes of 
the polarization modes. Therefore, the experimental formation and detection of such an evolution 
as well as its subsequent analysis with the determination of the parameters Θ0 and ε0 of the center of 
the small circle of the sphere allow to measure the polarization eigenstates of the element. Fig. 2, a, 
b illustrates this approach and provides a diagram of the experimental setup for its implementation.

The key issue determining the possibility of the correct implementation of this approach to mea-
suring the fiber polarization eigenstates is the method of organizing changes in the phase difference 
φ. We used fiber heating for this purpose. Unlike other measures such as longitudinal tension that 
change the optical length of the fiber, heating has a smaller effect on the inner structure of the fiber 
determining its anisotropy. In addition, this method can be used with relatively long fibers.
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However, the measurement approach used has its own specifics.
Firstly, heating the fiber can still lead not only to a change in the phase difference φ. A change 

in temperature, due to various mechanisms, can change the ratio of linear and circular anisotropy 
and transform the nature of its eigenmodes. This should lead to a more complex evolution of 
the polarization state at the fiber output, since the point on the Poincaré sphere will move along 
a circle when both the center of the circle and its radius are changed. The latter is due to the 
fact that if the polarization eigenmodes of the fiber change, then taking into account the fixed 
radiation parameters of the source, the ratio of the excited polarization modes will also change. 
However, the change in the parameter φ with an increase in fiber temperature should occur faster 
than the change in the angular parameters of the eigenmodes. We believe that if a fragment of the 
evolution of the polarization state observed during measurements corresponds well to the small 
circle of the Poincaré sphere, then this allows to estimate the values of ε0 and Θ0 of the polar-
ization eigenstates of the fiber corresponding to this fragment. As a result of the experiment, our 
measurements can show not only the parameters of the eigenmodes of real fiber, but also detect 
their fluctuations when external conditions change.

Secondly, the azimuth of the points recorded by the polarimeter is determined by the position 
of the polarimeter axis, which is set virtually arbitrarily relative to the end of the fiber. Therefore, 
the absolute value of the measured azimuth Θ0 of the polarization mode will not be informative 
(for the second mode, the azimuth will be shifted by π/2). However, when analyzing spun fiber, 
as discussed above, the deviation of the fiber from the idealized representation is characterized 
not by azimuth, but by the imperfection parameter δ, which is related only to how much the 
ellipticity angle of the polarization mode ε0 differs from π/4. However, if the value of Θ0 changes 
during the measurement process, then these changes will indeed characterize changes in their 
polarization eigenmodes.

c)

a) b)

Fig. 2. Schematic of the experiment (a) with inset (c) illustrating the passage of light 
to the input into the tested spun fiber as well as the evolution of the polarization state 

on the Poincaré sphere, recorded during measurements (b) 
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The experiments used spun fiber manufactured by Fibercore (model SHB1500(8.9/125)), the 
length of the test segment was 80 m, the fiber was wound around a standard coil with a diameter 
of 16 cm. The scheme of the radiation source to which the fiber was connected is shown in Fig. 
2,c. A DFB laser from Optilab was used (model DFB 1550 PM-20, wavelength 1550 nm, out-
put power 9.5 MW), which had a fiber output (PM fiber with an APC-type connector). Next, a 
segment of PM fiber of the Bow-Tie type manufactured by Fibercore (model HB1250, the beat 
length of polarization modes is 3.28 mm) was spliced to the laser output via a connector. A short 
fiber segment (approximately 0.82 mm long) was formed at the end of the fiber input, rotated 
45° relative to the axes of the main segment, after which the spun fiber was spliced. This segment 
served as a quarter-wave phase plate.

When linearly polarized radiation passes from the laser output through the PM fiber input 
and the quarter-wave plate rotated by 45°, circularly polarized radiation should be formed, and 
one polarization mode should be excited in it in the idealized representation of the spun fiber. 
However, since the real spun fiber has polarization modes other than circular ones, and the 
formed fiber phase plate is not an ideal quarter-wave, in fact two polarization modes in an 
unequal amplitude ratio were excited in the tested fiber. This exactly corresponded to the condi-
tions required for measurements: it was possible to directly monitor the correspondence of frag-
ments of the evolution of the polarization state to circular trajectories on the Poincaré sphere and 
measure the parameters of the polarization modes of the fiber.

The polarization state was recorded with the Thorlabs polarimeter PAX1000IR2 (USA), which 
allowed measuring the azimuth and elliptical angle of the polarization state with an accuracy of 
0.25°. A collimator was used to connect the fiber to the polarimeter.

