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the Wood in THE Inhomogeneous Temperature Field: 
Estimation of Cellulose structure Parameter fluctuations

N.N. Matveev1, Hoai Thuong Nguyen2,  
N.S. Kamalova1, N.Yu. Evsikova1, A.S. Chernykh1 

   1Voronezh State University of Forestry and Technologies named after G.F. Morozov,  

Voronezh, Russian Federation; 
2 Industrial University of Ho Chi Minh City, Vietnam

In the paper, the cellulose as a fiber-forming component of wood (natural 
composite) has been studied. The authors put forward a technique for estimating 
fluctuations of cellulose microstructure in the wood through monitoring the potential 
difference of the thermal polarization that arises in the samples placed into an 
inhomogeneous temperature field with a constant temperature gradient. Formalized 
simulation was used for an analysis of experimental results. The proposed technique 
made it possible to establish that the percent of the large-sized cellulose crystallites 
in the wood grew with increasing smoothly temperature gradient. Similar dynamics is 
not typical of linear crystalline polymers whose polarization decreases with growing 
temperature. The obtained effect can be assigned to the fact that natural wood exhibits   
heterogeneous structure.

Key words: microstructure, crystallite, composite, cellulose macromolecule, synthesized material
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Introduction
Creating synthesized bioplastics with highly 

resistant physical properties such as strength, 
surface hardness and permissible hydrophobicity 
is one of the most urgent tasks in technology  
[1 – 8]. The arboform exemplifies these 
materials; it can be obtained through the 
synthesis from natural cellulose and “sulphate 
soap” released during the paper production 
process. The physical characteristics of these 
synthesized materials are determined by the 
orderliness of their fiber-forming component 
microstructure, as cellulose microstructure 
in our case. In this regard, the development 
of nondestructive methods for estimating 
microstructure fluctuations in the fiber-forming 
component of composite materials always 
attracts attention of the scientific community.

It is well known that wood is naturally 

occurring composite material, and its main 
components are partially crystalline cellulose and 
lignin. Cellulose is a stereoregular syndiotactic 
polymer [9 – 12]. The macromolecules of the 
fiber-forming wood component (cellulose) are 
schematically arranged in the form of a coiled 
tape with a cross-section of 0.39 × 0.83 nm. 
Molecular chains of cellulose are packed in a 
mean length of 15 – 17 nm with a «loosening» 
section of 2.5 – 3.0 nm in length following. In 
addition, hollows of 0.5 – 1.0 nm are always 
located inside amorphous regions [13]. Thus, the 
packaging process of cellulose macromolecules 
is characterized by the alternation of crystalline 
and amorphous phases and the presence of pores 
in microfibrils in the wood. The peculiarities 
of this structure allow us to assume that the 
response of biocomposite such as the wood 
substance to the change in external factors 
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depends on the concentration of crystallites in 
the fiber-forming cellulose and their physical 
properties.

In the present work, a formalized model 
is proposed for estimating the fluctuations in 
the microstructure of cellulose in the wood on 
exposure to external nonuniform temperature 
fields. For this purpose, the concentration of 
cellulose crystallites has been chosen as the 
fluctuation parameter.

Experimental results

The temperature-scanning method was 
used for experimental investigation as de-
scribed in detail in Refs. [14, 15]. In this 
method, an inhomogeneous temperature field 
providing a constant temperature gradient 

T∇  was applied to a thin-layer composite 
sample, and a thermal-origin electric field 
evolving as a result. The origin of this electric 
field in the wood can be bound up with the 
structural difference between cellulose and 
lignin and with pyroelectric and piezoelec-
tric properties of fiber-cellulose crystallites 
as well [15]. The potential difference  (PD) 
across this field depends on the degree of 
crystallinity of cellulose and is measured with 
controlled accuracy using electrical measur-
ing instruments.

To determine the response of cellulose 

in the wood to the applied inhomogeneous 
temperature field, studies in fluctuations of the 
PD in the samples were carried out. The samples 
were prepared from birch wood containing up 
to 40 % moisture. The sample thickness l0 was 
about 100 μm. A special measuring cell was 
used to change the temperature gradient in the 
wood layer as given in Ref. [15]. Thin sections 
of the wood were placed between massive brass 
rodes with the lower one heated. Therefore, 
the temperature gradient in the wood layer was 
controlled by the heating rate of the heated 
lower electrode. The PD was initially removed 
from the electrodes.

Fig. 1 shows the dynamics of the temperature 
gradient in a thin layer of wood during the 
tests. Fig. 2 shows the experimental data for 
the measurement of the corresponding PD 
presented in the form of circles. Comparing 
the two figures, we can affirm that the PD 
correlates with the changes in the temperature 
gradient in the layer as established in various 
studies [14 – 16]. Thus, the temperature-
scanning method makes it possible to control 
the value of the temperature gradient in the 
layer using electrical measuring instruments. In 
this regard, we propose to estimate the average 
size of cellulose crystallites by analyzing the 
obtained data on the basis of a formalized 
model [17–20].

Fig. 1. The thermal-gradient dynamics for a wood thin layer during the test process
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Justification of the formalized model

It is known that the relative change in the 
concentration n of cellulose crystallites depends 
on the relative rate of a crystal growth under 
smoothly changing external conditions and 
characterized by the rate G [16]:

.
dn

Gdt
n

=

However, the crystal growth causes the 
diffusion of non-crystallizing fragments. This 
process is characterized by the coefficient kD 

[16]:

.D

dn dn
k

dt dx
= −

These two processes (1) and (2) balance 
each other in a stationary state. Therefore, the 
equations can be transformed to the form:

( ) .D

dn
G k n

dx
= −

The exponential function

0 exp( )kn n x x= − ∆

is a solution of Eq. (3), where n0 is the con-
centration of crystallites near crystallization 
centers, k Dx k G=  is the average size of the 
fiber-forming component crystallite.

This average size is determined when 
the concentration of crystallites located at a 

distance equal to crystallite size decreases by e 
times as compared to n0.

It should be noted that these concepts of 
crystallites growth do not take into account 
the peculiarity of experimental conditions. 
The constant temperature gradient creates 
inhomogeneous growth conditions along 
the thickness of a sample. According to the 
obtained experimental results we can assume 
that the average size of the cellulose crystallite 
xk depends on the increment of the crystallite 
concentration as follows:

0( ) (1 ),k kx n x n= + χ∆

where χ  is a coefficient that characterizes the 
crystallinity degree of the cellulose in a sample, 
xk0 is the initial value of xk. 

The solution of differential Eq. (3) taking 
Eq. (4) into account is transformed to the 
following form:

0 0

exp( )
,

(1 exp( ))
k

k

x xn
n x x n

− ∆∆
=

+ χ − ∆

where 2
0 ( )    tx l T∆ =α ∇  is the value of the total 

compression of cellulose crystallites in a sample 
with the thickness l0 during the expansion of 
lignin, α is the coefficient of thermal expansion 
of lignin.

According to Ref. [21] the ratio 0/n n∆  
equals the relative change of crystallinity de-
gree of cellulose in the wood. As reported in 

Fig. 2. The experimental (curcles) and simulated (the solid line) 
PD-time relation for a wood thin layer

(3)

(1)

(2)

(4)

(5)
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Ref. [22], the PD appeared in the wood on ex-
posure to an inhomogeneous temperature field 
is directly proportional to crystallinity degree 
of cellulose. Thus, the relative change in PD 
in the sample within the framework of this ap-
proach is simulated by the following relation-
ship:

0

0 0 0

exp( )
,

(1 exp( ))
U k

U
k

U U k x xn
k

U n x x n
− − ∆∆

= =
+ χ − ∆

where kU is a parameter that depends on the 
percolation features of thermal polarization 
processes occurred in the composite, U0 is the 
PD initial value.

Finally, we obtain the relation for estimating 
the PD:

2
0

0 2
0 0

exp( )
1 .

[1 exp( )]
U k

k

k l T x
U U

l T x n

 − α ∇
= + 

+ χ − α ∇ 
Eq. (7) connects the PD in the sample on 

exposure to an inhomogeneous temperature 
field with the fluctuations in external condi-
tions such as the changes in ( )T t∇  and the 
features of fiber-forming microstructure ( , )kx χ  
and filler ( ).α

Furthermore, Eq. (7) is the basic axiom of 
the formalized model for the method of esti-
mating the response of natural component-
containing microstructure to fluctuations of 
external conditions in general and temperature 
in particular. The model experiment was imple-
mented by the linear regression method using 
Excel spreadsheets. The results are presented 
by the solid line in Fig. 2. Comparing the re-

sults of the real and simulated experiments (see 
Fig. 2) we can conclude that it is possible to 
estimate the values of , kxχ  and kU parameters 
from the results of physical and simulated ex-
periments with controlled accuracy.

Summary

Thus, it has been shown that the temper-
ature-scanning method using elements of for-
malized simulation makes it possible to estimate 
the fluctuations of supramolecular structure of 
the fiber-forming component in a composite 
when changing the external conditions. Con-
sequently, it can also be used to study the mi-
crostructure of arboforms and synthesized plas-
tics.

Furthermore, analysis of the PD dynam-
ics with a smoothly increasing temperature 
gradient suggests that the fraction of cellulose 
crystallites with a large size in the wood grows 
with increasing the temperature gradient value. 
It should be noted that similar dynamics do 
not characterize linear crystallizing polymers, 
in which polarization decreases with increasing 
temperature. Perhaps, the considered effect is 
due to interaction between wood components 
and the cellulose characterized by the com-
plexity of supramolecular structure.

The work was supported by the grant 
«Development of Innovative Ideas “Growth Points –  
2017’’» of the Federal State Budgetary Educational 
Institution of Higher Education «Voronezh State 
University of Forestry and Technologies named 
after G.F. Morozov».
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the phase separation phenomenological model:  
manganite as an example

T.S. Shaposhnikova, R.F. Mamin 

Zavoisky Physical-Technical Institute, FRC KazanSC of RAS, Kazan, Russian Federation

In the paper, an effect of a second order phase transition has been considered in the 
context of the phenomenological model for a 2D charged system (2DCS) frustrated by 
the Coulomb interaction. The relationship between the order parameter and the charge 
was treated as a local temperature in the 2DCS. The existence of phase-separated 
states was shown to be a possibility in such a system. Various types of those states 
(strips, rings, etc.) were found by numerical calculations, and their parameters were 
determined. As the temperature is lowered, the 2DCS passes several phase transitions 
successively.  Using the La(1–x)Sr(x)MnO3 manganite as an example it was shown that 
such a phenomenological model could be used to describe the phase separation close 
to a magnetic phase transition from a ferromagnetic state to a paramagnetic one when 
0.10 < x < 0.15 and at the temperatures of 100 < T < 200 K.

Key words: second order phase transition, phase separation, manganite, Coulomb interaction, doping 
level

Citation: T.S. Shaposhnikova, R.F. Mamin, The phase separation phenomenological model: Mangan-
ite as an example, St. Petersburg Polytechnical State University Journal. Physics and Mathematics. 11 (3) 
(2018) 11–18. DOI: 10.18721/JPM.11302

Introduction

The problem of phase separation has at-
tracted much attention from researchers  
[1 – 8]. There are two classes of materials 
where phase transitions (PT) are observed with 
various types of structural, magnetic, charge, 
and orbital ordering.

The first class is manganites with colossal 
negative magnetoresistance of the R1–xAxMnO3 
type (R = La, Pr, Sm, etc., A = Ca, Sr, etc.), 
whose physical properties are greatly affected 
by the concentration x of the divalent element 
A varying from zero to unity [1 – 5, 8].

The second class are high-temperature cu-
prate superconductors, where a pseudo-gap 
state and charge-density waves are observed  
[6, 7].

Phase separation of substances is often ac-
companied by charge inhomogeneities. Such 
inhomogeneities were observed by scanning 
tunneling microscopy [9], angle-resolved pho-
toemission spectroscopy (ARPES) [6], X-ray 
and neutron diffraction [7]. For the above-
mentioned compounds, there is a certain range 
of temperatures and doping levels for which the 
ground energy state corresponds to phase coex-
istence. The spatial size of single-phase regions 
depends on the ratio between the Coulomb en-

ergy (important in the presence of a doping-
induced overcharge) and the energy gain due to 
the presence of a more ordered phase [10, 11]. 
States with charge inhomogeneity have been 
the focus of many theoretical studies (see, for 
example, Refs. [12 – 15]), usually considering 
a first-order phase transition frustrated by the 
Coulomb interaction. The scalar order param-
eter for this type of PT is either linearly cou-
pled with charge density or proportional to it  
[13, 14]. These studies have established that 
such models are unstable with respect to phase 
separation. The phase-separated state is a group 
of charged regions of different phases with dif-
ferent values of the order parameter. Notably, 
this type of coupling of the order parameter to 
charge density is forbidden in case of a second-
order phase transition and the order parameter 
is not a scalar quantity.

In this study, we discuss a second-order 
PT frustrated by the Coulomb interaction. 
We have considered the coupling between the 
charge density and the squared order param-
eter. We have established within the frame-
work of this model that a phase-separated state 
with charge inhomogeneities can exist near 
the phase transition temperature Тс, where the 
high-temperature phase matrix with an order 
parameter equal to 1η  contains inclusions of a 
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low-temperature phase with an order parameter 

2 1.η > η  Several successive first and second-
order PTs can be observed with a change in the 
temperature.

We have applied the phenomenological ap-
proximation, based on the Ginzburg – Landau 
theory, to describe static phase separation in 
a two-dimensional system in the vicinity of a 
second-order phase transition. In this case, the 
presence of the Coulomb interaction associated 
with doping-induced overcharging is taken into 
account. Since the above-mentioned materi-
als are quasi-two-dimensional (CuO planes in 
cuprates and MnO planes in manganites), the 
two-dimensional description adopted is a rea-
sonable approximation. We have defined a set 
of parameters, related to temperature and dop-
ing, for which phase separation is energetically 
favorable. We have also found the region of 
the phase diagram where the inhomogeneous 
phases coexist.

We have calculated the model parameters 
suitable for describing phase separation near 
the magnetic PT of the second order in La1–

xSrxMnO3 with 0.10 < x < 0.15.

Theoretical model

Let us consider a two-dimensional sys-
tem near a second-order phase transition. A 
study by Nobel Prize winner Pierre-Gilles de 
Gennes [16] investigated the effect of double 
exchange in mixed-valence compounds such as 
manganites (La1–xCax)(Mn1–x

3+Mnx
4+)O3. It was 

established that introducing extra holes or extra 
electrons into the antiferromagnet lowered the 
energy of the system. Additionally, the Curie 
temperature was found to depend on the doping 
level х. Following de Gennes’s study, we start 
with a Hamiltonian, adding to it a term with 
the Coulomb interaction. The Hamiltonian for 
a “layer” antiferromagnet can be written in the 
following form:

H Coul .

ij i j ij i j
ij ij

i i
i

H J t a a

J H

+
σ σ

σ

= − ⋅ − −

− ⋅ +

∑ ∑

∑

s s

s s

The first term in this expression describes 
the exchange interaction of Mn ions; Si, Sj  are 
the spin operators of ionic spin at sites i and 
j; Jij is the exchange integral (connecting only 

neighboring magnetic sites i and j); the second 
and third terms of Hamiltonian (1) describe a 
double exchange: the second term describes the 
jumps of an electron with spin σ along the ij 
sites of the lattice; aiσ

+ (aiσ) is the creation (an-
nihilation) operator for an electron at site i; tij 
is the hopping integral; the third term in Ham-
iltonian (1) describes Hund’s coupling [17], si 
is the spin operator of the conduction electron 
(it can be expressed in terms of the creation 
and annihilation operators for the electron and 
the Pauli matrices); the last term describes the 
Coulomb interaction.

Following de Gennes, we have assumed 
that spin ordering of an unperturbed system 
is of the “antiferromagnetic layer” type. Each 
ionic spin S is ferromagnetically coupled to z’ 
neighboring spins the same layer and antiferro-
magnetically to z spins in the neighboring lay-
ers. The exchange integrals are equal to tij

’ and 
tij, respectively. Zener charge carriers [18] hop 
within their layer (with the hopping integral tij

’) 
and from one layer to another (with the hop-
ping integral tij).

Let the number of magnetic ions per unit 
volume of the sample be equal to N and the 
number of Zener carriers to xN. The model 
of double exchange is a model of exchange 
under the conditions of strong coupling  
JH  >> zt, z’t’.

A phenomenological expression for free en-
ergy was derived in [16] in the finite tempera-
ture limit and for low values of relative sublat-
tice magnetizations.

The density of the thermodynamic poten-
tial of the system in the strong coupling limit  
JH → ∞ then takes the form

0 Coul( , ) ,intηφ η ρ = φ + φ + φ + φ

while for a second-order PT, the second term 
should be expressed as

( )22 4 6 8 ,
2 4 6 8 2

D
η

α β δ ζ
φ = η + η + η + η + ∇η

where the order parameter η  describes the rel-
ative magnetization of each sublattice;

( )' – cT Tα = α

(Тс is the PT temperature without doping).
Expression (3) contains a second-order 

term with respect to ,η  positive terms of the 

(2)

(3)

(1)
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fourth, sixth and eighth orders with respect to 
η  and a gradient term. In addition, expression 
(3) includes constants

2
B2 (1,5 ( )),N k T S zJ z J′ ′α = − +

B4 (0, 45 0, 034 ( ));N k T x zt z t′ ′β = + +

B6 (0,325 0,27 ( ));N k T x zt z t′ ′δ = + +

B8 (0, 06 2,21 ( )),N k T x zt z t′ ′ζ = + +

where kB is the Boltzmann constant.  
The energy intφ  in function (2) describes 

the interaction of the order parameter η  with 
the local charge density :ρ

21 .
2int

σ
φ = − η ρ

This formula is obtained from the tempera-
ture-averaged terms of expression (1) describing 
the double exchange. The interaction energy 
(8) is written in this case as a local tempera-
ture; 1σ  is the constant of this interaction.

The main physical properties of the system 
are determined by the parameter 1,σ  found 
from the following expression:

1

4
( ).

5
N

x zt z t′ ′ρσ = +

The energy of the Coulomb interaction 

Coulφ  is expressed by the integral:

Coul

( ( ) )( ( ) )
,

2
d

′γ ρ − ρ ρ − ρ ′φ =
′−∫

r r r
r r

where the constant γ  is the dielectric constant 
of the medium. 

In the absence of the intφ  and Coulφ  terms, a 
second-order PT is observed at α = 0. There is 
an equilibrium value of the order parameter for 

0.α =  For 0,α <  the equilibrium value of the 
order parameter 0,η =  i.e., there is no order 
which can be determined by the parameter .η

In expressions (9) and (10), ρ  is the mean 
2D surface charge density:

21
,

S
d

S
ρ = ρ∫ r

where r is a two-dimensional vector.
The total free energy Φ, which is expressed 

as
2( , ) ,dΦ = φ η ρ∫ r

should be minimized with respect to η  and 
.ρ

Minimizing the energy Φ with respect to 
the local charge density ρ  yields the equality

2 21
3 4 ( ( ) ) ( ) .

2 D z d
σ

− ∇ η = πγ ρ − ρ δr

The thickness of the two-dimensional layer 
d is introduced to preserve the dimensionality; 
( )zδ  is the Dirac delta function

Substituting (13) into expression (2), we 
obtain

( )

2 4
0

26 8 21

2 2 2
1 2 2
2 2

2 4

6 8 2 2
( ) ( )

,
32

D D

D

d
d

α β
φ = φ + η + η +

σδ ζ
+ η + η + ∇η − η ρ −

′σ ∇ η ∇ η ′−
′−π γ ∫

r r r
r r

where r, r’ are two-dimensional vectors. 
The last two terms in expression (14) are 

negative. The term 2
1( / 2)− σ η ρ  renormalizes 

the critical temperature of the phase transi-
tion that now becomes dependent on the mean 
charge density.

The coefficient before the parameter 2η  
should now be changed (to α  instead of α ):

1 .α = α − σ ρ

Notably, the presence of the last non-local 
term in expression (14) leads to instability of 
the homogeneous state.

Let us introduce dimensionless parameters 
Λ and ξ  as 

0/ ;Λ = η η  / ;x x aξ =  / ,y y aξ =

where 4
0 / ,η = β ζ  1/2 3/2 1/2[ ( )2 ]   /a D= ζ β χ  (χ  

is a constant, the expressions for the constants 
β  and ζ  are given by formulae (5) and (7)).

We chose the value of the constant χ  in the 
interval from 3 to 20. This allowed to vary the 
size of the region where the spatial distribution 
of the order parameter was calculated.

Expression (14) then takes the following 
form:

4 6 8
2 2

0 2

2 2
2 2

2
( ( )

2 3 4

( ) ( )
).D D

U

A
d

Λ Λ Λ
φ = τΛ + + δ + + ∇Λ −

χ

′∇ Λ ξ ∇ Λ ξ ′− ξ
′χ ξ − ξ∫



(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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The parameters 0,U  , ,τ χ  A and δ  in this 
expression are defined as follows:

2
4

0 0 ,
2 2

U
β β

= η =
ζ

1
2 3
0

,cT T
σ ρα ζ  ′τ = = α − − ′αβη β  



 

0

2
,a

D
β

χ = η  

2
1

2 2 4
,

8 2
A

d D

σ
=

γ π βζ

2
0

2
.

δ δ
δ = η =

β βζ
  

Calculation results and discussion

To find the minimum of the free energy 
(12), we applied the conjugated gradient meth-
od (CGM). We introduced N × N (N = 128) 
discrete points on a square with a side a and 
applied periodic boundary conditions. Three 
parameters A, τ  and χ  were taken in the 
calculations.

We analyzed the dependence of the free en-
ergy on the parameters А and τ for a fixed value 
of the constant χ.

Fig. 1,a shows the spatial distribution of 
the order parameter ( , )x yΛ = Λ ξ ξ  for the pa-
rameter values A = 2.5, 0.6,τ =  10,χ =  and  

N = 128. Phase separation can be observed at 
these values. For a homogeneous background 
with an order parameter equal to zero (see the 
scale on the right), there is a ring with a non-
zero order parameter, i.e.,

0 ( , ) 1.8.x y< Λ ξ ξ ≤

The free energy is negative in this state  
(Φ < 0). This means that the spatially inho-
mogeneous distribution of the order param-
eter corresponds to minimal free energy. This 
state is more energetically favorable than the 
homogeneous one whose free energy is zero  
(Φ = 0 for ( , ) 0x yΛ ξ ξ = ). Such inhomogeneous 
states are formed due to charge redistribution. 
A triple extra-charged layer exists in the region 
where the parameter ( , )x yΛ ξ ξ  is distributed 
inhomogeneously. The total charge in this layer 
is equal to zero with high accuracy, 0∆ρ >  in 
the center of the stripe and 0∆ρ <  on each 
side.

For a fixed value of the parameter A = 2.5, 
the inhomogeneous distribution of the order 
parameter exists for the values of the parameter 
τ  lying in the range

2 3τ ≤ τ ≤ τ

( 2τ = –9 and 3τ = 1.5). 
The free energy is less than zero for the re-

gion 1τ ≤ τ  ( 1τ  = 0.8 for A = 2.5). In accordance 
with expression (18), τ  is a linear function of 
the difference T – Tc and varies depending on 

(17)

(18)

(19)

(20)

(21)

Fig. 1. Calculated distributions of the order parameter Λ(ξx, ξy) in the inhomogeneous state  
for τ = 0.6 (a) and –3.0 (b); A = 2.5, χ = 10.
The number of discrete points N2 = 1282 =16384

а) b)
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.ρ  Here, Tc is the temperature of the phase 
transition without interaction (i.e., for Φint = 0); 
ρ  is the value of the mean charge proportional 
to the doping level. The parameter A (see Eq. 
(20)) depends on the coupling parameter 1σ  and 
on the strength of the Coulomb interaction. As 
the latter increases, the parameter A decreases. 
This shortens the interval of τ  values where 
phase separation can be observed.

Fig. 1,b shows the inhomogeneous distribu-
tion of the order parameter ( ),x yΛ ξ ξ  for the 
parameter values A = 2.5, –3,0,τ = 10χ =  
(N = 128). The order parameter varies from 

min 0.5Λ =  to max 1.7Λ =  (see the scale on the 
right). An inhomogeneous distribution of the 
extra charge exists in the region where the order 
parameter Λ  is distributed inhomogeneously. 
Calculations show that varying the parameter 
χ  from 3 to 20 (with A = const) does not affect 
the interval of τ  values where inhomogeneous 
states are formed.

Fig. 1 illustrates how the phase separation 
landscape changes with the changing τ. Phase 
separation is observed in the form of stripes 
or rings for 0τ >  (see Fig. 1,a). A stripe with 

0Λ >  appears on the background with a zero 
order parameter 0.Λ =  The stripes may be 
straight or have a complex closed form. The 
number of such stripes decreases with increasing 
,τ  and the rings are compressed. Notably, the 

order parameter value does not change at the 
center of these stripes. The shapes of the loops 
change as the value of τ  becomes negative (see 
Fig. 1,b) and with a further decrease in :τ  the 
loops bend more, and the order parameter value 
in the “background” becomes different from 
zero ( min 0.5Λ =  in Fig. 1,b). Phase separation 
becomes shallower with a further decrease in 
τ  (these data are not shown in Fig. 1). The 
difference between the Λ  value inside and 
outside the “stripes” drops to zero at 2,τ = τ  
and a transition to a homogeneous state with 

constΛ =  is observed.
Our model includes the interaction of the 

order parameter with the charge 1( 0).σ ≠  In the 
presence of this interaction, an inhomogeneous 
phase-separated state with the order parameter 
varying from minΛ  to maxΛ  (see Fig. 1,b) has a 
minimal negative free energy inhom 0.Φ <

Let us consider the change of phases ob-
served with decreasing τ and at a constant 

value of A = 2.5. The inhomogeneous phase 
state appears abruptly (a second-order PT) at 

1 0.8.τ = τ =  Stripes with 0Λ ≠  grow on the 
“background” with a zero order parameter 

0.Λ =  In these stripes, max 1.8.Λ =  The 
number of such stripes increases as τ  decreases 
from 1τ  to 0. Notably, the values max 1.8Λ =  
and min 0Λ =  do not change in this region of 
.τ  The phase-separated state starts to change 

at 0 :τ =  maxΛ  starts to decrease and minΛ  to 
increase. With further decrease of τ < 0, the 
difference between maxΛ  and minΛ  decreases 
and max minΛ = Λ = Λ  when 2 –9,τ = τ =  i.e., a 
second-order PT from an inhomogeneous to a 
homogeneous state is observed. In this case, the 
energy of the inhomogeneous state 0inhomΦ <  
is less than the energy of the homogeneous 
state homΦ  (this state exists in the absence of 
interaction between the order parameter and 
the charge, i.e., with 1 0σ = ) for the entire 
range of values of the parameter 2 1.τ < τ < τ

The phase diagram of inhomoge-
neous states in Fig. 2 is shown in the axes 
1/A – T (T is the temperature), for which 

0,∆Φ <  i.e., the energy of the inhomogeneous 

Fig. 2. Phase diagram of inhomogeneous states 
in 1/A – T axes (T is the temperature): region I 

corresponds to a homogeneous non-magnetic state, 
regions II and III correspond to a phase-separated 

state, region IV corresponds to a homogeneous 
magnetic state; Λ = 0 in region I; Λ = 0 and Λ ≠ 0 

in region II, Λ ≠ 0 in regions III and IV.
The parameters used are given in the text. The boundar-
ies of the regions are Т = f1(τ1) (curve 1), Т = f2(τ2) (2), Т 

= f3(τ3) (3); 1/А = 0.555 is the final critical point; if 1/А 
> 0.555, phase separation is impossible
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phase-separated state Φinhom is less than the ener-
gy of the homogeneous state Φhom at 2 1.τ < τ < τ  
The difference ∆Φ = Φhom – Φinhom. The follow-
ing parameters were used:

1 150 K;cT
σ ρ

+ =
′α

 
3

3 K.
τ β

=
′α ς

Regions I and IV correspond to homoge-
neous phases with zero and nonzero order pa-
rameters, respectively. Regions II and III cor-
respond to inhomogeneous phases. The value 
of 1/A is directly proportional to the value 
of the Coulomb interaction γ  and inversely 
proportional to the square 1σ  (see expression 
(20)). As the parameter A decreases (1/A in-
creases), the interval of τ  values narrows, and, 
consequently, so does the temperature range 

( ),Т τ  where the inhomogeneous distribution 
of the order parameter Λ  is observed. Phase 
separation is impossible below the critical end 
point A = 1.8 (1/А = 0.555), which is shown 
in the phase diagram in Fig. 2. Indeed, with a 
high value of the Coulomb interaction and a 
low value of the double exchange energy, the 
Coulomb energy for charge modulation of the 
charge becomes so large that it is always greater 
than the energy gain associated with ordering. 

