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The relaxation processes in the high impact polystyrene (HIPS) films filled with 2, 4,
6 vol.% of titanium dioxide (TiO,) of the rutile modification have been studied using the ther-
mally stimulated depolarization current (TSDC) technique. Three relaxation processes were
observed in the composite HIPS films. The first one (a-relaxation peak) appeared at about
93 °C and represented the glass transition. The second peak p was a high-temperature part of
the first one and overlapped it. The p peak was caused by the release and subsequent motion of
excess charges deposited during the electret preparation or the polarization process. The third
peak appeared at about 150 °C and occurred only in the spectra of the composite films. The
overlapping peaks were separated by the thermal cleaning technique. The subsequent applica-
tion of the numerical methods (the Tikhonov regularization technique) allowed to determine
the activation energy of the second process and to compare the obtained value with the corre-
sponding data on the dielectric relaxation.
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TEPMOAKTUBALIMOHHASA CNEKTPOCKOINUA
KOMMO3UTHbLIX MOJIMMEPHbIX MNJIEHOK HA OCHOBE
YOAPOINMPO4YHOIO NMNOJINCTUPOJIA

A.A. T'ynakoBa', I0.A. TopoxoBamckuti', M.®. TanuxaHoB?, 1. ®pobuHa?

1 POCCUCKNI rOCYAAPCTBEHHDBIV Nefarormyecknii YHUBEPCUTET UM. A .
lepueHa, CaHkT-MNeTepbypr, Poccuitickas denepaums;
2 Ka3aHCKMI HauMoHanbHbIN UCCnefoBaTeNlbCKUA TEXHONOMMYECKUI YHUBEPCUTET,

r. KasaHb, Pecnybnuka TatapctaH, Poccuiickast degepaums;
3 MoTcaamckuii yHuBepeuTeT, . MoTcaam, FepmaHus

C mnoMollpl0 MeToIa TOKOB TepMOCTHMYyJIupoBaHHOU nenonsipuzauuu (TCH) wuccre-
JIOBaHbl pejlaKCallMOHHbIE IPOLIECChl B IUIEHKax yaapornpouyHoro nosauctuposa (YIIC) 6e3
HAIOJIHUTENIA M C Pas3MYHBbIM cozjepXaHueM auokcuaa tutana TiO, (2, 4, 6 00.%). Ha
KpuBBIX Toka TCJI, MOJXy4eHHBIX IS KOMITO3UTHEIX TIJICHOK, OOHapy:keHo Tpu Tmka. Ilep-
BB (0-peflakcallvisi) BO3HMKAeT mpu Temireparype okoyso 93 °C M COOTBETCTBYET IIEpEeXOmy
BELIECTBA U3 CTEKIOOOPA3HOTO COCTOSIHMS B BHICOKOIJIACTHUECKOE. BTopoil (p-muK) mosiBis-
€TCsI KaK BBICOKOTEMIIEpaTypHOE IUIEUO O-IMKa M COOTBETCTBYET MPOLIECCY BHICBOOOXICHMS U



JBVXKEHUSI M30BITOUHBIX HOCUTEIeH 3apsaa. Haanuue TpeTbero nuka mnpu TeMmiepatype 0KoJio
150 °C xapakTepHO TOJBKO AJIs1 KOMITO3UTHBIX TieHOK YIIC. Pa3zneneHue nepekpbiBalOIUXcs
0- U p-TIMKOB MPOBEIEHO METOJAOM YaCTUYHON TepMoouucTKu. [locienytoiee npuMeHeHMUe
PEeryIsIpU3YIOIINX aJITOPUTMOB THXOHOBA ITO3BOJIMIIO OINPEICUTh SHEPTUIO aKTHUBAIIUM BTO-
poro mpoilecca M CpaBHUTH IMOJYYEHHOE 3HAUEHUE C Pe3yJIbTaTOM, IMOJYYEHHBIM METOI0M
IU3JICKTPUIECKOM CIIEKTPOCKOITIH.

KioueBbie ciioBa:
IUOKCHUI TUTaHa
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Introduction

The thermally stimulated depolarisation
current (TSDC) technique is commonly
used for the investigation of charge carrier
relaxation in dielectrics. It is widely applied as
a complement to the frequency domain and the
time domain dielectric spectroscopy.

The basic experiment includes two main
steps:

the first one is that sample material is po-
larised in a D.C. field £ for a time ¢ at a
high temperature 7 . At this temperatur@ par-
ticular dipolar units or charge carriers are free
to move, the former orient in the field and the
latter drive towards the electrodes or internal
boundaries in heterogeneous materials forming
a space charge;

the second one is that the sample is shorted
at a low temperature. Under this condition the
relaxation times of the species of interest are
much longer than the measuring time, and fi-
nally it is linearly heated, while the depolar-
isation current is recorded. During the heat-
ing, oriented dipolar units turn back to their
equilibrium position and accumulated charge
carriers return to a uniform distribution. Due
to thermal stimulation, the polarisation decay
is more and more accelerated [1 — 3].

A TSDC measurement corresponds to a
loss-versus-temperature measurement at a
very low equivalent frequency of 1072 to 1073
Hz [4]. Here, an attempt is made for a more
detailed description of the relaxation processes
in the composite high-impact polystyrene
films by means of the thermally stimulated
depolarization currents (TSDC) method.

Experimental details
High impact polystyrene (HIPS-0801,
GOST (Russian State Standard) 28250-89E)
without filler as well as composite HIPS films

were used in the present study. HIPS contains
4 to 6 % butadiene rubber, the butadiene rubber
particles form agglomerates from 0.1 to 1 pm in
size, and they are embedded in the polystyrene
matrix [5].

Titanium dioxide (TiO,) powder of the
rutile modification (R-01, GOST 9808-65,
specific surface area is 15 m?/g, particle size
is from 0.1 to 0.8 um) was used as a filler.
Mixing of HIPS and TiO, was performed
using a laboratory rolling miﬁ under heating at
(175 £ 5) °C for 3 min. Films of pure HIPS
as well as HIPS with TiO, contents of 2, 4,
6 vol.% were manufactured by melt pressing
according to GOST 12019-66 at (170 = 5) °C
for 5 min. The films with thicknesses ranging
from 350 to 450 um were investigated.

For electrical measurements, circular
aluminum electrodes (12 mm in diameter,
about 50 nm thick) were evaporated onto both
sides of the films.

Thermally stimulated depolarization
currents (TSDC) were recorded with a Keithley
model 5617 electrometer and the Novocontrol
QUATRO cryosystem. TSDC measurements
(heating rate was 2.8 K/min) were performed
after poling with the field Ep = 0.67-10° V/m
at 7 = 110 °C for ¢ = 10 min, subsequent
rapié? cooling to room temperature and short-
circuiting.

Experimental results

TSDC thermograms of unfilled HIPS and
HIPS with 2 and 4 vol.% TiO, are shown
in Fig. 1. Three peaks could be observed for
composite HIPS films. The o peak appears at
about 93 °C and denotes the glass transition
[6, 7]. The second p peak is caused by the
release and subsequent motion of excess charges
deposited during the electret preparation or the
polarization process [3]. It is a high-temperature

5
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part of the o peak and overlaps it. The third
peak appeared at about 150 °C occurs only in
the composite films.

In order to separate the a and p peaks the
peak-cleaning technique was applied according
to the following procedure: after passing the
first peak the heating was interrupted. Then,
the sample was quickly cooled down followed
by a second heating where only the response of
the second process was expected [6].

The results of the peak-cleaning technique
applied to the pure HIPS samples with an
attempt to separate the o relaxation (related

0.0

>

to the glass transition) and the higher-
temperature relaxation process is shown in Fig.
2 (blue curves). Fig. 3 represents the results for
composite HIPS films with 4 vol.% of TiO,.

Current, 103 A Temperature, °C

After the p peak was separated from the o
peak, the activation energy E_for the p peak
was determined using the Tikhonov regulariza-
tion technique [8, 9]. For this purpose, the TSe
DC measurement was performed for two dif-
ferent heating rates under identical conditions
for composite HIPS films with 4 vol.% of TiO,
(Fig. 4).

-6.0

Current, 107 A

-30

-10
60

g0

100 120 140 160

Temperature, °C

Fig. 1. Thermally stimulated depolarization current (TSDC) spectra of pure HIPS (/) as well as of
the HIPS with 2 (2) and 4 (4) vol.% of TiO, (heating rate p = 3 K/min);
Tg is the glass transition temperature

Current, 1007 A

5.0 1 1 1

Tg

20 40 60 80

1 1 1 1
100 120 140 160

Temperature, °C

Fig. 2. The peak cleaning technique (blue curves) applied to the pure HIPS samples
(heating rate p = 3 K/min) and shown together with the initial TSDC spectrum (a green curve)
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This method allows one to obtain information
about values of the activation energy £ and
the effective frequency factor o, The energy
distribution G(E) was calculated from the
current density J(7). The determination of
the distribution function G(E) using the
experimental TSDC curves represents the ill-
posed problem and could be solved by means
of numerical calculations (here the Tikhonov
regularization technique was used) [8, 9].

The effective frequency factor @, was varied

until the peak positions of the energy distribu-
tion functions G(E) coincide. This procedure
was the criterion for the correct choice of the
effective frequency factor @ . The calculated ac-
tivation energy value yields £, = 1.10 £ 0.05 eV
for the composite HIPS films with 4, 6 vol.%
(Figs. 5 and 6). This value was in a good agree-
ment with the activation energy calculated by
means of the dielectric relaxation spectroscopy
(DRS). At temperatures from 105 to 130 °C the
activation energy of 1.1 eV was found [6, 10].

0.0 T T T

Current. 1005 A

50

80k

Te

20 40 60

80

100 120 140 160

Temperature, °C

Fig. 3. The peak cleaning technique (blue curves) applied to the HIPS samples with 4 vol.% of TiO,
(heating rate p = 3 K/min) and shown together with the initial TSDC spectra (a green curve)

a)
<
'S
é.
@
=
=
@]
T,
-35¢ L I 1 gu- 1 L 1 L ]
20 40 60 80 100 120 140 160 180

Temperature, °C

b)

0.0
10f
20f
30l
40l

sol

Current, 105 A

-6.0
T0k
-8.0

T
a0 PR I TR | 1 £
0

60 B0 100 120 140 160 1

Temperature, °C

Fig. 4. Thermally stimulated depolarization current (TSDC) spectra (both curves) of the HIPS with 4
vol.% of TiO, for two different heating rates f: 1 K/min (a) and 3 K/min (b);
curves I show the a peaks obtained before (see explanation in the text)

80
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Fig. 5. Determination of the activation energy by Fig. 6. The data similar to those shown in Fig. 5

means of the Tikhonov regularization technique
for HIPS with 4 vol.% of TiO, using TSDC curves
for 2 heating rates B, K/min: 1.0 (/) and 2.8 (2);
o, is the obtained effective frequency factor;
E =1.05=%0.05eV

a

Summary

Three relaxation peak processes have been
observed in composite HIPS films with TiO,
inclusions using the TSDC method:

(i) the a peak at about 93 °C which denotes
the glass transition;

(i) the p peak appears as the high-
temperature side of the a peak;

(iii) the peak at about 150 °C for composite
HIPS films.

The peak-cleaning

technique allowed

but for HIPS with 6 vol.% of TiO,;
E =1.10£0.03 eV

a

separating the two (a and p) superimposed
peaks. The Tikhonov regularization
technique was applied in order to determine
the activation energy for the p peak:

E =1.10£0.05eV

for HIPS films with 4 and 6 vol.% of TiO,.
The process with the same activation en-
ergy of 1.1 eV has been determined by means

of the dielectric relaxation spectroscopy
(DRS).
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Introduction

Ferroelectric ~ composites are  the
focus of considerable attention because
heterogeneous materials can exhibit unusual
properties compared to homogeneous
substances. According to theoretical
models, the ferroelectric state is induced
by dipole-dipole interaction, allowing to
explain the domain structure and the effect
of polar impurities on the properties of
crystals [1—3]. It was established in [2,
3] that introducing polar impurities to
highly polarized matrices can cause the
ferroelectric state to appear. In contrast to
crystals and solid solutions, polar particles
in composites are located at distances of
the order of several microns; this brings
the question how electrical interactions
manifest in such structures.

A number of studies considered the mu-
tual influence of components in ferroelectric
composites (see, for example, [4—7] and the
references therein), finding that such influ-
ence is possible for these objects. An ex-
tended temperature range was observed for
the ferroelectric phase of potassium nitrate
in composites such as (KNO,) _ /(BaTiO,) ,
(KNO,),_ /(KNbO,) [4, 5]. The interaction
effect led to extended temperature range of
incommensurate phase of sodium nitrite in
the (NaNO,),_ /(BaTiO,) composite [6]. A
substantial shift in the Curie temperature
was found in [7] for the AgNa(NO,), com-
pound in the [AgNa(NO,),]| ,/[BaTiO,],,
composite.

A series of organic compounds with a
polar point group at room temperature
and relatively high melting point (around
177°C) were discovered recently. Such ferh
roelectrics include diisopropylammonium
chloride (CH,,NCIl, DIPAC) with P = 8.2
puC/cm?, T = 167°C [8]; diisopropylammoe
nium bromide (CH NBr, DIPAB) with
P =23 pC/em?, T = 153°C [9]; diisopro-
pylammonium iodide (CH NI, DIPAI)
with P, = 5.17 uC/cm?, T_ = 105°C [10].
In particular, DIPAB has spontaneous po-
larization close to barium titanate, a high
Curie temperature and exhibits good piezo-
electric response. These properties make it
an alternative to perovskite-like ferroelec-
trics and ferroelectric polymers.

This study considers the effect of PbTiO,
particles on the temperatures of phase tran-
sitions and dielectric properties of the
(CH NBr),_ /(PbTiO,) composite.

Condensed matter physics >

Samples and experimental procedure

The CH (NBr compound can exist at
room temperature in two different poly-
morphic phases: with spatial symmetry P2,
or P222, depending on the conditions
in which it was obtained and the thermal
history [10]. Monoclinic phase P2 is fer-
roelectric, transforming into the nonpo-
lar phase P2,/m at temperatures above T,
~ 152°C. The ferroelectric transition in
CH (NBr is a transition of the first kind.
The second phase, stable at room tem-
perature, has orthorhombic symmetry with
space group P22 2and is not an active
ferroelectric phase; it is also transformed
to nonpolar monoclinic phase P2,/m un-
der heating, but with an intermediate po-
lar structure with symmetry P2, existing in
the range from about 148 to 152°C. The
structure of C.H NBr changes immediately
from P2 /m to P2, under cooling at 145°C,
and the rhombic phase no longer forms.

Diisopropylammonium bromide in our
study was obtained as a product of diiso-
propylammonium reacting with 48% aque-
ous solution of HBr (1:1 molar ratio) by the
technique described in [11], followed by re-
crystallization from methanol at room tem-
perature. The largest crystals were 2—3 mm
in size.

Lead titanate has a tetragonal phase be-
low 490°C, isomorphic to barium titanate,
and is a ferroelectric of the first kind. Spon-
taneous polarization of PbTiO, at room
temperature is approximately P = 70 uC/
cm?, which is significantly higher than for
BaTiO, (P, = 22 pC/cm?). The values of the
dielectric constant ¢’ along the polar axis lie
in the range of (1.5-2.2)-10* for PbTiO, at
room temperature, while it is (2— 4)-103 for
BaTiO, [12].

We used composite samples of
(CH (NBr),_ /(PbTiO,) , where x was 10,
20 and 30 wt%, for the experiments. The
samples were thoroughly mixed and pressed
under about 10* kg/cm?. Average particle
size in the composite ranged from 3 to 10
um. The samples were disc-shaped, with a
diameter 10 of mm and a thickness of 1.5
mm; silver electrodes were deposited on
their surface.

The characteristics of the given samples
were measured automatically using a com-
puter, under heating and subsequent cooling
at a rate of 1 deg/min in the temperature
range 30—170°C.
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The E7-25 immittance meter was used
to determine the dielectric properties. The
measurements were carried out at frequen-
cies of 103, 10* m 10° Hz at a voltage of
0.7 V. The error in measuring the capac-
itance of the samples did not exceed 5%.
Temperatures were recorded by a TS-6621
digital thermometer with a chromel-alumel
thermocouple. The error in measuring the
temperature did not exceed 0.1°C.

The setup for studying the nonlinear
properties of the composites included an
oscillator with a frequency of 2 kHz. The
electric field applied to C.H,,NBr samples
and (CH,NBr) _/(PbTiO,)  composites
was about 10 V/mm. The signal was taken
from the resistor series-connected to the
sample and fed to the spectrum analyzer.
The coefficients of the second and third
harmonics were found as the ratio of the
harmonic amplitude to the capacitive

component of the main signal:

YZw: u2w/uw’ Y3w = u3w/uw'

a) . £

2000 4

1500 A

1000 A

500

The technique for nonlinear measurements is
described in more detail in [13, 14].Differential
scanning calorimetry with the thermoelectric
power of about 5 puV was used to measure the
heat capacity. The heating and cooling rate was
2 deg/min. The error in measuring the tem-
perature did not exceed 0.1°C.

Experimental results and discussion

The dielectric properties obtained for
polycrystalline samples of C 6 H NBr and
(CH (NBr),_/(PbTiO,)  composites with
x =0.1; 0.2 and 0.3 are shown in Fig. 1.

It follows from the ¢'(7) dependences that,
firstly, the maximum dielectric constant &'
increases with increasing lead titanate content,
and, secondly, an additional anomaly appears on
the ¢'(T) curve for the composites under cooling
in the range from 133—137°C; this anomaly is
absent in the respective curve for pure C.H,/NBr.

The table shows the maximum values of the
dielectric constant &' of the composites with
different volume fractions of lead titanate in-
clusions, at frequencies of 103 and 10> Hz.

b .
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3000
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Fig. 1. Temperature evolution of dielectric constant in (C.H NBr),_ /(PbTiO,) composite
with x = 0 (a), 0.1 (b), 0.2 (¢), 0.3 (d), obtained at frequencies of 1 kHz (/) and 100 kHz (2)
under heating (dark symbols) and cooling (light markers)
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Calorimetric studies (Fig. 2) indicate that
adding lead titanate induces an additional
phase transition under cooling. The nature of
this phase transition is not yet fully understood.
Signal intensity for this additional transition
increases with an increase in the proportion of
lead titanate particles in the composite.

Nonlinear dielectric spectroscopy (NDS)
was used to analyze the structure forming be-
tween two phase transition under cooling. Fig.
3 shows the temperature dependences of the
main signal at a frequency of 2 kHz and the
coefficients of the second (4 kHz) and third (6
kHz) harmonics. It was confirmed in [13] for
ferroelectrics with the phase transition of the
first kind that nonlinear dielectric permittivities
are expressed as

a)
0.010
0.005
3
«
-
E o000 s
g 3 50 ] 20 110 130 50 T,°C
5
= 0005
0.010 -
0.015
)
0.010 -
0.005 - 4&
0.000 \
5 3 50 70 90 110 13 1fo .
3 0005 : T.°c
-
£ -0.010
D
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£ 0015
5
& 0020 4
0.025 |
-0.030
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g, =—(3p+10yP7) Py} (1)

g, =| —B— P’ (10y +188%, +120%,ByP’ )+
+200%,°P |11,

where y, is the electric susceptibility; P, is the
spontaneous polarization; B, y are the Landau
coefficients.

It can be seen from (2) that third-order
permittivity is significantly increased in polar
phase due to spontaneous polarization and
has a minimum at the phase transition point.
Thus, study of temperature dependence of
third harmonic generation is a direct method
for detecting the ferroelectric state.

(2)

0.01000
0.00300
=
&
o 000000 ’
E 3 30 g %0 110 130 1 I.°C
£
5 0.0050
=
-0.01000
0.00500
. 0.00000 s
Z 3 50 0 %0 110 I.°C
W 000300
=]
g
g -0.01000
5
=
-0.01500
-0.02000
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Fig. 2. Relative variation of thermopower for samples of (C.H NBr),_ /(PbTiO,) composite
with x = 0 (a), 0.1 (), 0.2 (¢), 0.3 mm (d);
positive signal corresponds to heating, negative signal to cooling
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Fig. 3. Temperature dependences for capacitive component of signal at fundamental frequency o
(left axes) and coefficients of second (y, ) and third (y, ) harmonics (right axes)
for (C,H,,NBr),_ /(PbTiO,) composites with x = 0 (a), 0.1 (b), 0.2 (¢), 0.3 (d);
dark symbols correspond to heating, light symbols correspond to cooling

It follows from the curves in Fig. 3 that a
certain anomaly is observed in the behavior of
v,, for pure C.H NBr; it is approximately 1.5%
near the ferroelectric phase transition. The
value of vy, for the (CH, NBr) ,/(PbTiO,),
composite under cooling in the temperature
range of 133—137°C is about 2.5%, and that
of y, is approximately 7.5% The value of y,
for the (C,H,NBr),./(PbTiO,),, composite is
about 30% in the temperature range of 133—
137 °C, and that of vy, is approximately 5%.
The value of y, decreases to about 5% with a
further increase in lead titanate content in the
(CH NBr),./(PbTiO,), , composite, while vy,
increases to 20%.
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The experimental data obtained by NDS con-
firm that two phases of the C.H, NBr compound
are found in the range of 137—133°C under coola
ing: ferroelectric P2 and nonferroelectric P2 /m.
The anomalies in phase transitions for the capac-
itive component of the signal through the sample
are more pronounced in comparison with the
¢’(T) dependence, which is due to barrier transi-
tions forming in the composite at the interfaces
of C.H NBr and PbTiO, compounds, acting as
capacities at low supplied voltages and making a
noticeable contribution to the effective dielectric
constant. This mechanism does not work with
measuring voltages above 3 V, and the effective
dielectric constant decreases.
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Table

Variation in dielectric properties of composites
with increasing lead titanate contents

.. g (tgd) &' (tgd)
COInpOSltlon max max max max
10° Hz 10° Hz
C,H, NBr ~250 | ~8 | ~55 | ~0.9
(C,H NBr), /(PbTIO,),, | ~900 | ~30 | ~190 | ~2.6
(CH,NBr), /(PbTiO,),, |~2200| ~40 | ~230 | ~3.5
(C,H,NBr), /(PbTiO,),, | ~7000 | ~90 | ~550 | ~6.0

Conclusion

Studying the dielectric properties of the
(CH NBr),_ /(PbTiO,) composite, we have
found that increasing x leads to smeared phase
transitions and increased values of €' and tgd' (see
Table). The increase in permeability may be due
to barrier mechanisms, which is confirmed by the
dependence of dielectric properties on the am-
plitude of the measuring field and its frequen-
cy. Analyzing the data obtained by calorimetric

measurements, we have discovered an additional
phase transition whose specific heat capacity in-
creases with increasing x. The additional phase
transition can be explained by electrical interac-
tion of diisopropylammonium bromide and lead
titanate particles in the composite.