During the experiment, the tested fiber was slowly heated to 40 °C (in 50 minutes). The evo-
lution of the recorded polarization state of light at the fiber outlet caused by heating is shown in 
Fig. 3,a. Evidently, the trajectory of the point of the output state of polarization on the Poincaré 
sphere forms many turns covering the pole of the sphere under heating. The radius of the turns 
varies noticeably, and their shape does not always correspond to circles, which is quite under-
standable for the reasons mentioned above.

Nevertheless, many turns in the trajectory of the polarization state correspond well to circles. 
Such fragments illustrate a situation where, with stable polarization eigenstates of the fiber, the 
phase difference φ changes. For example, Fig. 3,b shows three fragments of the observed evolution 
of the polarization state at the output of the spun fiber, which are consistent with the circles on 
the sphere. This can be seen by the correspondence between the points measured by the polarim-
eter and the circles on the sphere approximating these points. Such fragments make it possible to 
determine the parameters of the polarization eigenmodes in a given segment of the trajectory. The 
table shows the values of the circle parameters for the three fragments shown in Fig. 3,b.

a) b)

Fig. 3. Complete evolution of polarization state (a) and fragments of evolution 
I, II and III (b) at the output from the spun fiber, shown on the Poincaré spheres
Solid lines correspond to the approximation of the fragment points by circles on the sphere. 
Points A and C correspond to right circular polarization (ε = 45°) and linear polarization 

along the axis X (Θ = ε = 0), respectively
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Additionally, the measured evolution of the polarization state allows to estimate the average 
normalized temperature sensitivity of the phase difference φ of the polarization modes. This sen-
sitivity was approximately 0.02 rad/(m∙°C).

A change in the value of R (see Table) means that when the parameters of the polarization 
eigenstates change, the ratio of their excitation by radiation at the fiber input also changes. As 
evident from the examples with three fragments of a fixed trajectory on the Poincaré sphere, the 
azimuth Θ0 of the polarization ellipse of its eigenmodes changes most significantly (by almost 20°). 
The ellipticity angle ε0, which characterizes the difference between the fiber and the idealized 
case, varies significantly less. If we convert the value of ε0 into the parameter δ, then, according 
to Table, the average value of δ is approximately 8.3°, and the difference between the maximum 
and minimum values is 2.4°.

Thus, the measurement results indicate for the fiber tested that it is possible to make quite 
definite estimates for the main parameter (δ) characterizing its imperfection and necessary for the 
analysis of optical circuits using the obtained Jones matrix of the spun fiber.

Conclusion

An expression for the Jones matrix of real spun fiber is obtained within the framework of the 
phase anisotropy model. The expression takes into account a slight deviation of the fiber properties 
from the idealized case with polarization eigenstates in the form of right and left circular polar-
izations. For this purpose, a small parameter δ is used, which takes into account the deviation of 
the ellipticity angle of the polarization eigenstate from π/4. The resulting expression can be used 
to describe and analyze optical circuits containing spun-type fibers based on the Jones formalism.

The results of the proposed and conducted experiments on measuring the parameters of the 
polarization eigenstates of the fiber illustrate the deviation of the real spun fiber from the idealized 
representation and show the difference between the polarization eigenstates and circular polariza-
tion. At the same time, measurements for the fiber model used allowed to estimate the value of 
the imperfection parameter δ in the range of about 7°–10°.

Appendix 

 Variability of representation of polarization state  
in the Jones formalism

Although the representation of polarized waves is well-established in the literature and the 
Jones formalism is widely used to describe transformations of the polarization state, unfortunately, 
there are confliciting viewpoints on some details of such a description. In general, the choice of 
certain formulations does not affect the correct result. However, given the importance of these 
features for the material of this paper, it is preferable to clarify some points of the approaches we 
use in order to avoid confusion and possible questions.

The first aspect for which there are conflicting viewpoints in the literature is the accounting 
for phases when constructing Jones vectors and the correspondence of slow and fast polarization 
eigenmodes to the eigenvalues of the Jones matrix.