The line 3( )Т τ  in Fig. 2 indicates the bound-
ary of the region of an inhomogeneous meta-
stable phase. The inhomogeneous state for the 
interval 1 3( ) ( )Т Т Тτ < < τ  corresponds to a lo-
cal free energy minimum but the free energy 
is positive in this state (Φ > 0), while the ho-
mogeneous state has an energy equal to zero. 
This metastable state is similar to “superheated 
liquid”.

Fig. 3 shows the phase diagram of the 
inhomogeneous state in the axes x – T for the 
values of the parameters

А = 2.5, 1 1200 K,
x

σ ρ
=

′α

3τ β
′α ς

= 3 K, Tc  = 30 K (with x = 0).

Decreasing A reduces the region where 
phase separation is observed.

As mentioned in the Introduction, phase 
separation is observed in manganites and in 
high-temperature cuprate superconductors. In 
this paper we have analyzed, as an example, 
inhomogeneous phases in manganites where a 
sequence of phase transitions to inhomogeneous 
states is observed. 

The La1–xSrxMnO3 system.  Let us analyze 
this system. For instance, the authors of [19] 
suggest that the available data indicate an 
electronic phase-separated regime existing only 
in the phase diagram region 0.10 < x < 0.15 
and near the PT from the ferromagnetic to the 
paramagnetic state.

Let us consider a region above the temperature 
of the structural PT from a low-temperature 
pseudocubic phase to an orthorhombic phase 
or to a Jahn – Teller distorted orthorhombic 
phase at higher temperatures. Double exchange 
begins to play a more fundamental role in this 
region close to structural instability, where long-
range Jahn – Teller distortions are suppressed, 
in the electronic phase-separated regime.

 We assume that the following sequence 
of phase transitions can be observed in this 
region of the phase diagram with decreasing 
temperature for the strontium concentration  
x = 0.125. First, a transition from homogeneous 
paramagnetic to inhomogeneous state II occurs 
at T = 184.5 K. Next, as the temperature 
decreases, a transition to inhomogeneous 

Fig. 3. Phase diagram in x – T axes for different 
values of the parameter τ (the rest of the  

parameters used are given in the text). The region 
between lines 1 and 3 corresponds to the  

phase-separated state (regions II and III in Fig. 2); 
τ = 0.8 (1), 0.0 (2), –9 (3).

Line 2 corresponds to the phase transition temperature  
in the absence of interaction between the charge  

and the order parameter
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phase III is observed. Finally, only after this, 
at 155 K, the system undergoes a transition to 
a uniform ferromagnetic state. This sequence 
of PTs is very similar to that discussed in our 
paper. Additionally, such inhomogeneous states 
may also appear in cuprates.

Conclusion

We have considered the theory of second-
order phase transitions, introducing the Coulomb 
interaction and charge interaction with the 
order parameter in addition to the standard 
expansion of the free energy in powers of the 
order parameter. We have found the distribution 
of this parameter and the charge distribution in 
a 2D plane, which corresponds to a minimum 
of free energy. We have carried out numerical 
calculations using the CGM method.

The calculations have confirmed that a 
region with inhomogeneous distribution of the 
order parameter and inhomogeneous charge 
distribution exists between the regions of the 

phase diagram characterized by constant values 
of the order parameter. This phase separation 
can exist in the form of one-dimensional stripes 
or two-dimensional rings or “snakes”. A series 
of phase transitions have been found. A phase 
transition from a homogeneous state with a 
zero order parameter to a phase-separated state 
with two phases (with zero and nonzero order 
parameters) first occurred as the temperature 
decreased. Next, a first-order phase transition 
to another phase-separated state was observed, 
where both phases had different nonzero 
values of the order parameter. A transition to a 
homogeneous ordered state occurred only with 
a further decrease in temperature.

We have determined the regions in the 
“temperature – doping level” parameter space 
where the phases coexist. We have traced the 
changes in the type of the phase separation 
depending on the changes in temperature, 
doping level of the material, and in the coupling 
constant.
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Weak solutions of the Crocco boundary problems

M.R. Petrichenko, D.D. Zaborova, E.V. Kotov, T.A. Musorina  
 Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation

A procedure for designing an approximate solution of the Crocco boundary 
typical problem has been proposed in the paper. The procedure calls for the change 
of this initial problem by a nonlinear integral equation. The latter was solved by direct 
calculation of the integral using the mean-value theorem. . The averaging parameter 
was eliminated by integrating over the parameter in the (0, 1) interval. Widening the 
scope of the solution procedure was demonstrated and weak solutions were found. For 
the classical case, the weak solution was not too different from the Blasius exact one. 
The approximate value of the Blasius constant turned out to be 1/3 and differed from 
the exact one (0.33206) by 0.3 %.  

Key words: Cauchy problem, integral equation, mean value theorem, group of transformations, solitary 
wave
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Introduction

Crocco’s boundary problems are primarily 
used for hydrodynamic applications, in 
particular, longitudinal viscous flow past a 
plate, with unsteady seepage in homogeneous 
and isotropic (scalar) porous media [1 – 3].

A typical Crocco boundary problem is 
stated as follows [1]:

0

2

2

(2)
0

0

2 0,

( ) ( : 0 1), ( ( )),

(1) 0,

Im( ) (0, ), : ( ),
u u

d
u

du
D u u u C D

d
du

a a u
=

ϕ
ϕ + =

ϕ = ≤ < < ϕ ∈ ϕ

ϕ  = ϕ = 
 

ϕ = = ϕ

and u0 = 0 in the classical Blasius case. 
Problem (1) in the given form is widely 

used in hydrodynamics, where the variable u is 
interpreted as the longitudinal velocity and the 
distribution ϕ  as the shear stress [1].

Problem (1) is involved in seepage the-
ory for calculating a solitary flow-rate wave, 
i.e., for solving the boundary problem for the 

Boussinesq equation [2, 3]:

,
u u

ku
t s s

∂ ∂ ∂ =  ∂ ∂ ∂ 

where u = u(t,s) ≤ 1 is the seepage flow depth  
(t > 0, s > 0); k is the hydraulic conductivity.

In a particular case, 
u(0,s) – 1= u(t,0) = 0.
In the general case, 

k = k(u), ( ) ,
c

u
c k u

s
∂ = −  ∂ 

where с is the seepage rate. 
In the classical Boussinesq case, k = 1,  

c = 1. The Boussinesq equation then takes the 
form

.
u u

u
t s s

∂ ∂ ∂ =  ∂ ∂ ∂ 

Finally, the Crocco equation is used in 
problems on jet motion of viscous fluid (free 
convection in heated channels, free submerged 
and near-wall jets, etc.) [4, 5].

In contrast to the “natural” statement of 
applied boundary problems, problem (1) is 

(1)

(1b)

(1а)
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convenient because it allows finding an injec-
tive mapping of the compact set (u0,1) into a 
compact set

00, , : ,1 0, .( ) ( ) ( )a u aϕ →  

More specifically, we suppose that each 
branch of the solution of boundary problem (1) 
is a 2-diffeomorphism 0 .( ) (: ,1 )0,u aϕ →

The solutions of boundary problem (1) are 
given in [6 – 32]. These studies fall into two 
classes:

the first class uses analytical methods, 
including solutions obtained in the form of 
power and splitting (flat) series;

studies of the second class primarily rely on 
numerical solutions. 

Analytical papers (belonging to the first 
class) include those using methods of the theory 
of Lie transformation groups and expansions 
into power series and enveloping series.

For example, Boussinesq equation (1b) 
admits a linear transformation

,z t s= α ± α

and, consequently, there exists a solution of the 
Boussinesq equation in the form of a solitary 
flow-rate wave:

1 2 2ln( ).z u c c u c= + − +

The case c2 = 0 in this solution corresponds 
to a centered flow-rate wave propagating with 
a velocity of 1/2±α  either upstream or down-
stream.

A particular group of studies [26 – 31] of-
fer analytical tools for constructing solutions of 
ordinary differential equations (ODEs) of the 
given type near a singular point. These stud-
ies emphasize that the properties of an analytic 
function mainly depend on its singularities, 
which cannot be examined in the real interval. 
Moving onto the complex plane automatically 
means constructing a mapping onto the Rie-
mann surface of the solution [31].

“Exact” solutions of the boundary problem 
for the Crocco equation are also obtained by 
using power series with respect to u. However, 
the Tauberian theorems are unknown for these 
solutions: namely, the series for the function 

( )uϕ  turn out to be “poorly” convergent for 
1 – 0.u →  For example, the divergence of 

the series for ( )uϕ  at the outer edge of the 

boundary layer ( 0)1 –u →  and bifurcation of 
the solution in the outer (i.e., jet) part of the 
boundary layer was established in [32].

We have omitted to discuss the so-called in-
tegral methods, where, instead of the equations 
for the distribution density, ODEs are solved 
for the actual distributions (integral relations), 
in the above overview. These methods are ideo-
logically closer to completely different types of 
methods such as direct or variational.

Thus, flat series for analytical solutions 
are currently the only alternative to numeri-
cal methods for solving Blasius, Chazy, and 
Crocco equations.

The goal of this study has been to construct 
an approximate solution of a typical Crocco 
boundary problem using the averaging proce-
dure.

Constructing the solution of the problem

In this study, we use the method of 
constructing an approximate solution of boundary 
problem (1), based on replacing this initial 
boundary problem by an integral equation, and 
subsequently introducing an artificial parameter 
and averaging over this parameter. In other 
words, a distribution (functional) with a density 
coinciding with the approximate solution is used 
instead of an exact solution.

This technique consists in the following. 
Let

(1) 0,1 ,( ) ( )f u C∈  f(u) ≥ 0.

The Crocco boundary problem for the 
interval (0, 1) has the form

2

2
2 ( ) 0, '(0) (1) 0

d
f u

du
ϕ

ϕ + = ϕ = ϕ =

and admits a formal order reduction:

0

( )
2 .

( )

ud f v dv
du v
ϕ
= −

ϕ∫
For a positive branch of the solution ,: +ϕ = ϕ  

the function 1 / ( )uϕ  is a positive monotonical-
ly decreasing distribution mapping the interval 

0( ),  1u u∈  onto the interval ),(0,aϕ ∈  where 
: (0).a = ϕ
Then, according to the Bonnet theorem,

2

( ) ,
u

u

d
f v dv

du
θ

θ

ϕ
= − ∫ (#)
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where 0 1< θ <  is the parameter (proper 
fraction). 

Let u = 1 in this formula. In this case, with 
1 – 0,u →  

2 / (1).d du Oθϕ =

This means that the equalities

,( ) ( )mOuθϕ = ε  – ,( )/ md du Oθϕ = ε

m = n,

where m, n are positive parameters, have to 
hold true.

 Integrating equality (#) one more time, we 
obtain:

1
2( ) ( ) .

v

u v

u dv f t dtθ
θ

ϕ = ∫ ∫
This equality is actually the approximate θ  

solution of the Crocco equation (indicated by 
the subscript θ ). This solution depends con-
tinuously on the fraction (parameter) ,θ  and, 
evidently,

1
2 2
1 0

0

1
2

0 0

( ) 0, ( ) ( )

(1 ) ( ) ( ) ( ) ( ) 0,

(0,1),

u

u

u

u u dv f t dt

t f t dt u t f t dt uθ

ϕ = ϕ = =

= − − − > ϕ >

∀θ ∈

∫ ∫

∫ ∫

while, generally speaking, / 0.∂ϕ ∂θ <
The parameter θ  can be eliminated, for 

example, by averaging the derivative with 
respect to it:

1 22

0

: ,
dd

d
du du

θϕϕ
= θ∫

which leads to the expression
2

0

1 / ( ) .
ud

u vf v dv
du
ϕ

= − ∫
Finally, we can write the following 

approximate solution of boundary problem 
(1):

1
2

0 0

1
( ) ( ) ln ( ) ln .

u u
u vf v dv vf v dv

v v
ϕ = −∫ ∫  

The result obtained does not depend on 
the order of integration with respect to the pa-
rameter θ  and to the argument u. Let us call 
solution (2) a weak θ  solution.

Properties of solutions of boundary problem (1)

We are going to list the properties of the 
solutions of boundary problem (1) in this section 
(the proofs of these properties are omitted).

1. The boundary conditions in problem 
(1) can be replaced by one-point (Cauchy) 
conditions:

0

(0) 0,
u u

d
a

du =

ϕ  = ϕ − = 
 

with the parameter a in initial conditions (3) 
chosen so that (1) 0.ϕ =  Imposing these condi-
tions is justified by the continuous dependence 
of ϕ  on the parameter a.

2. There are two branches of the solution 
of boundary problem (1) and, respectively, of 
one-point boundary problem (3):

( )u+ϕ  and ( )u−ϕ

 (Fig. 1). These branches are related as 
follows: 

( ) ( ) 0,u u+ −ϕ+ =ϕ  0 < u < 1,

and
2

2

2

2

0 ( ) , 0, 0;

( ) 0, 0, 0.

d d
u a

du du
d d

a u
du du

+ +
+

− −
−

ϕ ϕ
≤ ϕ ≤ < <

ϕ ϕ
≤ ϕ ≤ > >

Boundary problem (1) is typical, since, in 
particular, the homogeneous Crocco boundary 
problem is reduced to it. Let u0 = 0, and then 
instead of representation (1) we consider the 
homogeneous Crocco boundary problem:

2

2
2 0,

(0) (1) 0.

d
u

du
ϕ

ϕ + =

ϕ = ϕ =
 (1c)

The solution of homogeneous boundary 
problem (1c) consists of two branches: 

0 ( )u+≤ ϕ  and 0( )u−ϕ ≤

(negative and positive), such that 

( ) ( ) 0u u+ −ϕ + =ϕ

for each u value from the interval 0 < u < 1. 
There exists a value of u = u* (0 < u* < 1), 

such that */ 0d du±ϕ =  (according to Rolle’s 
theorem). Therefore, each of the branches 

( )u±ϕ  of the solution of homogeneous prob-

(2)

(3)
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lem (1) is decomposed into two solutions of the 
typical Crocco boundary problem (1):

*), ;( ) (0, )(l lu D u± ±ϕ ϕ =

*), .( ) ),1((r ru D u± ±ϕ ϕ =

In this case, the solutions ,( ) ( )l ru u±ϕ = ϕ  of 
positive and negative typical boundary prob-
lems are mapped continuously and smoothly at 
the point u = u* (Fig. 2):

*

*

0

0

(0)

(1) 0.

l
l

u u

r
r

u u

d
du

d
du

±
±

= −

±
±

= +

 ϕ
ϕ = = 

 

 ϕ
= = ϕ = 
 

The branches of the solutions of the homo-
geneous boundary problem are decomposed 
into solutions of typical boundary problems

* *

* *

2 2

2 2

( 0) ( 0) 0,

0, 0.

l r

u u u u

u u

d d
du du

± ±

+ −

= =

ϕ − − ϕ + =

   ϕ ϕ
< >   

   
3. Solution of boundary problem (1) – (3) 

satisfies the identity

0

21 2
01
.

4u

ud
du

du
−ϕ  = 

 ∫
4. Solution of boundary problem (1) – (3) 

is equivalent to the problem of the minimum 
positive functional (distribution):

0

21

( ) (1/2) ln 0.
u

d a
F u du

du

 ϕ ϕ = + >   ϕ  
∫

In other words, the condition dF F≤ δ  is 
satisfied along the extremals of the functional 

( ),F ϕ  where dF is the variation along the char-
acteristic (the trajectory of the solution), and 
Fδ  is the variation along the admissible (virtual) 

trajectory. The basis for the proof of property 4 
is that the necessary minimum condition ( )F ϕ  
coincides with the Crocco equation, and the 
sufficiency of the condition is guaranteed by 
the convexity of the Lagrangian density ( ).F ϕ

5. The property of the solution for u0 = 0. In 
this case, boundary problem (1) is equivalent to 
the following nonlinear integral equation:

0

1

0

1

0 0

1
,

2 ( )

1
( )

2 ( )

1 (1 ) ( )
.

2 ( ) ( )

u

v

u

u

d vdv
du v

tdt
u dv

t

t tdt u t tdt
t t

ϕ
= −

ϕ

ϕ = =
ϕ

 − −
= − 

ϕ ϕ 

∫

∫ ∫

∫ ∫
An iterative process can be used to solve 

this integral equation.

(##)

(4)

Fig. 1. Solution of a typical Crocco boundary problem: 
positive (φ+(u)) and negative (φ– (u)) monotonic branches; 
the vertical dashed lines indicate the boundaries of the interval  
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Let the subscript denote the iteration num-
ber, and then the process of solution is ex-
pressed as

10

1

10

,
( )

1
( ) .

2 ( )

u
s

s

v

s
su

d vdv
du v

tdt
u dv

t

−

−

ϕ
= −

ϕ

ϕ =
ϕ

∫

∫ ∫

If 1 ,(1 / 0 ),1Lϕ ∈  then (1) .( 1)0,Ñϕ ∈  As-
suming that the sequence of iterations of the 
function 1 / sϕ  forms a Cauchy sequence, 

sϕ → ϕ  almost everywhere on the interval  
0 < u < 1, since the domain L1(0, 1) is com-
plete.

6. The solution allows to formulate a corol-
lary to the mean value theorem. Since 1 / ( )uϕ  
is a monotonically increasing distribution, 
then, according to the Bonnet mean theorem, 
the equalities

2
2

2 3 2

2 ( ) (1 ),
2

1
( ) (1 )(1 ),

6

d u
u

du

u uθ

ϕ
ϕ = − − θ

ϕ = − − θ

where θ  is a proper fraction (0 < θ< 1), hold 
true.

The final expression for the approximate 
solution has the form

3 2( ) (1/ 6) (1 )(1 ).u uθϕ = − − θ

The mean square value of ( ),uθϕ  i.e., the 
θ  approximation of the solution, is determined 
by the equality

1
2 2 3

0

( ) ( ) (1/9)(1 ).u u d uθϕ = ϕ θ = −∫
It follows from here that 3( ) (1/3) 1 ,u uϕ = −  

and this approximates the Blasius exact solu-
tion, especially for small u values. For example, 
the value of the Blasius constant is a = 1/3. 
Its exact value, recently calculated by Varin, is 
[29, 30]:

0,33205733621519

629893718006201058

296654709356141267

981810047564019872

417401806440507049

0731855146368... .

a =

 

The rational value of the constant differs 
from the reduced irrational one by less than 
0.3 %.

The quantity 
1

0

: du= ϕ∫D  in problems with 

physical content is dissipation in the segment 

Fig. 2 . The φ±(u) dependences illustrating how the branches of the solution of a homogeneous 
boundary problem are decomposed into solutions (##) of typical boundary problems; u*  

corresponds to the maxima of the function |φ|

(1c)

(5)
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(0, 1). In this case, its value is
1 .

3

0

(1/3)
(1/3) 1 0,27.

18 (11/6)
u du

π Γ
= − = ≈

Γ∫D

Apparently, the distribution ( )uϕ  is 
responsible for dissipation in the neighborhood 
of the point u = 0.

7. Let us formulate the general definition of 
the norm of θ  approximation

1/1
3 2 /2

0

1/
3

1
( ) (1 ) (1 )

6

1 ( / 2 1)
,

2 ( / 2 3 / 2)6

r

r
r

r

u u d

u r
r

 
ϕ = − ⋅ − θ θ = 

 

 − πΓ +
=   Γ + 

∫

where r > 0 is any positive real number. 
We are going to omit the subscript from 

now on, and the norm should be clear from the 
context. For example, r = 2 was adopted in the 
previous subsection, and then we obtain that

3

2

3 3

1
( ) : ( )

2 (5/2)6

1 2
(1 ) (1/3)(1 ).

36

u
u u

u u

− π
ϕ = ϕ = =

Γ

= − = −

Next, the Cauchy – Hölder inequality 

( ) ( ), 0,r ru u+αϕ ≤ ϕ ∀α >

holds uniformly with respect to 0 < u < 1, and 
the sequence of norms does not decrease as 
the index r increases from 0 to ∞, or, more 
precisely,

(1/ 6) exp( / 2 0, 02) 1 / 6,
r

c a− − < <

where c is the Mascheroni constant.
8. The first generalized property of the 

solution. Let the Crocco boundary problem (1) 
have the following form

2

2
2 0,

'(0) (0) 0.

md
u

du
ϕ

ϕ + =

ϕ = ϕ =

This representation of the Crocco equation 
follows from the Boussinesq equation if

1
0( ) ( / ) .mk k h k h H −= =

The θ  approximation of the solution of 
boundary problem (1a) then takes the form

1 2
2 (1 )(1 )
( ) ,

( 1)( 2)

b mu
u

m m

+ +

θ

− θ −
ϕ =

+ +

and, if we apply mean-square averaging over 
,θ  the weak solution has the form:

21
( ) ,

2
1

.
2

mu
u

m

a
m

+−
ϕ =

+

=
+

Identity (4) is written as follows:
21

0

1
.

2( 1)
d

du
du m
ϕ  =  + ∫

The condition for a minimum quadratic 
functional practically does not change and is 
expressed as

21

0

( ) (1/2) ln inf 0.md a
F u du

du

 ϕ ϕ = + → ≥   ϕ  
∫

In this case, dissipation follows the 
expression

1
2

0

2

1
1

2

1 3
1 2 2

( 2) 3 8
2( 2)

1
, 1,

2

mu du
m

m
m m

m

O m
m

+= − =
+

   Γ Γ   +   = =
+  +

Γ  + 
 = >> + 

∫D

and decreases with increasing m. 
By virtue of identity (4a), the following 

expression holds true:
__

2( )
( ) : 1 ,mu
u u

a
+ϕ

ϕ = = −

and it can be seen from this that the degree to 
which the profile

__ ( )
( ) :

u
u

a
ϕ

ϕ =

is complete is increased with increasing 
parameter m. 

Giving a physical meaning to the solution, 
let us assume that ( )uϕ = ϕ  is the friction in 
the boundary layer. The friction on the surface 
of a plate with longitudinal viscous flow over it 
is then (0),a = ϕ  decreases monotonically and 

(5а)

(5b)

(4а)

(6)
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persists from the near-wall to the jet part of the 
layer:

with , 0) 0,( ()m u→ ∞ ϕ → ϕ =  

0 < u < 1.

9. The second generalized property of the 
solution. Let the Boussinesq equation and the 
boundary conditions for it have the form

,
ca

bu u
u

t s s

 ∂ ∂ ∂ =    ∂ ∂ ∂  

where a, b, c are real parameters;

D(u) = (t > 0, s > 0), 

u(0, s) – 1 = u(t, 0) = 0.

Then the corresponding Crocco 
transformation converts this equation to the 
form

1( ) ,
1

c

b aa d d
u u u

c du du
− ϕ = ϕ −  +   

and the boundary conditions are imposed as 
follows:

(1) '(0) 0.ϕ = ϕ =

In this case, the θ  solution of boundary 
problem (7), (8) has the form

1

1
1 1 1

/ 1 / 1 1

( 1)
( )

( ) ( )

 {(1 )(1 )} .

c
c

c c
c c c

c
b c a b c c

c c
u

a b c b ac

u

+

θ

+ + +

+ + + +

+
ϕ = ×

+ +

× − θ −

Note 1. If a = b = 1 in the particular case, 
the expression known as the Khristianianovich 
seepage model for flat seepage flow follows 
from (9):

1 2 1 1

1

1 1

( ) .

( 1)

c
c c c
c c

c
c

u

u

c

+ + +

θ

+

    
− θ −         ϕ =

+

Then 
1 1

1
,

1

c
c c
c

a
c

+ +

θ

 
− θ =  + 

 
and, furthermore,

( 1) 1

( 1) 1
1 1

,
( 2) 1

( 1)
1

r
c r

c

c c r
c c c

a
c r

c
c

+ +

+ +   Γ ⋅ Γ   + +   =
+ + Γ+  + 

with r ≥ 0. 
Obviously, 

2 1__ 1( )
( ) : 1 ,

c
c c
cu

u u
a

+ + ϕ
ϕ = = − 

 

and the profile of the dimensionless distribu-
tion 

__

( )uϕ  is completed with decreasing param-
eter c

For example, if c = 1/2, then 
__

4 1/3( ) (1 ) ;u uϕ = −

and if c = 1/3, then
__

5 1/4( ) (1 ) .u uϕ = −

Note 2. Let a = 1, b, c be the free param-
eters. Then, by virtue of θ  solution (9), we 
obtain the expressions

1
/ 1 / 2 1

2
1

__
/ 2 1

( 1)
( ) {(1 )(1 )} ,

( )

( ) (1 ) ,

c
сc

b c b c с
c

c

с
b c с

c c
u u

b c

u u

+
+ + +

θ

+

+ +

+
ϕ = − θ −

+

ϕ = −

and the degree to which the profile 
__

( )uϕ  is 
completed is increased with increasing param-
eter b.

For example, if c = 1/2, then
__

2( 1) 1/3( ) (1 ) 0,  0 1.b

b
u u u+

→∞
ϕ = − → < <

Conclusions

As a result of the study we have conducted, 
we have established the following:

A typical Crocco boundary problem admits 
a positive and a negative branch of the solution 
( +ϕ  and −ϕ ), such that

( ) ( ) 0.u u+ −ϕ+ =ϕ

A homogeneous Crocco boundary problem 
is reduced to two typical Crocco boundary 
problems, conjugate at the critical point  
u = u*, such that

0 < u0 < u* < 1,

(8)

(9)

(9а)

(7)
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*

* *( 0) ( 0) 0.
u u

d
u u

du =

ϕ  = ϕ − − ϕ + = 
 

A typical Crocco boundary problem is 
equivalent to a nonlinear integral equation. The 
latter is solved by direct calculation of the inte-
gral using the second mean-value theorem. The 
averaging parameter is excluded by integration 

over the parameter in the interval (0, 1).  
Extensions of the proposed solution meth-

od have been discussed in this paper. The weak 
θ solution is insignificantly different from the 
exact one for the classical case a = b = c = 1. 
The approximate value of the Blasius constant 

(0)a = ϕ  turns out to be 1/3. In this case, the 
exact value of (0) 0,33206.ϕ =
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Thermal resistance and temperature distribution for high-power AlGaInN LED 
chip-on-board arrays were measured by different methods and tools. The p–n junction 
temperature was determined through measuring a temperature-dependent forward 
voltage drop on the p–n junction, at a low measuring current after applying a high 
heating current. Furthermore, the infrared thermal imaging technique was employed 
to obtain the temperature map for the test object. A steady-state 3D computational 
model of the experimental setup was created including temperature-dependent power 
dissipation in the LED chips. Simulations of the heat transfer in the LED array were 
performed to further investigate temperature gradients observed in the measurements. 
Simulations revealed possible thermal deformation of the assembly as the reason 
for the hot spot formation. The bending of the assembly was confirmed by surface 
curvature measurements.
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Introduction

Recent research into development and 
applications of light-emitting diode (LED) 
sources for general lighting has involved 
increasing operating currents and packing 
densities of light-emitting chips in the arrays 
to provide ever higher output powers [1, 2]. 
Increased power and complex construction 
of LED sources entail paying more attention 
to thermal processes both in individual LEDs 
and in the array as a whole. It is insufficient 
to estimate the total thermal resistance in this 
case: the temperature field distribution over the 
area (thermal mapping) has to be analyzed.