The study was financially supported by the
RFBR Grant no. 19-29-03004.
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Introduction

The properties of films formed upon
dehydration of protein solutions or their
fragments (peptides) are currently the focus
of much attention. Such materials are used
in physics, chemistry, biology, medicine, as
well as in electronics and nanotechnologies
[1—8]. The conditions for rapid phase
transition of substances during dehydration
are far from equilibrium; according to
classical theory, this should be accompanied
by self-assembly and by appearance of
ordered spatial structures.

These processes can occur, for example,
during dehydration of aqueous solutions
of proteins [9—11]. Understanding the
mechanisms of protein folding is the key to
studying self-assembly processes in biological
films [9]. A peculiar ordered morphological
structure is observed as water evaporates
from protein films [9]. Such evaporated film
is an interesting subject as a natural model
of a self-organizing system with a rich set
of variables affecting the process, depending
on its composition, substrate properties, and
external conditions [10, 12].

Dehydrated films of biological fluids are
commonly used in medical diagnostics, obtained
by wedge-shaped dehydration. There is a well-
known correlation between the parameters of
the structures formed in self-organized films of
biofluids and different types of pathologies [13,
14]. Different experimental factors affect the
physical component of self-assembly processes
in protein films.

To correctly interpret the structures formed
in complex biological fluids, we considered
aqueous solutions of egg albumin (ovalbumin)
with  different experimental conditions,
analyzing the effect of different dehydration
parameters on formation of structures in
ovalbumin films.

Description of self-assembly processes

From the standpoint of molecular
biology, protein folding occurs during self-
assembly, i.e., with the tertiary structure
(three-dimensional conformation) evolving
in accordance with structural information
encoded in the primary structure (sequence
of amino acid residues). Physically speaking,
self-assembly means that macroscopically
ordered spatio-temporal structures form in
complex nonlinear systems [15]. Physical and
chemical aspects of self-assembly of proteins
are described in detail in [16].

Self-assembly processes can only occur in
systems with a high level of complexity and
a large number of elements. There are several
approaches to describing and interpreting the
physical nature of these processes. For example,
Prigogine offered an approach determining the
entropy of open systems [17], while Rudenko
formulated an approach from the standpoint of
evolutionary catalysis [18]. While both of these
approaches are identical in estimating the anti-
entropic nature of self-assembly, they differ
greatly in interpreting the conditions, causes
and driving forces of self-assembly, explaining
its mechanisms and establishing its measure.
These approaches are close in choice of
characteristics of an open system for describing
its self-assembly and estimating its measure.
However, dissipative flow is considered in the
first case and that of internal useful work in
the second. In other words, dissipation and its
functions serve as measures of self-assembly
in the first approach, and internal useful
work and its functions do so in the second.
The difference between these approaches, the
benefits and drawbacks found by comparing
them are described in monograph [19].

Study of self-assembly processes should
include unstable states of systems and conditions
of phase transitions accompanied by diffusion
and dissipation of energy. Mathematical
modeling, for example, the framework of
differential equations, is used to describe these
processes [20, 21]. Probability theory combined
with computer simulation is used for analyzing
processes with a small number of molecules.

Self-assembly during protein folding is
described using methods of physical chemistry
and optics, i.e., considering the interaction
of matter with light in the entire wavelength
range: from X-rays to radio waves. Self-
assembly of proteins after destruction of their
tertiary structure (renaturation) and their
structural formation are of particular interest
for such fields as drug design, molecular
bioelectronics, including biomolecular robotics,
and nanotechnology [9, 22].

There are a number of techniques for studying
self-assembly processes. X-ray diffraction provides
direct information about the arrangement of
atoms in molecular crystals. This method was
used to describe the structure of some vitamins
and also to discover denaturation of protein
molecules. Structural formation of proteins at the
molecular level is studied by this method. This
allows to detect lattices with long-range order
with strong covalent chemical bonds [23]. X-ray
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diffraction methods are not quite satisfactory for
describing systems without long-range order.

Synchrotron radiation is a very promising
method for studying biological processes
associated with conformational and other
structural transformations at molecular and
supramolecular levels [20]. The electric field
affects a wide range of processes, for example,
phase transitions in substances, reducing the
evaporation heat of water and increasing the
heat transfer rate in liquids. The electric field
induces conformational transformation of spiral
single-stranded polynucleotide in the solution
into clusters, where the degree of transition is a
linear function of field strength [24].

Optical methods make it possible to observe
the progress of biological processes in real time
virtually without interfering with them.

Experimental procedure

The simplest and most accessible method
for studying self-assembly is visual (or
hardware-based) monitoring of dynamics of
protein condensation and its phase transitions
under nonequilibrium conditions: in an open
protein-water system, far from thermodynamic
equilibrium. This technique consists in
evaporating water from a colloidal protein-
water system (dehydration) with subsequent
dynamic visualization of protein condensation
and self-assembly under equilibrium and
nonequilibrium conditions in vitro. Different
types of colloidal protein-water systems (with
albumin or thrombin) are placed on a solid
wetted substrate (glass) and dried in an open
system at room temperature and atmospheric
pressure. The dynamics of the process is
recorded with an optical microscope and a
sensitive CCD camera.

Certain reproducible structures form through
self-assembly in drying films of aqueous
protein solutions. Depending on the chemical
composition of the solution of a particular
protein and on experimental conditions, these
structures can take a variety of shapes and
volumes. It was found in [9] that there are two
main types of structures: spirals and dendrites.
Fig. 1 shows these types of structures.

The next section describes the procedure
for obtaining these structures and the results of
experimental studies.

Experimental studies

These studies were aimed at analyzing the
effect that experimental conditions have on
formation of different structures in ovalbumin
films. We considered the following factors:

initial volume of solution;

protein concentration in solution;

presence of salt;

acidity of solution.

Ovalbumin with an initial concentration of
20 wt% was selected for the experiments. Next,
different samples were prepared in accordance
with the experimental design. Liquid samples with
avolume of 1, 2, 3, and 4 ml were placed in glass
Petri dishes 28 mm in diameter and subjected to
dehydration for 48 h at a temperature of 36.6 °C
and a humidity of 20%. The temperature selected
corresponded to the temperature of the human
body under normal conditions. The degree of
acidity of the solutions was changed by adding
99% acetic acid to the solution.

Eight measurements were performed for
each experimental set. Images of the films with
a resolution of 896 x 684 pixels were recorded
with an optical microscope and a USB camera
connected to it.

Fig. 1 [9]. Dissipative structures found in dehydrated film of ovalbumin protein:
spirals (a); dendrites (b)

22



\

Transparent protein films formed in
Petri dishes as the samples dried. Structures
varying in type, shape and size formed In
some films, depending on their composition
and experimental conditions. The structures
were found in separate areas of the Petri dish
rather than over its entire surface (Fig. 2). A
small spot containing cracks formed in the
protein film in the center of the Petri dish
(region 3).

A ring of spiral structures located on po-
lygonal fragments of the film, separated by
cracks, formed closer to the edge of the dish
(region 2). Film fragments in this ring had a
smaller total area than in the central region.
Hemispherical cracks with elongated branch-
like structures were observed at the edge of
the Petri dish (region I).

The reason for this localization was that
the colloidal phase (particles) were driven to
the periphery as water evaporated.

Dependence of the structures on protein
concentration. We considered the structures
forming in albumin films depending on the
protein concentration both in the initial
aqueous solution and in the sodium chlo-
ride (NaCl) solution. We used 3 ml samples
with different protein concentrations in the

Fig. 2. Schematic of Petri dish with dried egg
albumin sample showing different regions of film:
dish edge I with salt residue;
region 2 with spiral structures and cracks;
central region 3 with cracks

Condensed matter physics >

solution (wt%): 2.5; 5.0; 10 and 20. The
experimental results obtained are shown in
Fig. 3. Evidently, the higher the initial pro-
tein concentration in aqueous solution giv-
en a constant volume, the denser the spiral
structures in the protein film. The average
geometric dimensions of the spirals and the
cells were obtained by calibrating the micro-
scope chamber. The outer circumference and
area for spiral structures were approximately
180 pm and 2500 um?, respectively. The cir-
cumference and area of the cells were about
200 um and 5000 pum?.

We also analyzed the structures forming
in ovalbumin films depending on protein
concentration in dry film. Because pro-
tein concentration in the film could not be
measured or changed, the samples in these
experiments were selected by the initial vol-
ume of the aqueous solution. A 20% solu-
tion was chosen for the experiment. Solu-
tions of 1, 2, 3, and 4 ml were then placed
in Petri dishes and subjected to dehydration
for 48 h. The experimental results obtained
are shown in Fig. 4.

To assess the nature of film structuring,
we calculated the approximate number of
structures formed (in one spiral) in the
photograph of the film. Fig. 5 illustrates this
calculation.

It follows from the data in Figs. 4 and
5 that the larger the initial volume of the
solution, the more structures form in protein
film and the larger they are. A possible reason
for this is that protein concentration in dry
film is higher with a larger volume of the
initial solution.

Dependence of the structures on solution
acidity. We prepared aqueous solutions of
albumin with different pH values. Acetic acid
was added to the protein solution to obtain
a certain degree of acidity. The same as in
the previous experiment, 3 ml samples were
taken. Fig. 6 shows photographs of ovalbumin
films with different pH and similar aqueous
solutions.

It follows from the data in Fig. 6 that the
closer the pH of the initial solution to 4.8,
the less structures are formed in albumin
film. Additionally, if the pH of the solution
abruptly shifts from 4.8 towards acidic or al-
kaline values, the structures take the shape of
incorrectly formed spirals. Notably, pH = 4.8
is the isoelectric point of the protein (the pH
value at which the total charge of the protein
molecules is zero).
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Fig. 3. Structural changes in ovalbumin films depending on ovalbumin concentration
in aqueous solution (wt%): 2.5 (a), 5.0 (), 10 (¢) and 20 (d)

Fig. 4. Structural changes in ovalbumin films depending on volume
of initial 20% aqueous solution, ml: 1 (a); 2 (b), 3 (¢), 4 (d)
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Fig. 7. Number of structures in ovalbumin films
depending on pH of initial aqueous solution

Fig. 7 shows the number of structures formed,
i.e., the number of structures per unit area, de-
pending on the pH of the initial solution.

It can be seen from Fig. 7 that a large
number of structures form if the acidity of
the initial solution ranges from 7.0 to 7.8.
The same thing happens with pH ranging
from 3.0 to 4.4. There are no structures
with pH = 4.8. Most likely, structures can-
not form near the isoelectric point due to
absence of uncompensated charge. We can
then conclude that protein’s ability to form
structures in dehydrated film is directly re-
lated to charge of the protein molecule.
Even though errors extend beyond the trend,
we decided to preserve this line, since this
graph shows only measurement errors and
does account for the specifics of producing
an aqueous protein solution and performing
dehydration.

Presence of salts in solution. In addition to
films obtained from purely aqueous solutions,
we considered structures forming in ovalbu-
min films from a solution containing NaCl.
For this purpose, we prepared protein solu-
tions with different concentrations where an
aqueous NaCl solution with a concentration
of 0.9% (0.15 M) served as solvent. Experi-
mental samples of 3 ml were dehydrated for
8 h. The experimental results are shown in
Fig. 8.

Unlike the structures forming in films
prepared from aqueous solution, so-called

26

tree-like structures formed in films prepared
from water-salt solution. The higher the
concentration of NaCl in the initial solution,
the denser the branches. The structure of the
‘trees’ is disrupted with a very low protein
concentration, and a dense field of crystals
is formed. The structures shown in Fig. 9
are two-dimensional self-affine fractals. The
main property of such structures is invariance
after a simultaneous but quantitatively
different change in distance along different
directions in space. In other words, in
contrast to a simple fractal, self-affine fractals
cannot be obtained by simple stretching of
self-replicating fractals, since the ratios of
stretching in different directions should
depend on size [26].

However, if protein concentration in the
initial water-salt solutions is progressively
reduced, fractal structures of a different type
form. Examples of such structures are shown
in Fig. 9. Evidently, as protein concentration
decreases, structures become more and more
branched. Fig. 9,6 shows a NaCl crystal
surrounded by fine structures. We used the
Witten—Sander model to interpret the results
obtained. According to this model, particles
are added one after another to a growing
cluster. The aggregation process is induced by
a fixed initial particle in the original version.
The aggregate then keeps growing [26]. The
structures shown in Fig. 8 are Witten—Sander
aggregates.
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Results and discussion

We examined some features of the structures
forming in ovalbumin films upon dehydration
self-assembly. We confirmed experimentally
that two types of film predominantly form as
a result of dehydration and accompanying self-
assembly of protein solutions. We analyzed how
different factors affect the structures forming:
acidity of protein solution, presence of NaCl in
the solution, protein concentration, and initial
volume of aqueous solution. The experiments
showed that all of the above conditions influence
the structuring of the ‘spirals’. As a whole, the
nature of protein self-assembly depends on
general physicochemical properties of polymer
biomacromolecules [16]. However, mechanisms
of interaction of protein with water have to be
understood to take into account all aspects of
the studies conducted.

The protein chain is polar like water and also
has total zero charge. Some side groups are also
partially charged. Charged amino acid residues
are even more polar. Both the peptide groups of
the main chain and the polar side groups act as
donors and acceptors of hydrogen bonds. They
can form bonds with each other or with water
molecules; almost all of them create such bonds,
since the typical energy of hydrogen bonds is 5
kcal/mol, which is significantly higher than the
energy of thermal motion.

If the intramolecular bond between the
donor and the acceptor of the hydrogen bond in
protein forms in an aqueous medium, it replaces
two hydrogen bonds of the protein with water
molecules, with a bond simultaneously created
between the molecules of the water released.

From a thermodynamic standpoint, the
energy balance of the given reaction is close
to zero, since the number of hydrogen bonds
has not changed [16]. However, the entropy
of water generally increases, since water is
no longer bound to the protein chain, and
molecules with an H-bond can move freely.

Let us consider the so-called hydrophobic
effect. Proteins contain many amino acids
with hydrocarbon side groups that form the
hydrophobic core of the protein globule. The
hydrophobic effect plays a crucial role in
maintaining the stability of the protein structure,
serving to transform the protein chain into a
compact dense globule. The effects opposite
to ‘hardening’ are associated with entropy
of rotations and displacements of molecules
in liquid. This is because each molecule in a
liquid moves more or less freely, while it is
restrained by the crystal lattice in a solid. As
a matter of fact, the entropy of displacements
of a molecule does not depend on its size,
in contrast to the enthalpy that grows with
increasing number of contacts of the molecule

Fig. 8. Changes in dendritic structures in ovalbumin films depending on protein concentration, %:
10 (@), 5 (b), 2.5 (¢), 1.0 (d), 0.5 (e), 0.1 ().
Films were obtained from water-salt solutions (0.1 M NaCl)
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Fig. 9. Changes in dendritic structures in ovalbumin films depending
on protein concentration c, in initial water-salt solutions (0.15 M NaCl);
c,= 0.05% (a), 0.02% (b), 0.01% (c)

with the others. Displacement entropy plays a
smaller role in the protein chain, since amino
acid residues are linked by a chain, that is,
they cannot move independently of each other,
making the protein ‘harden’.

The hydrophobic effect accounts for 90%
of the process in which a protein globule is
created. But it cannot produce its own ‘solid’
protein, generating only a liquid protein globule.
Accordingly, we can conclude that aqueous protein
solutions should serve as a basis for studying self-
assembly of proteins in vitro. However, protein
concentration should be maintained in a certain
range to achieve proper self-assembly [16].

As already established (and confirmed by
our experiments), the water content affects the
structure of proteins, and the structure is in turn
responsible for the functionality of the protein.
Thus, if concentration of proteins in aqueous
solutions has a known effect on the formation
of structures during dehydration, it is possible
to estimate the functionality of proteins during
dehydration of complex biological fluids in
medical diagnostics.

Conclusion

We have carried out experimental studies
aimed at understanding how the sizes and
shapes of structures in protein films depend on
experimental conditions.

Analyzing the results of the experiments
conducted, we have reached the following
conclusions.

Acidity of the initial solution and the
concentration of protein in the solution
significantly affected the formation of spiral
structures.

We have found that acidity considerably
different from the isoelectric point of ovalbumin,
neither critically acidic nor alkaline, was
required to obtain stable structures in ovalbumin
films. The required pH of the solution was less
than 3.0 or greater than 8.0.

We determined the specific values of the
parameters in experimental conditions. For
example, dense structures could form with a
sufficiently large volume of the initial solution:
3-4 ml for a Petri dish of 28 mm, i.e., with film
thickness in liquid phase at least 4—5 mm.

Notably, self-assembly processes can occur
in samples with the smallest volume. However,
it is extremely difficult to detect dissipative
structures in such samples.

We plan to carry out further quantitative
studies of the structures formed in protein
films, including by varying the pH value
of salt solutions, measuring the geometric
parameters of structures, determining whether
these parameters correspond to experimental
conditions for self-assembly during dehydration.

This paper was prepared with the financial
support of RFBR, grant no. 19-32-90130. We
wish to express our gratitude to A.N. Skvortsov
for help with biophysical aspects.
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Introduction

New carbon-based nanostructures
synthesized in 2004, such as graphene and
graphene nanoribbons, proved to be materials
with a unique set of physicochemical properties
that can be used in a wide range of applied
problems [1—4]. The electronic characteristics
of graphene vary and depend on the nature
and concentration of structural defects, atoms
and atomic groups adsorbed on its surface.
Graphene is one of the main candidates for
components of future nanoelectronics, instead
of silicon. The main obstacle to widespread use
of graphene in electronics is its band structure,
characterized by narrow band gap; there is
ongoing research focused on expanding it.

Silicene, a material similar to graphene,
consisting of a two-dimensional layer of silicon
atoms that make up two sublattices displaced
relative to each other, was theoretically
predicted in 1994 and synthesized for the first
time in 2010 [5]. The width of the band gap can
be controlled using an electric field, making it
possible to construct an effective spin polarizer.
This material attracts considerable attention
due to its diverse potential applications in
silicon electronics and spintronics.

Another material similar to graphene was
synthesized in 2014: germanene, which, like
silicene, has two atomic sublattices displaced
relative to each other. The narrow band gap of
germanene can be controlled by electric field,

Condensed matter physics >

adsorption of different atoms, deformation, and
interaction with the substrate [6, 7]. Germanene
has great potential for applications in solar cells
[8]. The calculated Griineisen parameter of the
new material indicates that the dependence on
strain is similar to that for silicene [9].

Density functional theory was used in
[10] to conduct a comparative study on the
mechanical properties of single-layer silicene,
germanene, and stanene. It was found that
applying a uniaxial load to each material can
alter the electronic nature of buckled structure
of the semiconductor to metallic character.

Optical properties of silicene and germanene
under uniform compression strain were
investigated within density functional theory in
[11]. The results indicate that the response of the
optical field strongly depends on the magnitude
of the applied load. With compression strain
applied in silicene and germanene, the band
gap decreases at the Dirac points and ultimately
reaches zero. Absorption of light along the
zigzag direction is greater than in the armchair
direction in both structures.

A new direction of condensed matter physics
that has evolved in recent years is straintronics.
It uses physical phenomena in matter induced
by deformations arising in micro-, nano- and
heterostructures with external controlling
fields, altering the electronic structure of this
matter, and, as a result, modifying its electrical,
magnetic, optical and other properties [12].

Fig. 1. Fragment of nanoribbon structure with selected coordinate system:
A,, A,, A, are the vectors of distance between the nearest neighbors; a,, a, are the translation vectors;
o is the angle between the translation vectors; 0 is the chiral angle; C, is the chiral vector
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Such effects make it possible to create a new
generation of information-sensing devices.
For example, a transistor based on graphene
with strain-induced suppression of ballistic
conductivity (piezoconductivity) was proposed
in [13]. Similar transistors can also be developed
based on germanene and silicene; effects of
strain in these materials are the focus of much
research.

This paper presents the results of theoretical
study on the piezoresistive properties of perfect
silicene (Si) and germanene (Ge) nanoribbons
(NR), SiNR and GeNR.

Model of electronic structure of
deformed graphene nanoribbons

A two-dimensional hexagonal graphene
layer was chosen as a geometric model of the
nanoribbon. Fig. 1 shows a fragment of such a
crystalline structure, with the chiral vector

C,=na + ma,

the angle o between the primitive translation
vectors a, and a,, as well as the interatomic
distance vectors A

The coordinate system is selected so that the
ribbon width is measured along the OX axis
using the chiral vector C , and the OY axis is
directed along the length of the ribbon. The
angle 0 between the vectors C, and a, counted
from the translation vector a,, hes in the range
from 0° to 30° and is called the chiral angle [4].

A mathematical model of the -electronic
structure of undeformed nanoribbons is con-
structed based on their geometric structure
and the band structure of the hexagonal layer.
The band structure of nanoribbons within the
framework of the strong coupling method using
Hiickel approximations and approximate nearest
neighbors has the following general form [4]:

e(k) =1y, {3+2005 (ka, )+
+2cos (ka2 ) +2cos (k (a1 —a, ))}1/2 =

= i’yo

g o)

172
+4cos? [—k (2, —2,) j}
2 b

where v, is the hopping integral, the matrix
element of electron transition between neigh-
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boring atoms; k is the wave vector, one of the
components of which is quantized along the
width of the ribbon.

The Fermi level in dispersion relation (1) is
taken as 0 eV.

The condition for quantization of the wave
vector k along the direction of the chiral vector
C , can be written as follows [4]:

k-C =2ng,q=1,2,.... 2)

The components of the wave vector k_and
k should be chosen so that they are codirec-
tional with the chiral vector C ,and the length
of the nanoribbon, respectlvely, i.e.,

k.11 C, k, L C,

The magnitude of the chiral vector of
undeformed nanoribbons can be represented, in
accordance with its definition, in the following
known form [1]:

|Ch0|—\/n-a] +m-a +2nmaa, =

=a\n* +m* +nm.

Using representation (3) and conditions (2), we
can obtain an explicit expression for quantization
of the transverse component of the wave vector:

3)

2mq

[ 2 2 ’
n +m +nm (4)
q :1,2,...,[\/112 +m® +nm}.

Arguments of trigonometric functions in
expression (1) for band structure can be writ-
ten, based on geometric transformations corre-
sponding to Fig. 1, as follows:

k.a=

k(a, +a,) :( 1 .
2 Jn? +m® +nm
3ng(n+m) N x/gkya(n —m)
2Jn* +m” +nm 4
(5)
k(a, —a,) :( 1 .
2 Nn® +m’ +nm
ng(n-m) \/gkya(n+m)
2\/712 +m’ +nm 4

As a result, expression (1) and relations (5)
completely determine the energy spectrum of
electrons of undeformed nanoribbons.
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According to theory of electronic
structure of graphene nanoribbons [4], a
set of dispersion curves of the electronic
spectrum, numbered by the integer ¢, is
formed by crossing the two-dimensional
energy surface of graphene with parallel
planes corresponding to the continuous
component of the wave vector. The position
of these planes relative to the Brillouin zone
is determined by the value of the discrete k_
component of the wave vector (in accordance
with quantization condition (2)).

The deformed state of a crystallite is
generally characterized by a distortion tensor,

=0, (r'=r), (wn=xy.2),

where r, r’ are the radius vectors of the initial and
final position of some point of the crystallite [14].