Consider the polarization eigenmodes of some optical element with phase anisotropy. Let us 
assume for the first mode that the X component of the field at the input to the optical element 
has the form

Tab l e

Parameters of circles approximating the measured fragment points 
of evolution in polarization states on the Poincaré sphere (see Fig. 3,b)

Angular parameter Parameter value, degrees, for fragment 
I II III

Radius R 48.4 36.9 32.8
Azimuth Θ0 2.9 15.7 12.5

Ellipticity angle ε0 37.6 37.3 35.2
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Ex
in = A1cos(ωt + φ0),

where ω, φ0 are the angular frequency and the initial phase of the oscillation.
The Y component with the initial phase shifted by δφ has the form

Ey
in = A2cos(ωt + φ0 + δφ).

Then the Jones eigenvectors J1
in and J2

in (in the Cartesian basis) are written as follows:

1in in 2
1 1

2 1

, .
j

j

A A e
A e A

− δϕ

δϕ

 − 
= =   

   
J J (A1)

The second vector is represented so that it is orthogonal to the first one.
Jones vectors can also include an overall factor exp(jφ0), but it is typically omitted because it 

does not affect the shape and orientation of the polarization ellipse. In such notation, the com-
ponents of the vector contain complex amplitudes, whose arguments are given as initial phases. 
In this case, for the vector J1

in, assuming δφ > 0, it turns out that the X component of the vector 
is delayed relative to the Y component.

Passing through an optical element with phase anisotropy, in the case when polarization-inde-
pendent losses are negligibly small, the eigenmodes acquire only a phase delay, each a different 
one. The first and second modes acquire phase delays Φ1 and Φ2, respectively:

Φ1 = n1L/λ, Φ2 = n2L/λ,
where L is the geometric wavelength of the waves in the optical element; λ is the wavelength of 
light; n1, n2 are the effective refractive indices for polarization eigenmodes.

If we include the average refractive index n and the difference Δn of the form

n = (n1 + n2)/2, Δn = n2 – n1

(Δn characterizes the anisotropy of the element), then the phase delays can be written as

Φ1 = Φ – φ/2, Φ2 = Φ + φ/2,
where Φ = nL/λ, φ = ΔnL/λ.
The value of φ is positive if Δn > 0. In this case, the first mode propagates faster and has a 

lower phase delay, while the second one propagates slower and acquires a greater phase delay. 
Therefore, when φ > 0, it is logical to call the first and second modes "fast" and "slow", respectively.

Taking into account the Cartesian components of the first mode introduced above at the input 
to the optical element, they can be written as

Ex
out = A1cos[ωt + φ0 – (Φ – φ/2)],

Ey
out = A2cos[ωt + φ0 + δφ – (Φ – φ/2)].

Similarly, the components of the second mode at the output of the optical element are 
obtained by adding the terms –(Φ + φ/2) to the phase of the components at the input.

It is easy to prove that if the Jones vectors take into account the initial phases of the field 
oscillations, then the relationship between the input (J1

in, J2
in) and output (J1

out, J2
out) vectors of 

eigenmodes should have the following form:

out in 2 in
1 1 1
out in 2 in
2 2 2

= ;  
= .

j j j

j j j

e e e
e e e

− Φ − Φ ϕ

− Φ − Φ − ϕ

= ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅

J M J J
J M J J

(A2)

The Jones matrix M of the optical element is introduced in (A2), which does not take into 
account the average phase shift and is a special unitary matrix with eigenvalues

λ1 = ejφ/2, λ2 = e–jφ/2.
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It is clear from the above arguments that if φ > 0, then the vectors with eigenvalues λ1 and λ2 
belong to the fast and slow modes of the anisotropic element, respectively.

The described representation of phases in terms of vectors and Jones matrices is widely used in 
textbooks, monographs and articles [16, 17, 21]. However, an alternative approach to constructing 
phases in terms of vectors and Jones matrices can also be found in the literature [19]. It is based 
on the representation of a harmonic wave propagating along the z axis with the wavenumber k in 
terms of the function cos(ωt – kz). Then the phase shift of the wave relative to the zero initial phase 
can be interpreted as a phase delay due to the passage of a certain path. It is not the initial phases 
that are taken into account in the notation for the vectors and Jones matrices, but phase delays, 
i.e., negative changes in the initial phases are taken into account as positive delays and vice versa.