Since temperature considerably affects 
the internal quantum efficiency (IQE), its 
distribution becomes a factor determining the 
overall output characteristics of LED arrays 

(optical power and efficiency). Accordingly, 
exploring the non-uniform temperature 
distribution over the array as a function of 
current is particularly important for modern 
high-power LED arrays.

The goal of this study has been detailed 
analysis of thermal resistance and temperature 
distribution in high-power white LED arrays.

Experimental procedure

We have experimentally studied the thermal 
processes in LED arrays manufactured by the 
chip-on-board technology [3] using high-
power face-up AlInGaN LED chips [4]. 
Finding the exact temperature gradients on 
the surface of a LED array, associated with 
non-uniform heat generation and dissipation 
from each chip in this array, is of particular 



29

Experimental technique and devices

interest in this context. To this end, we have 
carried out detailed simulation of thermal and 
current distribution in a real LED array, and 
determined the temperature of emitting chips 
located at different points of the array by direct 
and indirect experimental methods.

The direct method for estimating the 
temperature of LED chips is based on high-
resolution infrared thermography using a SVIT 
IR thermal imaging camera [5, 6]. Thermal 
resistance was measured by relaxation of the 
temperature-dependent parameter (forward 
voltage) with a T3Ster thermal transient tester 
[7, 8].

This section describes the experimental 
samples and the experimental methods used 
for estimating the thermal characteristics, 
including measurements of thermal resistances, 
IR mapping, and measuring the thermal 
deformation of the LED array in operating 
mode.

Experimental samples. We have studied 
high-power arrays based on commercial  
ES-CABLV45P chips by EpiStar. The emitting 
chips have a face-up configuration [9], where an 
epitaxial AlInGaN heterostructure is stored on a 
sapphire substrate with low thermal conductivity 
(≈ 0.34 W/cm∙K). Both contacts are located on 
the face, and the light is transmitted through 
a semitransparent p-contact. The emitting 
chips have a complex “branching” topology 
of the electrodes to achieve a uniform current 
distribution at an operating current of 400 mA 
[10]. LED chips 1140×1140 μm in size and  
150 μm thick were mounted onto an aluminum-
core printed circuit board (MCPCB) using the 
chip-on-board (COB) technology. The LED 
array was an assembly consisting of 100 chips 
45×45×1.0 mm in size with a total input power 
of up to 100 W, which corresponds to a current 
of 350 mA passing through a single chip.

The LED array comprised 10 parallel-
connected LED rows, each including 10 
series-connected chips. The total area of the 
LED assembly was 20 × 20 mm. The chips 
were protected with a silicone gel containing 
luminophore.

The aluminum plate with the LED array was 
screwed to a heatsink. The diagonal distance 
between the heads of the screws fixing the board 
to the heatsink was 44 mm. The appearance of 

the LED array and a cross-sectional view of the 
structure are shown in Fig. 1.

Measurement of thermal resistances. Ther-
mal resistances were determined using the 
electric analogy where heat flow is considered 
instead of electric current and temperature in-
stead of voltage. Heat is transferred from the 
active region to the chip substrate, then to the 
aluminum plate through the glue, then through 
the thermal paste to the heatsink, which com-
prise elements of an equivalent thermal cir-
cuit: chip (Rchip), glue (Rglue), aluminum plate 
(RAl plate). The Cauer model suggests that such 
a chain consists of a set of thermal resistors 
connected to a common bus through thermal 
capacities. The thermal capacities of differ-
ent layers of the LED assembly affect only the 
transient characteristics, i.e., either the heating 
or cooling rates of the device when the current 
is switched on/off.

To determine the thermal resistance by the 
temperature-dependent parameter (the for-
ward voltage drop time), the array was initially 
switched to a low test current of 50 mA so that 

Fig. 1. LED array: appearance from above (a)  
and schematic cross-sectional view (b)

heatsink 1, aluminum board 2, glue 3, LED chips 4, 
silicone gel 5, thermal paste 6

а)

b)
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by radiation was taken into account in calcula-
tions of thermal resistance.

IR thermal imaging. Temperature of the 
LED array surface was measured using a SVIT 
IR thermal imaging camera with a sensitivity 
range of 2.5 – 3.0 μm [10]. Measuring the tem-
perature directly with a thermal imager allows 
obtaining the temperature area distribution (so-
called thermal mapping).

The main methodological issues encoun-
tered in thermal mapping of AlInGaN-based 
structures are, firstly, that the sapphire sub-
strate and epitaxial layers are transparent for 
IR wavelengths, and, secondly, that the emis-
sivities of the materials used in LEDs (semi-
conductor layers, metal contacts, reflective 
coatings, mounting elements, etc.) are largely 
different [14]. For this reason, preliminary cali-
bration is required to extract the correct tem-
perature distributions from the IR images. This 
calibration was carried out, with the tempera-
ture maintained by an external heater in the 
range from 20 to 100 °C, by recording the IR 
radiation from the LED array at zero current. 
Using this approach, we were able to measure 

the device would not self-heat, and the tem-
perature of the p–n-junction was set by an ex-
ternal heater in the range of 20 – 100 °C with 
an accuracy of 0.5°C. Forward voltage was re-
corded as a function of temperature. A calibra-
tion curve for forward voltage versus tempera-
ture was obtained this way; the curve is close to 
a linear dependence with a coefficient of –13 
mV/K. This value was subsequently used to de-
termine the temperature of the p–n-junction in 
real operating mode.

The forward voltage drop (a transient char-
acteristic) was studied with rapid switching 
from a low test current to a high operating one. 
The device was gradually heated from that mo-
ment, with heat transferred from the active re-
gion through the chip and the PC board to the 
heatsink and the ambient environment. The 
temperature evolution of the p–n junction un-
der heating was measured by the changes in the 
forward voltage at the moment when short test 
current pulses, “cutting” the direct heating op-
erating current, were supplied at a specific fre-
quency. Subsequent mathematical analysis of 
the transient voltage characteristic in the p–n 
junction using the structure function approach 
[11] allowed to calculate the components Rth,I 
and Cth,i of the equivalent thermal circuit, the 
total thermal resistance ΣRth and the total heat 
capacity ΣCth. The continuous cumulative 
structure function was approximated by a step 
function, which was a direct representation of 
Cauer’s thermal impedance model. The meth-
ods of transient characteristics and the math-
ematical tools involved are discussed in more 
detail in [12] and the references cited therein.

The T3Ster was originally intended for elec-
tronic devices, and its data processing is based 
on the premise that electrical power supplied 
to the device is completely converted to heat. 
However, a significant fraction of the supplied 
electric power in modern high-performance 
LEDs is converted to light and, therefore, does 
not contribute to heating the device. To ac-
count for this, output optical power Popt was 
measured using the OL 770-LED High Speed 
LED Test and Measurement system with an 
integrating sphere [13]. The wall-plug efficien-
cy for the given array amounted to 15 – 20% 
(depending on the input current). The corre-
sponding part of the input power carried away 

Fig. 2. Photograph of the spherometer  
used to measure the curvature radius  

of the LED array: 
metal tripod 1, pointed tip 2, gauge 3
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the temperature with an accuracy up to 2 K.
Measurements of the surface curvature. We 

used a spherometer with a dial gauge (SÜSS 
MicroTec, Germany) to estimate the thermal 
deformation of the LED array during opera-
tion, measuring the elevation of the center of 
the LED array in operating mode (with a cur-
rent of 3.5 A) compared to the position of this 
center at zero current.

The spherometer consists of a metal tri-
pod with three fixed legs of the same length  
(Fig. 2 [15]), a pointed tip passing along the 
center of the frame parallel to the legs and a 
standard dial gauge with a 0.01 mm graduation, 
showing the elevation of the tip above or below 
the surface on which the legs of the spherom-
eter are resting. The position of the tip can be 
read with an accuracy of 5 μm.

A stationary hydrodynamic model (Com-
putational Fluid Dynamics, CFD) was used for 
a flat LED array at the first stage of simulating 
the heat dissipation; possible deformation of 
the LED array (curvature of the heatsink sur-
face) was taken into account at the next stage.

A stationary CFD model describing the 
thermal processes in the experimental sam-
ples was created in Flotherm 10.1 by Mentor 
Graphics (Fig. 3 [16]). The goal of the simu-
lation was to reproduce the results obtained 
in the experiment and to study the causes of 
temperature gradients between the center and 
the periphery of the LED array. A large cy-
lindrical aluminum heatsink was approximat-
ed by an aluminum block, and the effect of 
cooling fins by a high heat transfer coefficient  
(10,000 W/(m2∙K)) applied to the walls of the 
aluminum block.

The adhesive (glue) layer used to mount the 
chip and the thermal paste layer (15 μm thick) 
between the plate and the heatsink were simu-

lated as thermal resistances at the respective 
interfaces. The protective silicone gel layer had 
a thickness of 300 μm. The thermal resistance 
of the glue, equal to 2.6 K/W for each chip, 
was obtained from the total structure func-
tion corresponding to a heating current of 1 A. 
This current value provided the most uniform 
heating of the LED array. The thermophysical 
properties of the materials are given in Table.

Constant pressure was imposed at the 
boundaries of the computational domain. The 
ambient temperature was 20°C. The model also 
included thermal radiation. An algebraic turbu-
lence model was used for the simulation. Grid-
independent results were obtained by simulat-
ing a model with different cell densities. The 
computational domain contained 1.8 million 
cells with local grids for LED chip, silicone gel 
and aluminum board. The dependence of the 
power emitted by LEDs on temperature at a 
fixed voltage applied to the array (Fig. 4) was 
obtained by measurements of a single chip and 
included optical cooling.

Tab l e

Thermophysical properties of the simulated system [16 –18]

System component (material)
Thermal conductivity, 

W/(m⋅K)
Density,
kg/m3

LED chip (sapphire) 36.0 3980.0
Board and heatsink (aluminum) 201.0 2710.0
Protective gel (silicone) 1.0 1000.0
Thermal paste 0.67 –

Fig. 3. CFD model  
of the experimental setup

aluminum block 1; LED array 2 coated  
with silicone gel; central part of the array  

(indicated by the dashed line)
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Results and discussion

The results of the measured thermal 
resistances for the LED array are given in Fig. 
5 as cumulative structure functions. The values 
of thermal resistance Rth are plotted along the 
horizontal axis, and the values of specific heat 
Cth from the heat source to the ambient (shown 
on a logarithmic scale) are plotted along the 
vertical axis.

The value of the total thermal resistance

ΣRth = Rchip + Rglue + RAl plate

was obtained for three currents: 1.0, 3.5 and  
4.0 A. Evidently, quantity (1) increases from 
0.3 to 0.5 K/W (by about 1.7 times) with 
increasing current. The inflection points on the 
curves indicate the thermal resistances measured 
along the thermal circuit. The increase in 
thermal resistance with increasing current can 
be explained by its redistribution in favor of the 
central arrays compared to the peripheral ones, 
and thus reduced sizes of the heat generation 
and, accordingly, the heat dissipation regions. 
However, the difference in the currents 
turned out to be insignificant (within 4 %), 
so heat generation can be considered nearly 
homogeneous in the entire LED array. This 

means that the increase in thermal resistance 
with increasing current is associated with the 
changes in heat dissipation rather than in in 
heat generation. 

Heat transfer from the center of the array 
to the ambient is worse than at the periphery 
of the plate. This was confirmed by direct 
measurement of heat distribution with an 
IR thermal imaging camera. The observed 
temperature distribution along the central axis 
of the array is shown in Fig. 6. A noticeable 
temperature difference up to 13 K is observed 
between the central and peripheral chips of the 
array.

First simulations revealed a 3 – 4 K 
maximum temperature variation between the 
center and the periphery of the LED array. The 
CFD model initially implied that the thermal 
resistance between the aluminum plate and 
the heatsink did not vary at different points, 
that is, the thermal paste layer between the 
aluminum plate and the radiator was assumed 
to be homogeneous.

Upon analysis of the computational data 
and closer inspection of the LED array samples, 
we have hypothesized that the temperature 
variation (up to 13 K) between the central and 

Fig. 4. Dissipated power as a function of temperature  
for a single LED chip 

(1)
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peripheral chips could be caused by bending of 
the aluminum plate. Bending also occurs due 
to intense heating of LED chips under rigid 
mechanical constraints imposed by screws in 
the corners of the plate

Thermal deformation of the LED array was 

measured by a spherometer at two points: at 
the center of the aluminum plate and next to 
one of the screws. Vertical shift in operating 
mode was 80 μm at the center of the LED 
array, and almost did not change near the 
screw. Therefore, the experiment confirmed 

Fig. 5. Cumulative structural functions (thermal capacity versus thermal
resistance) for the LED array with different currents, A: 1.0 (1) 3.5 (2) and 4.0 (3).

The inset shows a simplified diagram of the thermal circuit

Fig. 6. Experimental (symbols 1) and calculated (lines 2 – 4) temperature distributions 
along the central axes of the LED arrays
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that overheating at the center of the LED array 
is due to thermal deformation of the aluminum 
plate, leading to deterioration of the thermal 
contact between the aluminum plate and the 
heatsink.

The deterioration in thermal resistance at 
the interface between the aluminum plate and 
the heatsink was taken into account in the 
model by partitioning the thermal resistances 

between the heatsink and the aluminum 
plate into zones. Fig. 7 shows examples of 
the aluminum board partitioned into 4 and 6 
zones of thermal resistances. The partitioning 
was based on the assumption that the variation 
(growth) in thermal resistance near the edges 
of the plate should be less compared to the 
center due to the plate’s bending. The thermal 
resistance values assigned to individual zones 
were obtained by calibrating the simulated 
temperatures with respect to the measurements 
obtained in the central part of the LED array 
(the surface temperature of silicone is higher 
than 80 – 82 °C for the central chips and  
65 – 68 °C for the periphery, see Fig. 6). The 
results of partition into thermal zones were 
additionally compared with the results for the 
resistances of a homogeneous thermal paste 
layer (without partitioning). Using thermal 
resistance zones in the model led to achieving 
good agreement with the experimental data in 
the measured temperature range. The thermal 
resistance values for the thermal zones are 
shown in Fig. 8, and the results of simulation 
and comparison between the measured data 
and the simulated temperatures are shown in 
Fig. 6. We have tested the results of partitions 
into a different number of zones. It can be seen 
from the data in Fig. 6 that no considerable 
variation could be observed in the results 
obtained by increasing the number of thermal 
resistance zones to six, compared with a coarser 
partition.

The good agreement between the simulated 
and experimental temperatures obtained by 
partitioning the thermal resistances is shown in 
Fig. 6.

It is evident from the results of multizonal 
partitioning that thermal resistance significantly 
deteriorates starting from the zone next to 
the edge of the aluminum plate (i.e., R3 and 
R5). This is consistent with the fact that no 
continuous thermal paste layer could be found 
under the bent part of the aluminum board. 
Since the total measured bending height was 
80 μm and the maximum thickness of the 
thermal paste layer was 15 μm, the area filled 
with thermal paste could only be located 
below the zone corresponding to the thermal 
resistance R4 (for partition into four zones) or 

Fig. 7. Selected partitions of the aluminum  
board model into 4 (a) and 6 (b) zones  

of thermal resistance (Ri is the resistance  
of an ith zone)

а)

b)
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R6 (for partition into six zones). The effective 
thermal resistance of these zones, 0.1 K/W, 
determined by calibrating the model, was 
approximately 10 times worse than the thermal 
resistance of a homogeneous thermal paste 
layer of 0.011 K/W under a non-deformed 
aluminum plate. A possible explanation for 
such a high value is that the aluminum plate 
is deformed along the edges under heating. It 
is also clear from the simulation results and 
temperature measurements that the effect of 
thermal deformation of the aluminum plate 
on the temperature distribution profile of the 
LED array can be represented by one effective 
thermal resistance, as shown in Fig. 6 and 8, 
i.e., without partitioning. Using this alternative 
is not substantiated from a physical standpoint, 
but leads to satisfactory agreement between the 
simulated and measured temperature.

The temperature distribution over the area 
of the LED array is shown in Fig. 9. The 
method of partitioning the thermal resistances 
allows to predict the formation of local hot 
spots on the array surface, and thus reproduces 
the effect of the measured thermal deformation 
of the aluminum plate.

Conclusion

We have carried out experiments and 
computer simulation to study the thermal 
properties of high-power white AlInGaN LED 
arrays based on emitting face-up chips mounted 
on an aluminum MCPCB board using the chip-
on-board technology. Experimental studies 

Fig. 8. Inverse thermal conductivity coefficients corresponding to different partition zones  
with respect to the resistance of the homogeneous thermal paste layer:

homogeneous thermal paste layer 1, four partition zones 2, without partition into zones 3,  
six partition zones 4

Fig. 9. Calculated temperature map  
for the surface of the LED array (with thermal 

deformation taken into account)
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involved both indirect methods for determining 
thermal parameters from the transient 
temperature-dependent characteristics and a 
direct method for determining the temperature 
via IR thermal imaging.

We have established that the total thermal 
resistance of the LED array increased by 1.7 
times as the operating current increased from 
1 to 4 A, due to significant deterioration in 
heat removal from the chips located at the 
center of the array compared to those located 
on the periphery. This is a consequence 
of deformation caused by linear thermal 
expansion: more specifically, the central part 
bends as the aluminum board is fixed by the 
corners with screws, the gap between this 
board and the heatsink widens and the thermal 
contact deteriorates. The latter is confirmed 
both by the temperature distribution obtained 
from IR temperature mapping, and by direct 
measurement of the curvature of the LED 
array’s surface in operating mode.

Mathematical and experimental simulation 
played a key role in understanding the observed 
phenomenon of thermal deformation. A small 
change in surface temperature, obtained as a 
result of CFD simulation with a homogeneous 
layer of thermal paste, allowed us to suggest 
thermal deformation of the LED array to 

be the reason for the actually measured 
temperature gradient. The simulation results 
were then confirmed by direct measurement of 
a significant bending height (up to 80 μm) of 
the aluminum board in operating mode.

Additionally, we have proposed a method 
for breaking the thermal resistance into zones, 
giving an example of CFD simulation of 
experimental samples which is in good agreement 
with thermal imaging results. The difference in 
temperature between the central and peripheral 
chips can reach 13 K at an input power of 100 
W. Overheating of the central chips reduces the 
service life of the LED array. This should be 
taken into account when estimating the thermal 
resistances obtained by forward voltage drop.

Finally, the given combination of 
experimental methods and simulation techniques 
should be of help to electronics developers, 
facilitating analysis and solution of reliability 
problems caused by local hot spots evolving in 
the LED array as a result of thermomechanical 
deformation of the array’s components during 
operation.

Measurements of LED characteristics were 
carried out at the Collective Use Center “Hardware 
components of radiophotonics and nanoelectronics: 
technology, diagnostics, metrology”, St. Petersburg, 
Russian Federation.
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Generalization of the pseudopotential concept  
for radio-frequency quadrupole fields
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It is shown that the pseudopotential function, which describes the averaged 
motion of charged particles with accuracy up to quadratic terms for nonuniform radio-
frequency fields, can be replaced by an infinite pseudopotential series for quadrupole 
radio-frequency electric fields. This replacement provides a more accurate description. 
It allows us to extend the parameter’s range of the radio-frequency field; in this range, 
it makes possible to describe the motion of charged particles quantitatively and not 
just qualitatively. Unfortunately, even this extended concept of pseudopotential is 
not suitable enough for describing the motion of charged particles when approaching 
the region of the parametric resonance, where the motion of charged particles loses 
stability in the quadrupole radio-frequency fields. 
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Introduction

The pseudopotential approach is a useful 
tool for qualitatively describing ion motion 
in nonuniform radio-frequency (RF) electric 
fields [1 – 12]. However, the accuracy of the 
classical pseudopotential approach is too low 
for RF quadrupole mass filters [11 – 15] and 
(to a lesser extent) for RF quadrupole traps 
[16, 17], so the approach can hardly be re-
garded as useful for investigating the motion of 
charged particles in these devices. Exceptions 
from this include pseudopotential functions for 
calculating the stroboscopic values of coordi-
nates and velocities [18 – 20], or interpretation 
of Floquet – Lyapunov matrices for solutions 
of linear differential equations with periodic 
coefficients in the sense of a pseudopotential 
model of motion [21, 22]. These pseudopo-
tential functions are based on a fundamentally 
different mathematical formalism; still, these 
models of motion are not very convenient for 

practical calculations.
In this study, we have considered a 

reasonable compromise between classical 
models that are practical but not particularly 
accurate in terms of analyzing the motion 
of charged particles in RF quadrupole fields  
[1 – 12], and models that are mathematically 
accurate but not very practical [18 – 22]. The 
models we have proposed make it possible to 
significantly expand the range of parameters of 
the RF quadrupole electric field within the first 
stability zone. Using these parameters allows to 
fit (not only qualitatively but also quantitatively) 
the approximate motion trajectories to exact 
solutions of the corresponding differential 
equations.

The pseudopotential models of motion 
discussed in the paper follow the general 
ideology of the classical pseudopotential 
theory [1 – 12] and produce easily calculable 
algebraic expressions. However, these models 
work poorly near the boundary of the stability 
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region of RF quadrupoles which corresponds 
to parametric resonance between the driving 
RF field and the secular motion of charged 
particles violating the basic assumptions that 
the RF component of charged particle motion 
is small compared to the “slow” (averaged 
over RF oscillations) component of motion. 
Furthermore, the formulae obtained are specific 
for RF quadrupole electric fields and cannot be 
generalized to motion of charged particles in 
nonlinear RF electric fields.

Classical pseudopotential model for motion  
in a RF quadrupole field

Let us consider the motion of an ion in a 
RF electric field of a linear quadrupole with 
hyperbolic rods [11 – 17]. The electric potential 
U(x, y, t) for such a system has the form

2 2 2
0 0 0 0

( , , )

( cos( ))( ) ,

U x y t

U V t x y r

=

= + Ω + ϕ −

where U0 is the constant component of the 
voltages applied to the electrodes; V0 is the 
amplitude of the cosinusoidal RF component 
of the voltages applied to the electrodes; Ω  is 
the circular frequency of the RF voltage, 0ϕ  
is the phase of the RF voltage at the start of 
ion motion; r0 is the shortest distance from the 
quadrupole axis to the hyperbolic electrodes 
(characterizing the interelectrode gap of the 
RF linear quadrupole); x and y are the Carte-
sian coordinates; t is the time of motion.

In dimensionless coordinates, the trajectory 
x(t), y(t) for an ion with the mass m and charge 
e satisfies the Mathieu-type equations [23 – 30], 
which are a particular case of linear differential 
equations with periodic coefficients:

2

02
( 2 cos(2 )) 0,

d x
a q x

d
+ + ξ + ϕ =

ξ

2

02
( 2 cos(2 )) 0,

d y
a q y

d
− + ξ + ϕ =

ξ

where 2tξ = Ω  is the dimensionless time; 
2 2

0 08 ,a eU m r= Ω  
2 2

0 04q eV m r= Ω  are the 
dimensionless parameters; 0( ) cos(2 )f ξ = ξ + ϕ

 is the cosinusoidal periodic function with a di-
mensionless period T ′ = π  (the dimensionless 
circular frequency 2′Ω = ) and the initial phase 

0.ϕ  

To illustrate the principles of the classical 
pseudopotential approach, let us consider one-
dimensional motion of an ion with mass m and 
charge e in an RF electric field with an electric 
potential of the general form

0
0

0

( , ) ( , ) ( , ) cos( )

 ( , ) sin( ),

U x t U x t V x t t

W x t t

= + Ω + ϕ +

+ Ω + ϕ

where U0(x, t), V(x, t), W(x, t) are assumed 
to be “slow” functions of time, in comparison 
with “rapidly” oscillating sinusoidal functions 

0cos( ),tΩ + ϕ  0sin( ).tΩ + ϕ  
Newton’s equations of motion of an ion in 

such an electric field take the form

( ) 0
0

0

( , ) ( , ) cos( )

 ( , ) sin( ),
x x

x

m e x U x t V x t t

W x t t

= − − Ω + ϕ −

− Ω + ϕ



where the subscripts denote partial derivatives, 
which helps subsequently avoid unnecessarily 
cumbersome mathematical expressions. 

We assumed for the pseudopotential motion 
model [1 – 12] that the solution of differential 
equation (5) can be represented with good 
accuracy as a sum

0

0
0

2
0 0

2
0

( ) ( ) ( ),

1
( ) ( ( ) cos( )

 ( ) sin( ) ( ) cos 2( )

 ( ) sin 2( ) ),

c
kk

k

s c
k k

s
k

x t x t x t

x t x t t

x t t x t t

x t t

∞

=

= + δ

δ ≈ Ω + ϕ +
Ω

+ Ω + ϕ + Ω + ϕ +

+ Ω + ϕ +

∑



where the “rapid” component of the trajectory 
( ),x tδ  like its time derivative, has a zero mean 

(calculated over the period of the RF field 
(4)) and is small, compared with the principal 
(“slow”) component of the trajectory 0( ).x t

Let us substitute sum (6) into Eq. (5) and 
expand both the functions U0(x, t), V(x, t) and 
W(x, t) and their partial derivatives to truncat-
ed Taylor series with respect to the small ( )x tδ  
increment. In this case, under certain condi-
tions, namely:

a) assuming that the functions ( ),c
kx t  ( ),s

kx t  
2 ( ),c
kx t  2 ( ),s

kx t  … are “slow”, 
b) combining together terms that are basic 

trigonometric functions with the same frequen-
cies and the same powers of Ω,

c) demanding that the corresponding coef-
ficients (except the terms corresponding to the 
zero harmonic of the RF field) vanish sepa-

(1)

(2)

(3)

(5)

(6)

(4)
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rately, the following approximate relations can 
be obtained:

0 0 02

0 02

( ) ( ) ( ( ), ) cos( )

( ( ), ) sin( ) ;

x

x

e
x t x t V x t t t

m

e
W x t t t

m

≈ + Ω + ϕ +
Ω

+ Ω + ϕ +
Ω



( )0 0 0
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0 0 02

0 02

0 0 0

( ) ( ) ( ( ), ) cos

( ( ), ) sin( )

[ ( ( ), ) ( ) ( ( ), )]

cos( ) [ ( ( ), )
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x t x t W x t t t
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V x t t x t V x t t
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e
t W x t t

m

x t W x t t t
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− Ω + ϕ −
Ω

− + ×
Ω
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Ω
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
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

 

0 0 0( ) ( ( ), ) ( ( ), ) .rf
x x

e e
x t U x t t U x t t

m m
≈ − − +



The powers of Ω  up to 21 Ω  are preserved 
here, and the higher powers, which are small 
corrections due to the assumption that the 
RF electric field has a “high” frequency, are 
omitted.          

It should be noted, however, that in order 
to obtain the correct expression for the velocity 

( )x t  (up to the terms of the form 21 Ω ), the 
cubic terms 31 Ω  also have to be preserved 
in the calculations before differentiating the 
function ( )x t  with respect to time; these terms 
can be eliminated only after the function ( )x t  
has been determined correctly.

The function 

2 2
2

( , ) [( ( , )) ( ( , )) ]
4

rf
x x

e
U x t V x t W x t

m
= +

Ω
 (10)

is called the pseudopotential (effective poten-
tial, RF potential, ponderomotive force poten-
tial, etc.), and Eq. (9) can be interpreted as the 
motion of an ion with mass m and charge e in a 
quasi-stationary electric field with the potential 

( , ) ( , ).rfU x t U x t+
Importantly, not only the pseudopotential 

Eq. (9) for the “slow” component of the ion 
trajectory, but also Eqs. (7), (8) are an integral 
part of the pseudopotential model of motion. 
The latter equations allow to explicitly express 
the high-frequency corrections for the trajec-

tory and velocity of the ion, and thus find an 
approximate expression for the true trajectory 
of the ion in the RF electric field. In particular, 
it follows from Eqs. (7) and (8) that rapidly os-
cillating corrections to the “slow” component 
of ion trajectory are directly proportional to 
the amplitude of the RF component of electric 
field strength at the given point of the trajec-
tory. Moreover, nonlinear algebraic Eqs. (7), 
(8) can be used to express the functions 0( ),x t  

0 ( )x t  in terms of functions ( ),x t  ( )x t  as a 
series in the powers of 1 :kΩ

0 02

02
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Ω
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Ω


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m

e
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m

e
V x t t x t V x t t

m

e
t W x t t

m

x t W x t t t

≈ − Ω + ϕ +
Ω

+ Ω + ϕ +
Ω

+ + ×
Ω

× Ω + ϕ + +
Ω

+ Ω + ϕ +

 







where the terms are preserved up to 21 Ω  both 
for 0( )x t  and for 0 ( ).x t

In particular, Eqs. (11) and (12) allow to ex-
plicitly express the initial conditions for “slow” 
motion (9) in terms of the initial conditions of 
true motion (5) in the RF field.