The diagonal elements of the tensor
characterize the relative elongation of the
sample along the corresponding direction,
the off-diagonal elements determine the
rotation angle of the linear element under
strain.

In accordance with the definition of the
distortion tensor, the energy spectrum of de-
formed nanoribbons is formulated by modi-
fying the scalar products that appear in the
arguments of trigonometric functions in ex-

pression (1) for the electronic spectrum. The
change in the primitive cell of a nanorib-
bon under tensile load is shown in Fig. 2.
The figure illustrates the model where strain
induces not only the change in interatomic
bond lengths, A, (A, = R(1 + 3)), by their
relative elongation 8 (8 = AR/R)) but also
in the angle o between the translation vec-
tors (o = a, + Aa, where o, = n/3 is the
angle between the translation vectors in the
undeformed lattice, Aa is the angle change
due to deformation), and, therefore, in the
projections of the translation vectors a, and
a, on the OX and OY axes of the selected
coordinate system.

The expression for the band structure of
deformed nanoribbons can be obtained based
on geometric transformations (see Fig. 2).
As a result, the electronic spectrum of such
nanoribbons within the framework of the strong
binding method takes the form

e(k) = iy(1+4cos[nnA] + B, |x
xcos[mnd, — B, |+ (6)
+4cosz[nnA -B ])%
2 2 H

where the following notations are introduced for
the general case:

Fig. 2. Positions of interatomic vectors A, A,, A, after tensile or compressive strain taking into account
their rotation through the angle Aa; Fy is the tensile (compressive) force.
The remaining notations are given in the caption to Fig. 1
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4= Fcosa+Gsina

'~ Acoso+Bsino.’
B, =k,R,(1+8)(~Gcoso+ Fsina),

—Ecosa

A2= X )
Acoso + Bsina

B, =k, R,(1+d)Esina,

(7

A =nsinBcos(20.,) +mcosOcos(a,/2)
B =sin0[ nsin(2a,)+mcos(a,/2)],
E =sinBsin (o, /2)+cosOcos(a,/2),
F =sin@cos(20,,) +cosBcos (o, /2),

G =sin0[ sin(20,,) +cos (a,/2) ].

The change in the transverse dimensions
(width) of the nanoribbon due to strain
is taken into account by modifying the
magnitude of the chiral vector C, which, in
accordance with the definition of Poisson’s
ratio and direct proportionality of the main
geometric dimensions of nanotubes to the
lattice parameters, can be calculated by the
following formula:

C,=(1-v8)C,, (8)

where v is Poisson’s ratio whose value varies in
the range v = 0.19—0.27.

Relation (8) and the selected geometric
model of deformed nanoribbons make
it possible to find the angle o between
the translation vectors in the deformed
hexagonal lattice included in the expressions
for coefficients (7) of the nanoribbon
spectrum (6):

BC+ ANB*-C* + 4*

sina, = B , 9
where
c-12v® [sinﬁ(ncosoc +mecos’ (01,/2)) +
1+ ’ ’

m .
+Ecosesmoc0},

and the coefficients 4 and B are expressed by
Eq. (8).

The procedure for calculating the
dependence of the hopping integral y on the
relative strain & using carbon nanotubes as an
example is described in detail in [15—18].
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The following values of relative tensile
(compressivee) strain were used for theoretical
calculations:

& = +0.250 ;£0.104 ;0.069+ ;0.035+.

Finding the band structure of perfect
nanoparticles taking into account scattering
effects, for example, the Coulomb interaction
of electrons at one site, consists in finding
the poles of Green’s functions [19] within the
Hubbard model [20], which is described in [17]
for the case of achiral carbon nanotubes.

The electronic spectrum of the deformed
nanoribbon can then be represented as

E(K) =l[s(k) +U +
2

L4 (10)

+(&(k)’ = 2e(k)U(1-2n_,) + U’ )ﬂ

where ¢(k) is the band structure of deformed
perfect nanoribbons, expressed by Eq. (6); U
is the energy of the Coulomb interaction of
electrons at one site, which can be estimated,
for example, using the semi-empirical MNDO
method from quantum chemistry [21]; n_ is
the number of electrons with opposite spin
already located in the zone.

No fundamental qualitative differences could
be found for the obtained band structures of
semiconductor SiNR and GeNR nanoribbons
of the armchair type, in comparison with the
energy spectrum of undeformed nanowires.
Quantitative analysis points to narrowing band
gap, conduction and valence bands, leading to
increased density of electronic states in case
of compression and, conversely, broadening
of these bands (decreased density of states)
under tensile strain. A similar result was
observed for deformed achiral (armchair and
zigzag) nanotubes, as well as for achiral carbon
nanotubes studied in [15—18].

Axial tension (compression) also changes
the band structure of conducting armchair and
zigzag SiNR and GeNR nanoribbons in the
manner described above; this does not make
them fundamentally different from armchair
nanoribbons, except for one notable aspect: the
band gap is absent in such nanoribbons and does
not appear under small strain. Strain-induced
opening of the band gap is observed in mixed
nanoribbons, as in the case of chiral carbon
nanotubes [23], where Mott-type conductor
— semiconductor and semiconductor —
conductor transitions due to axial tensile
(compressive) strain become possible.
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Elastoconductivity of nanoribbons

Simulation of piezoresistive constants,
in particular, the axial component of the
elastoconductivity tensor of nanowires, was
carried by the technique described in detail
in [15—17]. In accordance with the definition
of the elastic conductivity tensor [22], its
longitudinal component for quasi-one-
dimensional structures can be expressed by the
following formula:

M==2_
G, 9

(1)

where M is the longitudinal component of
4th-order elastoconductivity tensor (M =
m_); o, is the longitudinal component of
2nd- order tensor of specific conductivity c_ of
an undeformed crystal; Ac is the change in the
longitudinal component of the conductivity
tensor due to crystallite strain (Ac = ¢ — ¢, ¢
is the longitudinal component of the 2nd-or-
der tensor of specific conductivity o of the
deformed crystal).

The longitudinal component of the zero-
phonon conductivity tensor of nanoribbons
was calculated within the Kubo—Greenwood
theory [19] using Green’s function method
with the Hubbard model Hamiltonian [20].
The final expression for the longitudinal
conductivity of nanoribbons used in the
calculations of the constant Mhas the following
form [17]:

=2 i“;V 33 vkm(g) <

kB kB q

12)

<nkﬁ>[<n > +8,,0; (1 <nkB>)}

where V' is the crystallite volume; k, is the
Boltzmann constant; 7 is absolute tempera-
ture; e is the elementary charge; k, q are
two-component wave vectors within the
Brillouin zone; B, A are the spin indices;
<n,> is the average number of particles in
a quantum state with the wave vector k and
spin B, expressed by the Fermi—Dirac distri-
bution function; v is the longitudinal com-
ponent of the electron velocity vector in the
Brillouin zone.

The velocity vector is found by conventional
means using the electronic spectrum (10):

v(k) = l_@E(k).

13
h ok )

Since numerous studies of the transport
properties of Dirac materials, for example,
graphene nanoribbons, point to ballistic (zero-
phonon) nature of electronic conductivity [4],
using the Hubbard model, which does not
include the electron-phonon interaction, seems
appropriate.

Figs. 3 and 4 show the component M of the
elastic conductivity tensor depending on the
relative strain § equal to

—0.067, —0.045, —0.022,
+0.022, +0,045, +0.067, +0.250

for armchair (Arm) and zigzag (Zg) SiNR
and GeNR nanoribbons of different widths:
nArm (n =9, 10, 50 and 100) and mZg (m =
5 and 10) (the values are given in primitive
cells). Numerical results were obtained
at T = 300 K. The calculated points are
connected by solid lines to visually illustrate
the trend in the variation of the constant
M. Notably, the point § = 0 is not defined.

As follows from Figs. 3 and 4, the
longitudinal component M of conducting
armchair (9Arm) and zigzag (5Zg, 10Zg)
nanoribbons is positive, and the behavior of
this component completely correlates with
the changes in the band structure of the
nanoribbons, described above. A common
trend for the given conducting nanoribbons
is monotonic growth (or decrease) of M with
increasing relative tensile (compressive)
strain 8. A similar behavior is observed for
conducting achiral carbon nanotubes [16,
17]. Despite the increase in the width of
the conduction band and the decrease in
the density of states at the Fermi level with
increasing 8, the specific conductivity of the
objects increases, which leads to monotonic
growth of the component M. The reason
for this effect is that the increasing number
of charge carriers with increasing energies
contribute to specific conductivity of the
crystallite. Thermal fluctuationsleadtofilling
of the conduction band of the nanoribbon
by electrons according to the Fermi—Dirac
distribution function. Modification of the
electronic spectrum leads to a change in
specific conductivity, taking into account
all possible filled electronic states, and,
consequently, to increase in the component
M with increasing 9.

The longitudinal component M is
negative for semiconductor armchair
(10Arm, 50Arm, 100Arm) SiNR and

GeNR nanoribbons but also monotonically
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Fig. 3. Longitudinal component M of elastic conductivity tensor of armchair (Arm) SiNR and GeNR
nanoribbons with a width of 10 (@), 50 (b) and 100 (c) primitive cells as function of relative strain .
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increases with increasing &, the same
as in case of conducting nanoribbons.
The negative value is due to a decrease
in conductivity with increasing strain.
This effect is also a consequence of the
behavior of the band structure of deformed
semiconductor nanoribbons, where the band
gap broadens and, therefore, the number
of occupied states in the conduction band
decreases. A similar behavior of the constant
M is observed for conducting achiral carbon
nanotubes [16, 17].

Applying the above-described technique

of the elastic conductivity tensor to study
of piezoresistive properties of carbon
nanotubes [16, 17] yielded results that are
in good agreement with the data given in
literature on the piezoresistive properties
of carbon structures [24, 25]. Therefore,
it should be expected that due to similar
approaches to describing the band structure,
graphene nanoribbons (Dirac structures)
possess qualitatively identical piezoresistive
properties. There are as yet no data in
literature relating to nanoribbons of the
graphene family, including silicene and

for calculating the longitudinal component germanene.
a)
5Zg
1-"
_'H
e —
12
8
5 8
6 5Ge
0067 0045 0022 0022 0045 0067 0100 0250 5
b)
10Zg
16
4.4 M ‘E
12 ff//
: /
}‘ ——10 8
———— —=—10 Ge
. |
+ + H) + + t + t
0067 0045 0022 0022 0045 0067 0,100 0230 &

Fig. 4. Longitudinal component M of elastic conductivity tensor of zigzag (Zg) SiNR and GeNR
nanoribbons with a width of 5 (a) and 10 (b) primitive cells as function of relative strain .
The point & = 0 is not defined on all curves.
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Conclusion

We have carried out theoretical study of
piezoresistive properties of perfect silicene and
germanene nanoribbons with different types
of conductivity within the framework of the
Hubbard model, finding several peculiarities in
the behavior of the longitudinal component of
the elastoconductivity tensor, described above.
Quantitative study of the constant M depending
on the magnitude of the strain and the width
of the nanoribbon yields a more complete
picture of the variation in the conductivity
of nanoribbons due to tensile or compressive

>

strain. In addition, the longitudinal component
of the elastic conductivity tensor of germanene
nanoribbons slightly exceeds the component of
silicene nanoribbons.

The results obtained can be used for
developing electromechanical nanosensors
based on the piezoresistive effect, whose main
structural element are silicene and germanene
nanoribbons.

The study was financially supported by the
Russian Foundation for Basic Research as part of
scientific project no. 18-31-00130.
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Introduction

The abdominal aorta is one of the
most important arteries supplying blood
to abdominal structures and lower limbs.
Aortic occlusion is a common disease of the
abdominal aorta occurring near the aortic
bifurcation and damaging the surrounding
organs, so it requires surgical treatment.
Detailed analysis of the structure of flow in
this segment of the vascular bed can provide
insights into possible locations and causes
of pathologies, uncovering data on the exit
conditions necessary for simulation of blood
flow in femoral arteries downstream.

First studies on flow structure in the
abdominal aortic bifurcation were carried
out in the 1980s. An experimental study in
[1] considered a simplified model of aortic
bifurcation, comparing it with with clinical
measurements at rest. Velocity profiles in
vessels of this model were recorded using
magnetic resonance imaging at a Reynolds
number Re = 1150. This number is estimated
by the average flow rate at the time of
maximum flow and by the inlet diameter of
the vessel.

Ref. [2] was dedicated to numerical
simulation of pulsatile flow in a simplified
model of abdominal aortic bifurcation without
spatial bends. The sizes of separated regions in
the common iliac arteries were considered in
two states: at Re = 702 for the resting case and
at Re = 1424 for mild exercise (the Reynolds
number was estimated by the mean flow velocity
averaged over the cardiac cycle and the vessel’s
inlet diameter).

Generally, different configurations of
simplified models of the given region were
discussed in literature [2—4]. Flow structure in
subsequent bifurcations of iliac arteries was not
considered in most cases.

Numerical simulation using patient-
specific  models based on  clinical
measurements of the patient’s blood vessel
geometry is currently the focus of much
attention [5, 6]. A number of studies use
models with average geometry [7]. However,
there are virtually no studies using average
models of abdominal aortic bifurcation and
subsequent iliac bifurcations; it would prove
important to simulate these arteries based
on averaged geometry of several groups of
patients.

The focus is typically on regions with low
shear stresses, associated with formation and
development of atherosclerosis, as well as on
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the effect of wall elasticity on flow structure.
For example, it was confirmed in [5] that wall
elasticity only insignificantly affects the flow
pattern, and the difference in averaged shear
stresses in the ‘rigid’ and ‘elastic’ simulations
does not exceed 10%. Therefore, rigid vessel
models can be used as a first approximation in
experimental studies [8].

To date, Doppler ultrasound is the most
common clinical method for diagnosing
blood flow, as it is relatively cheap, non-
invasive and easy to use. Ultrasound imaging
of the vortex structure of blood flow in
vessels with complex spatial configuration
opens up new opportunities for doctors,
serving to improve the diagnostics of
vascular pathologies. Numerical simulation
carried out for laminar flow yields detailed
information on the velocity fields, making
it possible to interpret complex ultrasonic
images [9].

This study considers flow structure using
a model of the averaged abdominal aortic
bifurcation and subsequent iliac bifurcations
using the ultrasonic Doppler method and
numerical simulation. The study includes
analysis of the effect of stenosis in the common
iliac artery on the flow structure.

Model of abdominal aortic bifurcation
and subsequent bifurcations of
the common iliac arteries

The model of the statistically average con-
figuration of abdominal aorta and iliac arteries
used in this study was constructed using av-
eraged clinical data [10—15]. This developed
model takes into account the characteristic
spatial curvature of the vascular region with
three bifurcations.

The model includes an outlet segment
of the abdominal aorta with a diameter of
18 mm, which is divided into the right and
left common iliac arteries with the diameter
D =10.8 mm (Fig. 1).

The common iliac arteries, in turn, are
divided into external (diameter of 9.0 mm)
and internal (diameter of 5.5 mm) iliac ar-
teries. The total length of the aortic model
is 215 mm.

Deviations from the axis of the outlet
segment of the abdominal aorta are 20° for
the left common illiac artery and 25° for the
right one.

The angle between the internal and ex-
ternal iliac arteries is 30° (side view) and 40°
(front view).
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Fig. 1. Model of average bifurcation of abdominal aorta and iliac arteries:
abdominal aorta AA, common iliac arteries CIA,
external iliac arteries EIA, internal iliac arteries ITA

The angle between the axis of the abdom-
inal aorta and the plane of the common iliac
arteries is 160°.

Hemodynamically significant axisymmet-
ric stenosis is located in the right common
iliac artery; its length is L = 22 mm, drift
diameter D = 5.9 mm. The stenosis index
(by area)

STI = (1 — D2/D?)-100% = 70%.

The variation of the radius R of the vessel
in the stenosed region along the vessel axis is
given by the formula:

R=10.5D,+ 0.5(D — D)cos’(my/L),
—L/2<y<L. /)2

Since bifurcation of the abdominal aorta
is almost symmetric (there is only a slight
difference in the deviation angles of the right
and left common iliac arteries from the axis
of the outlet segment of abdominal aorta),
the developed model allowed to carry out a
comparative study of the flow in healthy and
stenosed branches.

The developed model was designed in
the SolidWorks 2016 software package and
made using 3D prototyping. The FLGPGR04
photopolymer was used for printing; this made
it possible to study the flow using the ultrasonic
Doppler method.

Numerical simulation and
computational aspects

Numerical simulation of the flow in the given
model of a segment of the vascular bed was
performed assuming steady-state and laminar
nature of the flow. We solved a complete system
of Navier—Stokes equations for incompressible
Newtonian fluid with constant viscosity.

The following fluid parameters were adopted:
dynamic viscosity coefficient u = 0.004 Pa“s;
density p = 1050 kg/m?. The flow rate Q,, = 4
I/min was set at the inlet to the computational
domain (this corresponds to maximum flow
rate in the abdominal aorta within the cardiac
cycle [5]); the flow rates at the outlets from the
iliac arteries were set as follows:

0.8 1/min for right EIA,

1.44 1/min for left EIA,

1.04 1/min for left 1IA;

zero pressure was set at the outlet from the
right TIA.

The values and the ratios of the flow rates in
the iliac arteries were selected for the healthy
branch based on clinical data [5, 12]. No-slip
conditions were imposed on the walls. The
characteristic mean flow rates, vessel diameters,
and the corresponding Reynolds numbers in
the branches of the model are given in Table 1.

The computational domain was mainly
covered with a quasi-structured mesh with
hexahedral elements with five prismatic layers
near the walls. The total number of cells in the
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Table 1

Reynolds number Re and mean flow velocities ¥, in model branches

Vessel Re V., cm/s D, mm
AA 1230 26 18
Right ETA 500 21 9
Right ITA 720 50 5.5
Left EIA 900 38 9
Left ITA 1040 72 5.5

Notation: D is the diameter of the vessel. The names of the vessels are given

in caption to Fig. 1.

mesh was about 3 million. The computational
mesh was generated using the ICEM 16.2
program. The computations were performed
using the ANSYS CFX 16.2 software package,
with a second order accuracy of spatial
discretization.

Experimental setup and
measurement procedure

A setup with a fluid simulating blood
circulating in it was assembled for
experimental study of the flow structure
in the given model. The setup consisted
of two closed hydraulic circuits: a working
circuit, where the model was installed, and

an additional circuit used to fill the working
hydraulic circuit with fluid. The experimental
setup is shown schematically in Fig. 2.
Centrifugal pump 2 generates constant fluid
flow in closed hydraulic circuit / at a rate Q
= 4 I/min at the inlet to the abdominal aorta.
Honeycomb 4, made of a straight tube 18 mm
in diameter, with tubes 2 mm in diameter and
10 mm long glued inside it, is installed at the
model inlet to suppress turbulence behind the
pump and generate a uniform velocity profile.
The flow rate is monitored using sensors 3 of
electromagnetic flow meter, installed in front
of the honeycomb 4, on the left external and
on both internal iliac arteries. The following

o
PUMP . “/ ) -
{ - -W .
2 " o‘=-1—i‘
5 ¥ S —i'
iy 2
)i 8 L
8 8
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Fig. 2. Schematic of experimental setup:
closed hydraulic circuit 7; centrifugal and roller pumps 2and 9; sensors 3 of electromagnetic flow meter; honeycomb 4
acoustic tray 5 with model of bifurcations of abdominal aorta and illiac arteries; sensor 6 of ultrasonic scanner;
flow control valves 7; liquid drainage valves &; container /0 with fluid simulating blood
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flow rate ratios were set at the outlets from
the healthy and stenosed branches using
regulators 7.

O/ 9,,= 1.1 in the right branch;

O/ 9,4 = 1.4 in the left branch,
which corresponds to the boundary conditions
and the computational results.

The fluid simulating blood was a 36% aqueous
glycerin solution with NaCl added (10 g/1), which
is necessary for the sensor of the electromagnetic
flow meter to operate. The density of the fluid was
p = 1050 kg/m?, the viscosity was close to the vis-
cosity of blood and was p = 0.004 Pas.

An ultrasonic LogicScan 64 scanner,
equipped with a linear transducer with an op-
erating frequency of 5—7 MHz, was used for
measuring the velocity field in the model. The
Doppler velocity spectrum was displayed on a
computer screen in real time via the EchoWave
IT interface processing scanner signals. A sus-
pension of gouache paint (5 g/I) was used as
scattering ultrasonic particles.

Fields of axial velocity V and the projection
of transverse velocity ¥, on the axis of the ultra-
sonic sensor were visualized by color Doppler
imaging. The ultrasonic sensor was installed at
an angle of 60° to the vessel axis to measure the
axial velocity, and at an angle of 90° to mea-
sure the transverse velocity projection. Shades
of red, blue and gray are used as a scale for
blood flow velocity in CDI. Red corresponds to
the regions with velocities directed toward the

Fig. 3. Calculated streamlines in model
of abdominal aortic bifurcation.
Full names of the vessels are given in caption to Fig. 1
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sensor, blue to the velocities directed away from
the sensor, gray to low velocities that cannot be
reliably measured by the ultrasonic sensor.

Effect of stenosis on flow structure

Computations confirm that a complex vortex
structure transforming along the vessel evolves
in the given model of the bifurcation of the
abdominal aorta and subsequent bifurcations of
the iliac arteries. Fig. 3 shows the general picture
of the streamlines. Apparently, regular structure of
the flow changes considerably behind the stenosis.
The positions and sizes of reverse flow regions
are determined by the axial velocity fields (Fig.
4). A small region with reverse currents (negative
velocities shaded in dark gray, occupying about
10% of the cross-sectional area) is observed
behind the bifurcation of the common iliac artery
in the branch without stenosis, disappearing at a
distance of two calibers downstream.

Stenosis generates a separated region near
the inner wall of the common iliac artery,
persisting along the entire length of the external
iliac artery. Separated regions do not form in
the internal iliac arteries, regardless of whether
there is stenosis upstream or not (Fig. 4).

K
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\

K . nv's
I
i \ 0. 0.0 0.0

70°%°%0,%%°% % % 0 % % %
Fig. 4. Calculated effect of stenosis
on axial velocity field V (m/s)

Scale of blood flow rate in vessel cross-sections:
shades of red correspond to axial velocity directed
toward the ultrasonic sensor, shades of blue
to axial velocity directed away from the sensor,
and dark shades to low velocities
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Notably, there is a wide variety of vortex
structures in the given model (Fig. 5, a, b).

Computations indicate that two-vortex
flow evolves behind the bifurcation of the
abdominal aorta in the common iliac arteries.
Paired Dean vortices are detected in the branch
without stenosis, after the first bifurcation in
the common iliac arteries. The vortices are
then transformed, generating four-vortex flow
at the outlet from the given artery segment.

Two-vortex flow behind the stenosis is
transformed into single-vortex, which persists
along the entire length of the right external
iliac artery.

Transitional flow from two-vortex to single-
vortex forms at the outlet of the given segments
of the internal iliac arteries; one of the vortices
is considerably larger than the other.