In this representation, the same Ex
in and Ey

in can be written as

Ex
in = A1cos[ωt –(–φ0)], Ey

in = A2cos[ωt – (–φ0 – δφ)],
where the phase delays are now given in parentheses.
In this case, the vectors J1

in and J2
in are already written as

1in in 2
1 2

2 1

, .
j

j

A A e
A e A

δϕ

− δϕ

 − 
= =   

   
J J (A3)

If it is necessary to take into account the phase φ0, then the overall phase factor exp (–jφ0) 
must be included into Eq. (A3). The components Ex

out and Ey
out also do not change, but the output 

vectors are now represented as

out in 2 in
1 1 1
out in 2 in
2 2 2

= ; 
= .

j j j

j j j

e e e
e e e

Φ Φ − ϕ

Φ Φ ϕ

= ⋅ ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅

J M J J
J M J J

(A4)

Here, the optical element with phase anisotropy is also represented by a special unitary matrix 
M with the same eigenvalues ejφ/2 and e–jφ/2. However, in this representation, a vector with an 
eigenvalue λ1 = ejφ/2 corresponds to a slow mode, and a vector with an eigenvalue λ2 = e–jφ/2 cor-
responds to a fast mode (at φ > 0).

In this paper, we adhere to the first case of the representation of Jones vectors, when they take 
into account the initial phases of Cartesian components, rather than phase delays.

The second aspect on which there are conflicting viewpoints in the literature is the definition 
of polarized waves with right and left directions of rotation of the electric field intensity vector.

Most textbooks and monographs [16, 22, 23] define a right-polarized wave as the one where 
the electric field strength vector rotates clockwise if looking towards the direction of wave prop-
agation. Accordingly, the left-polarized wave has a counterclockwise rotation of the electric field 
intensity vector. In this article, we adhere to this definition. However, an equally valid opposing 
opinion can be found in the literature for the definition of right- and left-polarized waves [21].

The third aspect important for this paper is the way Jones vectors are written for right and left 
circular polarizations.

In accordance with the definition of right- and left-polarized waves, which we adhere to, it 
is not difficult to verify the following. For the right circular polarization, the component Ex is 
delayed relative to the component Ey by π/2. For example, when Ex = Acos(ωt + φ0), the right 
circular polarization is followed by Ey = –Asin(ωt + φ0). Consequently, the initial phase of the 
Y component is additionally increased by π/2. For the left circular polarization, on the contrary, 
the component Ey is delayed relative to the component Ex. Therefore, taking into account all 
the conditions we adopted, the Jones vectors for the right and left circular polarizations will be 
described by vectors (2).

Nevertheless, it is important to note that the comparison of Jones vectors (2) with right and left 
circular polarizations by some researchers in the available literature may be the opposite, due to 
differences in the adopted notations for the phases in terms of Jones vectors and matrices, as well 
as definitions of right- and left-polarized light. For example, in [21], the use of an alternative vari-
ant of vectors is associated with an alternative definition of the names of the direction of rotation, 
and in [19] it is associated with an alternative representation of Jones vectors using phase delays.
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теорема 4.2] и [3, теорема 3]). 

Ключевые слова: неподвижная точка, ортогональное обобщенное E-слабосжимаемое 
отображение, ортогональное метрическое пространство, хаусдорфово топологическое 
пространство, τ-расстояние

Ссылка для цитирования: Туай Ю., Джайд А., Аль-Мутавакиль Д. Теоремы о 
неподвижной точке на ортогональных метрических пространствах, доказанные с 
помощью понятия τ-расстояния // Научно-технические ведомости СПбГПУ. Физико-
математические науки. 2023. Т. 16. № 4. С. 215–223. DOI: https://doi.org/10.18721/ 
JPM.16417

MATHEMATICS

St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2023. Vol. 16. No. 4
Научно-технические ведомости СПбГПУ. Физико-математические науки. 16 (4) 2023

© Touail Y., Jaid A., El Moutawakil D., 2023. Published by Peter the Great St. Petersburg Polytechnic University.



St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2023. Vol. 16. No. 4

216

© Туай Ю., Джайд А., Аль-Мутавакиль Д., 2023. Издатель: Санкт-Петербургский политехнический университет 

Петра Великого.

Статья открытого доступа, распространяемая по лицензии CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/)

Introduction
In 2003, M. Aamri and D. El Moutawakil [1] introduced the concept of τ-distance in general 

topological spaces. This innovation has extended a lot of ideas about known spaces presented in 
the literature. Moreover, these scientists proved a version of the Banach’s fixed point theorem for 
this general setting.

In 2017, M. E. Gordji et al. [2] defined so-called orthogonal metric spaces as a generalization 
of the metric spaces. The authors showed in Ref. [2] that this type of spaces is very powerful and 
applicable to many cases, such as the fixed point theory. Then an important extension of Banach’s 
fixed point theorem was given.