Notice that the discrepancy between the 
initial conditions for the functions 0( ),x t

0 ( )x t  and ( ),x t ( ),x t  as well as the difference 
between the averaged 0( ),x t 0 ( )x t  trajectories 
and the approximate ( ),x t ( )x t  trajectories are 
not always taken into account in studies on 
assessing the accuracy of the pseudopotential 
model of motion, which yields estimates worse 
than the actual accuracy.

The normalized equation of motion (2) 
is obtained from Eq. (5) by the following 
substitution:

0 2( , ) 2,U x t ax=  2( , ) ,V x t qx=

( , ) 0,W x t = , 2,Ω =  

1,e =  1,m =  .t = ξ

(7)

(8)

(9)

(11)

(12)
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As a result, the pseudopotential model of ion 
motion (7) – (12) yields an approximate solution 
for Eq. (2), written in dimensionless form:

2

0 0( ) ( ) ;
2
q

x a x
 

′′ ξ ≈ − + ξ + 
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

0 0

0 0 0

(0) (0) 1 cos ;
2
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2
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x x
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x x q x

 ≈ − ϕ + 
 
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

 

It is assumed here that
2 22 0,a q+ = β >

where 2 2a qβ = +

 is the pseudopotential 
approximation for the exact value of the 
normalized secular frequency β  [23 – 31].

The condition 
2 22 0a q+ = β >

corresponds������������������������������������ to stable ion motion in the RF qua-

(13)

(14)

(15)

Fig. 1.  Comparison of numerically obtained trajectories of Eq. (2) (thin lines) with approximate 
trajectories calculated by pseudopotential theory (14), (15) (solid lines).

The values of the parameters in Eq. (2) are given in Table

а) b)

c) d)

e) f )

(15)
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drupole electric field within the pseudopotential 
model. Fig. 1 shows the difference between the 
approximate trajectories (13) – (15) and the ex-
act (calculated) solutions of Eq. (2) with a = 0 
for different values of the parameter q.

Pseudo-potential expansion in an infinite series

If more powers of the form 1 kΩ  are pre-
served in expansion (6), refined equations can 
be obtained for “slow” motion, as well as re-
fined coupling equations for true motion 0( )x t  
and for slow (averaged) motion 0( ).x t  Unfor-
tunately, in the general case of an arbitrary RF 
electric field, the expressions obtained by this 
method turn out to be extremely complex and 
it is no longer possible to use the elegant and 
physically transparent classical pseudopotential 
model to interpret them (conversely, however, 
see Ref. [32]). Quadrupole electric fields (where 
the dependence of the electric potential on the 
coordinates is expressed by a quadratic polyno-
mial) are an exception: high-order corrections 
for these fields still keep the form of an artifi-
cially constructed pseudopotential function.

As an example, let us consider one-dimen-
sional motion in a cosinusoidal RF electric 
field with a quadratic electric potential:

 

0

;

cos( ),

dx
v

dt
dv

U x V x t
dt

=

= − − Ω + ϕ

where, with respect to the linear quadrupole 
with electric potential (1), the quantity



2 2 2
0 0( 2 )m e U x U x r=

is the constant component of the electric 
potential, and the quantity



2 2 2
0 0( 2 )m e V x V x r=

is the amplitude of the RF component of the 
electric potential.   

The pseudopotential expansion for the so-
lutions of system of equations (16) can be writ-
ten in the form of a specific series representing 
a hybrid of trigonometric Fourier series and 
Taylor power series:
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( )
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are unknown constants, which 
should be selected so that solution (17), (18) 
satisfies system of equations (16). Indeed, af-
ter substituting solution (17), (18) into system 
(16) and combining together the coefficients 
for trigonometric terms similar to

0cos ( ),k tΩ + ϕ  0sin ( )k tΩ + ϕ

and power terms 1 ,jΩ  we can express the 
constants ( )

,2 ,c
k jx  ( )

,2 1,
s

k jx +  ( )
,2 1,
s

k jv −  ( )
,2 ,c

k jv  2 jX  
in a consistent manner using the recurrence 
relations in terms of the constants U  and V  
entering Eqs. (16). In this case, the function
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0 0 2 0 02
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1 1 1
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rf

jj
j
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used for writing the differential equation (18) 
in the form  



0 0 0( ) ,
rf

x dU x dx= −

(17)

(18)

(16)
(19)

Tab l e

Values of parameters in Eq. (2) for calculating  
its exact solutions

Fig. 1, 2 q x(0) x’(0)
a 0.25 1 0
b 0.25 0 1
c 0.50 1 0
d 0.50 0 1
e 0.75 1 0
f 0.75 0 1

No t e . The parameter a = 0 for the entire given set 
of other parameters
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For transition from system of equations 
(16) to the dimensionless equation, we use the 
substitution

 ,U a=   2 ,V q=  2.Ω =

Fig. 2 compares approximate solutions, 
constructed with the help of relations (17), 

can be interpreted as the refined quadratic 
pseudopotential. The latter characterizes “slow” 
(secular) ion motion in a quadratic RF electric 
field.
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linear equations (17), allowing, in particular, 
to correctly calculate the initial conditions for 
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conditions given for the trajectory ( ), ( ).x t v t

When the resulting expressions are expanded 
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(18), (20) and including expansion terms up 
to 141 ,Ω  with exact (numerical) solutions of 
system of equations (16). As expected, the ac-
curacy deteriorates rapidly as the parameter q 
increases (i.e., when approaching the far end of 
the stability region), so the expressions obtained 
above are suitable only for moderately high q 
values (more precisely, only for moderately 
high secular frequencies 0,62β ≤ ). Divergence 
is quite natural when approaching the far end of 
the stability region corresponding to the secular 

frequency 1,β =  since the basic assumptions 
that using the representation of solutions in the 
form (17) is based on and derivation of the fi-
nal expressions are not satisfied under paramet-
ric resonance between the proper secular oscil-
lations of ions and the forced RF oscillations. 
The latter are due to external effect of the radio 
frequency electric field. However, ion trajecto-
ries can be calculated with sufficient accuracy 
using the approximate formulae obtained for 
the range of secular frequencies 0 0,62.≤ β ≤

Fig. 2. Comparison of numerically obtained trajectories of Eq. (2) (thin lines)  
with approximate trajectories calculated by pseudopotential decomposition (17) – (22)  

up to terms of the form 141 Ω  (solid lines).
    The parameter values used are given in Table. Thin and solid lines in Figs. a – d overlap, so they are visually 

indistinguishable (in contrast to the curves in Fig. 1)

а) b)

c) d)

e) f )
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Eq. (19) yields an improved version of the 
approximate formula

2 2 2a qβ ≈ +

for the secular oscillation frequency, which 
is obtained from classical pseudopotential 
theory:



2 2 2

2 2 4 3 2 4

4 2 2 4 6

1 1
( , )

2 2
1 25 1 273
2 128 2 512

1 2049 1169
... .

2 2048 9216

a q a q aq

a q q a q aq

a q a q q

β ≈ + + +

   + + + + +   
   
 + + + + 
 

The inequality 

2
0 1,≤ β ≤  or, more 

precisely, a pair of inequalities 
2 2( , ) 1,x a qβ = β ≤  2 2( , ) 0,y a qβ = β − − ≥

with 0, 0,a q≥ ≥  can be used to approximately 
calculate the boundaries of the first stability 
region. Notably, while the inequality 

2 2( , ) 0y a qβ = β − − ≥  is sufficiently accurate for 
describing the near end of the first stability 
region, then the inequality 2 2( , ) 1x a qβ = β ≤  at 
best provides a qualitative description of the far 
end of the first stability region. 

It follows from the data in Fig. 3 that series 
(23) diverges near the far end of the first stability 
region, and, therefore, when approaching the 

far end of the first stability region, reasonable 
accuracy can only be achieved by using an 
incredibly large number of terms in the series.

Conclusion

As a result of the study we have carried 
out, we have found that the concept of a 
pseudopotential function can be generalized in a 
completely constructive way for RF quadrupole 
fields. The purpose of such generalization is in 
reducing the discrepancy between the exact 
and analytical solutions obtained in analysis 
of simplified models of the object under 
consideration. In this case, exact solutions 
cannot be obtained analytically. The resulting 
algebraic expression in the form of a truncated 
pseudopotential series allows to significantly 
expand the range of parameters of the RF 
field. Motion of charged particles within the 
framework of the traditional pseudopotential 
approach, which is characterized by conceptual 
simplicity and physical clarity, can be described 
not only qualitatively but also quantitatively in 
this range. Notably, the approaches offered in 
[21, 22] lack these advantages.

Unfortunately, the concept of the pseudo-
potential expanded in this way is not particularly 
suitable for describing the motion of charged par-
ticles when approaching the region of parametric 

(23)

Fig. 3. Quadratic coefficient of pseudopotential (PP) function (23), calculated via PP expansions 
(17) – (22) with different accuracy orders 1 nΩ  for n = 2 – 26 in the range 0 0,9080q≤ ≤  ( a 

= 0), as a function of q.
The curve (*) corresponds to the function for an analytically accurate value of secular oscillation frequency 

(calculated in accordance with [21, 22, 31])
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resonance ( 1),β ≈  where the motion of charged 
particles in RF quadrupole fields loses stability. 
In this case, pseudopotential models [21, 22] 
that are accurate yet rather cumbersome turn out 
to be a preferable alternative. The results prove 
to be acceptable for moderately high secular 
frequencies lying in the range 0 0,62,≤ β ≤  while 
the range of permissible values of the parameter 
providing acceptable accuracy of calculations is 
far more narrow (0 0,2)≤ β ≤  for the classical 
pseudopotential theory.

It is recommended to use the exact theory 
of quadratic pseudopotential for RF quadru-

pole fields [21, 22], rather than approximate 
pseudopotential expansions, for large values of 
secular frequencies.
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CUMULATIVE PROTONS PRODUCTION during the CARBON NUCLEUS 
FRAGMENTATION ON THE BERYLLIUM TARGET

D.M. Larionova, M.M. Larionova, Yu. M. Mitrankov, V.S. Borisov,  
V.N. Solovev, A.Ya. Berdnikov 

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation 

The collision of carbon nuclei with beryllium targets has been simulated in the 
framework of the Liège Intranuclear Cascade model at the carbon nuclei initial kinetic 
energies of 0.60, 0.95, 2.00 GeV / nucleon. Proton production invariant cross-sections 
at the nuclei collision angle of 3.5 degrees were obtained. It was shown that the 
dependence of experimental invariant cross-sections on the cumulative variable x in the 
range 0.9 < x < 2.4 could be interpret on the basis of taking into account  the Fermi 
motion of nucleons in nuclei, multiple scattering processes, and the formation of delta 
resonance. The calculation results were compared with experimental data and findings 
of investigation where data was analyzed in the context of the quark cluster model. 

Key words: cumulative particle, delta resonance, Liège Intranuclear Cascade model, beryllium target.
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Introduction

Cumulative production of particles means 
that particles are generated in nucleus-nucleus 
collisions in the region kinematically forbidden 
for free nucleon-nucleon collisions [1, 2].

A dimensionless quantity x, also called the 
dimensionless variable, is introduced to char-
acterize the cumulative particles [3].

There are different definitions for this 
quantity [1, 2]; in this paper, the cumulative 
variable x is used as a ratio of the momentum p 
of the detected proton to the momentum p0 of 
the nucleon in the carbon nucleus [4], in the 
laboratory frame of reference (rest frame of the 
9Ве target):

= 0/ .x p p

Currently, there are two fundamentally 
different models describing the production of 
cumulative particles.

The first model takes into account the 
Fermi motion, multiple scattering within 
the nucleus as the hadron projectile or its 

fragmentation products experience several 
successive rescatterings [1], and the processes 
associated with the formation of resonances. 
As a result, a particle can be produced in the 
last intranuclear collision in a region that is 
kinematically forbidden in scattering by a single 
free nucleon.

The second model is based on the processes 
occurring at distances that are much smaller 
than the characteristic nuclear distances [5].
The most common models describing such 
processes are the fluctuon model [5] and 
the nmodel of nucleon correlations at short 
distances [6, 7].

The flucton models are divided into two 
classes: “cold” and “hot”. The former assume 
that fluctuons always exist in the initial nucleus 
[1, 5, 8, 9], while according to the latter, 
fluctons are formed during the collision [10].

The FRAGM experiment at the TWAC-
ITEP heavy ion acceleration-accumulation 
facility at the Institute for Theoretical and 
Experimental Physics (Moscow, Russia) [11] 
measured proton yields at an angle of 3.5° 
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with the fragmentation of carbon ions with 
energies of 0.60, 0.95, and 2.00 GeV/nucleon 
on a beryllium target. The obtained data are 
presented as invariant cross-sections of the 
proton yield versus the cumulative variable x in 
the range 0.9 < x < 2.4.

The experimental data from Ref. [11] were 
analyzed in [4] based on the quark cluster 
model [8]. According to this model, the nucleus 
contains clusters consisting of 3k (k = 1, 2, 3)  
valence quarks. The value k = 1 corresponds to 
ordinary nucleons.

However, Ref. [4] did not take into account 
the contribution of the processes that are not 
related to formation of quark clusters, namely, 
the Fermi motion of nucleons in the nucleus, 
multiple scattering, and the formation of 
resonances.

The goal of this study was to calculate the 
cross-sections for the production of cumulative 
protons in an inclusive reaction 

12C + 9Be = 1p + X,

where 1p is the proton, X is the remaining 
products of the reaction.

Initial kinetic energies of carbon ions were 
taken to be 0.60, 0.95, and 2.00 GeV/nucleon. 
The computational model took into account 
the Fermi motion of nucleons, multiple 
rescattering, and the formation of resonances. 
The hypothesis of quark clusters was not 
included in the model.

Simulation procedure

We used the Extension of the Liège Intra-
nuclear Cascade Model [12] to assess the con-
tribution from Fermi motion, multiple scatter-
ing and the formation.

According to the Intranuclear Cascade 
Model, the collision of two nucleons leads ei-
ther to elastic or to inelastic scattering.

Total cross-sections σtot,pp of nucleon-nucle-
on scattering in millibarns (mb) were calculated 
using the following formulae [13, 14]:

−
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where ,labp  GeV/c is the momentum in the 
laboratory frame of reference. 

The cross-sections ,el ppσ  for nucleon-nucle-
on elastic scattering are calculated in the ex-
tended model using the following formulae:
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σ = σI
, ,el np tot np  with < 0,85;labp
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,

31
el np
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+

III
,
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1,5el np

labp
 with <2,00 .labp

The cross-sections for the formation of in-
elastic processes can be calculated as the differ-
ence between the total cross-section of nucle-
on-nucleon scattering and the cross-section of 
elastic scattering.

Computational study

The results for the simulation of intranu-
clear cascade are shown in Fig. 1 as the de-
pendence of invariant cross-section σ( )inv  for 
proton production in the given reaction versus 
the cumulative variable x. The invariant cross-
section for proton production was calculated by 
the formula:

σ
σ =

2

2
0

,
( )inv

t

E d
p dxd p

where σ  is the total cross-section of the reac-

tion; p0 is the per nucleon incident momentum; 
E and pt  are the total energy and the transverse 
momentum of the proton in the laboratory 
frame of reference [4].

Figs. 1 – 3 show the simulation results with-
out (i.e., exclusively due to Fermi motion and 
multiple scattering) and with the formation of 
delta resonances Δ(1232) taken into account. 
Figs. 1 – 3 also give a comparison of the data 
for the simulation of intranuclear cascade with 
the experimental data and the results obtained 
based on the quark cluster model.

Discussion

It follows from the data shown in Figs. 1 – 3  
that simultaneously taking into account Fermi 
motion, multiple scattering and delta resonance 
formation leads to production of cumulative 
particles in the range x > 1.

Fig. 4 shows examples of the processes 
leading to the production of cumulative 
particles.

Example 1 (Fig. 4,a). Let us consider the 
production of a cumulative particle due to Fermi 
motion of nucleons in the incident nucleus and 

(15)

(16)

(17)

Fig. 1. Experimental (symbols 1) [11] and simulated (2 – 7) curves for the cross-section  
of proton production in reaction (1) (angle 3.5°) versus the cumulative variable, at an initial 

energy of 0.60 GeV/nucleon.
The data were processed based on: the Extension of the Liège Intranuclear Cascade Model [12],  

without (6) and with (7) delta resonance formation taken into account; the quark cluster model (2 – 5)  
used to assess the contributions of one- (2), two- (3) and three- (4) nucleon clusters and the total 

contribution (5) of quark clusters
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to multiple scattering. A cumulative proton 
with x = 1.58 was detected in this particular 
example of an event.

The per nucleon incident momentum can 
exceed the p0 value due to Fermi motion in 
the given nucleus. According to the Liège 
intranuclear cascade model, the momenta of 
the nucleons in the nucleus obey the Gaussian 
distribution, for which the root-mean-square 

(RMS) value of the quantity is expressed as

F

3
RMS ,

5
p=

where pF = 270 MeV/с is the Fermi momen-
tum [15]. 

In the first stage (1) of the given event, 
proton 0, whose momentum is 1603 MeV/c, 
elastically collides with neutron 1; as a result, 

Fig. 2. The data shown are similar to those in Fig. 1 but were obtained 
with the initial energy of 0.95 GeV/nucleon

Fig. 3. The data shown are similar to those in Figs. 1 and 2 but were 
obtained with the initial energy of 2.00 GeV/nucleon
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with proton 0; as a result, delta resonance 0 
with a momentum of 1098 MeV/c is produced. 
The second stage (2) is the collision of pro-
ton 2, whose momentum is 1108 MeV/c, with 
a delta resonance. After this, proton 0, whose 
momentum is 1872 MeV/c, is produced, and it 
is the one detected in this event as cumulative. 
The momentum of 1872 MeV/c corresponds to 
the value of the cumulative variable x = 1.53.

It follows from expressions (4) and (5) that 
the cross-section of inelastic processes, includ-
ing the formation of delta resonances, is zero 
for per nucleon momenta of carbon nuclei 
smaller than 0.8 GeV/(c ∙ nucleon).

Thus, the cross-sections obtained by simu-

the momentum of proton 0 decreases to  
1337 MeV/c (the proton loses energy due 
to elastic collision).The second stage (2) 
is the elastic collision of proton 3, whose 
momentum is 1421 MeV/c, with proton 0, 
whose momentum is 1337 MeV/c. Due to this 
collision, the momentum of proton 0 increases to  
1925 MeV/c. This proton is the one actually 
detected in this event as cumulative, and the 
momentum of 1925 MeV/c corresponds to the 
value of the cumulative variable x = 1.58.

Example 2 (Fig. 4,b). Let us consider an 
event with the formation of a delta resonance. 
In the first stage (1) of such an event, proton 
1, whose momentum is 1346 MeV/c, collides 

Fig. 4. Examples of events occurring in the collision of C (I) and Be (II) nuclei, without (a) 
and with (b) the formation of delta resonance 0(Δ); 1 and 2 are the stages of the processes.
Small dashed circles indicate intranuclear nucleons, with their momenta in MeV/c shown beside them; 

(n) and (p) are the neutron and the proton; 0, 1, 2, 3 are their indices. The small solid circles indicate the 
cumulative particles formed in the processes 

а)

b)
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scattering and resonance formation, without 
using the hypothesis of quark clusters in 
inclusive reaction (1)

12C + 9Be = 1p + X

with initial kinetic energies of carbon ions of 
0.60, 0.95, 2.00 GeV/nucleon.

We have established that the processes 
of multiple scattering and delta resonance 
formation lead to production of cumulative 
particles and make a significant contribution 
to the cross-section for the production of 
cumulative particles. The obtained results are 
in agreement with the experimental data for 
the initial kinetic energy of carbon ions of  
0.60 GeV/nucleon.The obtained values are 
lower than the experimental values with 
increasing energy in the region x > 1.4, 
which indicates potential new mechanisms 
for the production of cumulative particles, for 
example, taking into account other nucleon 
resonances.

The study was carried out with the financial 
support of the Ministry of Education and Science of 
the Russian Federation, state task 3.1498.2017/4.6.

lation, both with and without the formation of 
delta resonances taken into account, coincide 
in the region x < 0.8 / 0.6 ≈ 1.3.

If the formation of delta resonances in the 
region x > 1.6 is taken into account, the invari-
ant cross-section increases and becomes closer 
to the experimental values.

Let us compare the results of the simulation 
carried out in our study with the predictions of 
the hypothesis based on the existence of quark 
clusters in nuclei (see Figs. 1 – 3).

Evidently, the processes of multiple scat-
tering and formation of delta resonances in 
the region x < 1.4 are as adequate for describ-
ing the experimental data as the quark clusters 
approach, but yield lower values of invariant 
cross-sections in the region x > 1.4. The ob-
tained results start to considerably deviate from 
the experimental data with increasing initial ki-
netic energies of carbon ions.

Conclusion

We have obtained the cumulative variable 
distributions of invariant cross-sections 
taking into account the processes of multiple 
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The paper discusses the issues related to the use of principal components analysis 
(PCA) in mathematical simulation. The paper significantly expands the range of the 
solved problems using PCA. In particular, the solutions of the following three tasks 
are given: (i) structural similarity and homogeneity estimation for random Gaussian 
vectors; (ii) recovery of missing data; (iii) the forecast of non-stationary time series 
based on the caterpillar method, which is a generalization of PCA for non-stationary 
time series. To solve the problems, to restore missing data and to predict the data, 
the author offers an unbiased estimation of the variance of the error of the regression 
on the PCs base for the cases of large and small samples. All the main statements are 
formulated in the form of theorems proved by the author.
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Introduction

Principal component analysis (PCA) is 
a well-known procedure of mathematical 
statistics. This method was proposed by Pearson 
in 1901 [1] and consists in the following.

If the coordinate system of an n-dimensional 
space is properly rotated (by orthogonal 
transformation) so that the coordinate axes 
coincide with the principal axes of the 
concentration ellipsoid, then the components 
of the normally distributed n-dimensional 
centered vector are uncorrelated and, by virtue 
of the normal distribution law, independent.

In the algebraic sense, this actually means 
that a covariance matrix is converted to 
diagonal form by orthogonal transformation, 
and a quadratic form in the exponent of the 
density function of the multidimensional 
normal distribution is converted to canonical 
form. The well-known Karhunen-Loève 
transformation [2, 3] is, in fact, precisely 
this coordinate transformation. Transition to 
independent PC variables typically allows to 

significantly reduce the dimension of the given 
problem with minimal loss of information

In view of this, PCs are often derived as 
a solution to the optimization problem in the 
literature, although all of their optimal properties 
are quite evident from the very spectrum of 
the covariance matrix (the spectrum shows the 
fraction of the variance that is discarded, see 
below).

PCA is known as Singular Spectrum 
Analysis (SSA) in time series analysis, where 
it is used to solve the problem of redundancy 
in classical spectral analysis [4 – 6].  SSA is 
peculiar in that the dimension of the vector is 
equal to N in this case, and the dimension of 
the mutual covariance matrix is N × N (N is the 
length of the given time series). The elements 
of the covariance matrix are calculated by a 
special technique, with the divisor equal to N 
regardless of the magnitude of the shift, or, 
respectively, of the number of terms. Even 
though such estimates are obviously biased, 
by themselves they do not produce a skewed 
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(towards overestimation, as Jenkins and Watts 
note in [7]) wavelength in spectral analysis. It 
was explained in [8] that the problem of high 
dimension of the covariance matrix in SSA 
is easily solved by applying the von Mises 
iterations, since all rows of the covariance matrix 
of the time series can be obtained from the first 
row by shifting, duplicating and rearranging the 
elements. The eigenvalues and eigenvectors of 
the covariance matrix are obtained by applying 
a sequence of simple iterations without rotation 
to a matrix of dimension N × N.

Alternatives to SSA are the so-called 
caterpillar method [9], and the method proposed 
later in this paper (see the sections “Problem 
of a relatively small sample” and “Forecast of 
non-stationary time series”), where the forecast 
scheme is constructed based on the caterpillar 
method.  

Many methods are close to PCA, for 
example, the components in Independent 
Component Analysis (ICA) may obey Student’s, 
Cauchy and Dirichlet distribution besides the 
Gaussian. Notice that the ICA method is also 
known as analysis of these components.  

The method of principal curves and mani-
folds is a generalization of PCA. Recently, 
PCA has been widely used for visualization and 
graphical representation of multidimensional 
data (a projection of the sample on the plane 
of the first two principal axes was considered 
[10, 11]). The initial data do not have to obey 
the normal distribution in this case. 

Here, there is a wide array of essentially 
similar methods, such as multidimensional 
scaling, nonlinear mapping, projection pursuit, 
as well as methods of neural network problems, 
such as the bottleneck method, Kohonen self-
organizing maps, etc. Notably, graphical repre-
sentation of multidimensional data by projec-
tion onto the plane of the first two principal 
axes of PCs allows to obtain a fairly good ini-
tial approximation of the sampling distribution 
in the solution of the classification problem in 
[12].

The goal of this study has been to expand 
the range of problems solved using principal 
component analysis.

In view of this goal, the study considers 
the problems of structural similarity analysis, 
missing data recovery, and forecast of non-

stationary series. We have refined the details 
of the method of principal components directly 
related to problems of recovering the missing 
data and forecasting. The issues of reduced di-
mension and visualization of multidimensional 
data are treated as secondary in this study.

Brief overview of the techniques used for PCA 

It is assumed that the vector y has the di-
mension m (dimy = m) and obeys the mul-
tidimensional normal distribution, i.e.,  

~ (Ny θу, ).yV  
Let P be an orthogonal matrix such that

T
y =P V P  Λ 1 2diag( , , ..., )m= λ λ λ

and 1 2 ... ,mλ ≥ λ ≥ ≥ λ

where Т is the transposition symbol (opera-
tor). 

Recall that the columns of the matrix P 
are the eigenvectors of the matrix ,yV  and 
the set of eigenvalues 1 2{ , , ..., }mλ λ λ  is called 
the spectrum of this matrix. The columns of 
the matrix P are called the basis of principal 
components in mathematical statistics, and 
the components of the vector (T −P y θу). are 
called the principal components. The param-
eters of the distribution N(θу, Vу), are typically 
unknown in applications. If there is a sample 

, 1,2,..., ,j j n=y  we can calculate unbiased 
estimates of unknown parameters:
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In this case, we take the orthogonal matrix 
,P


 as P, which reduces the estimate yV


 to a 
diagonal form, i.e.,



1 2diag( , , ..., )T
y m= Λ = λ λ λP V P

  
  

Λ

and 1 2 ... .mλ ≥ λ ≥ ≥ λ
  

Obviously, the matrices yV  and yV


 are not 
equal, and therefore, the matrices P and P



 are 
not equal as well.

The problem of reducing the dimension, 
like the other problems considered in this 
paper, is directly related to testing the following 
hypotheses:

(1)

(2)
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1 2 1 2H: ... ... .k k k m+ +λ ≥ λ ≥ ≥ λ ≥ λ = λ = = λ

Adopting this hypothesis allows to consider 
a vector of lower dimension   

( )( ),T
yk − θP y

 

θ

where the matrix ( )kP


 contains only the first k 
columns of matrix .P



The first known procedure for testing the 
hypothesis H (see formula (3)) was Bartlett’s 
test [13, 14] (see, for example, monograph [15] 
or handbook [16]). However, while Bartlett’s 
test is described absolutely correctly in [15], 
two inaccuracies (a sign and a multiplier) are 
immediately found in [16].