Comparison of computational
and experimental results

Computed fields of transverse velocity are
compared with experimental results in Table 2.
The table includes two types of data for the fields
of transverse velocity projected onto the axis of
the ultrasonic sensor: ultrasound images and
computed fields constructed by the CDI scale
of the ultrasound scanner. In addition, pictures
of computed streamlines of transverse flow

a)

4

v e e v v 2, 9,0.,0, 0
AR

>

are given, allowing to determine the number,
location, and shape of the vortices in several
cross-sections of the model. The cross-sections
compared show diverse vortex structures. The
directions of transverse velocity projected onto
the axis of the sensor are marked with arrows
for each region in the ultrasound images. The
sensor is located near the top of the ultrasound
images.

The flow narrows in the convergent region in
front of the bifurcation of the abdominal aorta;
this is characterized by a two-color ultrasound
image (cross-section [): here the region of
negative projection of transverse velocity is
closer to the sensor and the region of positive
projection is further away from it.

Pronounced swirling flow evolving in the
external iliac artery (in the stenosed branch) is
characterized by a two-color ultrasound image
(cross-section 2), the boundary between these
regions is approximately parallel to the axis
of the ultrasonic transducer: the region with
negative projection of transverse velocity (blue)
is on the left, and the region with positive
projection on the right (red).

Two-vortex flow (cross-section J3) evolves
after the bifurcation of the common iliac
artery; it is characterized by a combination of
several regions in the ultrasound image: positive

Fig. 5. Calculated effect of stenosis on structure of transverse flow:
isolines of velocity (a) and streamlines (b)
Numbers indicate the cross-sections comparing the calculated results in Table 2 with ultrasonic measurements
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Table 2
Comparison of calculated and measured fields
of projected transverse velocity

Field of transverse velocity projected Streamlines
on axis of ultrasonic sensor of transverse flow

Result of ultrasound
experiment

Cross-section

Computational result

Stenosed flow

Two-vortex flow

Single-vortex flow

Four-vortex flow

w

o . o v o v P, Q. 0, 0

Note. The locations of numbered cross-sections of the vessels
are shown in Fig. 5.
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projection on the left (red color), negative at
the center (blue) and positive on the right (red)

Analysis of the data indicates that
experimental results qualitatively agree with
the computational results. Single vortex flow
is clearly observed in ultrasound images. The
picture becomes more complex if the number of
vortices increases to two; the sizes of the region
with positive projection of transverse velocity
somewhat differe from the computational
results. However, in general, the locations of
the regions correspond to the computations.
More complex flow formed by four vortices
with low intensity (cross-section 4) was difficult
to detect by Doppler color imaging.

Conclusion

Numerical simulation and measurements
by the ultrasonic Doppler method were
used to obtain detailed information on the
flow structure in a model including average
bifurcation of the abdominal aorta, bifurcation
of the common iliac arteries and segments of
external and internal iliac arteries.

Two-vortex flow evolves in a spatially

curved external iliac artery without stenosis,
transforming into four-vortex flow downstream.
Hemodynamically significant stenosis in the
common iliac artery generates a separated
region which is preserved along the entire length
of the artery. Spatial bends of the external iliac
artery after the stenosis generate swirling flow
in the artery. Transitional flow from two-vortex
to single-vortex forms at the outlet of the given
segments of the internal iliac arteries; one of the
vortices is considerably larger than the other.

Numerical modeling confirmed that
ultrasound sensors can be used to detect one-
and two-vortex structures of transverse flow in a
spatial model of the vascular bed. In particular,
the direction of rotation, the intensity and the
position of the vortices can be determined by
the ultrasound method.

This study was financially supported by the
Russian Foundation for Basic Research (Title:
Spatial and temporal structure of blood flow in
bifurcation of healthy abdominal aorta and that
with occlusive lesions of iliac arteries), RFBR
grant No. 18-01-00629.
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NMAPAMETPUYECKOE MOAE/IUPOBAHUE
NMPOLLECCA HATPEBA JEMM®EPHOMU
NPY>XUHbI UHAYKUUOHHBIM METOAOM

3.P. MaHHaHOG, C.A. lanyHUH
CaHkT-lNeTepbyprckuin rocyaapCTBEHHbI N1EKTPOTEXHUYECKUI YHUBEPCUTET «J1I9TU»
nmenn B.WU. YnbsiHoBa (JleHuHa), CaHkT-lMNeTepbypr, Poccuitickast deaepaums

HccnemoBanbsl KOHUTYpanuss U padboTa CUCTEMBI TSI JTOKAJIBHOTO HarpeBa AeMIThepHOMU
NPYXKUHBI ~ MHAYKIMOHHBIM  MeTogoM. IIpoGmeMHo-opueHTUpoBaHHasg 3D  mopens,
paspabotanHas Ha 0a3e ANSYS APDL, no3Bonuia M3ydyuTh BIUSHUE Te€OMETPUUYECKUX,
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Introduction

Numerous studies have been dedicated to
electromagnetic and thermal processes occurring
induction heat treatment of products, focusing,
in particular, on products with rotational
symmetry. For example, heating of metal
workpieces shaped as disks or rings is widely
used in different industrial technologies; it is
particularly important for design of induction
coils [1—10].

Most cases of heating require either achieving
a uniform temperature distribution throughout
the entire volume of the object or maintaining
a local temperature region. A classical spiral or
loop induction coil is typically used as a disk,
located under the object. The configuration of
the induction system can be single or multi-
turn; eddy currents in the disk then have
rotational symmetry. This provides an additional
opportunity to control the temperature field by
rotating the disk. Eddy currents have a dead
zone in the center in this problem statement, and
different cooling conditions should be expected
in the heated area during heat treatment of a disk
with a complex profile. After heating or cooling
the product, a heterogeneity of the temperature
field naturally appears.

The characteristics of a diaphragm spring
depend on its geometric dimensions. The
operational characteristics of the mechanism
equipped with such a spring (for example, a car
clutch) generally change as well.

Since the geometry of the workpiece cannot
be altered to achieve the goals of heating and
obtain the desired parameters for residual
stresses, calculations establishing the necessary
level of strength and elasticity are performed
first [1]. The optimal shape of the diaphragm
spring serves to distribute loads (dynamic and
static, constant and thermocyclic, bending
loads); heat treatment of this spring is aimed
at achieving a balance between the necessary
strength in the fingers and the ductility of the
diaphragm spring disk. Because of this, not only
the geometric parameters of the workpiece but
also the technology by which it is manufactured
are important for selecting the temperature for
heat treatment.

This paper presents a numerical study of
induction heating of diaphragm springs for
trucks. Such springs are produced by die
stamping. The clutch assembly of the truck is
hardened by a single stroke with the stamping
die, modeling the workpiece into the required
shape; the assembly is then heated to 450 °C for
subsequent tempering.
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Parametric studies
of electrothermal processes

The standard number of fingers (Fig. 1)
located around the circumference of the
diaphragm spring disk was 24, 20, 18, and 12.

The given system is symmetric, so rather
than simulate the complex geometry of the
workpiece, we decided to simulate only a
single section using azimuthal periodicity of the
workpiece structure.

We used the following initial data for
simulating the diaphragm spring:

Number of fingers................... 12, 18, 20, 24
Corresponding computational domains
deg(min)................... 15(0), 10(0), 9(0), 7(5)

The experimental data from [2] is used for
the rest of the initial data (design and electrical
parameters of the induction coil, mutual
positioning and heating time), the heating
problem, the criterion for assessing whether the
target set (the given temperature level) is achieved.

The nonlinear coefficients used in the
simulated system are related to the dependences
of the properties of metal workpieces on
temperature and electromagnetic field strength,
which explains the relationship between
electromagnetic and thermal problems. We
provided a detailed description for the algorithm
for direct simulation of the problem with a
coupled electrothermal solution of induction
heating of a disk in [3, 9].

Fig. 1 shows a schematic of the diaphragm
spring. The initial computational domain
2 is a flat sector of a circle with a central
angle of 9°. This means that the basic design
of the diaphragm spring has 20 fingers. The
estimated time required for calculation with
the given accuracy is thus reduced by 40
times. The total height of the unloaded spring
is taken equal to the height of the loaded one.
In other words, the workpiece does not have
the curvature necessary for operation, and
has a flat shape under load. This aspect is not
particularly important for the heat treatment
procedure; actually, in order to maintain
uniform local heating, the turns of the heater
should be located:

a) on one axis;

b) strictly parallel to the plane relative to
the heating zone.

An arrangement complying with the above
requirements allows to adjust the input power
by changing the current in the induction coil,
turn pitch and the width of the air gap.

The parametric study is performed based on
the developed parametric 3D model (Fig. 2).
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Fig. 1. Schematic problem statement:
general view of workpiece I; simulation zone 2; heating zone 3; finger 4 of diaphragm spring

Fig. 2. Finite-element 3D system: induction coil /, diaphragm spring 2

It is assumed that the bend zone of the
fingers is the most critical in terms of hot
spots appearing. The effect that the shape of
the finger bend had on the temperature field
was estimated at the first stage of the study to
account for this risk. Fig. 3 shows a comparison
of calculated temperature distributions in the
workpiece for poor and desirable quality of
processing in the finger bend. The workpiece
was heated in a longitudinal magnetic field.

Simulation allowed to estimate the
probability with which hot spots appeared in
the finger bend, using a configuration similar to
that described in [2, 3] for the induction coil,
where it was used to heat a disk with a simple
profile. According to our estimate, the highest
density of induced currents should be reached
in the finger bend zone due to random walks
of eddy currents. Because the workpiece has a
complex shape, the heat dissipation conditions
vary and depend on the measurement point. The
edges of the disk have the best heat dissipation
due to their small thickness, and this prevents
overheating in finger bend zones. Comparing
our experimental data [2] and the results of
numerical simulation, we can confirm that
the final temperature profile on the surface in
the heating zone is satisfactorily uniform with

a minimal temperature difference around the
disk circumference.

We studied the heating process based on
the developed parametric finite-element 3D
model, taking into account the main factors
affecting the temperature field by varying the
current system parameters. This study included
the following factors affecting the temperature
distribution of the workpiece:

overall dimensions of the diaphragm spring
(Figs. 4—6);

number of fingers of the given spring when
regulating the computational domain (Figs.
4-6);

heating in a transverse magnetic field; anti-
parallel connection is set for the turns of the
induction coil for this purpose (Fig. 6).

Analysis of the obtained simulation data
allowed us to draw the following conclusions.

1. The effective current affects only the
maximum temperature level but not the
temperature distribution.

2. Making the fingers of the diaphragm
spring longer improves heat dissipation
from the heating zone, which ensures a high
temperature difference and provides a decrease
in temperature relative to the target temperature
level set.
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3. Regulating the number of fingers by
varying the computational domain leads to
qualitative change in the generated temperature
field.

4. The dimensions of the diaphragm spring
(outer diameter, disk thickness, width of its
heating zone) play a significant role in generating
the temperature distribution. The increase in
mass of the workpiece is accompanied by an
increase in the energy input required to ensure
heating to a given temperature level, and vice
versa (its decrease is accompanied by a decrease
in energy input). For example, a source power
of 44 kW is required to provide effective
heating to the required temperature level for
a workpiece with a diaphragm spring with an
external diameter of 420 mm, a thickness of 3
mm, a frequency of the heating electromagnetic
field of 2.5 kHz, and an air gap of 10—11 mm
between the workpiece and the induction coil;
power of 15 kW is sufficient if the diameter is
reduced to 268 mm.

5. A uniform temperature distribution
over the given area in the range of the target
temperature level can be achieved by induction
heating in a longitudinal magnetic field.

a)

The study has allowed to develop practical
recommendations for optimizing the heating
process. In particular, we recommend to use
rounded chamfers in finger bend zone in order
to avoid heat concentration and hot spots.

Modifying the properties of the material
when selecting the heat treatment temperature
is of great interest for calculating the nonlinear
operating characteristic of elasticity of materials
in a wide temperature range. Treatment
temperatures differ depending on the grade
of steel and its purpose, so the mechanical
properties of the heat-treated workpiece
obtained can vary significantly. This is true for
a number of technologies: hardening, forging,
annealing, normalizing, tempering, as well as
combinations of different heat treatments (for
example, preliminary heating — quenching —
tempering, normalizing — tempering, quenching
— self-tempering, quenching — aging, etc.). If
necessary, study and analysis of specific cases
should be carried out in advance to optimize
the properties of the material for a given
purpose. The temperature and the heating zone
for tempering should be determined taking into
account the required properties of the material.
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Fig. 3. Final temperature distributions over computational domain of 9° (a, ¢) and over workpiece (b,
d) after heating in longitudinal magnetic field with poor (a, b) and desired (c, d) surface treatment
of diaphragm spring in finger bend zone.

Diaphragm spring has 20 fingers
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Fig. 4. Final temperature distribution after heating of diaphragm spring 405 mm in diameter
in longitudinal magnetic field with effective current of 300 A:
computational domain a, 15°, complete finite-element solution b
Diaphragm spring has 12 fingers
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Fig. 5. Final temperature distributions after heating of diaphragm spring 350 mm in diameter
in longitudinal magnetic field with effective current of 185 A (a, b) u 288 A (c, d)
Computational domains are 10°0’ (@) and 7°5’ (¢)

Diaphragm spring has 18 (a, b) and 24 (c, d) fingers

[ [ [ s

Fig. 6. Final temperature distribution after heating of diaphragm spring 405 mm in diameter in
longitudinal magnetic field with effective current of 450 A
Computational domain is 9°
Diaphragm spring has 20 fingers.
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Conclusion

Parametric modeling of induction heating
of a diaphragm spring was successfully
used to study and search for geometric,
positional and electrical configurations of
the system comprising an induction coil
and a workpiece for solving the problem
on local heating of the diaphragm spring

for tempering. The model developed can
be applied to searching for optimal system
configurations in order to perform induction
heat treatment of diaphragm springs in a
wide range of typical sizes, as well as metal
blanks shaped as disks or rings, and other
axisymmetric metal workpieces with simple
and complex profiles.
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In order to study the differences in the *C and ">C isotopes assimilation degree related to
the rate of photosynthetic reactions, we have developed a number of procedures of sample
gasification and a hardware experimental complex for sample preparation before mass-spectro-
metric isotope analysis of carbon involved in plant life. A setup for concentrating the carbon
dioxide located around the plant was designed and made. The setup makes catalytic afterburn-
ing of organic microimpurities available for increasing the carbon content more than a hundred
times. A reaction procedure for oxidation of leaf glucose by yeast generating carbon dioxide
was suggested, reagent concentrations selected. The collected samples were free from impurities
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of the light exposure characteristics on the carbon isotope interchange between atmospheric
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Introduction

Photosynthesis is accompanied by fraction-
ation of isotopes of the elements constituting
organic products; in particular, plants selec-
tively absorb stable carbon isotopes 2C and 3C
[1 —5]. The distribution of isotopes between
carbon dioxide in the air and the products of
photosynthesis depends on the reactivity of
molecules of different isotopic compositions;
notably, the isotope whose participation accel-
erates the reaction is accumulated in the re-
action products. Plants rapidly accumulate the
12C isotope: its relative content in plant tissues
is 15—25%o0 higher than in the atmosphere.
Differentiation of isotopes during photosynthe-
sis presumably consists of two stages: the first is
preferential absorption of carbon dioxide *CO,
from atmospheric air and its dissolution in the
cytoplasm of plants, which is due to the kinetic
effect; in turn, the fraction enriched with the
2C isotope is extracted from carbon dioxide
CO2dissolved in cytoplasm at the second stage,
during synthesis of organic compounds [6].
Analysis of isotopic composition is of great
interest for studies on distribution of carbon
in the plant—soil—atmosphere continuum |[7,
8], and on the reactions of plant organisms to
changing external conditions [9].

Electrochemical gas sensors are used to
monitor gas exchange processes in the plant -
root system; analysis of carbon dioxide flows in
closed chambers is performed using process-
ing and modeling algorithms [10]; the Warburg
apparatus is used to study dark respiration in
plants [11]. The radioactive isotope 14C [11,
12] is widely used as an indicator of metab-
olism, movement of carbon and formation
of photosynthesis products. However, these
methods are not applicable to analysis of iso-
topic processes occurring during conversion of
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carbon dioxide from the air to the carbon pool
of a growing plant.

Mass spectrometry is the most common
and effective method for measuring the *C/">C
isotopic ratio. However, standard methods and
hardware systems for collecting and preparing
samples for such measurements are not suitable
for studies of living plants.

Thus, the goal of of this study was to develop
a technique for collecting and preparing samples
that is suitable for studying the interchange
of carbon isotopes between a plant and the
atmosphere by conducting mass-spectrometric
analysis of the '3C/"C ratio simultaneously in
atmospheric carbon dioxide around the plant,
and in tissues of the living plant.

Technique and devices used
for preparing samples
for mass-spectrometric analysis
of carbon isotopes participating
in plant life cycle

We proposed a technique for studying the
isotopic composition of carbon in plant tissues
and the degree of its fractionation from the air,
and created a hardware system that allows to
prepare the samples for mass-spectrometric
isotopic analysis of carbon involved in the life
cycle of plants.

The measured difference of the isotopic
ratio of the sample from the standard is usually
expressed as §"3C:

613C — [(]3C/]2C) /(13C/12C)

o — 1]-103%o,
where 3C/"C is the isotopic ratio of carbon;
the subscripts smp and stnd correspond to the
sample and the standard, respectively.

We used the commonly accepted standard
Belemnitella Americana (PDB) from the Peed-
ee Formation (South Carolina), dating from
the Cretaceous period, with the isotopic ratio

stnd
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BC/12C = 1123.72-1073, to compare data in iso-
topic analysis of carbon.

The "“C/"C ratio is determined in CO,
whose concentration in the sample should be
sufficiently high (more than 2—3%) and con-
stant. We face the following problems in work-
ing with plants:

the concentration of carbon dioxide in the air
surrounding the plants is low (~3-107*% *CO,);

organic matter of plant tissues has to be
transformed to gaseous state.

Therefore, the gas mixture should be enriched
for mass-spectrometric analysis, which we im-
plemented by freezing in nitrogen vapors (see
below). Furthermore, to convert solid matter in-
to gaseous state, we proposed and implemented
a method alternative to thermal decomposition,
which consists in using yeast as oxidizing agents
for carbon-containing compounds.

The analysis of the 3C/"C ratio was carried
out with Helicomass, a specialized static magnetic
mass spectrometer, developed at the Ioffe
Insitute (St. Petersburg, Russia) [13]. We used a
laboratory standard calibrated against PDB with
a Thermo Scientific Delta mass spectrometer (by
Thermo Fisher Scientific, USA).

The three-collector detection system
operating in spectrograph mode allows to
detect molecular ions of carbon dioxide (CO,")
with the following mass-to-charge ratios:

m/z = 44 is the value corresponding to the
main isotopic modification of 2C'*Q'¢Q;

m/z= 45 to the sum of isotopic modifications
Of 13C16016O and I2CI70]60;

m/z = 46 to the sum of isotopic modifications
of 2C"0'0 and very insignificant additions of
13C17OI()O.

We only used the m/z values equal to 44 and
45 as carriers of analytical information about
the 3C/2C isotopic ratio.

Given the isotopic abundance of carbon

BC /2C =0.01123 : 1,000,

oxygen
B0 :70: 180 :
= 2.004810-: 3.909310~*: 1,000,
and the detector characteristics, we

calculated 3"*C by the following algorithm:
Step 1. Find signal intensity for 3C and ">C
isotopes taking into account the contribution
of oxygen isotopes
BC = (1,,/33) — 21,:3.9093-107%,
2C=1,+21,2.0048107 +

+ 21,,3.9093-10,

where [, I, are the signal intensities for the
m/z values of 45 and 44, respectively.
Step 2. Calculate the normalization

coefficient k£ by the formula
k = 0.0106956/R,

where R is the average value of "“C/"2C for
laboratory reference gas, normalized by a coef-
ficient of 0.0106956, which is the absolute con-
tent of the '3C isotope in laboratory standard
and measured against the PDB standard.

Step 3. Calculate §'3C values by the formula

85C = [(kR/Ryp,) — 1] *10%,

where R is the measured "*C /"C ratio for the
sample; R, is the BC/"C ratio for the PDB
standard, equal to 0.0112372.

We used a TEKHMAS MS7-100
quadrupole mass spectrometer developed at
the Institute for Analytical Instrumentation
of RAS (St. Petersburg, Russia) for molecular
analysis of the composition of gas mixtures
obtained in preparing samples, determining the
concentrations of individual components and
recording them in dynamic mode. The device
allows to determine the composition of the gas
mixture in the range of mass numbers from 2 to
100 amu, making it possible to detect substances
and fragments of molecules interfering with
carbon dioxide.

Setup for enriching carbon dioxide
and determining the isotopic ratio of carbon
in the air surrounding the plant

The gas mixture is enriched with carbon
dioxide for mass-spectrometric analysis of
carbon in the atmosphere surrounding the plants.
Freezing is one of the methods for concentrating
carbon dioxide. Carbon dioxide transforms to
solid state at an absolute pressure of 760 mm Hg
and a temperature of —78.9 °C. Freezing is carried
out in thermal mode, so that carbon dioxide is
crystallized on the walls of the collection tank,
and in the absence of snow in airflow. In this
case, the temperature difference between the air
and the walls should not exceed 30 °C, and the
gas flow rate should not exceed 3 m/s (to prevent
the deposited crystals from getting separated and
carried away).

In view of the described conditions, we have
developed a technique for enriching the gas mixture
with carbon dioxide. The setup for concentrating
carbon dioxide is shown schematically in Fig. 1.
Small streams of atmospheric air were pumped
through test tube 3 placed in heat-insulating
vessel 4, filled approximately one-third with
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liquid nitrogen. The tube was placed in nitrogen
vapor so that its bottom temperature was about
—100 °C. Desiccator I was used as a sealed
chamber for the test plant.

The freezing system consisted of two circuits,
where the temperature just below zero was
maintained in loop 2 ensuring deposition of water
and dehumidification of the gas mixture, while the
temperature below —100 °C was maintained in
refrigerating heat exchanger 3, made in the form
of a glass tube with a volume of 235 cm?, allowing
to transform carbon dioxide to solid phase. Flow
rate did not exceed 0.5 m3/ h, so solid carbon
dioxide could be desorbed on the walls of the
tube. A system of pneumatic tubes connecting all
the components of the setup and flow controller
5 allowed the gas mixture to circulate from the
plant through a system of containers back to the
chamber with the test object.

After a freezing cycle lasting 15 min,
concentrated carbon dioxide in tube was
transformed to gaseous state by heating at room
temperature. The tube was equipped with a 35 x
1 mm platinum catalytic chamber, maintaining
a temperature over 900 °C at a heating current
of 3.5 A. Catalytic combustion of impurities was
performed in the test tube after defrosting for t =
600 s. We estimate that the total concentration
of impurities that can interfere in carbon isotope
measurements for target ions with m/z 44 and
45 did not exceed about 1073,

Technique for determining the isotopic
ratio for glucose carbon in plant tissues

Based on the developed technique for
studying the fractionation of carbon isotopes
by heterotrophic microorganisms [14], we
proposed using oxidation by yeast to transform
simple plant sugars to gaseous phase with
carbon dioxide forming in order to determine
the isotopic composition of glucose carbon in
plant tissues.