Without using the compactness of the space, the author of Ref. [6] put forward some fixed 
point theorems for new classes of mappings via τ-distance in general topological spaces (some 
related results can be found in Refs. [3 – 5, 7]). 

In this paper, motivated by Refs. [2, 6], we extend some results proven in Ref. [6]; in other 
words, we will restrict our studies to the orthogonal elements only, in order to prove the fixed 
point property for a large class of contractive mappings. Our results will be based specially on 
some essential notions like orthogonality, τ-distances in the general topological spaces. Some 
important examples will also be given to support the proven theorems and to show the usability 
of this new direction of research.

Preliminaries

The aim of this section is to present some concepts and known results used in the paper.
Let (X, τ) be a topological space and p: X × X → [0, +∞) be a function. For any ε > 0 and any 

,x X∈  let Bp(x, ε) = {y ε X / p(x, y) < ε}.
Definition I [1, definition 2.1]. The function p is said to be τ-distance if there exists ε > 0 for 

each x X∈  and any neighborhood V of x, such that ( ), .pB x Vε ⊂
Definition II. In a Hausdorff topological space X, a sequence {xn} is said to be a p-Cau-

chy sequence if it satisfies the usual metric condition with respect to p; in other words, if  
limn,m→∞p(xn, xm) = 0.

Definition III [1, definition 3.1]. Let (X, τ) be a topological space with a τ-distance p.
1. X is S-complete if there exists x in X for every p-Cauchy sequence (xn), such that lim  

p(x, xn) = 0.
2. X is considered p-Cauchy complete if there exists x in X for every p-Cauchy sequence (xn), 

such that lim xn = x with respect to τ.
3. X is said to be p-bounded if sup{p(x, y) / x, y  X} < ∞.
Lemma 1 [1, lemma 3.1]. Let (X, τ) be a Hausdorff topological space with a τ-distance p, then
1) p (x, y) = 0 implies x = y.
2) Let (xn) be a sequence in X such that lim p(x, xn)= 0 and lim p(y, xn)= 0, then x = y.
Lemma 1 was proved in Ref. [1].
Definition IV. [1, definition 2.5]). Ψ is the class of all functions ψ from [0, +∞) to [0, +∞) 

satisfying:
i) ψ is nondecreasing,
ii) lim ψn(t) = 0 for all t  [0, +∞).
Definition V. Φ is the class of all functions  from [1, +∞) to [0, +∞) satisfying:
i) (t) = 0 if and only if t = 1,
ii) inf t > 1(t) = 0.
Theorem 1. [1, theorem 4.1]. Let (X, τ) be a Hausdorff topological space with a τ-distance p. 

Suppose that X is p-bounded and S-complete. Let T be a selfmapping of X such that

( ) ( )( ), , ,p Tx Ty p x y≤ φ
 

for all x, y  X. Then T has a unique fixed point.
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Theorem 1 was proved in Ref. [1].
Theorem 2 [6]. Let (X, τ) be a Hausdorff topological space with a τ-distance p. Suppose that X is 

p-bounded and S-complete. Let T be a p-continuous selfmapping of X such that

( ) ( ){ ( ) ( )}( ), max , , , , , ,p Tx Ty p x y p x Tx p y Ty≤ φ                         (1)

for all x, y  X. Then T has a unique fixed point.
Theorem 2 was proved in Ref. [6].
Theorem 3 [6]. Let T: X → X be a generalized E-weakly contractive mapping of a bounded com-

plete metric space (X, d). Then T has a unique fixed point.
Theorem 3 was proved in Ref. [6].
Theorem 4 [6]. Let T: X → X be a mapping of a bounded complete metric space (X, d) such that

( ){{ ( ) ( )} ( )}inf max , , , , , , 0.x y d x y d x Tx d y Ty d Tx Ty≠ ∈Χ − >                  (2)

Then T has a unique fixed point.
Theorem 4 was proved in Ref. [6].
Now we recall the definition of an orthogonal set and some related basic notions.
Definition VI [2]. Let X ≠  and let  X × X be a binary relation. If  satisfies the 

following hypothesis:
( ) ( )0 0 0: ,    or ,  ,x y y x y x y∃ ∀ ⊥ ∀ ⊥                                     (3)

then it called an orthogonal set (briefly O-set); we denote this O-set by (X, ).
Note that x0 is said to be an orthogonal element in the Definition VI.
Remark. In general, x0 is not unique, otherwise, (X, ) is called unique orthogonal set and the 

element x0 is said to be a unique orthogonal element.
Definition VII [2]. Let(X, ) be an O-set. A sequence {xn} is called an orthogonal sequence 

(briefly, O-sequence) if

( ) ( )1 1, or , .n n n nn x x n x x+ +∀ ⊥ ∀ ⊥  

Definition VIII [2]. The triplet (X, , d) is called an orthogonal metric space if (X, d) is a 
metric space and (X, ) is the O-set.