Indeed, the 2χ  statistics for testing hypothesis 
H in [15] is expressed as

1
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while in [16] this statistic follows the 
expression 
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Both publications cite the same number of 
degrees of freedom η.

In Ref. [15]: 

1
( 2)( 1);

2
m k m kη = − + − −

In Ref.  [16]:

1
( 1)( ) 1.

2
m k m kη = − + − −

Nowadays, the so-called Broken Stick 
Model has become widely known (see, for 
example, Ref. [17]). According to this test, the 
maximum value of k, for which the inequality

1 1 ( 1) ...+1
,

tr
k

y

k k m
m

λ + + +
>

V





where tr is the matrix trace, holds true should 
be chosen.

The simplest means of finding k is visual 
analysis of the graphical representation of the 
covariance matrix spectrum in descending 
order. In this case, the value that precedes 
the change of the relatively fast decline in 
eigenvalues to a relatively slow (smooth) one is 
taken as k, which essentially repeats the Broken 
Stick method (at an intuitive, non-formalized 
level). Many handbooks and textbooks propose 
to determine k from the ratio

1 1

/ 100% %,
k m

i i
i i

K
= =

 
λ λ ≈ 

 
∑ ∑
 

where K is the predetermined percentage of the 
total variance.

The choice of the method for determining k 
ultimately depends on the nature of the problem 
being solved. Let us outline the results. 

Obviously, an error occurs in reducing the 
dimension, and the dispersion of this error 
must be somehow related to the rejected part 
of the sample spectrum. The following two sec-
tions of the paper are dedicated to the solution 
of this problem.

A priori variance estimate for errors  
of regression on PCs

The regression of the vector on PCs (on 
the components of the vector z) is a relation 
expressed by an equation of the form

y = θy + P(k)z + ε.

According to the general principles of 
classical regression analysis, it is assumed that

ε 2~ ( , ),N σ0 I  

where 0 is a zero vector and I is the unit matrix 
of the corresponding dimension.

Assumption (5) means that 

E( ) 0,iε =  2var( )iε = σ  ( 1,2,..., )i m=

and cov( , ) 0i jε ε = (i ≠ j),

where E, var and covare the the expectation, 
variance, and covariance operators, respec-
tively. 

Suppose that some implementation of 
the vector y is considered in the above-
described conditions. This may be one of 

(3)

(4)

(5)



Mathematics

59

the implementations used for calculating the 
estimates of the parameters ( , ),

 

è vy yθ  i.e. 
,jy  ( 1,2,..., ),j n=  or one of the subsequent 
, ( 1),n l l+ ≥y  which is of no consequence. 

Therefore, the subscript can be omitted for 
now. In practical simulation problems we have, 
instead of Eq. (4), a regression model of the 
form

( )y k= θ + +y P z
 

θ ε.

First of all, we should note that, according 
to classical regression analysis, Eq. (6) should 
be called regression on the PC basis, since the 
PCs themselves (the components of vector z) 
are the parameters defined at the stage when 
the constructed model (6) is applied. Regression 
on PCs appears in the proof of the following 
theorem.

Theorem 1. Given the conditions of model (6), 
where the elements of the model are calculated 
by formulae (1), (2) provided that hypothesis 
H is correct, or, in other words, accepted (see 
expression (3)) and with assumption (5), an a 
priori unbiased estimate 2σ  is expressed as

2

1

1
.

( )( 1)

m

i
i k

n
m k n k = +

−
σ = λ

− − − ∑




Proof. Let us move on to covariances in 
regression model (4) which relates three nor-
mally distributed centered vectors ( −y θу, z  
and ε). Then we have the following equality:

( ) ( ) ,T
y k z k ε= +V P V P V

where 
2 ,ε = σV I  2 2 2

1 2diag( , , ..., ),z k= σ σ σV

 2= var( ), ( =1,2,..., ).i iz i kσ

Multiplying equality (8) by PT on the left-
hand side and by P on the right-hand side, we 
obtain:

1 2 1

2 2 2
1 2

2 2 2

diag( , , ..., , , ..., )

diag( , , ..., , 0 ,..., 0)

 diag( , , ..., ),

k k m

k

+λ λ λ λ λ =

= σ σ σ +

+ σ σ σ

i.e.,
2 2

2

( 1,2,..., ),  

( 1, 2,..., ).
i i

i

i k

i k k m

λ = σ + σ =

λ = σ = + +

Notably, not just equality (9) holds true 
only with if hypothesis H is correct (see (3)), 

but assumption (5) is also possible for a large 
sample only if hypothesis H is correct. This 
is evident from equality (9), where 2.iλ = σ  
However, this logic is violated for a small sam-
ple (see below).

Equality (9) also implies that

2

1

1
.

( )

m

i
i km k = +

σ = λ
− ∑

Let us consider a classical regression model 
[18]:

0 1 ,1 2 ,2

1 , 1

...

...  ( =1,2,..., ).
j j j

p j p j

х z z

z j n− −

= β + β + β +

+ β + ε

For an arbitrarily chosen i ( =1,2,..., )i m , 
let us substitute the initial , ,i jy  values into the 
set of equations (11) instead of jх  and instead 
of ,j lz ( =1,2,..., ; 1)l k k p= −  let us substitute 
the values of sample PCs calculated by the for-
mula

, , ,( )1 2 ( ), , ..., ( ) ,T
j j j k j kz z z = − θyy P

 

   θ

where jy  is the j-th implementation of y in the 
initial sample.

In the latter case, we keep using our previous 
notations. These are PCs of the original sample, 
but we interchange the indices (numbers) of the 
component and the implementation (l and j), 
thus complying with the standards of regression 
analysis, i.e., model (11). In this context, these 
PCs values

,1 ,2 ,{ , , ..., }j j j kz z z
  

(6). are assumed to be known and model 
(11) here is indeed a regression on PCs. Then 
the Eq. (11) corresponds to the ith row of 
matrix equality (6).

It follows from the condition 

,
1

1
=0

n

l j l
j

z z
n =

= ∑
 

( )=1,2,...,l k

that

0 = ,xβ


where 
1

1
,

n

j
j

x x
n =

= ∑  i.e., 0 ,
1

1
=

n

i j
j

y
n =

β ∑


 (see 
above). 

PCA, as well as the ordinary least squares 
method (OLS), ensures that the residual sum of 
squares (RSS) is minimal, therefore, the vector 
row of OLS estimates

(6)

(7)

(8)

(9)

(10)

(11)
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1 2 1( , ,..., )p−β β β
  

matches the i-th row of the matrix ( ),kP


 i.e.,

1 2 1 ( )( , ,..., )=[ ] ,p k i−β β β P


  

where ( )[ ]k iP


 is the ith row of the matrix ( ).kP


 
This statement is easily proved by direct 

calculation. Let us define the following matrices 
of initial data:

1 2( , , ..., ),n= − θ − θ − θY y y y
  

θθθ

( ) .T
k=Z P Y


Then the equivalent of model (6) for these 
matrices can be written in the form

( ) + ,k=Y P Z E


where E is the (m × n)-matrix of all regression 
residuals.

Accordingly, the equivalent of (11) is writ-
ten in the form 

( )+ .T T T T
k=Y Z P E


Next, we need to verify the equality  

1
( ) ( ) ,T T T
k

−=P ZZ ZY


which actually means that the matrix ( ),kP


 and, 
accordingly, all its rows are essentially OLS es-
timates.

Substituting the expression for the matrix 
Z (see above), multiplying by ( ) ( )

T
k kP P
 

 on the 
right-hand side and placing additional brack-
ets, we obtain an obvious identity:  

( ) ( ) ( )

1
( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ,

T T
k k k

T T T T T
k k k k k

−

=

=

P P P

P YY P P YY P P

  

    

because ( ) ( ) .T
k k =P P I
 

 
Multiplying by ( ) ( )

T
k kP P
 

 is correct because 
the rank of the matrices does not decrease in 
this case:

( ) ( ) ( )rank( ) rank .T
k k k k= =P P P
  

The assumptions we made and equality (10) 
imply that RSS 2S  for regression model (11) 
obeys the expression

2

1

1
.

( )

m

i
i k

n
S

m k = +

−
= λ

− ∑


In accordance with the theory of linear 
regression [18], the estimate

2
2

1

1
( )( 1)

m

i
i k

S n
n p m k n k = +

−
σ = = λ

− − − − ∑




is unbiased (recall that p = k + 1). 
Theorem 1 is proved.
We should note that estimate (7) and a brief 

description of the proof of Theorem 1 outlining 
the main idea (see formula (9)) were proposed 
in an earlier study [19]. It is actually the biased 
estimate 2σ  that is required in some problems 
on assessing the informativeness (see [20]). In 
this case, it is preferable to use the estimate

2

1

1
,

( )

m

i
i k

n
m k n = +

−
σ = λ

− ∑




which follows directly from formula (10). 
We are going to further discuss using a priori 
estimates below (see the section “Recovering 
missing data”).

The problem of a relatively small sample

The situation when the sample size n is less 
than the vector dimension m (n < m) is com-
mon for many problems. In this case,

1 2 ... 0,n n m+ +λ = λ = = λ =
  

which does not at all correspond to equality 
(9), and, consequently, (10). However, this 
does not exclude the possibility of testing the 
hypothesis 

1 1 2 1 2H : ... ...k k k n+ +λ ≥ λ ≥ ≥ λ ≥ λ = λ = = λ

1 1 2 1 2H : ... ...k k k n+ +λ ≥ λ ≥ ≥ λ ≥ λ = λ = = λ  

for further consideration of model (6). 
Assuming the vector yθ



θ  and the matrix 

( )kP


 to be known, for any of the subsequent 
implementations of the vector y, for example 
the (n + l)th ( 1),l ≥  the unbiased a posteriori 

2σ  estimate in regression model (6) follows the 
expression

2 2
, ( )

1

1
( [ ] ) ,

m

i n l i k i n l
i

y y
m k + +

=

σ = − −
− ∑ P z






where iy is the ith component of the a priori 
estimate of the vector yθ



θ  ( =1,2,..., ),i m  and 
the number of estimated parameters is equal 
to k. 

On the other hand, assuming only the ma-
trix ( )kP



 to be known, this estimate is as fol-
lows:

(12)

(13)
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2 2
, ( )

1

1
( [ ] ) ,

1

m

i n l n l k i n l
i

y y
m k + + +

=

σ = − −
− − ∑ P z






2 2
, ( )

1

1
( [ ] ) ,

1

m

i n l n l k i n l
i

y y
m k + + +

=

σ = − −
− − ∑ P z






where ,
1

1
;

m

n l i n l
i

y y
m+ +

=

= ∑  ,i n ly +  is the ith 

component of the vector .n l+y  
In these formulae, the same as above, in 

both cases, corresponding to formulae (13) and 
(14), ( )[ ]k iP



 is the ith row of the matrix ( ),kP


and
( )( ).T

yn l k n l+ += − θz P y
 

 θ

Nevertheless, the vector yθ


θ  in expression 
(13) is calculated by formula (1) using all the 
implementations of the initial sample, while in 
(14) we substitute all components of yθ



θ with 
the mean value for the components of the new 
implementation n l+y 1 2( ...= ,m n ly +θ = θ = θ =  
see above). However, the vector yθ



θ  is used for 
calculating yV



 and ,P


 which should be taken 
into account in the a priori estimate 2.σ  In 
view of this, let us consider a different method 
for calculating the elements of model (6).

Let us define the matrix Y in a different 
manner. Let 

1 21 2( , , ..., ),nn= − θ − θ − θY y y y
  

θθθ

where the components of each vector jθ


θ  are 
equal to each other and equal to the compo-
nent mean of the implementation ,jy  i.e.,

1 2 ,
1

1
... ,

m

j j mj j i j
i

y y
m =

θ = θ = = θ = = ∑  

( =1,2,..., ).j n

Let us calculate the estimate yV  by for-
mula 

1( 1) .T
y n −= −V YY


Next, let us take all of the above-describe 
steps: calculate P



 and 1 2{ , , ..., };nλ λ λ
  

 check 
the hypothesis H1 (see (12), n < m) and define 
the matrix ( ).kP



 Not only yV


 and P


 but the 
value of k can slightly change in this case.

Theorem 2. Given the conditions of model (6), 
where the elements of the model are calculated by 
scheme (15) provided that hypothesis H1 is correct, 
or, in other words, accepted (see expression (12)) 
and with assumption (5), an a priori unbiased 
estimate 2,σ  equal to

2

1

1
,

( 1)

n

i
i k

n
m k n = +

−
σ = λ

− − ∑




is unbiased.
Proof. Since the expected value opera-

tor is linear, the mean value of unbiased es-
timate (14), calculated from the initial sample 
( =1,2,..., ),j n  is actually the unbiased a priori 
estimate sough for, equal to   

2
( ) ( )

1

1 1
( ) ( )( )

1

n
T T

j jj k k j
jn m k=

σ = − θ × − − θ =
− −∑ y I P P y

   

 θ

2
( ) ( )

1

1 1
( ) ( )( )

1

n
T T

j jj k k j
jn m k=

σ = − θ × − − θ =
− −∑ y I P P y

   

 θ

( ) ( )

1
tr( ( ) )

( 1)
T T

k km k n
= − =

− −
Y I P P Y

 

( )1
tr tr

( 1)
T T

m k n
= − =

− −
Y Y Z Z

1

1
( 1)

n

i
i k

n
m k n = +

−
= λ

− − ∑


(here, the same as above, ( )
T
k=Z P Y


). 
Theorem 2 is proved.  
Notice that estimate (16) requires only the 

expected values of estimates (14) but not the 
expected values of mean jθ



θ  estimates to coin-
cide. This means that estimate (16) is suitable 
for the case of time series containing trends. In 
turn, this (aside from the relatively small sam-
ple) may be another reason use estimates (15) 
and (16). Comparing estimates (7) and (16), 
we can also see that in case of a small sample 
(n < m), incorrect use of (7) yields an overes-
timated value of 2.σ  The biased equivalent of 
estimate (16) is the estimate

2

1

1
.

n

i
i k

n
mn = +

−
σ = λ∑





The index j often corresponds to a certain 
time count in mathematical modeling; this 
means that estimate (16) can be accepted 
without resorting to the above-described 
procedure for adjusting model (6), provided 
that the mean values of the components of 
vector y, calculated by the first method (see 
estimates (1)), are sufficiently stationarity 
differ insignificantly. Errors and inaccuracies 
arising from this are negligible. Conversely, 
the above-described procedure for estimating 

yV


 should be used in the non-stationary case. 

(14)

(16)

(15)
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This implies recalculating yθ


θ  (see above) by 
the implementation of y explicitly appearing in 
model (6).

The method for estimating the elements of 
model (6) considered in this section is most ef-
fective when the caterpillar method is applied 
to forecasting non-stationary time series with a 
pronounced trend (see the section “Forecast-
ing of non-stationary time series”). 

Important remark. Before we can discuss 
further considerations, we should focus on a 
point that is very important for general under-
standing. In the case of a non-degenerate dis-
tribution and a large sample, we can regard the 
main components as regressors, and the ele-
ments of the matrix ( ),kP



 which is the basis 
of the principal components, as estimated pa-
rameters (see the proof for Theorem 1). On 
the other hand, in case of a small sample (the 
dimension is larger than the size), the elements 
of the matrix ( )kP



 have to be regarded as re-
gressors, and the principal components as the 
estimated parameters (Theorem 2). Centering 
should be carried out by subtracting not the 
mean implementation value for each compo-
nent, but the mean component value for each 
implementation (see above). The gist of the 
problem is that if the sample is small, equality 
(9) does not have a sample equivalent, since 
the sample spectrum is not complete and the 
logic of Theorem 1 collapses. Therefore, the 
situation has to be considered from a different 
standpoint.

Finally, we should note that the case of a 
fundamentally degenerate distribution, when 
the sample spectrum is incomplete and the 
sample is large, brings us to the computational 
scheme of this section and estimate (16). 

Minimal risk estimates

The formula

( ) , y k= θ +y P z
 

 θ

where ( )(
T
k= −z P y




).yè


θ , is typically used if model 
(6) is chosen for use in applied problems.

Handbook [21] suggests the formula 

( ) ,y k= θ +y P gz
 



 θ

where 1 2diag( , , ..., ). kg g g=g  
In this case the values of ig  are determined 

from the condition of the minimum quadratic 
risk

2 2E( )i i iR z g z= − 

  ( =1,2,..., ).i k

In this case, the components of the vector 
gz


are called minimum risk estimates. Since

(1 ) ( ),i i i i i i i iz g z z g g z z− = − − − 

we obtain the equality

 2 2 2 2 2( 1) ,i i i ziR z g g= − + σ 

where 2 2E( ) .i i ziz z− = σ 



 
Equating the derivative R2 with respect to 

ig  to zero, we obtain the equality
2 2 2( ) ,i i zi ig z z+ σ =

or 
2 2

1
.

1i
zi i

g
z

=
+ σ 

  

Substituting the minimum risk estimate 
,i ig z


 instead of iz  we obtain a simple qua-
dratic equation of the form

2 2 2 2 20, i i i i zi ig g z− + δ = δ = σ 



with the following final formula gi:

21 1
.

2 4i ig = + − δ

Handbook [21] suggests the following algo-
rithm for calculating :ig

2 2

2

1 1 1
, if ;

2 4 4
1

0, if .
4

i i i

i i

g

g


= + − δ δ ≤


 = δ >

An alternative algorithm was proposed in 
[22]:

2 2

2

2
2

1 1 1
, if ;

2 4 4
1 1

, if 1;
2 4

1
, if 1.

1

i i i

i i

i i
i

g

g

g


= + − δ δ ≤




= < δ ≤



= δ > + δ

Theorem 3. Assuming that the difference be-
tween the quantities 2 2

zi izσ 



and 2 2
zi izσ   is neg-

ligible, the proposed algorithm (21) provides a 
lower value of the quadratic risk R2, compared 

with algorithm (20), for the case 2 1
.

4iδ >

Proof. If 2 1
4iδ > , algorithm (20) yields the 

(17)

(18)

(19)

(20)

(21)
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value 2 2.iR z=  If 21
1,

4 i< δ ≤  we substitute the 

value 
1
2ig =  in (18). Since 2 2,zi izσ <  we obtain 

that

( )
2

2 2 2 21
< < .

4 2
i

i zi i

z
R z z= + σ 

On the other hand, if 2 1,iδ >  then, accord-
ing to algorithm (21), the value of ig  is such 
that equality (19) holds true. Substituting (19) 
to (18), we obtain

2 2 2 2 2 2

2 2 2 2 2

( + ) 2

2 (1 ) .

i i zi i i i

i i i i i i i i

R g z g z z

g z g z z z g z

= σ − + =

= − + = − <



Theorem 3 is proved.
The result obtained in this section consists 

in clarification of details. Using PCs in studies 
of multi-dimensional processes and phenom-
ena, especially natural ones, does not necessar-
ily have reduction of dimension as the ultimate 
goal, but may be aimed at analyzing the inter-
nal structure of the phenomenon, as discussed 
in the next section.

Structural similarity and homogeneity

Let us consider, besides the vector y, a 
vector x that has the same dimension:

dim dim .m= =x y

Suppose there is a sample of implementa-
tions of this vector. Samples of implementa-
tions of the vectors x and y may have different 
sizes. Using formulae (1) for the vector x, we 
can calculate estimates for the parameters of 
the distributions è x



 and .xV


 Let the orthogo-
nal matrix Q



 be such that the following equal-
ity holds true:

1 2diag( , , ..., ),T
x m= µ µ µQ V Q

 

  

1 2 ... .mµ ≥ µ ≥ ≥ µ  

In this situation, we have two sets of statistical 
characteristics of PCs of both vectors:

1{ , }m
i i i=λ p




 и 1{ , } ,m
i i i=µ q




where  ,iq


 ip


 are the ith columns of the matri-
ces Q



 and ,P


 respectively, i.e., 

1 2( , , ..., ),m=Q q q q


  

1 2( , , ..., ).m=P p p p


  

The estimate of the coefficient of structural 
similarity between vectors x and y is defined as 
the quantity

1= .
tr tr

m
T

i i i i
i

xy

x y

s =

µ λ∑ q p

V V



 





 

This coefficient indicates the extent to 
which the structures of oscillations of the given 
vectors agree in relative fractions of variance. 
In some cases it is preferable to calculate xys



by the formula

( ) ( )
1

( )
= max ,

tr tr

m
T

i i i i
i

xy i
x y

s
ϕ ϕ

=

ϕ

µ λ∑ q p

V V



 





 

where ( )iϕ  is the permutation of the indices, 
i.e., the order of the statistical characteristics 
of PCs of one of the vectors (here it is x) is 
varied.   

We may have to apply formula (25) if close 
eigenvalues are found in the spectrum of at least 
one of the vectors.  If the following hypothesis 
is true (tested):

1 2 1 2H : ... ... ,x l l l m+ +µ ≥ µ ≥ ≥ µ ≥ µ = µ = = µ

then we can consider the filtered coefficient 
of structural similarity in the form

1

1 1

= ,

p
T

i i i i
f i

xy p p

i i
i i

s =

= =

µ λ

µ λ

∑

∑ ∑

q p


 









where min( , ),p k l=  
or the relative coefficient of structural 

similarity in the form

1= .
tr tr

p
T

i i i i
r i
xy

x y

s =

µ λ∑ q p

V V



 





 

If the neighboring eigenvalues differ only 
slightly, it is preferable to use formulae similar 
to formula (25) to find the estimates of the co-
efficients f

xys


 
and .r

xys


Different studies use the coefficient of 
structural similarity to compare meteorologi-
cal, climatic and oceanographic fields, as well 
as to analyze the fields of environmental and 
health monitoring of different regions. In mi-

(22)

(23)

(24)

(25)
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croelectronics, when several types of micro-
electronic devices are manufactured in each 
cell of a crystal plate (see, for example, [23]), 
the coefficient of structural similarity is conve-
nient for comparing the manufacturing errors 
of different devices and determining whether 
this error depends on the position of a cell on 
a crystal plate. Similar issues may arise in the 
process of equipment tuning. In time series 
analysis, the coefficient of structural similarity 
is applied based on singular spectrum analysis 
(SSA) mentioned in the Introduction. The au-
thor's first attempts to build the coefficient of 
structural similarity were made for time series 
analysis [24]. 

If a sample of values of the same vector 
y is used as a sample of the vector x, and the 
second set of characteristics of PCs 1{ , }m

i i i=µ q


  is 
calculated from the estimate of the correlation 
matrix ,yR



 
i.e.,

1 2diag( , , ..., ),T
y m= µ µ µQ R Q

 

  

then the coefficient of structural similarity, 
in all its variants, becomes the coefficient of 
homogeneity of the vector y. In time series 
analysis, it can be used only in combination 
with the caterpillar method (see above), where 
normalization can affect the forms of the 
eigenvectors, since the forms of eigenvectors 
of the autocovariance and autocorrelation 
matrices are actually different.

A natural question is whether the hypoth-
esis that the coefficient of structural similar-
ity equals zero, i.e., H : 0,s xys =  can be tested. 
First of all, we should note that in practice we 
can only obtain the estimate ,xys



 while the true 
value xys  could only be obtained if we used the 
matrices Vy, Vx, P and Q in our calculations, 
which is only hypothetically possible.

Let us consider two composite vectors:

1 1 2 2

1 2

( , , ..., )

( , , ..., ) ;

T T T T
s m m

T
MY Y Y

= λ λ λ =

=

Y p p p
  

  

1 1 2 2

1 2

( , , ..., )

( , , ..., ) ,

T T T T
s m m

T
MX X X

= µ µ µ =

=

X q q q
  

  

where .M m m= ×
If necessary, the numbering of subvectors  

i iµ q


 ( 1,2,..., )i m=

of the composite vector Xs can be set in accor-
dance with formula (25). This can violate only 
condition (23), which does not matter to us. 
The signs of some columns of the matrix

1 2( , , ..., )m=Q q q q


  

have to be changed to opposite ones so that 
all products T

i iq p
 

 or ( )
T

i iϕq p
 

 are positive. This 
change of signs does not violate equality (22). 
Then, if all these conditions are satisfied, it fol-
lows from the orthogonality of the matrices P



 
and Q



 that

1

2 2

1 1

= .

M

T i i
s s i

xy T T M M
s s s s

i i
i i

X Y
s

X Y

=

= =

=
∑

∑ ∑

X Y

X X Y Y



Let us consider two regression equations 
relating the components of the composite 
vectors Ys and Xs:

;i i iY X= β + ε

0 1 ( =1,2,..., ),i i iY b b X e i M= + +

where it is assumed that the residuals (errors) of 
each of the regressions are normally distributed 
and mutually independent and have the same 
variance.

Theorem 4. If the hypothesis H : E( ) 0ε ε =  
(or an equivalent hypothesis 0 0H : 0)b =  is 
accepted (not rejected), then, given that the 
hypothesis H : 0s xys =  is correct, the quantity

12

1
,

1

xy
M

xy

s M
t

s
−

−

−







i.e., follows Student’s distribution with the num-
ber of degrees of freedom М − 1.

The methods for testing the hypotheses 
0 0H : 0b =  and H :E( ) 0ε ε =  are well-known. 

Therefore, let us consider a simple proof that 
differs little from the well-known one for the 
ordinary correlation coefficient.

Proof. It follows from general theory of the 
least squares method and formula (26) that the 
OLS estimate of regression parameter (27) has 
the form 

2

11

2 2

1 1

,

MM

ii i
ii

xyM M

i i
i i

YX Y
s

X X

==

= =

β = =
∑∑

∑ ∑




(26)

(27)

(28)

(29)
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error on PCs”, “TProblem of relatively small 
sample” and “Minimum risk estimates”. 

Recovery of missing data

Let us consider the situation when the dis-
tribution is non-degenerate and the sample size 
is sufficiently larger than the dimension. To re-
duce the number of indices and other signs, let 
us rewrite equation (6) in the form

= + +y y Fz ε, (32)

where ,y= θy


θ ( ).k=F P


 
Let n l+y  (l ≥ 1)  be some implementation 

of the vector y , which has u dimensions and 
v  gaps ( ).m u v= +

Then, with the corresponding numbering, 
we have the following partitions into blocks:

1 2( , ) ,T T T
n l+ =y y y  1 2( , ) ,T T T=y y y  

1 2( , ) ,T T T=F F F

where the blocks 1,y  1y  and 1F  correspond 
to the measured components ,yn l+  and the 
blocks 2,y  2y  and 2F  to the missing data. 

Let us calculate the estimate for 2y  by the 
formula

1
2 2 2 1 1 1 1 1+ ( ) ( ),T T−= −y y F g F F F y y


 (33)

where is the matrix G (see formula (17)) has 
the dimension ,k k×  and its components are 
calculated by algorithm (21).

In this case, in algorithm (21),
2 2 1

1 1 ,[( ) ] ,T
zi i i

−σ = σ F F



where ,[...]i j
 
is the operator for taking the ma-

trix element from the given row (i) and column 
(j); iz



 is the ith component of the vector z


 of 
OLS assessments:

1
1 1 1 1 1( ) ( )T T−= −z F F F y y



 ( =1,2,..., ).i k

Due to missing rows, the columns of the 
matrix 1F  are not orthogonal, the matrix 1 1

TF F  
is not diagonal, and the components of the 
vector z



 are dependent on each other:
2 1

1 1= ( ) .T
z

−σV F F

In this case, the a posteriori estimate has 
the form (see expression (13)):

2
1 1

1
1 1 1 1 1 1

1
( )

 ( ( )  )( ).

T

T T

u k
−

σ = − ×
−

× − −

y y

I F F F F y y



2

2

1

var( ) ,
M

i
i

X
=

σ
β =

∑



where 2 var( ),iσ = ε  and 

1

0.
M

i i
i

X
=

ε =∑  

It follows from the assumption E( ) 0ε =  
(see the hypothesis Hε ) and equality (30) that 
the unbiased estimate 2σ  is expressed as

2 2

1

2 2 2

1 1

1
( )

1

1
.