Yeast mainly consume glucose by two
pathways:

glycolytic splitting, that is, two pyruvate
molecules are formed from a glucose molecule;

partial oxidation of glucose in oxidative
pentose phosphate cycle, when three carbon
dioxide molecules and pyruvate are formed
from a glucose molecule [14].

Pyruvate synthesized through both of these
pathways for glucose metabolism can then
be oxidized in tricarboxylic acid cycle with
the carbon dioxide molecule removed and
coenzyme A (CoA) added to form acetyl-CoA:

CH,—CO—COOH + SH-CoA + NAD —
—'CO,+ CH,—CO—S-CoA + NAD-H,.

Alcohol fermentation proceeds in the
absence of oxygen; its total equation has the
following form:

C,H,,0,— 2CO, + 2C,H.OH.

l —

-—

]
!

=
=
-

BB00°C-------------- ke

5

= .

4
B O e ——

Fig. 1. Setup for enriching carbon dioxide from atmosphere surrounding the plant:
sealed chamber / with air exhaust and supply pipes, U-shaped tube 2 for draining the gas mixture,
Wartz flask 3 for depositing carbon dioxide in nitrogen vapor with integrated catalytic chamber
for afterburning organic impurities, heat-insulating vessel 4 with liquid nitrogen, flow controller 5
Temperature is controlled by a thermocouple
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The acetaldehyde formed during the
reaction has a molar mass of 44 g/mol, which
does not allow it to be separated from the
target compound, carbon dioxide. However,
since glucose is the starting material for the
carbon constituting acetaldehyde CH,COH,
this substance does not introduce errors in
the isotopic composition of the plant. Ethyl
alcohol with a molar mass of 46 g/mol begins
to form approximately 24 h after the start of
the reaction, after yeast have consumed the
nutrients represented in our case by glucose in
plant tissues.

The technique was as follows: ground plant
tissue, water and dry yeast were placed in a
sealed test tube (Fig. 2); after a 30-minute
reaction, the synthesized carbon dioxide was
taken for mass-spectrometric analysis.

The complete mass spectrum of the gas mix-
ture formed in the reaction tube during oxida-
tion by yeast was recorded with an MS 7-100
quadrupole mass spectrometer (Fig. 3). Gases
in atmospheric air exhibited increased peak in-
tensity in the mass spectrum for m/z = 44 (CO,)
(by 53 times) and for m/z = 50—70 (by 5—10
times) during the reaction (within 15 min).

According to [15], mainly signals from frag-
ment ions lie in the range m/z = 50—70, and
there are no data on the peaks related to in-
terference of fragments at m/z = 45 (this mass
corresponds to the CO, molecule with the BC
isotope). In addition, the absence of a peak
at m/z = 46 indicates the absence of ethanol
vapor, which is usually the main interfering
agent in isotopic measurements of carbon, in
the gas mixture. In our estimation, the total
concentration of impurities whose molecular or
fragment ions are capable of interfering with
the target ions used in isotopic measurements
at mass numbers 44 and 45 did not exceed the
level of 1073, providing the necessary measure-
ment accuracy of 1%o.

The ratio of reaction components for alcohol
fermentation should be as follows: 1 kg of
sugar, 4—5 1 of water, 100 g of pressed yeast or
20 g of dry yeast. Because the concentration of
sugars in the tested plant tissues is not known
exactly, we conducted an experiment to select
the concentrations of reagents (see Table). We
could find no significant differences of in §'3C
values of leaves. The standard deviation for the
obtained values was 1.3%o0. For example, the
31C value for 1 mg of plant tissue per 1 ml
of water (second row of Table) was —35.3 =+
0.9%0 60 min after the start of the reaction,
and —33. 6 £ 0.9%o after 90 min.

In addition to studying plant sugars, we ob-
tained and analyzed the isotopic composition
of sugars corresponding to different types of
photosynthesis and used as substrate for yeast.

The isotopic ratio obtained for yeast oxi-
dation of beet sugar isolated from C3 plants
(fixing carbon dioxide by the C3 mechanism of
photosynthesis [16]) was

d33C = —%01.9 + 33.4.

The value for cane sugar synthesized from a
C4 plant (higher plants with C4 photosynthesis
[16]) was

313C = —%01.6 = 14.6.

The values obtained are in agreement with
the data given in literature for these types of
photosynthesis, which means that the proposed
technique can be applied for a wide range of
objects.

Application of developed technique
for preparing the samples

The given methods were used to study
the effect of the spectral characteristics of
lighting on the degree of exchange of carbon
isotopes between atmospheric air and plant
organs that carry out photosynthesis. Appar-
ently, isotopic composition of the leaves sub-
stantially depends on the spectrum of light
that the growing plant was exposed to. For
example, when the spectrum changed from

Fig. 2. Glucose from plant leaves oxidated
by yeast until carbon dioxide is obtained
in reaction tube
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Table

Dependence 53C for glucose in leaves
on reagent concentration
in oxidation by yeast

Amount of reagent (mg)
per 1 ml of water §1°C.%
Plant tissue Yeast
0.5 1.05 —33.6+£0.9
1.0 1.04 —33.6+0.9
2.0 1.05 —33.6+0.9

red to blue, the *C/2C ratio changed in the
range from —35 to —%o023, and the depen-
dence on wavelength was nonmonotonic.
The difference between the carbon isotope
composition in the air surrounding the plants
and in their leaves varies from 7 to 19%o de-
pending on the spectral composition of light

Intensity, a.u.

. 8E-11

&
H

Intensity, a.u
:L‘-
:'In

2E-11

0,E+00
50 70

and characterizes the rate of carbon assim-
ilation due to photosynthetic reactions and
photorespiration. This difference reflects the
degree of isotope fractionation during the life
of plants and can be used as a phytomoni-
toring parameter. We plan to publish more
detailed findings later.

N, 0,"

.-L_ T T JA&.IHHM.M"

90 110 m/z, amu

Fig. 3. Mass spectra of air in reaction tube (solid curve) and in gas mixture formed
during oxidation of glucose in plant leaves by yeast (dashed curve)
in m/z ranges of 0—45 amu (@) and 45—95 amu (b)
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Brief results and conclusions

We have developed a system for collecting
and preparing samples for mass-spectrometric
analysis of fractionation of 3C/"C isotopes
from the environment into the carbon pool of
plants. Development of the system comprised
the following stages:

constructing a setup for collecting and en-
riching a carbon dioxide sample from the air
surrounding the plant in vivo by freezing car-
bon dioxide at a temperature of liquid nitro-
gen vapor;

developing and applying a technique for
obtaining carbon dioxide samples from glu-
cose contained in leaves via biochemical oxi-
dation by yeast.

As a result of experimental studies con-
ducted using this setup by the developed tech-
nique, we have found that the ratio of carbon
isotopes in carbon dioxide released during ox-
idation of plant tissue by yeast remained un-
changed for three hours.

The isotopic ratios obtained for oxidation
by yeast were

dC = —33.6 £ 0.9%0

for a leaf of a C3 plant;
3C = —%00.9 £ 33.6

for beet sugar isolated from C3 plants;

d3C = —%01.6 = 14.6

for cane sugar synthesized from a C4 plant.
These values are in agreement with the
data given in literature for these types of
photosynthesis, which means that the proposed
technique can be applied for a wide range of

objects.
The developed system for collecting
and preparing the samples provided a

significant increase in the accuracy of isotope
measurements due to concentration of carbon
dioxide from the atmosphere surrounding the
plant and elimination of interfering organic
impurities.

The technique for preparing the samples was
successfully used to measure the dependence of
isotopic ratio on the spectral composition of
the light that the plants were exposed to during
growth. We have found significant differences
in the isotopic composition of carbon dioxide
in the atmosphere and in plant leaves.

Thus, we can recommend to use the
BC/12C isotopic ratio as an important indica-
tor of the photosynthesis reaction rate, while
the difference between the §'3C values for the
air surrounding the plant and involved in its
metabolism and §'3C values of the carbon pool
of plant tissue may reflect the degree of isotope
fractionation during plant life cycle.
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The optimal lighting conditions for contrast imaging of biological tissues during surgical
operations have been studied. In so doing a special experimental setup based on a dynamically
controlled led lighting system was used. The operating team selected the optimal illumination
of the operating field during work with individual organs and tissues of animals (rats); simul-
taneously experimental investigations of the spectral characteristics of these biological objects
were carried out. Relying on such experimental data, an analysis of luminance and color con-
trasts, including a comparison with a halogen lamp effect. According to results of studies the

need to use special lighting with optimization of its intensity and a wavelength spectrum was
confirmed. Such a measure will increase the contrast during surgical operations.
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OoNnTMMU3ALUNA OCBELLEHUA ONEPALMOHHOIO NOJiA
C LLE/1bIO MONYYEHUA MAKCUMAJIBHOIO KOHTPACTA
nPU BU3YAJIUZALUU BUOJTOTUYECKUX OBDBEKTOB

A.B. Anado@', B.ll. Banwxod?, A.Jl. 3akzetim’, B./l. KynuoB?,
A.B. Mamouiun®*, E.B. [lomanoBa®, A.E. YepHsko8', A.3. ®omuadu?

1 Hay4yHO-TEXHONOrMYECKUIA LLEHTP MUKPOSNEKTPOHUKM U CYOMUKPOHHBIX reTEPOCTPYKTYP
Poccuiickoi akagemun Hayk, CaHkT-MeTepbypr, Poccuiickas ®enepauus;
2 CaHkT-lNeTepbyprckuit NONUTEXHUYECKUI YHUBEPCUTET lMeTpa Benukoro,
CaHkT-lMeTepbypr, Poccuiickas deaepauus;
3 Hay4HO-TEXHONOrMYEeCKNii LeHTp 6ruomMeanmuUnHCKOM POTOHMKM OpPMOBCKOrO roCyAapCTBEHHOMO
yHuBepcuteta uMm. U.C. TypreHea», r. Opén, Poccuiickass ®eaepauus;
‘OpnoBckasi 0bnacTHas KNMHUYeckas 6onbHuLa, r. Opén, Poccuiickas depepauus

WccnenoBaHbl onTUMaIbHBIE YCJIOBUSI OCBEILIECHUS i1 KOHTPACTHOU BU3yalu3alUU
OMOJIOTMYECKUX TKaHEeH NPpU XUPYPIUYECKUX OTI€paliuAX. HpI/I 9TOM MCITIOJIb30BaHa Cri€liuajbHas
OKCIEPpUMEHTAJIbHasA YCTaHOBKa Ha OCHOBEC CBETOJUONHOMN, JAUHAMUYECKU ynpaBnﬂeMoﬁ
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cucreMbl ocBellieHus. OnepaloHHas Opuraaa mpoBoAMIa Moa00p ONTUMAILHOTO OCBEILEHUS
OIEePallMOHHOr0 IO TpU paboTe ¢ OTHEJbHBIMM OpraHaMM W TKaHSIMMW KMBOTHBIX
(KpBICHI), OMHOBPEMEHHO BBITTOJHSIJINCH DKCIIEPUMEHTAIBHBIE MCCICIOBAHMST CITEKTPAIbHBIX
XapaKTEePUCTUK BTHX OMOJOTMYECKNX 00BeKTOB. Ha OCHOBE TOJIyYeHHBIX JTaHHBIX MPOBEICH
aHaJNU3 IPKOCTHOTO M IIBETOBOTO KOHTPACTOB, KOTOPHIN BKJTIOYAJI CpaBHEHUE C OCBEIICHUEM
O0BEKTOB CBETOM OT TaJIOTCHOBOM JaMITbl HaKajmBaHMA. Ilo pesymbTaTaM HCCIeHOBaHUM
MOATBEPXKIEHA HEOOXOAMMOCTb MCIONL30BaTh CIELMAJbHOE OCBELIEHUWE C I10A00POM
ONTUMAJIBHBIX MHTEHCUBHOCTM M CIEKTpa JJIMH BOJIH [Jis TTOBBIIIEHUS KOHTpacTa Mpu
MPOBEACHUN XUPYPTUUECKUX OTEPaLNiA.

KmoueBbie ciaoBa: cBetomuon, RGB-cMmemienme, muHaMH4YecKoe VYIIpaBICHHE CBETOM,
XUPYPTUYECKUN CBETMJIIBHUK, KOHTPACTHAsI BU3yalu3alusl OMOJOTUYECKUX TKaHeM
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Introduction

Color perception of objects and precise
detection of tissue boundaries, even if
they only slightly differ in color (which is
especially important in surgery) considerably
reduces the risk of inaccuracies during
operative treatment [1, 2]. Until recently,
white light with a high color-rendering index
from halogen or xenon lamps, allowing
to reproduce the color of tissues with the
greatest accuracy, was considered to be
the best type for operating rooms. Color
contrast between observed objects can be
increased by using accent color lighting
accounting for the spectral dependences of
the reflection coefficient of the objects, in
particular, different biological tissues. This
can be implemented with multi-color LEDs
with adjustable spectral color characteristics.
The technique was first proposed in [3],
where a controllable surgical lamp was used
for contrast imaging of tumor masses and
necrotic tissues; apparently, such masses and
tissues were localized not only near the surface
but also at a certain depth, under a layer of
healthy tissues. There is growing interest
towards increasing the imaging contrast of
biological tissues in surgery by using special
lighting [4—6].

The goal of this study consisted in
determining the optimal lighting modes that
provide maximum contrast of objects during
surgical operations. We considered the spectral
color characteristics of biological tissues
and the emission spectra of a dynamically
controlled lamp.
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Setup and experimental procedure

Animal tests were conducted in laboratory
conditions at the Oryol State University
named after I.S. Turgenev (Oryol, Russia)
using a surgical lamp.

Experimental studies were carried out with
clinically healthy male rats (2 Wistar rats aged
6 months) in accordance with the Principles
of Good Laboratory Practice (GOST 33647-
2015). The study was approved by the
Ethics Committee of the OSU (protocol
No. 10 dated 16.10.2017). The animals
were quarantined for 2 weeks in a clean
environment controlled for temperature and
humidity. Rats were anesthetized with Zoletil
100 (Vibrac, France) in standard dosages and
restrained on a special table. The experiments
were carried out on areas of depilated skin,
on subcutaneous fat, and on muscle tissues of
abdominal organs (intestines and liver). The
animals were then removed in accordance
with experimental standards.

A spectrally tunable surgical lamp was
mounted above a special operating table for
small laboratory animals at a distance of 70
cm, generating a uniform light field measuring
at least 20 x 20 cm (Fig. 1). The spectral
parameters of the lamp’s LED array were
varied via software. The RGBW(RGBWLED)
array included four large chips with different
colors: red (R), green (G), blue (B), and
phosphor-coated W chips generating white
light with a correlated color temperature
(6500 K). The lighting parameters of the
lamp were controlled via a remote PC. The
optimal lighting of the surgical field for tissues
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Fig. 1. Schematic layout for installed surgical lamp:
controllable LED lamp, MK350 spectrometer (Sp),
personal computer (PC), laboratory animal (LA);
the animal’s internal organs are shown and marked on the insert

and organs was selected based on subjective
visual assessment given by the surgical team.
The spectral composition of the emitted
light was monitored by a portable MK350
spectrometer.

The reflection coefficients were measured
by the following procedure: a biological sample
was placed in a beam of incident light; the
luminous flux reflected from it was taken as
the incident flux in the absence of the sample.
All the rays scattered in different directions had
to be collected in case of diffuse reflection or
transmission.

The spectral characteristics of tissues were
obtained using the OL 770-LED High-speed
LED Test and Measurement system [7] (Fig. 2).

Samples were prepared at the Oryol State
University by the following procedure.

A set of glasses with samples from two rats
was used. In accordance with the GLP prin-
ciples and the 3Rs concept (replacement, re-
duction and refinement) [8], specifically, min-
imizing the number of animals participating
in the experiment, the smallest number of rats
possible, i.e., two, was considered.

Preliminary experiments were carried out to
compare the spectral characteristics of differ-
ent biological tissues. We then measured the
same parameter of the given part of the bio-
logical object several times (10) to reduce the
relative error. Measurement results given below
correspond to reflection curves obtained as the
arithmetic mean of two similar samples.

Ten types of biological tissues were select-
ed: pancreas, liver, spleen, skin, heart, brain,

muscle, kidney, subcutaneous fat, bladder. A
thin tissue slice 1 mm thick (obtained with a
scalpel) was placed on a glass slide measur-
ing 77 x 26 x 1 mm. Slides with objects were
mounted in the OL770-71 adapter to measure
the reflection spectra. The sample was covered
by a second thin glass.

Experimental results

The optimal lighting of the surgical field was
selected for each type of biological tissue using
a dynamically controlled LED system based on
subjective visual assessment of the operating
team. The following indicators served as the
criteria for choosing contrast imaging:

brightness contrast against the surrounding
tissues;anatomical structure of tissue and small
details can be clearly detected (i.e., without
blending together).

Additional factors taken into account were:

comfortable visual perception;

optimal brightness;

lack of glare and shadow.

The LED array used to select the optimal
spectrum (RGBWLED) was compared with
illumination from a halogen lamp (HL) and an
array of white LEDs (WLED) with a correlated
color temperature of 2800 K. The spectral
characteristics of these sources are shown in
Fig. 3,a.

Distinctly differentiated reflection spectra
obtained from different biological tissues
are shown in Fig. 3,b.Notably, analysis of
the reflection spectra of individual tissues of
different organs provides deeper insights into
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Fig. 2. Adapted OL-770 system for meauring spectral characteristics of biological tissues:
spectroradiometer /; window 2 for connecting optical fiber from light source;
optical fibers 3 and 6 for recording signal and light coupling to the sample, respectively;
adapter 4 for measuring integral (diffuse and specular) reflection spectra;
light source 5; input coupler 7 for measuring reflection; sample position &, tissue samples Samp
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Fig. 3. Emission spectra for sources (a) and reflection of different biological tissues (b):
RGBWLED (I ), WLED (II); HL (I11);
brain 7, skin 2, lung 3, pancreas 4, muscle 5, heart 6,
liver 7, kidney &, bladder 9, spleen 10
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the problem of optical recognition of biological
tissues, making it possible to assess different
morphological and structural changes in
biological organs consisting of identical cells.

Assessment of contrast imaging of biological
objects based on experiment

The human visual system identifies
boundaries of biological tissues by brightness
and color of adjacent organs. The brightness
contrast of one biological organ against another
gives a reliable estimate of the boundaries of
organs in shades of gray and is determined,
according to [9], by the following expression:

— (D B q)lbiotis
o, +®,

1biotis

Lbiotis

1biotis

where D, s ATC the relative fluxes of visual
exposure to light reflected from the first (1) and
second (2) organs adjacent to each other.

The values D@, s ATC determined by the
integrals of spectral flux density of visual
light exposure. The last integral is equal to
the product of three factors: the spectrum of
the light source E__ (}), the spectrum of the
reflection coefficient Rl’zbmﬁs and the luminous
efficiency function of the human eye, V() ):

780

D,y = [ @

i biotis
380

M) dh =

i sp biotis (

780

= I Esuurse (}\") ' Ri biotis (}\") ’ V(X) d}\'

380

Integration is carried out in the wavelength
range of optical radiation visible to the human
eye: 380—780 nm.

Calculated brightness contrasts of a liver tissue
sample against other organs under illumination
by three types of sources are given in Table 1.

The spectral density peaks for visual
light exposure adjacent tissues are located
at different wavelengths and have different
amplitudes; the brightness contrast in the liver
tissue sample against the pancreas, nerve fibers
and subcutaneous fat is virtually independent
of the spectral composition of the light source.
On the other hand, contrast of blood vessels
in the liver strongly depends on the spectral
composition of the light source, which makes
it possible to optimize the spectral composition
of the light from the lamp in order to increase
the brightness contrast of the blood vessels. The
location of spectral density peaks of visual light
exposure at different wavelengths indicates a
considerable color contrast.

The color difference of two contacting
objects depends on the difference in coordinates
in the CIE 1931 color space [10].

Relative spectral flux densities of visual light
exposure from two adjacent biological tissues
(numbered i = 1, 2) in XYZ color space are
found by the expressions [10]:

CDXsp i (k) = Esnurse (7\‘) ’ R[ biotis (7\‘) ’ X(A’)’
(DYsp i (7\') = Emurse (7\‘) .Rl' biotis (7\') ’ Y(K)’
q)Z sp i (}\’) = Esourse (7\‘) ’ Ri biotis (7\‘) Z(}\’)’

Table 1

Brightness contrast of liver tissue specimen against other
biological tissues under lighting from different sources

Light source | Pancreas | Nerve fiber | Blood vessels (veins) | Subcutaneous fat
HL 0.2570 0.5985 —0.0096 0.2972
RGBWLED 0.2548 0.5962 0.0012 0.2945
WLED 0.2542 0.5962 0.0066 0.2961

Note. The values of a (see the formula in the text) are compared in relative units.

75



4St. Petersburg State Polytechnical University Journal. Physics and Mathematics 12 (4) 2019

where X(A), Y(A), Z(\) are the color matching
functions of the XYZ color space.

Relative color coordinates (chromaticity
coordinates) x, y, of visual light exposure
of biological tissues are found by the
expressions:

)

Xspi
o, vo, 40,
Xspi+ Yspi+ Zspi

y_ q)Yspi
i_ .
q)Xspi+qDYspi+q)Zspi

Each color can be represented by a point
in the XYZ color space with two color
coordinates x and y; the coordinate z always
linearly depends on x and y.

The distance between two points in the
XY diagram characterizes the color difference
between the two light fluxes and can be used
as a measure of contrast. Thus, the color

>

contrast of one biological tissue (i = 1) against
another (i = 2) is found by the expression

O(‘colar :\/('xl_'x2)2 +(y1 _yz)z_

If o, extends beyond the perimeter of
MacAdam ellipses [11, 12], the adjacent tissues
can be distinguished by color; the colors do not
necessarily differ in the opposite case.

We calculated the color contrasts for a
practically important case of imaging the liver
against other tissues under illumination with
three light sources (Table 2). Fig. 4 shows
calculated chromaticity coordinates x, y of the
same biological tissues.

According to our results, the color
contrasts o, were outside the perimeter of
MacAdam ellipses in all cases. The highest
value of color contrast was observed for tissues
illuminated with the RGBWLED array,
which is consistent with expert assessment of
practicing surgeons.

Table 2
Color contrast o, of liver tissue (relative units)
against other biological tissues from different light sources
Color coordinate . .
and contrast Liver | Pancreas | Subcutaneous fat| Veins | Nerve fibers
Halogen lamp
X 0.482 | 0.460 0.475 0.575 0.460
y 0.396 | 0.396 0.410 0.405 0.351
olor 0 0.026 0.012 0.103 0.031
RGBWLED array
X 0.461 0.440 0.457 0.576 0.438
y 0.410 | 0.427 0.420 0.351 0.435
ol 0.0256 | 0.032 0.015 0.124 0.039
White LED
X 0.500 | 0.480 0.494 0.589 0.478
y 0.400 | 0.415 0.409 0.351 0.422
oo 0 0.026 0.012 0.101 0.032
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Fig. 4. CIE 1931 chromaticity diagram, color coordinates of liver (/—3) and nerve fibers (4—6)
in different light: halogen lamp (HL)(/, 4); RGBWLED array (2, 5); white LED ( 3, 6)

Conclusion

We have considered methods for improving
visual detection and differentiation of
morphological characteristics of biological
tissues and organs in vivo. We have solved this
problem by using LEDs whose spectral color
characteristics can be varied over a wide range,
providing optimal lighting for contrast imaging
of objects (tissues) that the surgeon is currently
working with.