Definition IX [2]. Let (X, , d) be an orthogonal metric space. Then, a mapping T: X → X 
is said to be orthogonally continuous (briefly -continuous) in x  X, if for each O-sequence  
{xn}  X such that xn → x as n → ∞, we obtain Txn → Tx as n → ∞. T is said to be -continuous 
on X if T is -continuous in each x  X as well.

Definition X [2]. Let (X, , d) be an orthogonal metric space. Then, X is said to be orthogo-
nally complete (or -complete) if every Cauchy O-sequence is convergent.

Definition XI [2]. Let (X, ) be the O-set. A mapping T: X → X is said to be -preserving if 
Tx  Ty whenever x  y. 

Remark [2]. Every complete metric space (continuous mapping) is O-complete metric space 
(-continuous mapping) and the converse is not true.

Theorem 5 [2]. Let (X, , d) O-complete metric space and T a self-mapping on X which is 
-preserving and -continuous. If there exists k  [0.1) such that for all x, y  X 

x  y implies d(Tx, Ty)  kd (x, y).
Then T has a unique fixed point. 
Theorem 5 was proved in Ref. [2].
Now, we give some examples of orthogonal spaces.
Example 1 [2]. Let X = Z. Define the binary relation  on X by m  n if there exists k  Z 

such that m = kn. It is easy to see that 0  n for all n  Z. Hence, (X, ) is the O-set.
Example 2 [2]. Let X be an inner product space with the inner product. Define the binary 

relation  on X by x  y if (x, y) = 0. It is easy to see that 0  x for all x  X. Hence, (X, ) is 
the O-set.

For more details, we refer the reader to see Ref. [2].
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Main results

In this section, we start with some definitions and lemmas.
Definition XII. The triplet (X, , d) is called an orthogonal Hausdorff topological space with 

a τ-distance p if (X, τ) is a Hausdorff topological space with a τ-distance p and (X, ) is an 
orthogonal set.

Definition XIII. Let (X, τ) be a topological space with a τ-distance p. Then T: X → X is 
said to be orthogonal p-continuous at x  X if we have   for any orthogonal {xn}  X such that  
limp(x, xn) = 0.

Lemma 2. Let (X, , d) be an orthogonal Hausdorff topological space with a τ-distance p such 
that p(x, x) = 0 for all x  X. Suppose that X is p-bounded and S-complete. Let T be a -continuous 
and -preserving self-mapping of X such that x  y implies

( ) ( ){ ( ) ( )}( ), max , , , , ,p Tx Ty p x y p x Tx p y Ty≤ φ                        (4)

for all x, y  X, where   Φ. Then  has a unique fixed point.
Proo f . Since X is an orthogonal set, there exists at least x0  X such that

( ) ( )0 0,    or ,  .y y x y x y∀ ⊥ ∀ ⊥                                         (5)

This implies that x0  Tx0 or Tx0  x0 Consider the iterated sequence {xn} such that  
xn = Tnx0 for all n  N. As T is a -preserving, we obtain either 1

0 0
n nT x T x+⊥  or 1

0 0
n nT x T x+ ⊥  

for all n  N. Then {xn} is an O-sequence.
Let n  N 

( ) ( ) ( ) ( ){ }( )
( ) ( ){ }( )

1 1 1 2

1

1 2

1 2

max , , , , ,

m .ax , ; ,

, n n nn n n n

n n

n

n n

p x x p x x p x

p

p

p x x

x x

x x

x+ + + +

+ + +

+ +≤ φ ≤

≤ φ
 

If there exists n  N for which 
0 0 0 01 1 2( , ) ( , ),n n n np x x p x x+ + +<  then 

0 0 0 01 2 1 2( , ) ( , ),n n n np x x p x x+ + + +<  
this leads to contradiction.

Then 1 2 1( , ) ( , )n n n np x x p x x+ + +<  for all n  N which implies that

( ) ( )( )1 2 1, ,,n n n np x x x xp+ + +< φ                                       (6)
for every n  N.