1

M

i i
i

M M

i i
i i

Y X
M

Y X
M

=

= =

σ = − β =
−

 
= − β −  

∑

∑ ∑







 

It is obvious that the equality 0xys =  is 
equivalent to 0β =  (see (29)). Therefore, tak-
ing into account expression (31), we have:

2 2

1 1
1

2 2 2

1 1

2

1

1
.

1

M M

i xy i
i i

M M M

i i
i i

xy

xy

X s Y M
t

Y X

s M

s

= =
−

= =

β −
= =

σ
− β

−
=

−

∑ ∑

∑ ∑















Theorem 4 is proved. 
As noted above, changing all signs in the 

matrix Q


 does not violate formula (22) but 
changes the sign of xys



 and the sign of (28) to 
the opposite. This is consistent with the sym-
metry of Student’s distribution.It is evident 
that the hypothesis Hs can be also tested for 
the filtered coefficient of structural similarity 

.f
xys  The only difference is that in this case 

,M m p= ×  and it also follows from 0f
xys =  

that 0.r
xys =  It is impossible to test the hypoth-

esis Hs (the hypothesis Hε  is rejected) but it is 
not a fundamental obstacle to calculating .xys



 
In most applications, we are actually more in-
terested in rejecting the hypothesis Hs, that is, 
in establishing structural similarity. The excep-
tion is the case when we wish to establish the 
inhomogeneity of a certain field or time series 
in the above-described manner.

Let us now discuss some practical prob-
lems directly using the results of the sections 
“A priori estimate of the variance of regression 

(30)

(31)

(32)

(33)
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However, this is the situation where it is 
natural to use a more reliable a priori estimate 
(7) computed from a substantially larger sample. 
This estimate is used in all of the following 
formulae in this section.

It should be noted here that 2y


 is, in es-
sence, the center of the conditional distribu-
tion 2.y  Indeed, the unconditional or a priori 
distribution 2y  is 2 2( , )N y V



in some approxi-
mation (with a sufficiently large n), where 2V



 
is obtained from yV



 by eliminating rows and 
columns that are not related to 2.y  The con-
ditional or a posteriori distribution 2y  is also 

2
2( , )N σy I



 only in some approximation, which 
follows immediately from relation (5) and 
equations (32) and (33).

A relatively accurate Student’s distribution 
can be given for v missing components of the 
vector y:

1
1 1

,
1

1 ( )

i i

T T
i i

y y
t

n

η
−

−

σ + + f g F F gf







where the number of degrees of free-
dom 1,n kη = − −  if estimate (7) is used 
and 1,m kη = − −  if estimate (16) is used 
for some reason; if  is the ith row of F, 
( = 1, 2,..., ;i u u m+ +  i.e., row if  corresponds 
to block 2).F  

According to formula (34) and the chosen 
confidence level 1 − α  (where α  is the sig-
nificance level) for these values, we obtain the 
boundaries of (1 )%− α  Student’s confidence 
intervals:

/2 1
1 1

1
1 ( ) ,T T

i i iy t
n

α −
η± σ + + f g F F gf




where /2t αη  is Student’s quantile since Student’s 
t-test is a two-tailed criterion ( / 2α  is taken 
because Student’s distribution is symmetrical).

The efficiency of using model (32) and for-
mula (33) is the higher, the more significant 
the inequality

1
1 1

1 ,

1
1 ( )

1
1 [ ] ,

T T
i i

n y i i

t
n

t
n

−
η

−

σ + + <

 < + 
 

f g F F gf

V





i.e., the narrower the confidence interval con-
structed by formula (35), compared with the 

corresponding interval constructed by the 
sample estimates of the distribution parameters 
( ),yV


 i.e., the less the uncertainty for the data 
recovered.

Forecasting non-stationary time series

Model (32) and formula (33) can be used 
to forecast non-stationary time series [25, 26]. 
Here, model (32) is constructed by the cater-
pillar method, where y is a moving segment 
(caterpillar) of the time series 1{ } ,N

i iy =  and 
dim m=y  is the length of the caterpillar.

The sample for calculating the estimate of 
the covariance matrix is constructed by a step-
wise shift, i.e., 

1 1 2( , , ..., ) ,T
my y y=y

2 2 3 1( , , ..., ) ,T
my y y +=y

… . . . . . . . . . . . . . .  ,

1 2( , , ..., ) ,T
n N m N m Ny y y− + − +=y

where 1,n N m= − +  N is the total length of 
the time series. 

The estimate of the covariance matrix 
should be calculated by the algorithm for cal-
culating estimate (15). The final value of m 
for determining the caterpillar’s length (pre-
liminary calculations will be very useful in this 
case) should be taken no less than the period 
of the wave carrying the largest part of the vari-
ance, i.e., corresponding to 1.λ



 Trying to ful-
fill this condition can lead to the situation of 
small sample size ( ).n m<  It was mentioned in 
the section “The problem of a relatively small 
sample” that using estimates (15) and (16) may 
be due to two reasons: small sample size or 
non-stationarity.

The authors of the caterpillar method [9] 
follow the classical calculation scheme for es-
timating the covariance matrix (see sections 
“Brief Description of the PCA Mathematical 
Apparatus” and “Problem of Relatively Small 
Sample”) and incorrectly determine the num-
ber of degrees of freedom by the minimum size 
of the sample matrix of initial data (whether 

1n kη = − −  or 1,m kη = − −  is selected (see 
above) is determined by min(m, n)). The rows 
and columns of the initial data matrix are of the 
same nature in the caterpillar method, which 
makes the duality described at the end of the 

(34)

(35)

(36)



Mathematics

67

“Problem of a relatively small sample” section 
all the more obvious. However, the caterpil-
lar method in [9] was used mainly for filtering 
time series, and the question about the number 
of degrees of freedom was not as crucial as in 
the case of forecasting by the scheme consid-
ered here.

Forecasting y1 (in formula (33)) includes a 
vector of the last u values of the time series:

1 1 2( , , ..., ) ,T
N u N u Ny y y− + − +=y

( ,u m<  because ,m u v= +  see «Recovery of 
the missing data»), and 2y  is the vector of the 
forecast values:

2 1 2( , , ..., ) .T
N N N vy y y+ + +=y

  It follows from the above (see the section 
“Problem of a Relatively Small Sample”) that 
estimate (16) should be used as the a priori 
estimate 2.σ  The true meaning of forecast-
ing is not so much in calculating the values 
of 2,y


 as in constructing a sufficiently narrow 
confidence interval (see above) for the com-
ponents of 2.y  In this case formulae (35) and 
(36) contain 1,m kη = − −  and the value 1/m 
instead of 1/n, if the components of the vector 
y equal to each other (see the “Problem of a 
relatively small sample” section) are calculated 
as the mean over the last m values of the time 
series, or 1/u, if the mean over the last u values 
(over the components) is calculated, which is 
quite acceptable. In any case, the final choice 
of the parameters of the forecasting scheme is 
determined by inequality (36).

Conclusion

Having analyzed the existing methods for 
solving the problems based on the principal 
components and the proposed modification of 
these methods, we can formulate the following 
results.

1. We have obtained estimates for the 
variance of regression error on the principal 
components are obtained for cases of a large 
and a small (relative to the dimension of the 
problem) sample and have proved that these 
estimates are unbiased. The estimates obtained 
are an important part of the schemes for the 
methods for recovering missing data and 
forecasting non-stationary series proposed in 
this paper. The condition that the estimates 
be unbiased is necessary for constructing 
confidence intervals for recovered or predicted 
values (see below).

2. We have theoretically substantiated the 
previously known minimal risk estimates, also 
used in the above-discussed practical tasks.

3. We have introduced the coefficient 
of structural similarity and theoretically 
substantiated the statistics for testing the 
hypothesis that this coefficient equals zero.

4. We have proposed schemes for recovering 
missing data and forecasting non-stationary 
series. We have found the validity criteria 
and confidence intervals for reconstructed or 
predicted values.

As a last consideration we should mention 
that in constructing statistical models, we had 
to choose which elements of the model should 
be given the property of statistical stability and 
included in the model, and which ones should 
not. The success of applying the constructed 
models in practice largely depends on the 
adequacy of this choice, perhaps even more 
so than on the accuracy of the formulae used. 
We have assumed in this study that the basis 
of principal components is actually the most 
statistically stable part of the model.

We hope that the estimates obtained here 
and the solutions to the problems pesented will 
find practical application in a wide range of 
subject areas.   
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Mathematical modeling of pathological changes in the body is the means of 
obtaining information for making decisions about the method of treatment. Numerous 
studies have shown that the exponential model describes the tumor cells growth, and 
the time of antigen doubling determines the aggression of cancer cells growth. The 
present work investigates inaccuracies in determining the antigen doubling time as a 
function of measurement errors. The study showed that the decision on the method of 
treatment could be changed by taking into account errors in the prognosis of patient’s 
condition. For patient’s stratification in groups of high, medium and low risks, various 
threshold values corresponding to the antigen level are proposed. The results are 
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Introduction

Cancer is one of the most common fatal 
diseases. Cancer incidence is on the rise. About 
six million new cases of malignant tumors are 
diagnosed every year. Cancer ranks as the third 
leading cause of death in the world, coming 
after cardiovascular and respiratory diseases.

Mathematical modeling of pathological 
changes in the human body is an important 
tool, providing data for effective decision-
making in selecting treatment methods and 
timing. Either deterministic and stochastic 
models or those using methods of nonlinear 
dynamics are commonly chosen as basic models  
[1 – 11]. Most models rely on experimental 
data, which entails accounting for errors in 
setting the problem’s parameters. This approach 
is necessary because a large number of factors 
affect the course of different diseases.

Prostate cancer is considered the most 
diagnosed cancer in men and the second 
(according to statistical data) cause of death 
from cancer [12]. The level of prostate-specific 

antigen p (PSA) in serum, measured in ng/ml, 
is one of the best-studied markers, widely used 
for early detection of this cancer. The kinetics 
of the marker may reflect the actual growth 
rate of the tumor. 

The goal of this study has been to analyze 
the effect of the errors in measuring PSA in 
serum on the result of determining the antigen’s 
doubling time.  

Exponential model

An increase in the number of tumor cells is 
generally described by an exponential model, 
and the p level linearly depends on the number 
of these cells in many cases [12]. The dou-
bling time td for p (measured in months in this 
model) determines the aggressiveness of cancer 
cell growth. This parameter allows to control 
the tumor’s growth rate, choose the optimal 
therapeutic approach and assess treatment ef-
fectiveness. However, empirical data intrinsi-
cally contain errors; for this reason, decision-
making based on the predictions of an unstable 
model should involve error estimation [13].
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The given element p is proportional to its 
increment ∆р, leading to an exponential model. 
In this case, the equality

dр = kрdt,

holds true, and, consequently,  

.ktp Ce= 

The law of exponential growth is valid at a 
certain stage for cell populations in tissue, in-
cluding tumor cells [1]. The exponential model 
should be used bearing in mind that the solu-
tion of differential equation (2) is Lyapunov-
unstable for k > 0 [14], i.e., small variations in 
the initial conditions correspond to significant 
errors in the final calculations. The exponential 
model is widespread and appears valid to use 
provided that its parameters can be adjusted by 
the observation results or by qualitative study of 
the system’s behavior.

With the known values of р, for example, 
р1 and р2, measured at different times t1 and t2, 
the coefficients of the solution of differential 
equation (1), written as

ln ,p C kt= +

have the form 

2 1 1 2

2 1

ln ln
;

t p t p
C

t t
−

=
−

 

2 1

2 1

ln ln
.

p p
k

t t
−

=
−

Notably, the coefficient C is a dimension-
less quantity, while the coefficient k is mea-
sured in (months) –1.

The time td, elapsed from the time t2, that it 
takes for р2 to double is predicted by the solu-
tion of the equation

2 22 ;dk tp p e ⋅=

it follows from here that the following equality 
should hold true:

2 1

2 1

ln 2 .
ln lnd

t t
t

p p
−

= ⋅
−

We are going to assume from now on that 
an absolute measurement error iр∆  (i = 1, 2) 
can be made in the value of p, with   .i iр р∆ ≤ ε ⋅  
Then the value of p is estimated as

(1 ) .i i i i i ip p p q p± ∆ = ± ε = ⋅

Here qi⋅100% is the percentage of relative 
measurement error for рi.  

In finding the р1 and р2 levels with the re-
spective errors q1 and q2, the doubling time td

er 
for p, taking into account errors, and the rela-
tive error dtδ  of doubling time prediction are 
calculated by formulae

2 1

2 2

1 1

ln 2 ,
ln

er
d

t t
t

q p
q p

−
= ⋅

2 1

2 1

ln ln
.

ln ln

er
d d

d er
d

t t q q
t

p pt
− −

δ = =
−

The relative measurement error for p 
typically varies from 2 to 20 % [15]. Errors in 
measuring p lead to large errors in determining 
td. Notably, the projected doubling time is 
calculated without error even with large but 
identical relative errors in determining the 
p levels, which means that it is preferable to 
measure the p level at the same laboratory with 
the same equipment.

The denominator in formulae (4), (5) 
is close to zero for a small time interval  
(t2 – t1)  between measurements of p, which 
significantly increases the error in predicting 
td. To provide the given relative error Q for 
calculating the doubling time, the time interval 
between two measurements of p should satisfy 
the inequality 

2

1
2 1

ln

.
ln 2

q
q

t t
Q

− ≥
⋅

For example, with a 5 % error in determining 
the level of p, the ratio q2/q1  can vary from 
(100 – 5) / (100 + 5)  to (100 + 5)/(100 – 5), 
i.e., from about 0.9 to 1.1, and from 0.82 to 
1.22 with a 10% error.

Calculation results and discussion

The data in Table 1 can be used to esti-
mate, for example, the margin of the possible 
error in predicting td

er with p2/p1  = 1.51 and 
the difference 

2 1( ) 12t t− =  months. Instead of 
td = 20 months, td

er values range from 17 to 27 
months, i.e., include the values below the criti-
cal. This means that more intensive treatment 
should be started at td

er = 27 months taking into 

(1)

(2)

(5)

(6)

(3)

(4)
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account the model’s error.
It follows from formulae (4), (5) and Table 

1 that the absolute and relative errors of deter-
mining td increase with smaller values of the p2/
p1 ratio. Small td

er values correspond to a large 
p2/p1ratio, while the error in determining the 
doubling time decreases.

Different threshold values of p were pro-
posed for stratification of patients by groups of 
high, medium and low risks in accordance with 
their PSA td levels [12]. Let us denote the val-
ues corresponding to these risks as рtop and рlow 
for further calculations. Patients with р < рlow 

undergo preventive health screenings. Radical 
treatment is started if р > рtop. The [рlow; рtop] in-
terval is commonly referred to as the gray zone 
[15], as different treatment plans can be chosen 
for the p values lying in this range. Predicting 
whether the given p value falls in the gray or 
critical zone makes it possible to calculate the 
recommended time for the next measurement 
of p. If the model for the variation of p corre-
sponds to the exponential one with parameters 

(3), then the value of p equal to рb is reached at 
time tb, for which one of the following equali-
ties holds true, either

1

2 1

2

( ) 2

1

2

1

ln

,

ln

t
t t

b t

b

p
p

p
t

p
p

− 
⋅ 

 =
 
 
 

or

2 2
2 2 1

2

1

ln ln
( ) .

ln 2ln

b b

b d

p p
p p

t t t t t
p
p

− = − ⋅ = ⋅

To calculate the tb prediction taking into 
account the error in measuring p, q1р1 and q2р2 

should be substituted into formula (7) instead 
of р1 and р2:

2 2
2 2

2 2 2 1
1

ln( / )
( ) .

ln
–    ( ) 

( / )
er b

bt t
p q p

q p q
t t

p
= − ⋅

Fig. 1,a shows how quickly the p value in 

(7)

Tab l e

Predicted values for the doubling times td
er for the cancer marker p depending  

on the errors q in measuring the marker with different parameters

q2/ q1

td
er, months

p2 = 1,51 ng/ml,
td  = 20 months

p2 = 1,46 ng/ml,
td  = 22 months

p2 = 1,56 ng/ml, 
td  = 19 months

0.90 27 30 25
0.92 25 28 23
0.94 24 26 22
0.96 22 25 21
0.98 21 23 20
1.00 20 22 19
1.02 19 21 18
1.04 18 20 17
1.06 18 19 17
1.08 17 18 16
1.10 17 18 15

No t a t i on s : q1 and q2, %, are the errors of measured values of the markers 
p1 and p2, obtained at times t1 and t2; td is the predicted doubling time without 
measurement errors.

No t e s . 1. td
er should be calculated by formula (5), assuming that the initial value 

of the marker p1 is the same and is 1 ng/ml; the difference t2 – t1 = 12 months
2. The values of td

er = 20 months are highlighted in bold as critical: the growth 
rate of cancer cells is regarded as threatening below these values.
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the gray area is reached and a transition into the 
critical zone is made with a high PSA growth 
rate (td = 6 months, рlow = 4 ng/ml, рtop = 10 
ng/ml and (t2 – t1) = 6 months with р2= 3 ng/
ml). In this case,

2

ln(10 / 3)
6 10, 4.

ln 2bt t− = ⋅ ≈

This means that the next p measurement 
should be scheduled in about 10 months, since 
the level of p is going to fall into the critical 
zone after  12 months. Taking into account the 
error in determining p can change this interval 
by a month. The value of p might fall into the 
gray zone in 2.5 months; this should be kept 
in mind when scheduling the p measurement 
date.

Fig. 1,b shows when the gray zone is 
reached with the same value of р2 and td = 20 
months. In this case, the possibility that the 
lower boundary of the gray zone might be 
reached should be taken into account and the 
next p measurement should be scheduled in 8 
months. This interval can be varied from 7 to 
11 months when accounting for the error in 
measuring p.

Measuring p at a third time t3 allows to 
adjust the values of coefficients (3) provided 
that the exponential model agrees with the ex-
perimental data obtained. The adequacy of the 
model can be tested in several ways.

If 

3 2 2 1

3 2 2 1

p p p p
t t t t
− −

≈
− −

(or р3 + р1 ≈ 2р2, provided that the measure-
ments were carried out at equal intervals of 
time), then p increases linearly and the ex-
ponential model should be abandoned. This 
means that the increase in p is not caused by 
the growth of the tumor, but by other factors. 
The date for measuring p was selected with re-
spect to the time when the boundary value рb 
might be reached. If the obtained value of р3 
differs little from the predicted one, then the 
exponential model is chosen correctly. Then, 
with constant parameters of the model and no 
error in measuring p, the doubling time is con-
stant, and the results of td calculations should 
be the same for choosing any two measure-
ments taken at different times. The exponen-
tial model is adequate given the approximate 
equality of the value

2 1

2 1

ln 2
ln lnd

t t
t

p p
−

= ⋅
−

and the quantities

3 2
32

3 2

ln 2 ,
ln lnd

t t
t

p p
−

= ⋅
−

3 1
31

3 1

ln 2 ,
ln lnd

t t
t

p p
−

= ⋅
−

i.e., with

3 2 2 1

3 2 2 1

ln ln ln lnp p p p
t t t t
− −

≈
− −

(or р3 ⋅ р1 ≈ р2
2, if the measurements were car-

ried out at regular time intervals). 
The coefficients of the exponent that de-

Fig. 1. Growth kinetics for the values of cancer marker p for different values of the td 
parameter, months: 5.61 (1), 6.00 (2), 6.49 (3) (a) and 17 (4), 20 (5) and 27 (6) (b); 
рtop and рlow are the boundaries of the gray zone; р > рtop corresponds to the critical 

zone; р2= 3 ng/ml; (t2 – t1) = month

a) b)
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viates the least from the given three points  
(t1; р1), (t2; р2), (t3; р3)  can be then tailored to 
estimate the values of the residuals from the 
experimental points.

In this case, we have an inconsistent system 
of three equations with two unknowns:

1 1

2 2

3 3

ln ;

ln ;

ln .

C kt p

C kt p

C kt p

+ =
 + =
 + =

The coefficients C and k, approximately 
satisfying all the equations of the system, can 
be found by the least squares method:

3
2

1

,i
i

a t
=

= ∑  
3

1

,i
i

b t
=

= ∑
3

1

ln ,i
i

u p
=

= ∑  
3

1

ln ,i i
i

v t p
=

= ∑

2

2

;
3

3
.

3

a u b v
C

a b
v b u

k
a b

⋅ − ⋅ = −


⋅ − ⋅ =
 −

If an exponential model with coefficients 
(9) is adopted, then the adjusted doubling time 
for p is calculated by the formula

21 32 31

12 13 21 23 32 31

2 3 3

1 2 1

(ln 4)( )
,

ln

.

d

ij i j

t
p p p
p p p

t t

τ τ τ

τ τ + τ τ + τ τ
=

      
 ⋅ ⋅            

τ = −

The error of calculating td is found by the 
formula 

21 32 31

21 32 31

2 3 3

1 2 1

2 3 3

1 2 1

ln

.

n

 

l

d

q q q
q q q

p p
t

p
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τ τ τ

τ τ τ

      
 

δ

            
      
         

=

   

Formulae (10) and (11) coincide with for-

mulae (4) and (5), provided that the measure-
ments were carried at equal time intervals of 
time, i.e., with 3 2 2 1( ) ( ) :t t t t− = −

3 1
31

3

1

ln 2 ;
ln

d

t t
t

p
p

−
=

3

1
31

3

1

ln
.

ln
d

q
q

t
p
p

δ =

The error does not depend on the mean 
measurement error in this case. 

Conclusion

Analysis of the growth kinetics of cancer cells 
[16, 17], established based on an exponential 
model, is a key step in assessing the effect 
of the method chosen for patient treatment. 
Prognosis of the disease outcome in a patient 
should take into account the total errors of 
the model, which, as we have established in 
this study, exceed the error in measuring the 
characteristics of the patient’s condition.

We have obtained the formulae for 
calculating the relative error of the model, and 
found potential methods for reducing the effect 
of this error on the predictive capabilities of the 
exponential model.

We have confirmed that the decision on 
choosing a method for treating a patient may 
change upon taking into account possible errors 
in predicting the patient’s condition.   

We have proposed a method for calculating 
the time interval between patient assessments, 
necessary for adjusting the parameters of the 
model describing the patient’s condition.

Additional data available on the patient’s 
condition allows to assess the adequacy of the 
model by the several methods we have de-
scribed. 

Our findings can have beneficial applica-
tions not only in medicine, since the the ex-
ponential model is effective at some stages of 
growth rate analysis of consumption, capital, 
population, etc. [18]. 

(11)

(9)

(10)

(8)
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sharp V-notch Fracture criteria  
under antiplane deformation

V.V. Tikhomirov 

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation

The criteria for brittle fracture of a sharp V-notch when it is loaded with antiplane 
concentrated forces have been considered: a criterion for the maximum average stress, 
a criterion for the average energy density of deformation, and an approach based on 
the joint use of the force and energy criteria. Failure loads estimates on the basis 
of the exact solutions and using asymptotics of stresses near the V-notch tip were 
found. A comparative analysis of the failure loads obtained through those criteria was 
carried out. For the asymmetric loading, the initial angle of the crack propagation 
from the V-notch tip was determined. In the calculation of this angle, the application 
of the stress asymptotics was shown to result in significant errors and to require the 
consideration of regular terms in the stress representations.

Key words: antiplane deformation, sharp V-notch, fracture criterion, average stress, deformation energy
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Introduction

The tIps of sharp v-notches in elastic bodies 
are singular points of stress fields. Cracks may 
develop from these singularities under certain 
conditions, leading to fracture of elastic 
structures. For this reason, study of the stress-
strain state of bodies with notches, as well as 
developing fracture criteria and confirming 
them experimentally are issues of particular 
interest.

Plane cracks with known fracture criteria 
(first developed by Griffith and Irwin) are a 
particular case of notches to which these 
criteria are not directly applicable. In view 
of this, several other criteria for fracture of 
structural elements with sharp notches have 
been proposed:

force [1 – 5];
energy [6 – 10];
formulated within the framework of so-

called finite fracture mechanics and based 
on combined application of force and energy 
conditions [11, 12].

The majority of studies applied these criteria 
within the framework of a plane problem for 
structures with finite or semi-infinite notches. 
The criteria were in fact used based on 
asymptotic representations of stresses near the 
stress concentrations. It was established that 
the critical values of fracture parameters, such 
as ultimate loads, can be expressed in terms 
of macroscopic characteristics of materials, 
such as ultimate tensile strength and fracture 
toughness.

Some recent studies estimated the effect 
that including non-singular terms in stress 
expansions in the vicinity of the notch tip has 
on parameters such as the generalized stress 
intensity factor [13] and the crack initiation 
angle [14]. The results of these studies indicate 
that including a non-singular first term in the 
Williams expansion significantly affects these 
fracture parameters.

Antiplane problems related to our subject 
matter were discussed in very few studies [8, 15, 
16], with no comparative analysis of fracture 
criteria for wedge-shaped structures.
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0( ) .r r λρ =

Here, (2 )λ = π α  and 1λ =  in the case of 
a half-plane ( 2)α = π  and 1 2λ =  in the case 
of a semi-infinite crack in an unbounded plane 
( ).α = π

The quantity 3
NK  in relations (3) is the 

generalized stress intensity factor (GSIF), de-
fined by the formula

1
3 0
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2
lim 2 ( , 0) .N
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T
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r
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θ λ→

π
= π τ =

α

With ,α = π  the GSIF coincides with the 
stress intensity factor (SIF) at the tip of a semi-
infinite crack:

3 3
0

2
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r
π = =

π

When concentrated forces take critical val-
ues equal to ,cT  formulae (5) and (6) define 
the critical intensity factors.
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π
 

It should be emphasized that, in contrast 
with the fracture toughness constant, the criti-
cal stress intensity factor 3

N
cK  at the tip of the 

notch is not a constant of the material, since 
it depends on the angle α. We should also note 
that stresses (3) at the tip of the notch in prob-
lem 1 have a power singularity, while stresses 
(4) in problem 2 do not. Stress asymptotes (3) 
with 0r →  are determined by the formulae

13( , ) cos ,
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K
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2

N

rz

K
r r −λτ θ = λθ

π

Notably, formulae (3) for stresses are 
consistent with the results given in [17].

Summing solutions (3) and (4), we obtain 
the stresses in the problem on the action of a 
concentrated force 2T at the face of the notch 

:θ = α

13
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13
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r r −λ λθ − ρ

τ θ =
− ρ λθ + ρπ

The main goal of this study is to extend the 
fracture criteria developed for plane problems 
to the case of antiplane deformation of notched 
bodies and comparative analysis of these criteria 
in determining ultimate loads. 

Since an elastic solution for a uniform 
wedge-shaped region can be obtained in closed 
form as explicit representations for stresses and 
displacements in case of antiplane loading, it is 
possible to estimate the accuracy of calculating 
the fracture load using stress asymptotes at the 
tip of the notch. 

Green’s functions for a sharp notch

Let us consider antiplane deformation of a 
homogeneous isotropic wedge-shaped region 
with a vertex angle 2α  ( 2 ).π < α ≤ π  The 
notch then is defined by the angle [0, ).β ∈ π  A 
concentrated force 2T directed from the plane 
is applied to the face of the wedge θ = α  at a 
distance r0 from the tip. The general problem 
on finding the stress-strain state of a plane with 
a notch is linear, so it can be represented as a 
superposition of two problems:

1) with symmetric loading of the notch 
faces, when 

0( , ) ( , ) ( ),z zr r T r rθ θτ α = τ −α = δ −

2) with antisymmetric loading, when

0( , ) ( , ) ( ).z zr r T r rθ θτ α = −τ −α = δ −

( 0( )r rδ −  is the Dirac delta function).
Next, let us apply a Mellin integral trans-

form to the harmonic equilibrium equation, 
satisfying boundary conditions (1) and (2); in 
addition, let us use the residue theorem. As a 
result, we obtain the following representations 
for stresses:

in problem 1:
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in problem 2:
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Evidently, stresses (9) have asymptotes (8) 
if 0.r →

Criteria for sharp notch fracture

Let us consider application of the fracture 
criteria with the example of a notch with sym-
metrically loaded faces. In this case, by virtue 
of symmetry, the stress zθτ  reaches the maxi-
mum value on the ray 0θ =  and, therefore, the 
crack is going to propagate from the tip of the 
notch along this ray.