Considering the spectral characteristics of
biological tissues, we have found pronounced
differentiation in biological tissues by reflection
spectra; we have then chosen the spectral
color parameters for optimal imaging contrast.
Experimental studies using different lamp and
LED light sources (HL, RGBWLED and
WLED) confirmed that the best contrast is

achieved using RGBWLED based on a LED
array with specially tailored lighting spectrum.
Notably, this lighting may differ from the
emission spectrum of white light. This difference
means that using different types of lighting for
tissue imaging is a promising direction.

A surgical lamp should include a lighting
system generating high-quality white light and
a dynamically controlled system generating
specialized lighting that provides contrast
imaging of biological tissues.

The studies were partially supported by
the Subsidy Agreement with the Ministry of
Education and Science of the Russian Federation
(Agreement No. EB 075-02-2018-929, internal
agreement number 14.604.21.0187, project 1D
RFMEFI160417X0187).
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ered. The modern approaches to the classical Sawyer—Tower circuit’s application was analyzed, and
practical need for such development was proven. The schematic diagram and description of the main
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crystal were presented, and they were compared with the data published earlier. Moreover, the results on
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Introduction

Polarization as function of the external
electric field in ferroelectrics is a hysteresis
loop; it is one of the main characteristics of
ferroelectric materials. First studies on measuring
hysteresis loops were carried out by Sawyer and
Tower in the 1930s. The measurement method
named after the researchers has been used ever
since. The initial version of the circuit was a
high-voltage generator series-connected to a
flat sample capacitor and a reference capacitor
connected to the deflection plates of the
cathode ray tube. This measurement circuit
was modified many times: with new methods
proposed for compensating for parasitic effects
in the sample [1], for measuring the output
signal [2], and for special types of applied
measuring voltage [3—5].

Sinusoidal or triangular measuring signal is
used in the classical circuit. In this case, one
of the main problems in measuring hysteresis
loops is phase rotation of the measured signal
due to parasitic effects in the sample, for
example, high conductivity. This is expressed
as distortion of the loop or as a loop appearing
in the material where it should not, which is
described in detail in [6]. This problem can
be solved by using a measuring signal with a
complex shape, for example, by applying pairs
of pulses of each polarity. This method is called
Positive Up - Negative Down (PUND) or
sometimes the Double-wave method (DWM)
[3] in literature. Polarization is switched during
primary pulses (half-waves), and all effects that
were not preserved when the external electric
field was removed are measured during the
secondary half-waves. There are more complex
measuring signals but describing them is beyond
the scope of our study.

Although the original measurement circuit is
fairly popular due to its simplicity, it has many
drawbacks. The most important one is that
data collection is complicated. The only way to
record the measured loops before widespread
use of digital oscilloscopes was to photograph
the oscilloscope screen or transfer the image to
translucent paper (film).

One of the main advantages of a digital
oscilloscope is that it can record the numerical
data of the measured signal. While all modern
digital oscilloscopes can perform this function,
not all models necessarily allow to record the
numerical values of measurements taken in
XY mode required for applying the Sawyer—
Tower circuit. In most cases, only the values
from both channels of the oscilloscope as
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functions of time can be recorded, which is
inconvenient and requires constant switching
between the two modes. Besides, this method
becomes much more complicated if special
forms of the measuring signal are used in case
of modified circuits. For example, there are
relatively long pauses between half-waves in
the double-wave method, in order to discharge
the reference capacitor, and the oscilloscope
may not have sufficient memory to record such
a long measurement process.

Another considerable drawback in using
an oscilloscope is that an operator has to be
personally present, since most devices are
not equipped with an automated data storage
system synchronized with some external
process. Hundreds of hysteresis loops may be
measured in real experiments over long periods
of time, for example, during long passes over
the temperature range. In this case, some
universal digital system should be used for data
collection. Such systems are very common
nowadays.

This study describes a system for data
collection that is easy to manufacture. The
system is based on widely available, inexpensive
components. An example of the system’s
practical application is study of polarization of
a PMN-20PT ferroelectric single crystal.

Circuit diagram and operating
principles of the device

The proposed system for measuring ferro-
electric hysteresis loops is based on the Atme-
ga328 microcontroller, which is part of the Ar-
duino Uno debug board. The circuit diagram
of the device is shown in Fig. 1. The hysteresis
loop can be measured with at least one out-
put and one input analog voltage channel. The
output channel in the diagram is based on the
DACS8512 DAC chip, which has an integrat-
ed reference voltage source, a 12-bit resolution
and an output voltage in the range from 0 to
4.095 V. An operational amplifier (op-amp) is
used to expand the range of output voltages to
+10 V; it is a four-channel LM324 op-amp
in this device. The supply voltage of the op-
amp, which is 12+ V, provides the necessary
output signal amplitude. An AD1580 shunt
diode with a stabilized voltage of 1.225 V, a
stabilized current from 50 pA to 10 mA and
an output impedance of 0.5 Q was chosen as a
reference source for shifting the output signal
during range scaling. Trimmer potentiometers
for range limits (R7) and zero (R5) have 25
revolutions, so output voltage scaling can be
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Fig. 1. Circuit diagram of main nodes of system for measuring hysteresis loops

adjusted with an accuracy no worse than 0.5%.
The input channel measures the voltage drop
across the reference capacitor and has a range
of £5 V. The built-in Atmega328 converter
with 6 channels, a 10-bit resolution and refer-
ence voltage supplied to the AnalogVref input
(5 V) is used as an ADC. Since the voltages in
the test sample can significantly exceed the ad-
missible input values, safeguards against sample
breakdown (Zener diodes, TVS diodes, etc.)
are installed on the input channel. Unfortu-
nately, this solution has its drawbacks, for ex-
ample, leakage currents of Zener diodes paral-
lel-connected to the reference capacitor affect
measurements like a phase-shifting variable
resistor R13, which is not always acceptable.
Better protection can be achieved by install-
ing a high-linearity optocoupler, for example,
HCNR201. The power supply unit is based on
L78L05, L78L06 and MAX680 microchips and
provides power supply of +5 and 12+ V.

The diagram shows an example of external
connections: a voltage amplifier with a gain of
100 and the installed sample (a flat capacitor
with the given material). If the voltage amplifier
is non-linear or has unstable parameters,
its output voltage should also be measured.
Another analog input channel (similar to the
one described above) is constructed for this
purpose, connected via a divider to the output
of the high-voltage amplifier. In this case, the
shape of voltage pulses from the output channel

is selected based on the known behavior of
the amplifier, and the voltages on the sample
and on the reference capacitor are measured
simultaneously by two input channels during
operation.

The capacity for the reference capacitor
is chosen so that the voltage drop across it
remains within the acceptable range but at the
same time occupies a significant part of the
input voltage range. A block of capacitors is
usually assembled to simplify the selection of
this quantity; the capacitors can be connected
to the circuit with either a manual wafer switch
or with electromagnetic relays controlled by a
microcontroller.

Resistor R13 is used to compensate for the
phase shift between the applied voltage and the
voltage generated on the reference capacitor if
the sample has considerably high conductivity.
The resistor can also be used as a current-
measuring resistance. In the latter case, the
reference capacitor is disconnected from the
circuit, and the voltage drop across the resistor
R13 is converted into the current flowing
through it, so that the current hysteresis loops
can be measured. Values of this resistance are
typically tens of megaohms for compensated
phase rotation and tens of hundreds of ohms
for current measurements. It is convenient to
use dual potentiometers as current-measuring
resistors: one half of the device can be
connected to another ADC channel of the
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microcontroller as a voltage reference divider;
the microcontroller can then measure the
resistance of the current-measuring resistor at
any time for instant conversion of voltage into
current.

The microcontroller can communicate with
a computer by the RS232 standard (the circuit
should be equipped with a UART-RS232 level
converter for this purpose) or in virtual COM
port mode via the USB interface built into the
debug board, with the data transfer rate of up to 1
Mbps. The microcontroller can be programmed
in the standard Arduino IDE, which does not
require a separate programmer, or in AVR
Studio using the 12C/SPI programmer.

Experimental studies

The ferroelectric hysteresis loops were
measured on two samples: single crystals of
BaTiO, (BTO) and 0.8Pb(Mg, Nb, )O,-
0.2PbTiO, (PM-20PT) ferroelectrics.

Single crystals were prepared as follows:
first, large samples were cut into plates with
a [110] plane orientation and thicknesses of
70 um for PMN-20PT and 600 um for BTO,
then the surfaces of the plates were polished
with a DiaPro Nap R diamond suspension to
a roughness less than 1 pm. Chromium-gold
conductive electrodes 84 nm thick (Cr 4 nm,
Au 80 nm) were deposited on both sides of
the plates; Moorfield Minilab 080, a vacuum
system for deposition of thin films, was used for
this purpose. A Struers Accutom 50 machine

was used for cutting, and a SuperNova X-ray
diffractometer for measuring crystallographic
orientation.

A single crystal of barium titatnate
(BaTiO,), which is a well-studied material, was
chosen as a sample for testing and tuning the
device constructed. Fig. 2 shows the obtained
hysteresis loops (dark squares) and the signal
of the secondary half-waves (light circles).
A significant difference between the signals
of the first and second pass indicates that
polarization is switched in the sample, and the
effect persists even when the external field is
removed. The positive and negative parts of the
loop are shifted relative to each other because
the reference capacitor was discharged to zero
after each half-wave was applied. The results
obtained correspond to the hysteresis loops
measured in [7] on the same material with
good accuracy (of the order of 10—15%).

Measurements of hysteresis loops in PMN-
20PT from our study [8] are given below as an
example application of the device constructed.
Numerous studies of polarization switching
in PMNPT solid solutions [9, 10] point to a
linear temperature dependence of the coercive
electric field. The temperature model of
hysteresis in ferroelectrics was described in [11]:
the temperature dependence of the coercive
electric field was found to be nonlinear. We
assume that the temperature range in these
experimental studies was not wide enough to
observe non-linearity.
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Fig. 2. Hysteresis loop obtained by double-wave method for BaTiO, single crystal,
measuring system we constructed was used
The amplitude and frequency of the measuring signal were 400 V and 50 Hz, respectively;
dark squares correspond to the signal of the primary half-waves,
light circles to the signal of the secondary half waves
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hysteresis loops measured by conventional method at different temperatures ().
Dependence of coercive fields on temperature at different measuring frequencies (c).
Dark dots in Fig. 3,a correspond to signals of the primary half-waves,
light dots to signals of the secondary half-waves

Using the system constructed, we
measured the ferroelectric hysteresis loops
in the temperature range from 130 K to 300
K. Fig. 3,a shows quasistatic (measured at
a frequency of 2 Hz) ferroelectric hysteresis
loops at different temperatures. The double
wave method (DWM) was used to increase
the measurement accuracy. Fig. 3,b shows
the results obtained for the primary (dark
dots) and secondary (light dots) half-waves.
A significant difference between the signals
of the first and second pass means that the
steps of the measured hysteresis loops are
induced by polarization switching, while the
parasitic effects are small and can be ignored.
The magnitudes of the coercive electric fields
were obtained using the measured hysteresis
loops (Fig. 3,c¢).

The temperature dependences of the coercive
electric fields we obtained are nonlinear, which
corresponds to the model of ferroelectric
hysteresis described in [11]. According to
this model, the magnitude E, of the coercive
electric field is expressed as

T P
EC_Eh[l—T—J , (1)

C

where E, is the displacement field [12], T is
the Curie temperature, p is the dimensionless
constant.

Using expression (1), we performed
regression analysis of the obtained dependences.
The coefficients included in this expression
were as follows (determined by the least squares
method):

E,=40.1 kV/cm; T,= 380 K;
P=24at2Hz; p=2.1at 10 Hz;

P = 1.7 at 50 Hz.

It is difficult to estimate and compare the
obtained coefficients, as our experimental study,
carried out for a PMN-20PT single crystal using
the above model, is the first in this direction.

Conclusion

We have developed and constructed a simple
and effective device for measuring ferroelectric
hysteresis loops, based on both the classical
Sawyer—Tower circuit and the modified double
wave method. We have given a circuit diagram
of the main components of the measuring
system. We have tested the system for a single
crystal of barium titanate, yielding good
accuracy of measurements. We have confirmed
that the system we constructed could be used
for a real scientific task, obtaining the hysteresis
loops and values of coercive fields of a PMN-
20PT single crystal in the temperature range
from 130 to 300 K.
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Gas-discharge lasers such as, for example,
helium-neon (He-Ne) or helium-cadmium
(He-Cd), are one of the most common types,
using a positive column (PC) of low-pressure
direct-current glow discharge in cylindrical
tubes. The laser’s gain medium is placed in
an optical cavity with sphere-plane geometry.
The shape of the caustic in such a cavity
is considerably different from cylindrical.
Because of this, some of the excited atoms
produced in the cylindrical discharge do not
contribute to the ‘effective’ gain determining
the laser’s output power. Conical tubes
were first considered in 1969 as a means for
improving the efficiency of the gain medium
and increasing its mode volume in gas lasers [1,
2]. This model was supported by calculations
of the gain [3] and confirmed experimentally
[4].

The ‘geometric’ part of the gain k were
based on the formula

]
kzglko-fst,

where k is the unsaturated gain on the tube axis,
Jfs is the gain distribution function over the col-
umn cross-section, S is its cross-sectional area.

It was assumed that the function f{ is sim-
ilar to the distribution of the concentration
of excited atoms in the discharge [5, 6]. This
formulation implies that the quantities &, f
and S are independent of the longitudinal co-
ordinate z of the column. This is questionable
to say the least for discharge in a conical tube,
since the area .S and such important charac-
teristics of the PC as electron concentration
and temperature, determining the population
inversion, change with the changing radius of
the discharge channel.

An earlier study [7] considered the reac-
tion of the parameters of the positive column
to an abrupt change in the radius of the dis-
charge tube. However, there is practically no
data in literature for tubes with a ‘smoothly
changing’ radius of the discharge channel,
especially in GDLs. Our study is dedicated
to this problem.

Let us consider a direct current PC of length
[ in monatomic gas. Gas inlet pressure p does
not exceed 10 mm Hg, discharge current /lies
in the range of 10—100 mA. The radius R of the
discharge channel is a smooth function of the
coordinate z (0 < z<):

\dR/dz| << 1.

The axis z is directed along the axis of the
discharge tube:

R = R(z) = Rf(2),
where R is the radius of the channel R at the
point z = 0; f, (z=0) = I

I mm< R <5 mm.

We assume that the given positive column
under these discharge conditions is three-
component plasma consisting of neutral atoms
of the same kind, singly charged positive ions,
and electrons. The concentrations of these
particles are denoted, respectively, as n, n, n,,
and their masses as m_, m, m; m = m..

The ion mean free path k is much smaller
than the tube radius: A, << R. Therefore, the
processes in the discharge can be considered
within Schottky’s diffusion theory of the
positive column.

We assume that the column plasma is quasi-
neutral in these discharge conditions, i.e., n, =
n,= n, and is weakly ionized:

v .,V

ee’ ei® Vii<< Vea’ Via’

i.e., the frequencies with which charged
particles collide with each other, v,, v, v, are
much lower than the frequencies of electron—
atom (v, ) and ion-atom (v, ) collisions.

Such processes as stepwise ionization, bulk
recombination, and electron attachment are
unlikely under this assumption.

Next let us assume the energy distributions
of electrons, ions, and neutral atoms to be
Maxwellian, with temperatures 7= 7, T, T,
respectively. We also assume that

particle temperatures are
T,>> T=T;

the electron temperature is uniform over the
column cross-section but is a function of the
coordinate z: T, = const (r,0), T, = T (2),

the ion temperature is distributed uniformly
both over the column cross-section and along
the longitudinal coordinate: 7, = const (r,0,z).

The distributions of gas pressure in the col-
umn, equal to the inlet pressure p, gas tempera-
ture, and, consequently, the concentration of
neutral particles n, = p/kT are assumed to be
uniform both over the cross-section of the col-
umn and along its length: 7, n, = const (r,0,z).

The concentrations of charged particles are
azimuthally uniform but are functions of the
radial and longitudinal coordinates:

n,= const(0), n,= n(r,z),

related as

n,= const(0), n,= n(r,z).
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The electric field E is also azimuthally
uniform and is a function of the radial and
longitudinal coordinates:

E = const(0), E = E(r,2).

We assume that the main mechanism for
producing charged particles is direct ionization
by electron impact from the ground state of at-
oms. The ionization frequency is v, = n {00,V
where (o, ,v,) is the product o v , averaged over
the electron distribution functlon £ v,); o, is
the cross-section of this ionization process v,
is the electron velocity.

We assume that the main mechanism for
the decay of charged particles is their diffusive
escape to the walls of the discharge tube.

The current density j = j(r,7) is equal to the
difference in the density of ion fluxes T',= n,u,
and electron fluxes I',= n,u,:

j=el -T)=e(nu—nun)=en(u,—u). (1)

The discharge current [/ is determined by
the zth component of the current density j,
associated with the drift of charged partlcles
in the field E_(the longitudinal potential gra-
dient in the column) depending on the longi-
tudinal coordinate:

E(2)=Ef, (2,

where E | —E(z—O) f (Z—O) =1.

We assume that all efiergy is supplied to the
PC from electrons accelerated in this electric
field E..

The following problem is formulated:

obtain relatively simple expressions linking
easily controlled external parameters of the
column (discharge current 1, radius R(z) of
the discharge channel and gas inlet pressure
p) with its main internal characteristics
(charged  particle  concentration  n[(z),
electron temperature T (z) and strength of the
longitudinal electric ﬁeld E ().

Based on the methods cfeveloped in [7, 8,
12], we use the following equations to solve
this problem.

Equations of motion of charged particles,
which, provided that

v,v  v. <<v v,

ee” e’ i ea ia

and neglecting the thermal power, have the
form:

e YU o
n

e

for electrons;
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V(nkT))
eE_—_“lavlaul = 0
n.

1

for ions.
Here p,, p,, are the normalized masses of
electrons and ions, respectively.
Equations of balance of charged particles:

on, _ on,
ot (nu)= 5t

for electrons;

on on.
_ﬁvhl)li
ot ot
for ions.
The equation of electron energy balance:

IE. =P +P,

where [E_ is the power expended by the
longitudinal electric field to heat the electrons
and maintain the total energy balance in the
column; P is the power lost by electrons in
elastic c0111s1ons with atoms (gas heating); P is
the power transferred to the wall by ions.

The power lost by electrons in inelastic
collisions with atoms is not taken into account
in the balance equation.

Let us consider these equations in more detail.

The expressions for the directed velocities
of electrons and ions for a direct-current dis-
charge are written as follows assuming that
plasma is quasi-neutral and that ion tempera-
tures are independent of the coordinates:

Vn VT
:%ED[” ﬂ; )
noT
u =+bE-D, E 3)
n
Hereb,=e/ Ve b,=e/u, v, arethe mobilities

of electrons and i ions; D kT Juv, =bkT [e,
=kT/u,yv, = ka /I are the diffusion coef-

ﬁments of electrons and ions, respectively; v

is the frequency of elastic electron—atom colli-

sions, equal to
Vea = n <Geave>
where (o, ,v) is the product o, v, averaged
over the electron distribution function f(v,);
o, is the cross-section of elastic electron-atom
collisions, v, is the electron velocity.

In general, the expression (s, ,v ) is also a
function of the longitudinal coordinate z, be-
cause T, = T(z). We also assume that
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(o,.v,)=const(z),

which is true to a first approximation, at least
for discharge in helium, since o, v, =~ const(7)
in the variation range of electron energy char-
acteristic for these discharge conditions [11].

The frequency of elastic ion-atom collisions
has the form

Vv =n,{5um,).

ia - ia a ia

where the quantity (s, ,v, ) can be represented
for the case of weakly ionized plasma as

<Giavia> ~ 0Oy <VT,, > =0y

The current density in DC plasma is then
written as

T, _
= const(z).

a

J—en{bE DE+
n
C))
b E+D, | VL VML
n kT,

We then obtain the expression for the
electric field E:

j D,-D, Vn

E = — —
en(bl. +be) b+b, n
De VI, =E_ +E_.
b +b, kT, o

In other words, the electric field E in column
plasma is determined by two terms. The first one
is the electric field of ‘conductivity’ E_ that is,
the ‘external’ field generating the current flux j j
in a medium with the conductivity o:

i i
E =————=—,
“ en(b+b,) o
The second term is the ‘space charge’ field E_:
D,-D, Vn Vn D, VKT, )
b+b, n b+b, kI,

:(E,‘ +E, )
LGyn Levr,

sc

where

The expression for the current density can then
be written as

j:en[(bi+be Ewn+E )+

Vi, , o VAT, }
=

+(D,=D))

==l iy v,

where

i =en(b+h,)E

con

. =OE

con?

. D,-D, |V
o, =en[(De—Di)—(bi+be) s t}_”-

. p, vk,
. _e"{ - +b)(b.+b)} KT,

Evidently, the current densities j; and Jor
generated by diffusion of charged particles
under the influence of their concentration
gradients and electron temperature, are equal
to zero.

The following conclusions can be drawn
from this.

First, ambipolar diffusion is prevalent in the
given discharge. Indeed, using the obtained
expressions for the diffusion flows of charged
particles, we obtain:

(40.+6.0)]vn_ 5,
u =u. =- o

e lse b =+ b n bl' + be

VT, Vn_p VKL

kT, "on " OKT,
where
(D, +b,D) _ bD,
Gy b, +b, P b, +0,

are the respective coefficients of ambipolar
diffusion.

Given that D, >> D, b, >> b, T, >> T,
we obtain:

o1
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_
I
kT ) on.
D, ~D, =D,=h==<, on, _om _on_ .y,
v Vie e ot ot ot
Secondly, the current density in DC plasma, we  obtain the following  equalities:

equal to the sum j = j  + j  depends in this
case only on the conductivity current density:

jzen(ui —ue)zjm =en(bi +be)Em ~
~enbE. =c E

e “¢jn e “con*
The current density j, can be represented
as the sum

-]can = Jcon r -]can :
r z

Since the longitudinal component of the
conductivity current density j  is associated
with electron drift along the column axis in
the longitudinal electric field E = E(z), the
detected discharge current / can be written as

)

where R is the radius R at the point with the
coordinate z.

Let us now consider the equations of balance
of charged particles:

on, _ —V(I’lelle)-i‘ on, :
ot ot

on, _ —V(niue)+%.
ot ot

The following condition should be satisfied
to maintain quasi-neutral plasma in steady
state:

on, On,
o ot
. n. on
In our case, the generation terms 8—’ and 5 £
t t

of the equations (absence of bulk recombina-
tion and stepwise ionization) are determined
only by direct ionization of atoms by electron
impact with the ionization frequency

Since bulk ionization and recombination
on the walls of the tube lead to simultaneous
production or decay of an ion-electron pair,
which is expressed as

92

Vnu, =Vnu, =nv,.