Now, let n, m  N, we obtain from formula (5) x0  xn or xn  x0, using the fact that T is 
-preserving, we get xn  xn+m or xn+m  xn, which implies by inequality (6) that

( ) ( )
( ) ( ) ( ){ }( )

( ) ( ){ }( )
( ) ( ){ }( ) ( )( ){ }( )

( ) ( ){ }( )

( ) ( ){ }( )
( )

1 1 1 1

1 1 1

2 2 2 1 2 1

2 2 2 1

1

1

0 0

1

2

max , , , , ,

max , ,

, ,

,

 ,

max max , , , , ,

max , , ,

max , , ,

n n m n n n m n m

n n m n n

n n m n n

n

n n m n n

n n

n

n
m

m

m n n

n

p

p x x p x x p x x

p x x p x x

p x x p x x p x x

p x x p x x

x

x x p x

p x

M

x

x

p x

− + − −

−

+ − +

− + − −

− + − − − − −

− + − −

−

−

+ +

φ

= Τ Τ ≤

≤ φ ≤

≤ φ ≤

≤ φ ≤

≤ φ ≤

≤ φ ≤

≤ φ

φ



            (7)

where M = sup{p(x, y) / x, y  X}. 
Letting n → ∞ in formula (7), we deduce that {xn} is an orthogonal p-Cauchy sequence. Since 

X is an orthogonal S-complete space, there exists u  X such that lim p(u, xn) = 0.
On the other side, the orthogonal p-continuity of the mapping T implies that 

( ) ( )lim , lim , 0.n np Tu Tx p u x= =  
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Therefore, Lemma 1 then gives Tu = u.
For uniqueness, let v  X a fixed point of T, hence we have either x0  v or v  x0. From the 

orthogonality preserving, we get xn  v or v  xn, for all n  N. So,

( ) ( ) ( )}{( )1 1, max , , , ;n n n np v x p v x p x x− +≤ φ  
then, 

( ) ( ) ( ){ }( )0 0 1, max , , ,  .n
np v x p v x p x x≤ φ                                  (8)

Using Lemma 1 and letting n → ∞ in the inequality (8), we obtain: u = v.
Note that the inequality p(Tx, Ty)   (p(x, y)) implies that T is p-continuous. 
Lemma 2 is proved.
Corollary. Let (X, τ) be a Hausdorff topological space with a τ-distance p. Suppose that X is 

p-bounded and S-complete. Let T be a p-continuous self-mapping of X such that

( ) ( ) ( ) ( ){ }( ), max , , , , , , p Tx Ty p x y p x Tx p y Ty≤ φ                        (9)

for all x, y  X, where   Φ.
Then T has a unique fixed point.
Lemma 3. Let (X, d) be a metric space and p from X × X to [0, +∞) be a function defined by

( ) ( );,  1.d x yp x y e= −                                             (10)

Then p is a τd-distance on X where τd is the metric topology.
Proo f . Let (X, τd) be the topological space with the metric topology τd, let x  X and V be 

an arbitrary neighborhood of x, then there exists ε  0 such that Bd(x, ε)  V, where 

( ) ( ){ } ,   , ,   dB x y X d x yε = ∈ <ε  

is the open ball. It is easy to see that Bp(x, eε –1)  Bd(x, ε), indeed:
let y  Bp(x, ed –1), then p(x, y)  eε – 1, which implies that ed(x, y)  eε, and hence d(x, y)  ε. 
Lemma 3 is proved.
Theorem 6. Let (X, d, ) be an orthogonal metric space and T: X → X be a mapping such that

( ) ( ) ( ){ } ( ){ },inf max , , , , , , 0. x y x y d x y d x Tx d y Ty d Tx Ty⊥ ≠ − >               (11)

Then T has a unique fixed point.

Proo f . Let ( ) ( ) ( ){ } ( ){ }, max , , , , , , ,x y x yinf d x y d x Tx d y Ty d Tx Ty⊥ ≠α = −  

then for all x ≠ y  X, with x  y, we have

( ) ( ) ( ) ( ){ }, max , , , , , ,d Tx Ty d x y d x Tx d y Ty≤ − α  
hence

( ) ( ) ( ) ( ){ }max , , , , ,, ,d x y d x Tx d y Tyd Tx Tye ke≤                                  (12)
where k = e–α  1.