Force criterion. Similarly to the assump-
tions adopted in [1, 2], we assume that fracture 
of the notch starts when the maximum mean 
stress calculated at a certain distance d from its 
tip reaches a critical value equal to the shear 
strength cτ  of the material:

-
0

1
max  ( , ) .

d

z cr dr
d θα<θ<α

τ = τ θ = τ∫  

Substituting the stress zθτ  found by formula 
(3) with 0θ =  to expression (10), we obtain 
the following equality:

3 0

0

( )
arctg .

2

N
c

c

K r d
rd

λλ  α
= τ 

πλ  
It is valid for any value of the angle 
( 2, ].α ∈ π π . Let us determine the parameter 

d for the angle ,α = π  i.e., for the case of a 
crack with 1 2λ =  and 3 3( ) ,N

c cK Kπ =  in other 
words, mode III fracture toughness. Then we 
obtain the following equation for determining 
the relative distance 0x d r=  from condition 
(11):

 arctg .x x= γ

Here we have introduced a dimensionless 
parameter

3

0

2
,c

c

K
r

γ =
π τ

whose equivalent was used for plane problem 
in [12], where a different linear dimension, 
notch depth, was used instead of the distance 
r0 to the load application point. This parameter 
was called the brittleness parameter, or the 
brittleness number in [12].

Let us estimate the value of γ using the 
example of a brittle material such as graphite. 
The fracture toughness of graphite in mode III 

is, according to [18], K3c = 0.415 MPa·m1/2. 
Since 3c cτ = σ  ( cσ  is the ultimate tensile 
strength, which takes the value of 20 MPa for 
graphite [19]), we obtain, according to formula 
(13), 00, 0287 .rγ =  Then, for example, if  
r0 = 0.01 m, we obtain the value 0,287.γ =

Using criterial relation (11) and representa-
tion (7), we obtain the estimate for the ratio 
of critical forces for the case of a notch and a 
crack:

.
 arctg( )

N
c

c

T x
T x λ=

γ

With 1γ <<  the root of equation (12) can 
be represented as

2 3( )x O= γ + γ

and, therefore, the asymptote of the relative 
critical load (14) is determined by the formula

1 2 .
N

c

c

T
T

− λ= γ

Since λ  lies in the range 1 2 1≤ λ <  for 
any value of the angle α from 2 ,π < α ≤ π  the 
inequalities 1 1 2 0− < − λ ≤  hold true. Then it 
follows from formula (15) that larger forces 
have to be applied for fracture of a sharp notch 
at small values of the parameter ,γ  compared 
to the forces required for crack propagation. In 
other words, a crack, considered as a limiting 
case of a notch with ,α → π  can be regarded 
as the most dangerous notch. This conclusion 
agrees qualitatively with the result obtained for 
uniaxial tension of the notch in [12].

Notably, if only the singular terms of stress 
expansion (3), that is, asymptotes (8), are used 
in fracture criterion (10), then we also obtain 
equality (15) for the ultimate load. Thus, the 
estimates of the fracture load, constructed from 
exact and asymptotic solutions, coincide if the 
distances r0 from the tip of the notch to the 
force application points are large enough.

Energy criterion. Fracture of the notch by a 
forming crack starts when the mean deforma-
tion energy density, calculated in a finite vol-
ume of radius R with the center at the tip of the 
notch, reaches a critical value cΠ  [6]:

2 2
2

0

1
( ) ,

2

R

rz z crdrd
R

α

θ
−α

τ + τ θ = Π
µα ∫ ∫

where µ  is the shear modulus of the material. 

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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The radius of the control volume R depends 
on the properties of the material.

The critical value of the mean deformation 
energy density assuming that it does not de-
pend on the vertex angle of the notch can be 
expressed in terms of the shear strength of the 
material :cτ  

2 (2 ) .c cΠ = τ µ

Then, using the representations for stresses 
(3) for the critical state of the material and 
calculating the integrals in criterion (16), we 
obtain the equality

2 2 2
23 0 0

2 2 2
0

( ) 1 ( )
ln .

8 1 ( )

N
c

c

K r R r
R R r

λ λ

λ

+
= τ

λ α −

In the limiting case, when the notch de-
generates into a crack, i.e., with α = π  and, 
consequently,  with 3 3( ) ,N

c cK Kπ =  equality (17) 
yields the equation for determining the radius 
of the control volume:

1
ln ,

2 1
y

y
y

γ +
=

−
 

0

.
R

y
r

=

In view of equality (7) and equation (18), 
condition (17) leads to the following estimate 
of the fracture load for the notch:

2

2

2 1
ln .

1

N
c

c

T y y
yT

λ

λ

+
=

γ −λ

We obtain from formula (19) with 

0 1,y R r= <<  that

1 21
,

( )

N
c

c

T
T f

− λ= γ
λ

and the function 1( ) 2 1f −λλ = λ ≥  for any 
[0,5; 1, 0].λ ∈  
Then, comparing estimates (15) and (20), 

we conclude that the ultimate load obtained 
from the force criterion exceeds the ultimate 
load found using the mean energy density cri-
terion at any angle ( 2, ].α ∈ π π

Notably, using energy criterion (16) with 
only asymptotic representations (8) also leads 
to an estimate of the form (20).

Criterion based on finite fracture mechan-
ics [12]. Criterion based on finite fracture me-
chanics [12]. In this case, it is assumed that 
two conditions must be simultaneously satisfied 
for finite propagation Δ of a crack from the top 
of the notch: the force and the energy condi-

tions (for stresses and energy balance):

0

( , 0) ,z cr dr
∆

θτ ≥ τ ∆∫

2 2
3 3

0

( ) ,cK d K
∆

ε ε ≥ ∆∫
where 3( )K ε  is the stress intensity factor (SIF) 
at the tip of the crack of length .ε  

Thus, in order to use this criterion, we need 
to obtain, in addition to stress field (3), the 
solution of the problem on a crack of finite 
length ε, propagating from the tip of the notch 
(see Fig. 1).

Let us now apply the Mellin integral trans-
form to the harmonic equilibrium equation, to 
condition (1) on the face θ = α  and to the fol-
lowing mixed conditions on the beam 0 :θ =

( , 0) 0z rθτ + =  (0 ),r≤ ≤ ε

( , 0) 0w r + =  ( ).rε ≤ < ∞
As a result, we obtain the Wiener – Hopf 

equation:

0
1

ctg( ) ( ) ( )
sin( )

p

p

Tr
p T p U p

p− + +

µ
α + =

ε ε α

( ).p L∈  

(17)

(18)

(19)

Fig. 1. A sharp notch with a symmetric crack  
of length ε propagating from its tip; 2α is the vertex 
angle of the wedge-shaped region; r0 is the distance 

from the tip to the application point  
of concentrated forces T, directed from the plane; 

r, θ are the coordinates

(20)

(21)

(22)
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Here p is the Mellin transform parameter. 
The stress transforms ( )T p−  and displacement 
transforms ( )U p+  along the beam are analytical 
functions in the left and right (relative to the 
contour L) half-planes.

Using the technique developed in [20], 
we obtain the exact solution of equation (22), 
which allows to express the SIF at the crack 
tip as

1 2
3 3 ( ) ,NK K λ−= ψ λ ε

where 2 1 2
0( ) {2 [1 ( ) ]} .r λ −ψ λ = λ + ε

Substituting stresses (3) and SIF (23) into 
criterion (21) (at the critical state of the notch), 
we obtain the equalities

0
3 0arctg( ) ,

2
N
c c

r
K r

λ
λ∆ = τ ∆

λ π
2

2 2 20
3 0 32

( ) ln[1 ( ) ] .
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N
c c

r
K r K

λ
λ+ ∆ = ∆

λ

From here we obtain the equation deter-
mining relative propagation of a crack with 

0 :rς = ∆
2

2
2

arctg
.

ln(1 )

λ

λ

ς
ς = γ

+ ς

Using equalities (7), we find from the first 
equation in (24) the relative fracture load in 
the form

.
arctg

N
c

c

T
T λ

ς
=
γ ς

Notice that equation (25) has a root 2ς ≈ γ  
with 1.ς <<  In this case, equality (26) leads to 
the following estimate of the fracture load:

1 2 ,
N

c

c

T
T

− λ= γ

which coincides with formula (15) for using the 
force criterion of fracture.

The angle of initial propagation of the crack 
under asymmetric loading of the notch

To determine the initial angle of crack 
propagation from the tip of the notch under 
asymmetric loading, let us use, for example, 
the force criterion proposed within the frame-
work of the plane problem [5]. Crack initializa-
tion occurs along the beam *,θ = θ  where the 
mean shear stress takes the maximum value:

-
0

1
( ) max  ( , ) ,

z

d

z r dr
dθ θα<θ<α

τ θ = τ θ∫

*

( )
0.zθ

θ=θ

∂τ θ
=

∂θ

Substituting expression (9) into formula 
(27), we obtain the following representation for 
the mean tangential stress:

3 0
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( ) sin
arctg .
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θ
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λ

τ θ = ×
πλ
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× + λθ λθ 

After using condition (28), we find from 
here the angle *è  describing the direction of 
initial crack growth:

* 0

1
arcsin( ) .d r λθ =

λ

We should note that the follow estimate of 
the fracture load follows from fracture criterion 
(10) and formulae (29) and (30):

,
 arcsin( )

N
c

c

T x
T x λ=

γ

where 0x d r=  is the root of the equation

arcsin .x x= γ

Numerical results and discussion

Based on the three given criteria, we have 
calculated fracture loads under symmetric load-
ing of the notch depending on the parameter γ 
and different angles .α  Comparative analysis of 
the results based on the exact solution of prob-
lem (3) shows that all the criteria yield similar 
results and the maximum discrepancy does not 
exceed 3 % for small values of the parameter 
( ).0.1γ <  In this case, according to formulae 
(15) and (20), the fracture load has an asymp-
totic estimate 1 2( ).N

c cT T O − λ= γ
With increasing parameter γ, the relative 

ultimate load decreases, and its values, deter-
mined using criteria (10), (16) and (21), di-
verge. The criterion based on finite fracture 
mechanics yields the greatest value for this 
load, and the criterion of mean deformation 
energy density provides a lower-bound estimate 
of the load. For example, with 0.8γ =  and a 

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)
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notch with an angle of 90˚, the difference in 
estimates for N

c cT T  based on these criteria is 
about 13 %.

The values of fracture loads for the notch 
found using stress asymptotes (8) almost coin-
cide, up to 0.5,γ =  with the values calculated 
from exact solution (3).

Thus, using the asymptotes of the stress 
field near the tip of the notch to estimate the 
fracture load within the framework of the anti-
plane problem is fairly acceptable.

Under asymmetric loading of the notch 
faces, the initial angle of crack propagation 
depends significantly on the regular terms in 
stress representation (9). Using only stress field 
asymptotes (9) in the form (8) with criterion 
(27), (28) determines the initial angle * 0.asθ =  
However, this angle, calculated from exact so-
lution (9) using formula (30), may consider-
ably differ from the value of *

asθ  (Fig. 2). It 
follows then that non-singular terms have to be 
included in the formulae for stresses if 0r →  
for finding the direction of the initial growth of 

a crack from the tip of the notch.

Conclusion

The paper considers the criteria for brittle 
fracture of a sharp notch under antiplane 
loading with concentrated forces: a) maximum 
mean stress, b) mean deformation energy 
density, c) an approach based on combining 
force and energy criteria.

We have established that the fracture loads 
resulting from application of different criterial 
relationships are expressed in terms of a single 
dimensionless parameter depending on the 
material constants (shear strength and fracture 
toughness in mode III). Apparently, the 
ultimate loads found using different approaches 
are quite close. 

However, the angle of initial propagation of 
a crack from the tip of the notch considerably 
depends on the accuracy of calculating the 
stresses near this tip, i.e, calculating this 
angle based on the stress asymptotes leads to 
significant errors.  

Fig. 2. Dependences of the initial angle of crack propagation from the tip of the notch  
on the parameter γ with different notch vertex angles α, deg: 120 (1) 135 (2), 150 (3)
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the far field of a submerged laminar jet:  
Linear hydrodynamic stability 

R.I. Mullyadzhanov, N.I. Yavorsky 

Kutateladze Institute of Thermal Physics, Novosibirsk, Russian Federation

A linear stability problem for a submerged Landau – Squire jet has been 
considered. It was shown that in the space, the intrinsic perturbation amplitude varied 
as a power function of the spherical radius R, read from the motion source.  It was 
established that the increment in the sinusoidal disturbance became more than that 
for axisymmetric one for Re _D > 31. The linear stability theory was applied to the 
value of the laminar-turbulent transition coordinate as a function of the Reynolds 
number. A model criterion for a laminar-turbulent transition in the far jet region was 
proposed. For the first time, this made it possible to obtain a good agreement between 
the theoretical results and experimental data for Re_D  < 2000. 
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Introduction

Hydrodynamic stability theory studies 
the conditions under which one flow regime 
flow of a fluid or a gas is replaced by another  
[1 – 3]. Situations like that often happen in a 
wide range of natural phenomena and technical 
devices; therefore, new results in this field have 
numerous fundamental and practical applica-
tions. Free shear flows are one of the widest 
classes in hydrodynamics, with jet flows play-
ing a central role. The classical problem on the 
stability of a circular flooded laminar jet issuing 
from a local source still has no definitive solu-
tion, stimulating further interest in this issue.

It was experimentally proved that a circular 
jet loses stability at relatively low flow velocities. 
Some of the first experiments on this problem, 
described in [4], were carried out by Schade. 
These experiments indicated that stable jet flow 
could be obtained at Reynolds numbers about 
several hundred. Further, Viilu [5] obtained 
in 1962 a result that somewhat contradicted 
Schade’s data, determining the critical Reyn-
olds number in the range of only 10.5 – 11.8. 
In the same year, A.J. Reynolds published the 
results of similar experiments [6], with a fairly 
detailed description of the scenarios dealing 
with the loss of flow stability.

The inlet conditions in such experiments 
are often modeled with a long tube; the velocity 

profile at the exit of this tube should be close to 
the parabolic Poiseuille profile. However, the 
outlet characteristics are highly dependent on 
the length of the tube nozzle.

More thorough studies of the outlet velocity 
profile were carried out in a relatively recent se-
ries of experiments [7, 8]. Measurements have 
shown that the length of the nozzle, which is 
about 200 channel diameters, is sufficient for 
forming a parabolic velocity profile up to Reyn-
olds numbers of about 6700. It was also found 
that a non-axisymmetric mode, visualized in 
the cross-section, starts to develop at high flow 
velocities and close enough to the nozzle.

Lemanov et al. [9] studied submerged jets 
issuing from a nozzle with a length of 100D 
(D is the diameter of the tube). In addition, 
the flow was visualized and it was established 
that the region of steady laminar flow decreases 
with increasing Reynolds number. It was found 
(in agreement with the results of the previous 
authors) that sinusoidal perturbations start to 
evolve in the region located before the final 
turbulent transition of the jet. We are going 
to use the experimental data in this study for 
qualitative and quantitative comparison with 
the theory presented below.

Analytical study of this problem started with 
a paper by Batchelor and Gill [5], who found 
that only sinusoidal perturbation is an unstable 
mode in the far field in the inviscid case. How-
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ever, the study also indicated that including the 
expansion of the jet downstream could slightly 
change the conclusions obtained using a plane-
parallel approximation.

Tatsumi and Kakutani [10] note that sta-
bility analysis of non-parallel flows is not suf-
ficiently developed in hydrodynamic stability 
theory that regards even such flows as jets and 
wakes as quasi-parallel. Ling and W.C. Reyn-
olds [11] developed an approach taking into 
account flow expansion within the framework 
of perturbation theory. Garg [12] used a more 
general approach, applied only to Bickley’s 
(two-dimensional) jet [13]. In contrast to the 
two-dimensional case, where the perturbation 
characteristics vary with the axial coordinate 
in a non-self-similar manner and some ap-
proximations have to be applied [14, 15], the 
general form of the perturbations in the three-
dimensional case can be written based on self-
similarity considerations. This analysis was first 
performed by Likhachev [16] for the Schlicht-
ing jet. Aside from unstable perturbations with 
m = 1 (m is the azimuthal wave number), un-
stable axisymmetric modes with m = 0 were 
detected. Even though axisymmetric perturba-
tions turned out to be the most unstable only in 
a narrow range of rather small Reynolds num-
bers, this allowed a qualitatively explain the ex-
perimentally observed axisymmetric pulsations, 
described by W.C. Reynolds. Recall that the 
perturbations with m = 1 are the most danger-
ous for relatively large Re numbers. This analy-
sis used the Schlichting solution, which is an 
equivalent of the exact Landau solution in the 
boundary layer approximation.

Shtern and Hussain [17] carried out a simi-
lar analysis for a Landau jet. Unlike previous 
studies, where the dependences of the pertur-
bation v on the axial coordinate had the form 
v ∝ eik(x)x (x is the coordinate along the direc-
tion of the jet propagation, k(x) is the axial 
wavenumber), where the maximum value of v 
decreases downstream, in this case, the pertur-
bations were considered in the form v ∝ eik(R)lnR 
(R is the spherical radius), based on a previous 
study for the two-dimensional setting [14, 15]. 
Thus, the authors discussed perturbations as a 
power function of R and obtained results simi-
lar to those presented in [16]. However, only 
neutral solutions were considered (the imagi-

nary part of k = 0).
In addition to a non-standard dependence 

on the spatial coordinate, perturbations also 
do not have a purely exponential dependence 
on time. Thus, stability analysis is not modal, 
which follows from the fact that the charac-
teristic time in the jet problem increases as  
(R/|u|) ∝ R 2 downstream, where |u| is the lo-
cal velocity on the jet axis. The perturbations, 
whose wavelength and characteristic pulsation 
time also increase with increasing R, evolve to-
gether with the main flow [12]. Based on the 
conclusions of [16], we can assume that if we 
consider the spatial evolution of a small pertur-
bation with a fixed frequency 0,ω  the neutral 
curve 0( )Reω  and the scaling ω0 ∝ R–2 deter-
mine the variation range of R, where this per-
turbation grows, for a given value of Re.

This statement was confirmed by three-
dimensional calculations of the stability prob-
lem [18]. Additionally, an important remark 
was made in [19]: calculations of the stabil-
ity problem in unbounded domains are greatly 
complicated by numerical difficulties from the 
boundary conditions at the outlet; the latter 
can considerably distort the results. 

It follows from this brief overview that us-
ing a self-similar form of disturbances allows 
to avoid the above-mentioned numerical dif-
ficulties. This statement is an additional argu-
ment in favor of the self-similar approach in 
this problem.

Problem statement

We study the evolution of perturbations v 
of a certain laminar velocity field U; the total 
velocity field is represented as u = U + v. Let 
us substitute this representation into Navier 
– Stokes equations and perform linearization 
assuming that the velocity perturbation 
amplitude is small compared with the main 
flow. We then obtain the following equation:

,
1

( ) ( )
t

∂
+ ⋅ ∇ + ⋅ ∇ = − ∇χ + ν∆

∂ ρ
v v v vU U

where χ  is the pressure field perturbation, ν is 
the kinematic viscosity, ρ  is the fluid density.

The velocity field of the main flow is de-
scribed by the exact solution of Navier – Stokes 
equations that can be represented in spherical 
coordinates ( , :),R θ ϕ

(1)
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where the variable / .( )R tη = ν  
Notably, the variables ψ  and η  were also 

used in analysis of two-dimensional [14, 15, 
26, 27] and three-dimensional [28 – 30] coni-
cal flows. Using the method of variable separa-
tion, we can establish for y = 0 (A → ∝) that 
the solution is expressed analytically in terms of 
Legendre polynomials with respect to the vari-
able ψ  and in terms of hypergeometric func-
tions with respect to the variable η  [31]. This 
actually means that the solution has a power 
dependence on ,η  which is not surprising as 
the representation of the velocity field of the 
main flow, constructed based on considerations 
of dimension, has a power dependence R−1. 
Next, we transform the power dependence with 
a certain exponent n as follows:

2 /2
0 0

2
0 0

( / ) ( / )

exp[ ln( / ) ( / 2) ln( / )],

n n nR R t R

n R R n t R

−η = ν =

= − ν

where R0 – is some constant of the length 
dimension (radius of the inlet nozzle).

Evidently, if y ≠ 0, it seems expedient 
to consider the problem on stability against 
perturbations in the form of waves in terms of 
new variables:

0

2
0 0

( / ) ( ) exp( ln ),

ln( / ), / ,

R ik i im

R R t R

= ν ψ ξ − ω τ + ϕ

ξ = τ = ν

v v

where v0 is a dimensionless vector depending 
only on the angle ;ψ  k and m are the radial 
and azimuthal dimensionless wavenumbers; ω  

b)а)

Fig. 1. Graphical representation of solution (3):
a is the idealized axisymmetric jet flow (streamlines are shown) caused by a local motion source (LMS), 
with coordinate systems (spherical and cylindrical); b is an implementation of such flow that is a fluid jet 

issuing from a long tube into a submerged region; NF, FF are the near and far fields, respectively

(2)

(3)

(4)

(6)

(5)

2

2

( ) ( )
, ,

1

1
0, ( ) 2 ,

R

y y
U U

R R

U y
A

θ

ϕ

′ν ψ ν ψ
= − = −

− ψ

− ψ
= ψ =

− ψ
where cos .ψ = θ

The parameter A is related as follows to the 
“momentum” Px of the jet:

2
2

4 1
16 1 ln ,

2 13( 1)x

A A
P A

AA
 +

= πρν + − −− 

This solution was obtained by Slyozkin [20], 
Landau [21] and Squire [22] and corresponds to 
jet flow caused by a point momentum source. 

Fig. 1 shows a graphical representation of 
the solution obtained. This solution is used 
as the main flow in our study, since its direct 
comparison with experimental data yielded 
good agreement in the far field of the jet  
[23 – 25].

Since the problem statement does not 
include the characteristic dimension of length, 
for reasons of dimension, we are going to search 
for perturbations in the following class:

2

( , ) ,

( , ) ,
1

im
R

im

v f e
R

v g e
R

ϕ

ϕ
θ

ν
= ψ η

ν
= − ψ η

− ψ

2

2
( , ) , ( , ) ,im imv h e q e

R R
ϕ ϕ

ϕ

ν ρν
= ψ η χ = ψ η
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is the dimensionless frequency, τ  is the dimen-
sionless time.

Then the components of perturbations of 
the velocity and pressure fields have the form:

( / ) ( ) exp( ln ),R R f ik i im= ν ψ ξ − ω τ + ϕv

2
( ) exp( ln ),

1
g ik i im

R
θ

ν
= ψ ξ − ω τ + ϕ

− ψ
v

2
( ) exp( ln ),

1
ih ik i im

R
ϕ

ν
= ψ ξ − ω τ + ϕ

− ψ
v

2

2
( ) exp( ln ),q ik i im

R
ρν

χ = ψ ξ − ω τ + ϕ  

where f, g, h, q are the dimensionless functions 
of only the angular variable .ψ

Substituting representation (7) into Eqs. (1), 
and making some transformations, we obtain a 
system of ordinary differential equations:

2

2
2

2 2

2

2
(2 ) 2

1

2
2

1 1

 (2 ) 2 (1 ) 0;

mh
i f ik q g y g

yg m
ik k f

ik y f yf f f

′ ′′Ω + + − − + +
− ψ

 
+ − + + + − − ψ − ψ 

′ ′ ′ ′′− − − − ψ + − ψ =
2

2
2

2

2
2

(1 )(2 (1 ) )

 (1 )
1

2
(1 ) 0;

1

i g mh f ik f

m
ik k g ik y g

yg
yg q

′ ′Ω + + − ψ − + −

 
′− + − − − − − ψ 

ψ ′ ′− − − − ψ =
− ψ

2

2 2

2

2
2

1 1

 (1 ) 0;

m g m
i h mq mf ik k h

iky h yh h

 ψ
Ω − + − − + + + − ψ − ψ 

′ ′ ′′+ − + − ψ =

2
(1 ) 0,

1
mh

ik f g ′+ + − =
− ψ

where 2 )/ (R vtΩ = ω  is some constant param-
eter acting as the generalized frequency; it in-
cludes the dependence on the radius and time 
(proportional to the variable 2η ).

The order of the derivative of the function 
g is reduced from the second to the first in 
the second equation of system (8) using the 
continuity equation. We should note that Eqs. 
(8) are identical to the equations obtained by 
Shtern and Hussain (who actually considered 

the exponential dependence of perturbation 
on time, or, more precisely, on 21 / ,η  used 
the far-field approximation ( ,η → ∞  which is 
equivalent to 0τ → ) to derive the equations, 
and discarded some terms with high powers of 
τ ). No approximations have been used in our 
study to derive these equations, except that Ω  
is assumed to be a constant parameter.

For complete statement of the problem, 
system of equations (8) should be supplement-
ed with suitable boundary conditions. The fol-
lowing conditions imposed on the velocity field 
follow from representation (7):

( 1) 0, ( 1) 0,g h± = ± =

meeting the requirements that functions g and 
h be bounded.

Procedure of numerical solution

The procedure for numerical solution of the 
resulting system of equations is shown sche-
matically in Fig. 2. Since the points 1.0ψ = ±  
are singular, we need to find the asymptotic 
expansion of the functions of the problem in 
their neighborhood of these points and shift 
the start of numerical integration. Asymptotic 
expansions of a certain test function Ψ  in the 
neighborhood of singular points 1.0ψ = ±  are 
used in the ranges ]1.0[ ; cψ ∈ − ψ  and ];  0[ 1.pψ  
(see expansion (10)). Next, two solutions of 
Eqs. (8) are constructed by numerical integra-
tion from cψ  to mψ  and from pψ  to mψ . The 
values of the function Ψ  and its derivatives 
should be kept continuous at the point ,mψ  in 
accordance with the order of the system of dif-
ferential equations (see conditions (11)).   

It can be shown for Legendre-type equa-
tions [32] that the functions of the problem 
are proportional to the factor (1 − x2)m/2 and 
a certain analytical (in the neighborhood of 

1.0ψ = ± ) function, which, in turn, can be 
represented as a Taylor series.

Thus, some test function Ψ (f, g, h or q) in 
the neighborhood of the point 1.0ψ =  can be 
represented in the following form:

2 /2
0 1

2 3
2 3

(1 ) ( (1 )

 (1 ) (1 ) ...),

mΨ = − ψ Ψ + Ψ − ψ +

+ Ψ − ψ + Ψ − ψ +
 

where the complex-valued expansion coeffi-
cients 0 1 2 3, , ,Ψ Ψ Ψ Ψ  are determined by sub-
stituting function (10) into system of equations 

(7)

(8)

(9)

(10)
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k = kre + ikim using Newton’s method. We used 
a similar calculation scheme in [33].

Results and discussion

Increasing perturbations (at −kim > 0) were 
detected only for azimuthal wavenumbers m = 0 
and m = 1, the same as in [17], which, however, 
discussed only neutral perturbations (kim = 0). 
Thus, the kim(Re) dependence was not analyzed 
in [17], which actually makes it possible for 
us to carry out a comprehensive comparison 
with experimental data, as will be shown below. 
It is convenient to use the Reynolds number, 
constructed from the velocity on the axis and 
the distance from the origin, in this problem:

1

4
Re | (1) ,

1
RU R

y
Aψ= ′= = − = −

ν −

according to exact solution (2). 
Fig. 3 shows the dispersion curves ( )imk− Ω  

for different Reynolds numbers Re and m = 0. 
As the Reynolds number increases above the 
critical value Recrit

m=0  = 26.20, a range of Ω  
values appears, for which solutions exist, with 
–kim > 0. Notably, Recrit

m=0 = 28.1 was found in 
[17]. The small difference can be explained by 
the insufficiently accurate algorithm for calcu-
lating the spectral problem used in [17], where 
asymptotic expansions of the functions of the 
problem in the neighborhood of the points 

1.0ψ = ±  were not used.