Then, assuming that plasma is quasi-neutral
and that the mobilities of electrons and ions,
as well as the temperatures of ions are inde-
pendent of the coordinates, we use expressions
(2), (3) for directed velocities of electrons and
ions, making simple transformations, excluding
E and provided that Vau, =Vnu, =nv,, and
obtain the following equation:

nv, (b, +b,)+(bD,+b,D,) An+

+[b[De VI, ]Vn+
T

e

+b, VD6~V];+D6V VI, n=0.
T, T

e

e

Since n = const(0), n, = const(r,0,7),
T, = const(r,0), and the atom concentration
and the electron temperature are independent
of the radial coordinates, which in turn means
that the electron diffusion coefficient and the
ionization frequency are independent of the
coordinate r, this equation can be represented
as

(6D, +b,D,)
nv, + —(Arn + Azn) +
(b,+b,)

D, VT |
bl € Z erz b

+((bi+be) T

X

", +h,)

X VZDe-EJrDeVZ AEN n=0.
. I,

Then, since b,>> b, T,>> T, and

_bD.+bD, , D, _, KT,
“ b +b, b, e’

e

we obtain the following equation:
nv, (b +b,)+(bD,+b,D,)An+

+[b[.De VT, jVn +
T,
+b, VDe-VTe+DeV VI, n
T T

e

0.

e
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After transforming it, we

(An+A n)+ Di(sza )V.n+

a

obtain:

+Dia[vz(vzz)a)+vi]n=o.

Let us transform this equation so it takes the
following form:

On 1on On
ot ror oz°
> (6)
2dD,dn 1 (d°D,
— —+— S+, n=0.
D, dz dz D,\ dz
Now we introduce the dimensionless
concentration
n(r,z)
N(r2) =222 g (1), (2)
0
where n, = n(0,0) is the concentration of

charged particles on the axis of the discharge (
= 0) at the point z = 0; f (r) = const(z) is the
function of radius only, f (z) = const(r) is the
function of the longitudinal coordinate only,
with boundary conditions:

£, (r=0)=/, (z2=0)=f; (z=0)=1
oy (MO, R
1 (R)=0:1, (1) =y, =

0<r<R; 0<z<l

The concentration n(0,z) on the axis (= 0)
at the point z is equal to:

n(0.z)=ny, (z)=nf, (z)=const(r),
and the expression for n(r,z) is written as
n(rsz)=n_(2)-1, (r)=nf, (r)1, (2)

Eq. (6) is converted to the following
form:

a1, (r) 14/, (1)
f ()= f, (2=

) ap, 4, (2)

+

D dz dz D,

or, in a different notation, we obtain a system
of equations taking the form

&, (r) 14, (1) _
dr? +7 dr +}Lf"f(r)_0

d’f, (z) 2 ap, ¥, (2)
dz* +F dz - dz "
3 =

1|d°D
+FL[ dzza +v,}fnz (z)-
—fnz (z)k:O

R dzfnr (r) dfnr (r)
r +r

dr’ dr
+(r\/2)2 f"r (r) =0

= dzfr:z(z)+idDa_dﬁ’z(Z)+

+

dz’ D, dz dz
1|d’D

+— “4+v,—D A =0
Di a? e }fnz (2)

If A = const(r), the first equation is the zero-
order Bessel equation. Its solution is known:

f”r (r) =J, (r\/X)

Then, due to the boundary condition f, (R)
= 0, we obtain Jy(R\NL) = 0, if '

2
- (2.405} |
RZ

Given the expression obtained for A, the
second equation takes the following form after
transformations:

a4, (2)) a dD,
;[Da d—}d—(f )

+[vi D, (%H £, (z)=0.

(7
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Since the main mechanism for decay of
charged particles in discharge is diffusive
escape to the tube wall, it is natural to assume
that the discharge is stable only at a certain
ratio of the ionization frequency v, determin-
ing the production time t, of charged particles
per unit of discharge length, T, = 1/v, and the
ambipolar diffusion coefficient D , determin-
ing the time for diffusive escape of particles
from the discharge to the wall of the tube of
radius R

-

1, =R}/ D,.

We assume that the concentration of parti-
cles on the wall is equal to zero, and since the
distribution of electron concentration over the
radius is a zero-order Bessel function whose
first root is reached with the argument equal to
2.455, we can take

2
R¥e—24050r | 2205 Yy ()
D, R ) D

In other words, we obtained a ‘classical’
relationship between the ionization fre-
quency and the ambipolar diffusion coeffi-
cient for the Schottky’s positive column of
a direct-current discharge in a cylindrical
discharge channel [7, 10] with the radius R,
replaced by R = R f,(2).

Eq. (7) can then be written as

d
i[Da fnZ(Z)J+i(fn (Z)dDajzo'
dz dz dz\" "z dz
It can be converted to the form:
d
D1 (2)]=C=D,(2) 1, (2)=
=Cz=D, (z)fn (Z)=CZ+G.

Given that f (z = 0) = 1, we obtain the
following expression:

D, (z)fnz =Cz+D, (0):
_Cz+D,(0) Cz+T,(0)
IO )

As established above (see Eq. (5)), the
current in the column, equal to the difference
in the electron and ion fluxes, depends only
on the drift fluxes of charged particles in
an external electric field, i.e., only on the
conductivity current:

94

=1..(2)

>

R
I =2neb,E_(z) I n(r,z)rdr=
0
= const(z) =

=1, =2neb,E_(z)n,f, (z)x

R
xj f (r)rdr =const(z).
0
Then, since

1, (r)=Jo (),
2.405

(] (2o ]

using the boundary conditions for R and E,
we obtain:

[=136Rebn,f, (z)E.(z)=
= nofnz (z) =
07371,
= 2 p2 =
Ry /% (Z)ebeEoszz (Z)
0.7371,
=M=
ROebeEOZ
1
=f (z2)=———F.
S EYAE

The average electron concentration over the
discharge cross-section is expressed as

R(z) d
_ _ IO rn,dr _ _
n,(z)="05——=043n,f, ()
IO rdr
03171,

- eb,R; fr (Z)EOZfEZ (Z)

Let us return to expression (8). We obtained
that the ionization frequency of atoms v(z) for
the case of ‘diffusion’ discharge in a tube with
variable radius is written as follows:

2 2
4@] jvi:b_kn(ﬂj |

‘e R
Z

z

Since we assumed from the very beginning
that only ‘direct’ ionization occurs in the
discharge, the ionization frequency v, of atoms
(their concentration is denoted as n,) by electron
impact from the ground state is written as
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Vi :na <GO.V6>’
where (c,v,) is the ionization reaction rate con-
stant, i.e., the product SoVes averaged over the
electron energy distribution function.

In case of Maxwellian electron energy dis-
tribution, the direct ionization cross-section
oy (€,) as function of electron energy &, should
be approximated by such a straight line

o, = C.(e,—¢),
which, with ¢ > ¢, is characterized by the
constant C.
With this approximation, we obtain

the following expression for the ionization
frequency:

% (z) =Cn, [si +2kT, (z)] X

e

m, kT, (z)

8T, (2)

mm

e

{0

As a result, we obtain the well-known
formula [7, 10] relating k7, in a PC of
a diffusion cylindrical discharge to the
concentration of ionizable atoms and the
radius of the discharge channel replacing R
with R (z) = R f,(2):

\/:H "“"‘p(kTSiz>J_

[(2))
)

(
€ Ci\/ii 2
[Rfo (2)] (2).

Now let us consider the definition of
the field E(z). For this purpose, we use the
equation of energy balance per unit of column
length, following prominent Russian physicists
in their classic studies [7, 12]:

IE,= P+ P,

-(81. + 2kT(z)e ) X

=0.552

where /E is the power expended by the longi-
tudinal electric field generated by an external
source to accelerate (‘heat’) the electrons in
the column. As noted above, P is the power as-
sociated with the energy acquired by electrons
that they spend in elastic collisions with atoms
(gas heating); P is the power that ions transfer
to the wall.

The expressions for P, and P can be written
as [7, 12]:

=2 (2) 7 (2 v (2O, ()

) kT (z)
P, =2nR(z)j, | U +11—="-2+U, |,
e

where y  is the energy transfer coefficient in
elastic electron-atom collisions, x,, = 2m/m ;
J,, is the ion current to the tube wall; U.is the
atomic ionization potential; U is the near-wall
jump in potential.

Then the power lost by electrons in elastic
collisions is expressed as

P (z) =4.05 s 1, (z) kT, (z)x
mll
VR (2)-v,, =3——2 4T ().
z ea mabjEZ (Z) e

The expression for the near-wall potential
jump U, is found from the condition that
electron fluxes I and ion fluxes l"l.g are equal
at the interface between the plasma and the
tube wall [7, 8].

Assuming that the coefficient of reflection
of electrons and ions from the tube wall is
negligible, the directional velocity of ions in
the layer is determined by the ambipolar field,
and the velocity of electrons by their random
velocity, we obtain:

r = ! n K, (Z) X

eg \/ﬂ eg me
eU (z kTe(z
xexp(—kT—((Z))J = l"l.g = nig o )

e 1

Here n , n_ are the concentrations of
eg 8 .
electrons and ions at the layer interface. It
follows from this equation that

UW(Z)JTeT(Z)mOA \/”::
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The wall current of ions can be written in
accordance with the expressions given in [7, 8]:

‘ 1 on
= (2 -

n
(r=R:)

20 -
r (r=R.)

0 2.405
= — Dano(Z)|:5J0( R rjj| =
z (V:RZ)

oD () 2405

CR(2)
_ kT (Z)
=j,(z)=3n(z)b ———*.
(=3 o
The power that ions transfer to the wall is
then written as
K(2) ,

R, fr (Z) i

x[U[+1.7kT‘T(Z)+UW(Z)J,

£

J,(2.405)=

P,(z)=6nR n(z)

X

or

b, kT (Z)

_ 61 b, KT,
(R fi(2)] E.(2)0. €

ol

The total energy balance then takes the form:

X

P.(2)

{a"Ul. +KT, (z)[1,7+1n 0.4

>

mbE () ¢
6/ b kT,(z)

1

TRAGTE@E)E @

2l

X

{dUi +kT, (Z)£1.7+1n0.4

From here we obtain:
myv

e ea

m

a

(eEZ )2 =3kT, (z)

Vea +;2X
[ROfR (Z)] Via

{eUi +kT, (z)[1.7+1n0.4\/Z::ﬂ :

Let us summarize our main results.

Considering the processes in a positive
column of direct current discharge under
typical discharge conditions in tubes of variable
diameter, we obtained equations for the electron
concentration (as function of longitudinal and
transverse coordinates), electron temperature,
and electric field projection, relating them to
radius of the discharge channel depending on
the longitudinal coordinate. The system of
equations obtained provides a solution to the
problem. The study presents relatively simple
expressions that relate easily controlled external
parameters of the column.

Xam
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The paper presents the results of calculation and analysis of the trajectories and emission
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straight and periodically bent diamond crystals with a length of 20 and 40 um. The numerical
simulation of planar channeling of particles along the crystallographic plane (110) is carried
out using the MBN Explorer package. The parameters of the particle beams and the orienta-
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U3NYYHEHUE MO3UTPOHOB U SJIEKTPOHOB
C DHEPIMEHN 375 M3B NPU KAHAJIUPOBAHUU B MPAMbIX
U NEPUOANYECKU USOTHYTbIX KPUCTAJIJIAX AJIMA3A

A.B. lMaBno6’, B.K. NBaHoB', A.B. Koponv?, A.B. ConoBves?

! CaHkT-lNeTepbyprckuii NOAUTEXHUYECKUI yHUBepcuTeT MeTpa Benukoro,
CaHkT-TNeTepbypr, Poccuitickas depepauus;
2Hay4Ho-1ccneaoBaTenbCkui LeHTp Me3obunoHaHocuctem (MBN),

r. ®paHkdypT-Ha-MaiiHe, F'epMaHus

B pabote mnpencTtaBieHbl pe3yJbTaThl pacyeTa W aHajlu3a TPACKTOPUN U CIEKTPOB
WU3TTYYSHUST YIbTPAPEIATUBUCTCKUX IJIEKTPOHOB U TIO3UTPOHOB ¢ dHeprueit 375 MaB,
KaHAIMPYIOLIUX B TMPSIMbIX U MEPUONMYECKU M30THYTHIX KpUCTaax ajmasa ainHou 20 u
40 wmxMm. YwuciaeHHoe MOJAEIMPOBAHMUE IMPOLIECCOB IUIAHAPHOIO KaHaJMPOBAHUSI 4YacTUIL
BIOJb KpucTtajaorpadudyeckoil miockoctu (110) mpoBoauyioch ¢ momolblo nakera MBN
Explorer. [TapameTpbl My4yKOB YaCTUIL U OPUEHTALIMS KPUCTAUIOB ObUIM BBIOpAHBI OJU3KUMU
K 9KCMEPUMEHTAIBHBIM yCJIOBUSAM Ha yckoputeae MAMI (r. Maiinu, I'epmanus). [IpoBeneHo
CpaBHEHUE TIOJYYEHHBIX PE3YIbTATOB ISl SJIEKTPOHOB M TTO3UTPOHOB.

KitoueBbie ciioBa: yibTpapeasiTUBUCTCKHE 3JIEKTPOHBI M IO3UTPOHBI, IEPUOANYECKU U30THYTHIN
KpUCTAJUT aiMa3a, U3JydeHue Ipu KaHaJupOBaHUM
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Introduction

Lindhard predicted in the mid-1960s that
charged ultrarelativistic particles can travel
anomalously large distances in oriented
crystals, moving inside a potential channel
generated by the electrostatic field of atomic
planes or axes [l]. This phenomenon is
called channeling. Channeling is stable if the
transverse energy of the particles in the channel
does not exceed the height of the potential
barrier. Ever since channeling was discovered,
it has been the subject of a great number of
theoretical and experimental studies, valuable
from both applied (constructing new types
of emitters) and fundamental (understanding
the propagation and emission of channeled
particles) perspectives, see [2] and references
therein.

Planar channeling describes the case when
a particle oscillates in a channel parallel
to a set of planes, leading to additional
electromagnetic radiation, i.e., channeling
radiation (ChR), whose intensity is greater than
that of bremsstrahlung in the corresponding
amorphous medium by orders of magnitude.
The emission spectra for channeling of
ultrarelativistic electrons range from hundreds
of keV to several MeV.

Channeling can also happen in a periodically
bent crystal. In this case, particle motion is
composed of two components: channeling
oscillations and propagation along the
centerline of the bent crystal. The latter results
in additional synchrotron radiation.

Modern technologies make it possible to
grow crystals with quasiperiodic bending.
Systems combining a periodically bent crystal
with a beam of ultrarelativistic particles are
often called crystalline undulators (CU) [2—
8]. It was only recently confirmed that CUs
could be constructed in practice. Motion of
charged particles in a CU generates a new type
of spontaneous ondulator radiation (CUR)
[2, 5—8]. Perfect crystals and modern particle
accelerators can be used to obtain peak brilliance
of CUR up to 10% photons/s-(mrad)?mm?-0.1%
BW for photons with energies of 1072—10' MeV
[2]. Notably, such brilliance cannot be obtained
with conventional magnet undulators [9].

100

Manytheoretical [2, 10—18] and experimental
[5, 8, 19—27] studies published recently were
aimed at exploring the channeling mechanisms
and obtaining the emission spectra of electrons
and positrons in straight and bent silicon
and diamond crystals. Recent measurements
include experiments at the Mainzer Microtron
(MAMI, [20, 21]), CERN [28], SLAC [29].

The goal of this study consisted in
theoretically describing channeling of 375
MeV electrons and positrons in straight and
periodically bent diamond crystals. Finding
the parameters of these processes, such as
the characteristic length, emission spectrum,
etc., holds considerable potential not only for
constructing new sources of coherent radiation
but also for experimental studies on channeling
of electrons with ultrarelativistic energies in
such crystals [20, 21]. Channeling of electrons
and positrons was simulated using MBN
Explorer, a versatile software package [30, 31].

Channeling simulation

Simulation of the channeling process
consisted of two stages: three-dimensional
trajectories of particle motion in the crystal
were computed and channeling parameters
were found at the first, and particle emission
spectra were computed at the second based on
particle trajectories.

We used relativistic molecular dynamics
implemented in MBN Explorer to obtain
three-dimensional motion trajectories for
ultrarelativistic particles in a crystalline
medium [31]. The following alterations were
introduced to the standard molecular dynamics
algorithm [2]. First, relativistic equations of
motion were used to describe particle motion.
Secondly, the interaction of an ultrarelativistic
particle with individual atoms was taken into
account, while the crystalline environment
was dynamically generated in the direction of
particle motion. The motion of ultrarelativistic
particles was described within the semiclassical
approximation, since quantum corrections
are small at such energies. The algorithm for
solving these equations is described in detail
in [2, 10, 11, 14, 31, 32]. This computational
approach was confirmed to be effective, so
the simulation results were compared with the
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experimental data obtained earlier [2, 10—12,
14, 15]. Applying the computational algorithms
used in the MBN Explorer package in modern
supercomputers provides a predictive power
comparable to experimental measurements.

We considered a diamond crystal oriented
along the (110) crystallographic plane. The
propagation direction z was chosen along the
<10, —10, 0> axis to avoid axial channeling
[33]. It was assumed that the particle beam has
zero divergence; in other words, the transverse
velocity components were equal to zero.

The interaction between ultrarelativistic
particles and Ilattice atoms was simulated
using Moliére’s interatomic potential [34].
The simulation included thermal vibrations of
lattice atoms at a temperature of 300 K. The
parameters of the crystal and the beam of
incident particles were chosen in accordance
with the conditions of experiments conducted
with electrons on the MAMI accelerator |20,
21]. The bending profile S(z) had a harmonic
shape for periodically bent crystals:

S(z) = acos(2nz/A ),

where the coordinate z determines the direction
of particle propagation; a is the bending ampli-
tude of the crystal (a = 0 E for a straight crystal,
a = 2.5 and 4.0 E for a periodically bent crys-
tal); A _is the bending period taken to be 5 um.

Examples of systems with such geometry
can be found in [15]. The particle distribution
in our simulations was analyzed in crystals of
length L = 20 and 40 um (4 and 8 undulator
periods, respectively).

We analyzed 6000 trajectories for each set of
parameters. Because we chose a random posi-
tion for the particle at the entrance to the crys-
tal and a random arrangement of atoms around
the particle due to thermal fluctuations, each
trajectory corresponded to propagation in a
unique crystalline environment.

The trajectories are statistically independent
and can be used to determine channeling param-
eters and calculate electromagnetic spectra. The
spectral distribution of electromagnetic radiation
for each trajectory was integrated over the angle
0, = 0.24 mrad. This value is much smaller than
the natural emission angle y~' = 1.36 mrad, so
only ‘forward radiation’ was collected.

The spectrum for a specific set of param-
eters was obtained by averaging the spectrum
over all trajectories to take into account the
contribution from both the regions where the
particle was traveling in channeling mode and
the regions of free motion above the barrier.

Results and discussion

An important observable for channeling of
relativistic particles in crystals is the spectra of
electromagnetic radiation (see, for example,
[21]). A particle channeled in a periodically
bent crystal experiences two types of quasipe-
riodic motion: oscillations in the channel and
motion along the channel’s bending profile.

Quasiperiodic motion induces electromag-
netic radiation, which can be generally rep-
resented as a set of harmonics. For example,
the spectral distribution for emission angle
consists of a set of narrow equidistant peaks.
The radiation frequency o, of the nth har-
monic in the region of radiated energies /7w,
which are significantly lower compared to the
primary particle energy, can be found from
the relation

27°Q
®, = 202 27,
1+7°0* + K?/2

b

n=123, ..,

where the Q is the frequency of the correspond-
ing oscillations (€, is the oscillation frequency
for channeling or Q = 2r/) is the frequency
corresponding to the undulator period 1 ); 6 is
the radiation collection angle; K? is the mean
square of the undulator parameter.

If particle motion consists of two types of
quasiperiodic motion that do not correlate in
frequency, the total value of K? is determined by
the sum of the squared undulator parameters:

K’=K'+K’

ch>

where K = 2mya/l  is the undulator parameter
of a periodically bent crystal; K, = 2yXv?)/c* is
the undulator parameter responsible for motion
in the channel ((v?) is the mean-square velocity
of transverse motion inside the channel, see [2]
for more details).

Figs. 1 and 2 show the energy dependenc-
es of spectral density dE/hdw for electrons and
positrons channeled in crystals 20 and 40 pm
long, respectively. The emission spectra for a
straight crystal (Fig. 1,a and 2,a) are domi-
nated by ChR peaks whose spectral density is
much higher than the bremsstrahlung density
in amorphous media. Because electron oscilla-
tions in the channel are strongly anharmonic,
the electron emission spectra are considerably
broadened (Fig. 1,a) compared with the nar-
row spectral line for positrons (Fig. 2,a). The
ChR peak in the spectrum for positrons is near
the energy 7o = 1.1 MeV, while this value
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Fig. 1. Spectral distributions of electromagnetic radiation for electrons with energy of 375 MeV
passing through straight crystal (@) and periodically bent crystal (b, ¢) with bending amplitudes
a=25E (b) and a = 4.0 E (¢), depending on photon energy.

The solid line corresponds to the dependences for L, = 20 um, the dashed line to L = 40 p
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Fig. 2. Spectral distributions of electromagnetic radiation depending on photon energy,
the same as in Fig. 1 but for positrons. The notations are the same as in Fig. 1

for electrons shifts toward higher energies and
amounts to o =~ 2 MeV due to anharmonicity.
The emission spectra of particles channel-
ing in periodically bent crystals (Fig. 1,b,c and
2,b,c) exhibit additional peaks at an energy /o =
0.25 MeV. These peaks correspond to coherent
undulator radiation (CUR). They are generated
as a result of particle motion in a periodical-
ly bent crystal, and the frequency of radiation
quanta Q depends on the bending period of
the crystal and the longitudinal energy of the
charged particle [2—8, 14]. Notably, the spec-
tral density of positrons is higher than that of
channeled electrons by an order of magnitude.
Let us now discuss the most remarkable fea-
tures observed in the emission spectra.
Additional peaks appear in the emission
spectrum in case of positron channeling
in a PBC. Additional harmonics are more
pronounced for larger bending amplitudes (see
additional peaks in Fig. 2,c).
CUR and ChR intensities increase with
increasing crystal thickness to varying degrees
for electrons and positrons.

102

ChR intensity decreases with increasing
bending amplitude for both types of particles.

A possible explanation for the first effect
is that the undulator parameter for positrons
with an energy of 375 MeV propagating in
periodically bent diamond crystals with the
above parameters is

K~ K = 2nya/) < 1.

In this case, the theory of undulator radiation
predicts that the emission spectrum should
consist of a series of equidistant harmonics
whose intensity rapidly decreases with the
harmonic number #.