Moreover, x  y implies

( ) ( ) ( ) ( ){ } , max , , , , , ,  p Tx Ty k p x y p x Tx p y Ty≤                         (13)

for all x, y  X, where

( ) ( );,  1d x yp x y e= −  

is the function mentioned in the formulation of Lemma 3, and by the inequality (13) T is an 
orthogonal p-continuous mapping. We also have p(x, x) = 0 for all x  X.

Now, using Lemma 2 by taking (t) = kt for all t  [0, +∞), we deduce from the inequality 
(13) that T has a unique fixed point.
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Theorem 6 is proved.
Corollary [6]. Let T: X → X be a mapping of a bounded complete metric space (X, d) such that

( ) ( ) ( ){ } ( ){ }inf max , , , , , , 0.x y d x y d x Tx d y Ty d Tx Ty≠ − >                 (14)

Then T has a unique fixed point.
Example 3. Let X = {–1, 0}[1, 2] be equipped with the usual metric d(x, y) = |x – y|. Suppose 

that x  y if and only if xy  {–1, 0}; it is easy to see that (X, ) is an O-set. Let us define  
T: X → X by the following conditions:

{ }0,   1, 0 ,

32 ,   1,   ,
2

3,    , 2 .
2 2

if x

Tx x if x

x if x


 ∈ −

  = ∈   
  ∈   

 

Then T satisfies all conditions of Theorem 6 and 0 is the unique fixed point. Note that T does 
not satisfy all conditions (14) given by Corollary of Theorem 6; indeed,

( ) ( ) ( ){ } ( )max 0, 1 , 0, 0 , 1, 1 0, 1  1.d d T d T d T T− =−  

As applications of Theorem 6 we get a result for a new class of weakly contractive maps defined 
as follows.

Definition XIV. Let T: X → X be a mapping of a metric space (X, d), T will be said an orthog-
onal generalized E-weakly contractive map if x  y implies

( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }( )

, max , , , , ,

1 max , , , , , ,

d Tx Ty d x y d x Tx d y Ty

d x y d x Tx d y Ty

≤ −

−φ +
                         (15)

for all x, y  X, where   Φ is a function for which the equality (1) = 0 and inequality 
inft1(t) > 0 hold. 

Theorem 7. Let T: X → X be an orthogonal generalized E-weakly contractive mapping of a 
bounded orthogonal complete metric space (X, d, ). Then T has a unique fixed point.

Proo f . Let x ≠ y  X and x  y, then from Definition XIV, we have

( ) ( ) ( ) ( ){ }( )
( ) ( ) ( ){ } ( )

10  inf   1 max , , , , ,

max , , , , , , ,

t t d x y d x Tx d y Ty

d x y d x Tx d y Ty d Tx Ty

>< φ ≤φ + ≤

≤ −  

and hence

( ) ( ) ( ){ } ( ){ },inf max , , , , , , 0. x y x y d x y d x Tx d y Ty d Tx Ty⊥ ≠ − >  

According to Theorem 6, T has a unique fixed point in X.
Theorem 7 is proved.
Corollary [6]. Let T: X → X be an orthogonal generalized E-weakly contractive mapping of a 

bounded orthogonal complete metric space (X, d, ). Then T has a unique fixed point.
Example 4. Let X = {0, 1, 2, 3} endowed with the usual metric d(x, y) = |x  y|. Consider the 

mapping T: X → X defined as T0 = 0 = T1, T2 = 3 and T3 = 2.
Define a relation  on X by

x  y if and only if xy  1. 
Then x  y implies 
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( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }( )

, max , , , , ,

1 max , , , , , ,

d Tx Ty d x y d x Tx d y Ty

d x y d x Tx d y Ty

≤ −

−φ +
 

where   Φ is a function defined by

( ) 0,   1,
1,   1.

if t
t

if t
 =

φ = 
>

 

Therefore, all conditions of Theorem 7 are satisfied, and so T has the unique fixed point 0. 
On the other hand, since 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ }( )

2, 3 1 0 max 2, 3 , 2, 2 , 3, 3

1 max 2, 3 , 2, 2 , 3, 3 ,

d T T d d T d T

d d T d T

= > = −

−φ +
 

the Corollary of Theorem 7 does not ensure the existence of the fixed point.

Summary and an open problem

We have established a fixed point for a new class of contractive mappings as an extension of 
some results (see Refs. [6, Theorem 4.2] and [3, Theorem 3]). This study was carried out only for 
orthogonal elements. In light of this, an open problem remains for interested researchers: whether 
we can generalize these results to “generalized orthogonal sets”. For more details on this topic 
see Refs. [8, 9].
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