The properties of particle channeling should
be considered before analyzing the change
in the emission spectra depending on the
bending amplitude and the crystal thickness.
The trajectories of particles in the crystal are
the first result obtained in the calculations,
making it possible to study the properties in
question directly. In particular, the number of
channeling particles can be found at any depth
of the crystal. Such data cannot be obtained
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Fig. 3. Distributions of channeling particles with energy of 375 MeV in straight (a = 0 E) (a, ¢)
and periodically bent diamond crystals (110) (b,d) depending on penetration depth of particles in the
crystal. Fractions of electrons (@) and positrons (¢) trapped into the channel at the entrance to the crystal
are given, as well as fractions of channeling electrons (b) and positrons (d) taking into account rechanneling

experimentally, however, they can be useful in
analysis of the data obtained, providing at least
a qualitative explanation of the dependences.

An important characteristic of the channeling
process is the particle trapping coefficient
A (acceptance). It is the ratio of the number
of particles N trapped in the channel at the
entrance to the crystal to the number of all
incident particles N

A=N,_/N,.

The parameter 4 has the greatest value for
a straight crystal and gradually decreases with
increasing curvature of a bent crystal due to
an increase in centrifugal forces acting on the
particle [35].

A value of the length characterizing the
channeling process can be given for statistical
analysis of channeling.

We introduce the value Lp which is the mean
penetration depth. It describes the average
distance that particles trapped at the channel
entrance travel. The number of such particles
is denoted as Np .

The mean channeling length L , is the length
of all channeling segments averaged over the
number of trajectories V.

The number of channeled particles at a
certain penetration depth in the crystal is
denoted as N,

Fig. 3 shows N /N and N,/N for electrons
(Fig. 3,a,b) and positrons (Fig. 3,c¢,d) depending
on depth z of penetration into the crystal.

The acceptance A4 in the figures corresponds
to the values Np /N and N /N at the point z =
0. For example, the parameter A for positrons
in a straight crystal is equal to 0.96. The values

of Lp and L, can be found by averaging these
dependences over the depth z of penetration
into the crystal.

Let us first consider positron channeling.
A positron travels in a channel between two
crystallographic planes. Collisions with lattice
atoms lead to an increase in its transverse mo-
tion energy, and the positron dechannels when
a certain critical value of this energy is reached.
The reverse process, rechanneling, takes place
when a positron is trapped into the channel
due to collisions with lattice atoms. With large
crystal thicknesses, for example, L _~ 300 um,
the positron can undergo dechanneling and
rechanneling several times during propagation
inside the crystal. However, dechanneling and
rechanneling rarely happen at small crystal
thicknesses. Positron rechanneling in period-
ically bent crystals can occur in parts of the
crystal with a small curvature [15] (see the
curve corresponding to the oscillating particles
in Fig. 3,d).

CUR intensity can be estimated as a value
proportional to the product / o« A - Lp- a* [16].
It follows then that the particles trapped at the
entrance to the crystal make the main contribution
to CUR intensity. N p/N for the given crystal
lengths is practically independent of the depth z
(see the dependence N p/N(z) in Fig. 3,a).

Thus, peak intensity should increase with
increasing crystal thickness proportional to the
increase in L . The acceptance and the average
penetration cfepth decrease slightly with an in-
crease in the bending amplitude, however, this
decrease is compensated by an increase in the
squared bending amplitude, which leads to an
increase in CUR intensity. Given a large pene-
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tration depth, as the crystal length increases by 2
times, the CUR intensity for the case a = 4.0 E
(see Fig. 2,c) increases more than twofold. This
is a consequence of constructive interference.

Analysis of the energy dependence for ChR
should take into account the change in the
oscillation amplitude during channeling [16].
Periodic bending of the crystal reduces the
amplitude of the oscillations in the channel,
since the depth of the potential well of the
channel effectively falls under the action of
the centrifugal force. As a result, the spectral
density of ChR decreases with increasing
bending amplitude. ChR intensity increases with
increasing crystal thickness, since the average
number of particles in the channel practically
does not change with depth (see Fig. 3,c).

The dependences of channeling parameters
on the bending amplitude for electrons have a
different character. Since electron trajectories
pass in the immediate vicinity of the lattice ions,
electrons are much more likely to experience
collisions with ions and dechannel as a result.
This explains why the penetration depths Lp
and the total channel lengths L , are smaller by
almost an order of magnitude compared with
the same values for positrons. The number of
electrons trapped in the channel in a straight
crystal rapidly decreases with distance (see
Fig. 1,a). Dechanneling is even faster in a
periodically bent crystal. The situation is slightly
different in case of rechanneling: additional
channeling segments, most often rather short,
appear, effectively increasing the time that
electrons spend in the channel.

As a result of dechanneling of the electrons
trapped at the entrance to the channel, CUR
intensity grows slightly with increasing crystal
thickness, compared with the case for positrons.
The intensity also changes only slightly with
a change in the amplitude of a periodically
bent crystal, since an increase in the squared
amplitude is compensated by a decrease in two
other parameters.

Accounting for rechanneling is important
in analyzing the behavior of ChR intensity. As
noted above, electrons rechannel in the regions
of the crystal with a small bending amplitude,
so as a result they can move in these regions
with an oscillation amplitude that is much
larger than that possible in segments with a
large bending amplitude. This process entails a
less pronounced decrease in ChR intensity with
an increase in the bending amplitude than in
case of positrons. As crystal thickness increases,
ChR intensity increases only slightly, since
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the average length that a particle travels in
channeling mode is greater in a longer crystal.

Thus, electrons and positrons have different
dynamics of channeling/dechanneling/
rechanneling. The centrifugal force exerts a great
influence on the properties of channeling and
radiation in periodically bent crystals. It leads to
suppression of ChR with an increase in the bending
amplitude, and is also responsible for oscillation
of the number of particles in channeling mode.
Additional questions concerning channeling
in periodically bent diamond crystals at other
energies of incident electrons and positrons were
considered in [15, 16].

Conclusion

We have carried out computer simulations
of planar channeling of electrons and positrons
in periodically bent diamond crystals. Electron
and positron beams with an energy of 375 MeV
were directed along the (110) crystallographic
plane of diamond. The characteristics of the
emission spectra associated with particle
oscillations in the channel and with undulator
motion were explained using statistical analysis
of particle trajectories obtained in a numerical
experiment.

A low-energy peak associated with CUR
appears near 0.25 MeV for particles in a
periodically bent channel. Even though the
bent crystal had a small number of periods
(4 and 8), CUR had a pronounced intensity,
which may prove useful in constructing gamma
emitters.

Our findings indicate, in particular, that
increased thickness of the crystalline undulator
significantly increases CUR intensity for
positrons but this increase is much less for
electrons. As the bending amplitude of the
periodically bent crystal increases, ChR
intensity drops for both electrons and positrons.
These results can be used for planning future
experiments, for example, for selecting the
optimal parameters of the crystal, energy and
particle type.
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B pabote oKcnepMMEHTATbHO WCCIEIOBAHO B3aUMOJCHUCTBUE YAAPHON BOJHBI C
IPaHyJMPOBaHHBIM CJIOEM cdepuyeckux 4yacTul, B arMocdepHoil ymapHoil Tpybe. Mexny
TIOPUCTBIM CJIOEM W TOPIIEBOI CTEHKOU TPyObI pacroiiarajiach MpUTOpLEBast 006JacTh YUCTOTO
ra3za. bbui paccMOTpPeHBI IB€ TOCTAHOBKM 3a7a4uu. B mepBoM BapraHTe CTPYKTYpa U MOJOKEHUE
TMOPUCTOTO CJIOS TPEANOoJaraJiucb HEU3MEHHBIMU. BOo BTOpOM — TrpaHYyJIMPOBAHHBINA CJIOW
paspyliaics non AeWCTBUEM MaNarolleil yIapHO BOJHBI U TIPEBPAaLIalICs B MOJBUKHOE 00J1aKO
yacTull. 1yis 000MX BAPUAHTOB MOJYUYEHbI U TPOAHATN3UPOBAHBI BOJIHOBbIE CTPYKTYPbI, KOTOPbIE
BO3HUMKAIOT KaK MEPEJ MOPUCTHIM CJIOEM TPaHYJIMPOBAHHBIX YACTHUL], TaK U B MPUTOPLIEBOW
00JlacTi MEeXIy TpaHyJUPOBAHHBIM CIOEM M TOPLEBOI CTEHKOU ynmapHoil Tpyosl. McxomHas
nHpopMauus OblTa MOJAyYeHa MPU MOMOIIM U3MEPUTEIbHO-PETUCTPUPYIOLIECH ammapaTyphl,
KOTOpas BKJIIOYAJIa MbE303JEKTPUUECKUE TaTUYMKU AABJICHUS U MHOTOKaHAIbHYIO Tiaty ALITT
71 coopa MHMOPMAIIUH.
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Introduction

Determining aerodynamic loads on
the surface is an important applied aspect
in studies of transient processes such as
shock waves or pulsed jets. The problem
becomes increasingly complex assuming
a gas-permeable barrier that can consist
of perforated elements, gratings, woven
meshes, spongy structures, layers of granular
media, etc. As waves propagate through such
barriers, their amplitude typically decreases
and wave profiles transform. The barrier can
be deformed by intense impacts, including
irreversible ones. There is much interest
towards lattice barriers that allow substantial
deformations, enhancing the dynamic effects
on the barrier in certain circumstances [1, 2].
The boundary case, for example, when the
porous layer in granular media is destroyed
and two-phase flow is generated, is no less
significant [3, 4].

The primary data obtained in experimental
studies are important for this type of
problem, allowing to characterize the key
phenomena and discover the main trends.
Experimental data can be used to refine
existing mathematical models and construct
new ones, describing the processes with
varying degrees of completeness.

Multifactor studies of unsteady seepage
began in the 1950s; fairly systematic review
of these studies is given, for example, in
monograph [5]. The key issues of mechanics
of heterogeneous media for destructible
lattices are discussed in [6, 7]. Let us
consider the experimental studies providing
data on granular flows. In particular, [8, 9]
generalized the experimental studies, allowing
to modify the model based on the Stokes drag.
The effect of the medium’s compressibility
and general unsteady behavior of the given
phenomenon was described in [10].

Representative data were given in [3,
4], considering wide variation ranges of
geometric factors and flow parameters. Refs.
[11, 12] served as a basis for formulating
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the laws governing shock waves passing
through layers of dense mixture taking into
account several mechanisms of particle
collision [13—15]. Additionally, [16, 17]
used sensors located directly in the porous
layer to study the pressure variation in gas
and in a gas-particle mixture. It was found
that the pressure amplitude of the transmitted
wave depends on a number of parameters
characterizing different properties of the
porous layer: length (depth), diameter and
shape of the elements, thermal characteristics
of the material (density, heat capacity, etc.),
potential compression and reordering of
structural elements.

The focus of modern studies in this area is
on numerical simulation [18, 19]. There are
two main directions. On the one hand, efforts
are made to provide more complete and
detailed descriptions of the processes under
consideration; on the other hand, algorithms
for numerical integration of differential
equations for the given range of problems are
improved and new algorithms are developed.

Reviewing the literature on the subject, we
note that no studies so far have been carried
out on direct comparison of flow regimes for
retained and destructible porous layers under
identical conditions. There are also no studies
considering how the location of porous
layers (retained and destroyed) relative to an
impervious surface affects the instantaneous
and integral characteristics of the attenuating
dynamic response to this surface.

The subject of this study is the interaction
of a shock wave with a layer of granular
material in two problem statements.

The layer remains stationary in the first
statement and the lattice structure of the
porous layer is preserved; as the structure of
the porous layer is destroyed, a mobile cloud
of particles forms in the second statement. The
size of the region free of granules between the
porous layer and the impervious wall plays a
certain role in the second case, with diverse
effects on the integral characteristics [1]. The
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momentum transmitted to the particle cloud
and the subsequent shock-wave interaction of
this cloud with the ‘gas cushion’, which is a
region filled with pure gas, is an important
factor in this case.

Experimental test bed and
experimental procedure

The experiments were carried out in an
atmospheric shock tube 55 mm in diameter,
placed horizontally. The tube is peculiar in
that the initial level of air pressure in the
high-pressure chamber coincides with the
ambient pressure. The schematic of the shock
tube with the locations of the holes for the
pressure sensors is shown in Fig. 1 (linear
dimensions in mm). The pressure sensors G1
and G2 were located opposite each other in
the same cross-section of the tube to ensure
that the processes and the obtained results
were uniform in the circumferential direction.

Piezoelectric pressure sensors with a
time constant of 107*s were used in the
experiment. The signal from the sensors
was amplified using cathode repeaters and
fed to the ADC board, which worked as a
multiplexer with a sampling frequency of 100
kHz per channel. The same regime of gas
flow was maintained in the shock tube in all
experiments by pumping the air out of the low
pressure chamber (LPC) to a pressure lower
than atmospheric by 10 times. The diaphragm
separating the high pressure chamber (HPC)
from the evacuated part of the shock tube was
destroyed by a mechanical punch. The Mach
number of the shock wave for the selected
pressure ratio in the chambers of the shock
tube was equal to 1.7.

Polyurethane particles of regular spherical
shape were used to create a porous layer.
The density of the material was 200 kg/m?.
Particles had different sizes, ranging from 2
to 3 mm. The thickness of the granular layer
was 30 mm. The granular layer was located at
equal distances from sensors G3 and G4 for
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the given series of experiments in the shock
tube.

Different types of containers (depending
on the purpose they were intended for) were
constructed for holding the granular material
in a horizontally arranged setup. To make the
granulated layer indestructible, the container
holding it consisted of a thin-walled metal
support of a cylindrical shape and two meshes
covering its end faces. To make the granular
layer destructible, one of the meshes was
replaced with tracing paper, which was easily
destroyed by the shock wave. The longitudinal
size of the container was 30 mm. The mesh
was made of textile fabric and had a cell size
of approximately 0.5x0.5 mm. The effect of
the mesh and the paper on the wave structure
was considered separately. Experiments were
conducted in an empty tube and in a tube with
empty containers, without a granular layer.
We found that the influence of a container
with two meshes does not exceed 15%, which
is a small disturbance if the meshes are used
to hold granular materials (see the section
below).

The illustrations given below for the empty
tube, the tube with an empty container, and
different configurations with a granular layer
correspond to one of the cases of initial data
from the signals received from the sensors
G1—GS5 rather than an average value for the
series of experiments. The trends observed
in each series of experiments were fully
reproducible and the results were obtained
with the required repeatability.

Experiments without granular layer

The pressures here and in the graphs are
given in relative units. The initial pressure
in the low-pressure chamber was chosen for
normalizing the function. Time was counted
from the moment when the signal in the sensor
G5 deviated from its initial level by a threshold
value, i.e., when the sensor detected an incident
shock wave.

3200

| 1 I |

HPC LPC

G5 G4 G3

-
G2 Gl

s

125 125 125 40

Fig. 1. Schematic of experimental shock tube:
Pressure sensors G1—G5; high and low pressure chambers HPC and LPC, respectively;
linear dimensions are given in mm
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Fig. 2,a shows the pressure variations over
time for sensors G1—G5 in the empty low-
pressure chamber without a container and a
granular layer. Each of the sensors detects
two shock wave in the given time interval: a
compression wave and a rarefaction wave. In
particular, two abrupt changes in pressure to a
level of 30 kPa and then to a level of 70 kPa
correspond to the sensors detecting an incident
shock wave and a shock wave reflected from the
end of the low-pressure chamber. The decrease
in pressure observed starting from the fourth
millisecond corresponds to the rarefaction wave
detected. The smooth increase in pressure above
the level of 70 kPa preceding the rarefaction wave
corresponds to a compression wave appearing in
the interaction of the reflected shock wave with
fragments of the contact surface.

a) P,a. u.

>

The term ‘contact surface’ should be further
clarified. If we use a simplified description for
the structure of gas flow in the shock tube,
the contact surface is represented as a plane
separating the high and low pressure gases
starting from the initial time. However, when
air enters the low-pressure chamber, the final
velocities of diaphragm fracture generate intense
gas flow in both axial and radial directions. This
leads, in addition to front bending with a jump
in density and temperature, to partial mixing of
air from different chambers of the shock tube.
The reflected shock wave actually interacts
with the region consisting of fragments of the
contact surface in this case.

The gas pressure behind the incident
and reflected shock waves (readings from
sensors G1—@G3J) is in good agreement with

(8]
[+

Fig. 2. Pressure variation over time in monitored points in low-pressure shock tube
without container (@) and in same tube with empty container (b):
sensors /—J5, analytical solutions 6
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Fig. 3. Pressure variation over time in monitored points
for sensors G3 and G4 for configuration with indestructible granular layer:
sensors 3, 4, analytical solution 6

the pressure calculated using the analytical
dependence. The calculations were carried out
based on elementary theory of a shock tube,
using the solution of the Riemann problem
on the decay of an arbitrary discontinuity
[20]. Notably, the difference in the readings
from the sensors G1 and G2 has the level of
error of a single measurement for this problem
statement when gas flow is known to be axially
symmetric.

Fig. 2,b shows pressure variation over
time for sensors G3 and G4 when an empty
container is installed in the tube. It is
somewhat difficult to interpret these results,
since the wave structure is formed not only
from the interaction of the shock wave with
the end face of the low-pressure chamber
and the contact surface but also from the
effect of two meshes generating multiple
wave reflections inside the empty container.
However, it is still possible to determine the
level of pressure in the incident shock wave
and in the wave reflected from the end face of
the LPC. The corresponding pressure levels
in the empty tube act as reference values. The
attenuation of the incident wave caused by the
structural elements of the container can be
assessed by the data for the first millisecond;
comparing the values of the functions by the
second millisecond, when the sensors G3 and
G4 detect a shock wave reflected from the
end face of the low-pressure chamber, the
effect of the two meshes on pressure iS no
more than 15% of the measured quantity.

Experiments with stationary granular layer

Fig. 3 shows pressure variations over time
for sensors G3 and G4, located on opposite
sides of the granular layer that remained sta-
tionary during this experiment. The first pres-
sure increase to a level of 30 kPa for sensor
G4 corresponds to an incident shock wave. A
reflected and transmitted shock wave appear in
the interaction with the granular layer. Com-
pared to reflection from the end face of the
tube, the amplitude of the shock wave reflected
from the surface of the granular layer is lower
and detected by the sensor G4 at a level of
60—65 kPa. The same as in the tube without
a granular layer, the reflected shock wave in-
teracts with the elements of the contact sur-
face. With the given position of the granular
layer, the compression wave is reflected mul-
tiple times both from the contact surface and
from the layer surface, leading to an increase in
pressure to a higher level (80 kPa). The subse-
quent decrease in pressure for the sensor G4 is
from a rarefaction wave passing.

Sensor G3 is located in the region be-
tween the porous layer and the end face of the
low-pressure chamber. The readings from sen-
sor G3 point to a wave structure in the form of
a traveling wave reflected multiple times from
both the surface of the granular layer and the
end face of the low-pressure chamber. This is
confirmed by the stepwise dependence of pres-
sure on time. The intensity of the shock wave
decays over time. The increase in pressure is
associated with continuous flow of gas into the
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Fig. 4. Pressure variation over time
for sensors G3 and G4 for configuration with destructible granular layer:
sensors 3, 4, analytical solution 6

near-edge region through the granular layer.
The mechanism for supplying gas is based on
seepage, i.e., mass flow of gas is a function of
pressure drop across the thickness of the gran-
ular layer. As pressures on opposite sides of the
granular layer are equalized and the pressure
gradient is subsequently inverted, reverse seep-
age of gas occurs, that is, the gas in the granu-
lar layer changes the flow direction and moves
away from the end face of the low-pressure
chamber.

Experiments with destructible granular layer

Fig. 4 shows the pressure variations over
time for sensors G3 and G4, located on
different sides of the granular layer at the initial
time. Let us point out some important aspects
explaining the behavior of the curves given by
in this figure. The granular layer is destroyed
and turns into a cloud of particles as a result of
interaction with the incident shock wave. There
are two stages of particle dispersal in the cloud:

‘instantaneous’, associated with the front
of the shock wave, when the particle gains
momentum due to a shock wave passing a
spherical particle;

‘slow’, associated with different velocities of
the particle and the medium, that is, primarily
with the Stokes drag.

The boundaries of the mobile porous layer
have different velocities, i.e., the cloud not
only moves toward the end face of the low-
pressure chamber but also increases in size.
As the cloud grows, the permeability of the
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mobile porous layer increases. Shock waves or
rarefaction waves can still be reflected until the
cloud has significantly increased in size from
the boundaries of the porous layer.

Sensor G4, located in front of the granular
layer, detects several processes. The scenario
with sensor G4 detecting the incident and
reflected shock waves completely coincides
with the case of an indestructible granular
layer at the initial stages. Sensor G4 detects
a rarefaction wave at subsequent times. The
intensity of the rarefaction wave depends on
two processes. Firstly, the mass of gas passing
through the granular layer increases. Secondly,
the displaced boundary of the porous layer
generates a rarefaction wave, similar to that
behind a moving piston.

Readings from sensor G3 can be used to assess
the pressure variations in the near-edge region.
This process is more intense for the case when
the granular layer is destroyed. Firstly, more gas
enters the near-edge region due to increased
permeability of the granular layer. Secondly,
the size of the near-edge region with pure gas
decreases as the particle cloud shifts. In this case,
the boundary of the porous layer acts as a piston
pushed into the region. A linear slope is observed
on the pressure versus time curve after the second
millisecond. At this point in time, sensor G3 is
surrounded by a cloud of particles, i.e., is located
in the region of two-phase flow. Both sensors G3
and G4 are located on one side of the particle
cloud after two and a half milliseconds, and their
readings reach the same level.
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Fig. 5. Pressure variations over time for sensor G2 for both types of granular layer:
1, 2 correspond to indestructible and destructible layers, respectively;
3 is the analytical solution

Fig. 5 shows pressure variations over time
for the two types of granular layer from the
readings of sensor G2, which is closest to the
end face of the tube.

The following patterns were observed for
the waves. As follows from the behavior of the
functions, the pressure in the near-edge region
increases according to the same pattern in the
first moments. This means that seepage laws
differ little for the retained and destructible
granular layers until the granules have gained
a certain level of velocities. As noted above,
the reason for subsequent discrepancies in
the behavior of the pressure at the end face
of the tube is that gas in the near-edge region
is compressed by a cloud of particles in case
of a destructible granular layer, in addition to
an increase in pressure due to unsteady seep-
age. Using integral estimates, we can observe
a decrease in the momentum of the impact on

the end face of the shock tube in both cases,
compared with the empty tube, and a decrease
in absolute pressure in case of an indestructible
granular layer.

Conclusion

We have carried out experiments on the
interaction of a shock wave with a granular
layer. We have established the main patterns
in the behavior of unsteady seepage of gas
through destructible granular layers and those
preserving their structure. We have obtained
the dependences of the dynamic effect of a
passing shock wave on an impervious surface
for two cases of porous layers.

The study was carried out within the framework
of project 3.3314.2017/4.6 of State Task of the
Ministry of Education and Science of the Russian
Federation for 2017-2019.
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