Fig. 2. Scheme of the numerical algorithm used: 
Asymptotic expansions of a certain test function Ψ in the neighborhood of singular points  

ψ = ±1.0 are used in the ranges ψ ∈ [−1,0; ψc] and [ψp; 1,0] dashed curves 1, 2 are the 
domains of further numerical integration; the condition that the values of the function ψ  

and its derivatives be continuous is imposed at ψm

(11)

(12)

(8). Some parameters remain undefined (free); 
these should be found by actually solving the 
spectral problem.

A decomposition similar to expression (10) 
can also be written in the neighborhood of the 
point 1, 0.ψ = −  Next, two numerical solutions 
need to be constructed for selected values of A 
(in the function y), Ω  and a set of free param-
eters, and integration of Eqs. (8) starts from the 
points 1.0c cψ = − + ε and 1.0 ,p pψ = − ε  where 

cε  and pε  are small parameters (in the range 
10–5 − 10–3). The continuity conditions for the 
functions of the problem and their derivatives 
should be satisfied, in accordance with the order 
of the system of ordinary differential equations, 
at some point mψ  ( mψ = 0.9 for the solutions 
found below); the choice of this point does not 
affect the result. Namely, the following condi-
tions should be fulfilled:

( ) ( ), ( ) ( ),

( ) ( ),
m m m m

m m

f f f f

g g
− + − +

− +

′ ′ψ = ψ ψ = ψ

ψ = ψ

( ) ( ), ( ) ( ),

( ) ( ),
m m m m

m m

h h h h

q q
− + − +

− +

′ ′ψ = ψ ψ = ψ

ψ = ψ

where plus and minus correspond to the so-
lutions obtained by integrating the system of 
equations from the points pψ  and ,cψ  respec-
tively.

Conditions (11) are achieved by vary-
ing the free parameters and the wavenumber  
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The current statement of the problem al-
lows studying the evolution of perturbations in 
the entire space, thanks to self-similarity of the 
main flow and the given perturbations, and is 
thus global. The ratio of the amplitude of per-
turbation velocity on the axis to the velocity 
of the main flow obeys the following relation-
ship:

(Re)

(Re)1
0

/ [( / ) (1) ]

[( / ) (1)] ( / ) .

im

im

k
R R

k

U R f e

R y R R

− ξ

−−

= ν ×

′× −ν ∞

v

The perturbation amplitude algebraically 
grows or decays downstream relative to the 
main flow, depending on the distance measured 
from the origin. The growth rate is determined 
by the imaginary component of the wavenum-
ber and depends on the Reynolds number. The 
absolute value of –kim(Re) turns out to be criti-
cal in this case.

Fig. 4 shows the dependence of the maxi-
mum value of ),(imk− Ω  obtained for each dis-
persion curve, with different Re numbers. For 

b)

а)

Fig. 3. Dispersion curves −kim(Ω) in the ranges of the parameter Ω equal  
to (0 – 0.35) (a) and (0 – 200) (b), for the most unstable solution with m = 0,  

with different Reynolds numbers Re:
20 (1), 25 (2), 33,33 (3), 40 (4), 50 (5), 100 (6) и 200 (7)

(13)
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bations present in the given flow, the rate of 
such growth turns out to be extremely low. For 
this reason, axisymmetric perturbations can be 
characterized as neutrally stable in the first ap-
proximation. It is probably due to the weakly 
pronounced perturbation effect at m = 0 that 
only stable solutions are valid in the plane-par-
allel approximation. Fig. 4,b shows a compari-
son of the dependence of kreRe on the Reyn-
olds number Re, obtained in this study and in 
[17]. The curve representing the data from [17] 
demonstrably lacks a lower branch.

It can also be seen from Fig. 4,b that an 

Fig. 4. Dependences of the maximum value of the imaginary component –kim (а)  
and the value of the real component kreRe (b) of the wavenumber k on the Reynolds 
number for the most unstable solutions with m = 0 (1) and m = 1 (2). Fig. 4,b shows  

a comparison of the data in our study (symbols) with those in [17] (solid lines).
The values Recrit

m=0 = 26.20 and Recrit
m=1 = 96.29 are marked with vertical dashes

b)

а)

instance, it is evident that even though positive 
−kim values exist for Re ≤ 40, these values do 
not exceed 0.01. This suggests that the ratio of 
the perturbation amplitude to the main flow 
velocity on the axis increases by only 7 % (ap-
proximately) at a distance R/R0 = 103, com-
pared with this ratio at a distance R/R0 = 1. 
With Re = 200, the peak ( )imk− Ω  value on the 
dispersion curve is reached for –kim = 0.087. 
The perturbation increases by 82 % at a dis-
tance –kim for these parameters.

Thus, we can conclude that, despite a 
mechanism of growing axisymmetric pertur-
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unstable solution for m = 1 appears if Re is in-
creased to a value of the order of 100. The ob-
tained value of the critical Reynolds number is 
Recrit

m=1 = 96.29, which is slightly less than the 
corresponding value in [17] (Recrit

m=1 = 101).
Comparing the maximum ( )imk− Ω  values 

as functions of the Reynolds number Re with  
m = 0 and m = 1 indicates that the perturbation 
growth rate for m = 1 substantially exceeds that 
for m = 0 as the Reynolds number increases 
above a certain value. In this case, the maxi-
mum –kim values are approximately the same 
for Re ≈ 120 – 130.

The next stage of our study consisted in 
comparing the results of the above-described 
linear stability analysis with the experimental 
data given in the literature. We are going to find 
the relationship between the Reynolds number 
with the value of this number, used in experi-
ments and numerical calculations, expressed by 
formula (12). The number constructed by the 
diameter of the exit nozzle D = 2R0 and the 
mean flow rate Ub has the form

Re / .D bU D= ν

Let us consider the parabolic velocity pro-
file formed in the inlet nozzle. In cylindrical 
coordinates ( , , )x r ϕ  with the center in the 
middle of the exit section (x = 0), this profile 
has the following form:

2 2
0( ) 2 (1 / ),bU R U R R= −

where R0 is, the same as above, the radius of 
the tube. 

The total momentum flux through the 
exit section is determined by the following 
relationship:

0

2 2

0

( ) 2 ( ) .
R

xP U R dS U R RdR= ρ = πρ∫ ∫

 

Substituting formula (15) into relation (16), 
we obtain that

2 21
Re .

3x DP = πρν

Thus, we arrive at the following 
relationship:

2

3
Re .x

D

P
=

πρν

Therefore, there is an explicit relationship 
between ReD and Re (or between A and Re: 
Re = −4/(A − 1)). The following asymptote 
can be written for large values of the Reynolds 
number:

1/2

Re 8Re

2(8 ln 8 3 ln Re)Re ...,Re ,

D

−

= +

+ + − + → ∞

with the first term often used in the literature 
(Re 8Re).D =

The results of the analysis results for m = 1, 
obtained in this study, are compared in Table 
with the results of other authors. Notice that the 

Tab l e

Comparison of results obtained by different authors for analysis of linear stability  
of the Landau jet with the azimuthal wavenumber m = 1

Author Recrit ReD,crit kre,crit Ωcrit

V. Shtern, F. Hussain [17] 101.0 27.77 1.85 84.00

P.J. Morris [34] 177.1 37.64 2.12 86.66

O.A. Likhachev [16] 94.46 27.49 1.55 59.72

Our study 96.29 27.10 1.78 76.93

No t a t i on s : Re is the Reynolds number determined by formula (12), ReD is the Reynolds 
number constructed from the diameter D of the exit nozzle; kre, is the real component of the 
wavenumber k; Ω is the parameter acting as the generalized frequency; the subscript “crit” 
indicates the critical value.

No t e s . 1. The stability of the velocity profile was studied in [34] in a plane-parallel ap-
proximation using the Schlichting solution. 2. The same approach as in our study was used 
in [17].

(14)

(15)

(17)

(18)

(19)

(16)
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0,8

/ 2, 0 10 ,

1 1 / 0, 0081Re –  0,11 ;( )D

L D α= ⋅

α = +

it was found by extrapolating the function 
–kim(Re) to higher values of the Reynolds 
number.

Comparison of theoretical and experimental 
results yields a good quantitative agreement, 
even though the turbulent processes, including 
the stage of nonlinear perturbation growth, 
are far more complex in reality, compared to 
the model. Importantly, turbulent fluctuations 
were observed in the flow from the tube even 
with ReD > 2000 (according to data obtained 
by Lemanov), which limits the range for 
comparison of theoretical and experimental 
data to ReD < 2000.

Conclusion

We have considered the linear stability 
problem for a submerged Landau – Squire 
jet. We have established that the amplitude 
of intrinsic perturbations spatially varies as a 
power function of the spherical radius R, read 
from the source of motion.

We have obtained a problem on the 
eigenvalues, which is solved numerically. 
Unstable perturbations were found for the first 
two azimuthal wavenumbers (m = 0 and 1); 
at the same time, the corresponding critical 
values of the Reynolds number, constructed 

Fig. 5. Theoretical (line) and experimental (symbols) dependences of the distance at which  
the jet becomes turbulent versus the Reynolds number plotted for D.

The experimental data from [6, 9] were used, the theoretical curve was obtained in the present study. The 
diameter of the nozzle in [6] was D = 0.32 mm (symbols 6). The experimental conditions in [9]: D = 0.5 mm 
(symbols 1, 2); 1.0 mm (3, 4); 3.5 mm (5); velocity fluctuations were measured with a hot-wire anemometer 

(2, 4) and visually (1, 3, 5)

critical Reynolds number Recrit is significantly 
lower if the expansion of the jet is taken into 
account; however, the values of the Reynolds 
number ReD,crit differ less in this case. The values 
of the real part of the wavenumber and the 
generalized frequency are also slightly lower. 
Nevertheless, the data obtained by Shtern and 
Hussain, as well as by Likhachev, are in good 
agreement with the results of our calculations.

Next, we estimated the distance L from the 
source of the jet, at which the perturbation am-
plitude takes some critical value, because the 
flow becomes turbulent. It is assumed in the 
calculations that perturbation grows by formula 
(13), in accordance with the given linear mech-
anism. Obviously, it is important to determine 
the criterion of laminar-turbulent transition in 
this case.

We assumed that the laminar-turbulent 
transition occurs when the perturbation 
amplitude significantly exceeds the local velocity 
at some point. By measuring this distance and 
using the dependences we found for –kim(Re) 
and formula (13), we obtained the dependence 
of L on Re.

Fig. 5 shows a comparison of the 
experimental data obtained by A.J. Reynolds [6] 
and by Lemanov et al. [9] with the theoretical 
dependence we have found (shown by a solid 
line).  

The resulting expression has the form 
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from the mean-flow velocity with a parabolic 
distribution inside the nozzle and its diameter, 
were

ReD
m = 0 = 13.98;

ReD
m = 1 = 27.10,

respectively. 
We have confirmed that the increment for 

the growth of sinusoidal perturbations increases 
with values of ReD > 31, i.e., greater than that 
of axisymmetric perturbations.

We have proposed a model criterion for the 
laminar-turbulent transition in the far field of 
the jet, based on the fact that the ratio of the 

amplitude of the perturbation velocity to the main 
flow velocity spatially varies as a power function 
of R; the growth increment is known from the 
solution of the formulated spectral problem.

We have obtained for the first time a 
good agreement between the results of linear 
stability theory and the experimental data with 
ReD < 2000 for the coordinate of the laminar-
turbulent transition as a function of the 
Reynolds number.
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the grant of the Russian Science Foundation  
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Three-fluid formulation and a numerical method  
for solving the stationary problem of thermal hydraulics 

of a two-phase annular dispersed flow 

E.E. Avdeev, A.A. Pletnev, S.V. Bulovich
 Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation

The article presents a one-dimensional three-fluid model for solving the stationary 
flow problem on a two-phase steam-water annular dispersed stream in a vertical heated 
channel, based on nine balance equations with an equal phase pressure assumed. The 
validation of the marching algorithm of the described stationary problem has been 
carried out by comparison with the published experimental data relating to a two-phase 
flow in a circular pipe under adiabatic conditions for pressures of 3 – 9 MPa, total 
flow rates of 500 – 3000 kg /(m^2∙s) and internal diameters of 10 and 20 mm. The 
total pressure differences in the channel were calculated. Good qualitative agreement 
with experimental data was obtained. Small quantitative disagreements were found. 
They were shown to be reduced by the refinement of the closing relations. 
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Introduction

The most common approach for describ-
ing multiphase flows in a thermal hydraulic 
approximation is based on the model of in-
terpenetrating continua. The existing simula-
tion codes for thermal hydraulics (KORSAR, 
TRAC, RELAP) are based on the so-called 
two-fluid approximation describing the case for 
multiphase flow represented by two “fluids”: 
vapor and fluid. The corresponding system 
consists of six differential equations of mass, 
momentum and energy balance (for each of the 
fluids). The system is closed by the phase bal-
ance equation, the thermodynamic equation of 
state (for each of the fluids) and empirical or 
semi-empirical relations (for each of the flu-
ids). These relations, called closing, describe 
mass, heat and momentum transfer between 
the individual phases and between the phases 
and the channel wall. 

The structure of the two-phase medium 
and, accordingly, the closing relations in such 
a model are determined by the chosen flow re-
gime map.

The two-fluid approximation was the first 
one used in simulation codes developed for 
thermal hydraulics. It is still found in many 

codes and is often discussed in literature. The 
two-fluid approach is fairly up-to-date, provid-
ing adequate descriptions for all flow regimes 
where it is more correct to divide two-phase 
flow into any two components. This includes, 
for example, bubble, slug, dispersed and strati-
fied flows. The two-fluid approach yields ac-
ceptable results for all of these flow regimes; 
the descriptions differ only in the definitions of 
“fluids” in each case and, accordingly, in the 
closing relations. 

On the other hand, the medium in the an-
nular dispersed flow regime is divided into three 
fluids: vapor, droplets, and liquid film; accord-
ingly, each of the fluids should have its own 
velocity and temperature, which is impossible 
in the two-fluid approximation. There are ap-
proximate methods for describing the specifics 
of the annular dispersed-regime for these cases, 
staying within the framework of the two-fluid 
model. For example, in the KORSAR simula-
tion code, the emerging droplets are taken into 
account by an additional term in the balance 
equations but still do not have their own veloc-
ity and temperature. 

The issue of inaccurate description of the 
annular dispersed regime is solved by replacing 
the two-fluid approach with the three-fluid one 
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of equations. Therefore, if a stationary flow 
regime is possible for a given problem, then 
the solution obtained by the marching method 
of integration is a reference for evolutionary 
problems, allowing to quantitatively estimate 
the distortions introduced into the solutions 
by the techniques applied for regularizing the 
problem.

Mathematical model

The developed stationary one-dimensional 
three-fluid model describes annular dispersed 
flow with masses of vapor, droplets and liquid 
film moving in two-phase vapor-liquid flow. 
The model takes into account phase transition, 
exchange processes with the channel wall, 
entrainment and deposition of droplets on 
the film surface. Accordingly, we are going to 
solve a system of equations consisting of nine 
differential equations of mass, momentum and 
energy balance for each of the three liquids. 

The differential equations solved are written 
in the following form.

1) Mass balance equations.
For vapor: 

( ) ,v v v dv id fv ifA u m m
x
∂

α ρ = Π + Π
∂

where x, m, is the axial coordinate; A, m2, is 
the cross-sectional area of the channel; vα  is 
the volume fraction of vapor; ,vρ  kg/m3, is 
its density; uv, m/s, is its velocity; mdv, mfv,  
kg/(m2s), are the mass sources of vapor gen-
eration from the droplets and the film, respec-
tively (positive for condensation and negative 
for evaporation); Πid, Πif, m, are the perim-
eters of the surface of heat transfer with vapor 
for the droplets and the film respectively; the 
subscripts v, d, f refer to vapor, droplets, and 
liquid film, respectively. Below we are going 
to use another subscript w, referring to the 
channel wall.

For droplets: 

( ) ( ),d d d dv id if d eA u m S S
x
∂

α ρ = − Π − Π −
∂

where ,d dα ρ  are the volume fraction and den-
sity of the droplets, respectively; ud, m/s, is their 
velocity; Se, Sd, kg/(m2∙s), are, respectively, the 
entrainment and deposition rates for droplets 
on the surface of the liquid film.

(1)

(2)

where each of the fluids (i.e., vapor, droplets, 
and liquid film) is described by its own equa-
tions for the balance of mass, momentum, and 
energy. The three-fluid model is well-known: it 
has been considered in some Russian and for-
eign studies [1 – 7]. While using the approach 
with three fluids instead of two is nothing new 
from an algorithmic standpoint, it allows to 
construct a more complete physical model that 
is non-equilibrial with respect to the velocities 
and temperatures of the given fluids. 

The three-fluid model is more accurate in 
describing the annular dispersed flow regime, 
which means that more accurate values can be 
obtained for the characteristics of heat transfer, 
friction loss, volume fractions of fluids, and, 
ultimately, the position of the dryout point can 
be determined more reliably. Using this model 
means that the problem of closing relations has 
to be considered again. Most of the correla-
tions tested were formulated for the two-fluid 
approximation. However, formulation of the 
three-fluid model makes it possible to partially 
use the experience in accumulated solving two-
phase problems. For example, closing relations 
describing the exchange processes between va-
por and droplets in dispersed flow or exchange 
with the channel wall in single-phase flow can 
be used for describing exchange processes at 
the corresponding interfaces and in the three-
fluid approximation. In this case, the exchange 
processes directly between the droplets and the 
film are characteristic for the three-fluid model 
distinguishing it from the two-fluid one, allow-
ing to abandon the equilibrium model of gen-
eration and deposition move on to non-equi-
librium models by processing the experimental 
data. 

Our study presents a marching algorithm 
for the numerical solution of the stationary 
problem of annular dispersed flow in a one-di-
mensional approximation using the three-fluid 
approach. Systems considered in a two- and 
three-fluid approximation in a non-stationary 
formulation for the case of equilibrium pres-
sure (mathematical models with total pressure 
in fluids) are known to lose their evolution-
ary properties with certain values of operating 
parameters [8]. The correctness of the Cauchy 
problem can be restored by different measures 
but all of them “perturb” the original system 
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For liquid film:

( ) ( ),f f f fv id if d eA u m S S
x
∂

α ρ = − Π + Π −
∂

where fα  and fρ  are, respectively, the volume 
fraction and the density of the liquid film; uf, 
m/s, is its flow velocity. 

 2) Momentum balance equations.
For vapor:

2( ) ( )

 ( ) ,

v v v v dv id di v

fv if fi v if vf id vd v v x

P
A u A m u u

x x
m u u A g

∂ ∂
α ρ + α = Π − +

∂ ∂
+ Π − − Π τ − Π τ + α ρ

where P, Pa, is the pressure; udi, ufi, m/s, are the 
interfacial velocities (for the vapor – droplets 
and vapor – film interfaces, respectively). We 
used the interfacial velocity udi between the 
droplets and the vapor, assumed to be equal to 
the droplet velocity ud. A dependence from the 
CARHARE code [9] was used for the velocity 
of the interface between the liquid film and the 
vapor:

;fv
fi f v

v f v f

u u u
αα

= +
α + α α + α

, ,vf vdτ τ  kg/(s2m) are the shear stresses (vapor – 
liquid film and vapor – droplets, respectively); 
gx, m/s2, is the projection of the gravity vector 
on the x axis; the overbar indicates the aver-
aged value of a quantity.

For droplets:

2( ) ( )

 ( ).

d d d d dv id di v

id vd d d x if d d e f

P
A u A m u u

x x
A g S u S u

∂ ∂
α ρ + α = − Π − +

∂ ∂
+ Π τ + α ρ − Π −

For liquid film:

2( )

( )

 ( ),

f f f f

fv if fi v wf wf if vf

f f x if d d e f

P
A u A

x x
m u u

A g S u S u

∂ ∂
α ρ + α =

∂ ∂
= − Π − − Π τ + Π τ +

+ α ρ + Π −

where Πwf, m, is the perimeter of the surface of 
heat transfer between the channel wall and the 
film; ,wfτ  kg/(s2∙m), is the shear stress between 
the liquid film and the channel wall.

3) Energy balance equations.
For vapor:

( )
2

2

( ) (HTC) ( )

(HTC)
2

,
2

v v v v vd id sat v

di
v dv id vf if sat v

fi
v fv if

A u H T T
x

u
h m T T

u
h m

∂
α ρ = Π − +

∂
 

+ + Π + Π − + 
 

 
+ + Π  
 

( )
2

2

( ) (HTC) ( )

(HTC)
2

,
2

v v v v vd id sat v

di
v dv id vf if sat v

fi
v fv if

A u H T T
x

u
h m T T

u
h m

∂
α ρ = Π − +

∂
 

+ + Π + Π − + 
 

 
+ + Π  
 

where Hv, J/kg, is the total specific enthalpy 
of vapor, Hv = hv + 0.5u2 (hv is the specific 
enthalpy); (HTC)vd, (HTC)vf, W/(m2∙K), are, 
respectively, the coefficients of heat transfer 
from the vapor to the interface with the droplets 
and from the vapor to the interface with the 
liquid film; Tsat, Tv, K, are the saturation and 
vapor temperatures, respectively.

For droplets:

2

( ) (HTC) ( )

( ),
2

d d d d dv id sat d

di
d dv id if d d e f

A u H T T
x

u
h m S H S H

∂
α ρ = Π − −

∂
 

− + Π − Π − 
 

where Hd, Hf, J/kg, are, respectively, the 
total specific enthalpies of the droplets and 
the liquid film, Hd,f = hd,f + 0.5u2 (hd,f is the 
specific enthalpy); (HTC)dv, W/(m2∙K), is the 
coefficient of heat transfer from the droplets 
to the interface with the vapor; Td,  K, is the 
temperature of the droplets.

For liquid film:

2

( ) (HTC) ( )

( )
2

 ,

f f f f fv if sat f

fi
f fv if if d d e f

wf fw wfi fw

A u H T T
x

u
h m S H S H

q q

∂
α ρ = Π − −

∂
 

− + Π + Π − +  
 

+ Π − Π

where (HTC)fv, W/(m2∙K), is the coefficient of 
heat transfer from the liquid film to the interface 
with the vapor; Tf, K, is the temperature of the 
liquid film; qwf, W/m2, is the heat flux from 
the channel wall to the liquid film; qwfi, W/
m2, is the component of the heat flux from 
the channel wall that actually contributes to 
generating vapor.

The system is also complemented by a phase 
balance equation

1kα =∑
and by thermodynamic equations of state taking 
the form

(3)

(10)

(4)

(9)

(6)

(8)

(5)

(7)

(7)
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coefficient of heat transfer from the vapor. It 
follows then that the coefficients of heat trans-
fer from the vapor to the interface with the 
droplets and from the droplets to the interface 
with the vapor are equal and take the form of a 
correlation describing gas flow around spheri-
cal particles [10]:

0,5 0,33

(HTC) (HTC)

(2 0,6Re Pr ),

vd dv

v
d v

dD

= =

λ
= +

where the Reynolds number for droplets follows 
the expression

Re v v d d
d

v

u u Dρ −
=

µ

(Dd, m, is the mean droplet diameter; ,vµ  Pa∙s, 
is the coefficient of dynamic viscosity of va-
por); ,vλ  W/(m·K), is the thermal conductivity 
of vapor.

The coefficients of heat transfer from the 
vapor to the interface with the liquid film and 
from the liquid film to the interface with the 
vapor are calculated from the correlation for 
single-phase convection [11] applied to the 
droplet-laden vapor core: 

0,8 0,4

(HTC) (HTC)

(0, 023Re Pr ),
( 2 )

vf fv

v
v vD

= =

λ
=

− δ

where D, m, is the internal diameter of the 
channel; ,δ  m, is the mean film thickness; Prv 
is the Prandtl number for vapor; Re v is the 
Reynolds number for vapor,

( 2 )
Re .

v v f

v
v

u u Dρ − − δ
=

µ

The expressions for the mass sources de-
scribing hydrodynamic entrainment and de-
position on the surface of the liquid film  
(Se and Sd) are borrowed from [2], where tur-
bulent diffusion is assumed to be the dominant 
mechanism for deposition of droplets on the 
film surface:

0,5

3 0,2 2/39 10 Re Sc ,d v v v
v

C
S = u C

−

− − − 
⋅  ρ 

where C, kg/m3, is the droplet concentration,

(11)

(12)

(13)

(14)

(15)

(17)

(16)

( , ),k k P Tρ = ρ

( , ),k ke e P T=

where ek, J/kg, is the specific internal energy of 
the kth phase. 

Closing relations

The system of equations (1) – (10) is closed 
by a set of relations describing the processes 
of mass, momentum and energy transfer both 
between the individual phases and between the 
phases and the channel wall.

Mass sources describing the phase transi-
tion (mdv and mfv) are derived by considering 
the heat balance at the interface. Since the in-
terface cannot accumulate heat, we obtain:

[(HTC) ( )

 (HTC) ( )] / ( ).
dv dv sat d

vd sat v v d

m T T

T T h h

= − − +

+ − −

Direct heat transfer with the channel wall 
only occurs for the liquid film in annular dis-
persed flow. Accordingly, a term ,wf fwq Π  de-
scribing the heat flux transferred to the liquid 
film from the channel wall is added to the right-
hand side of the film's energy balance equa-
tion. A term describing the component of the 
heat flux from the channel wall that actually 
contributes to generating vapor: ,wf fwq Π  where 

; 0 1,wfi wfq q= ψ ψ = −  is also added to the en-
ergy balance equation.

Given this term, a similar mass source for 
the phase transition between the liquid film and 
the vapor has the form

[(HTC) ( )

 (HTC) ( ) ] / ( ).
fv fv sat f

vf sat v wfi v f

m T T

T T q h h

= − − +

+ − + −

The terms of the form (HTC)kv(Tsat – Tk) 
are the heat flux from the liquid phase to the 
interface with the vapor, and (HTC)vk(Tsat – 
Tv) the heat flux from the vapor to the inter-
face with the liquid phase for both mass sources 
(13), (14).

The phase transition model used allows for 
heat transfer coefficients of different magni-
tudes on both sides of the interface, but the 
following assumption is used for the sake of 
simplicity. Heat transfer coefficients on both 
sides of the interface are assumed to be the 
same and equal to a limiting factor that is the 
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;d d d

v d d v d

v v d

G
C

G u G
u

α ρ
= =

α + α+
ρ ρ

 Scv is the Schmidt number for vapor (taken 
to equal unity for simplicity); 

here Re .v v v
v

v

u Dρ α
=

µ

It is assumed that shearing off of roll wave 
crests is the main mechanism of hydrodynamic 
entrainment of droplets into the droplet-laden 
vapor core for a liquid with a low viscosity (like 
water):

0,4

2

5

5

1,07

,
,Re 10 ;

[2,136lg(Re ) 9,68],Re 10

v f fv f
e

v

s v

s v v

u
S =

k >

k <

µ τ ρ 
× ρσ  

× 
−

where 3 2 6 3 9 40,57 21,73 10 38,3 10 55,68 10 .sk = + +δ ⋅ δ − ⋅ δ ⋅ δ 3 2 6 3 9 40,57 21,73 10 38,3 10 55,68 10 .sk = + +δ ⋅ δ − ⋅ δ ⋅ δ  
The shear stresses in the momentum bal-

ance equations ( wfτ  between the channel wall 
and the liquid film; vfτ  between the vapor and 
the liquid film; vdτ  between the vapor and the 
droplets) are written in the following form:

;
2
f

wf wf f fCf u u
ρ

τ =

( ) ;
2
v

vf vf v f v fCf u u u u
ρ

τ = − −

( ) ,
2
v

vd vd v d v dCf u u u u
ρ

τ = − −

where 
kkCf  are the respective coefficients of 

friction (drag force).
The coefficient of friction between the va-

por and the liquid film is calculated from the 
modified Wallis correlation [12]:

0,25

0, 079
1 300 ,

Revf
v

Cf
D
δ = + 

 

where 

( 2 )
Re .v v

v
v

u Dρ − δ
=

µ

The aerodynamic drag of the droplets is 
calculated from the dependence [13]:

24 4 1
0, 4 ,

Re 4Re
vd

d d

Cf
 

= + +  
 

where

Re max 0,1; .v v d d
d

v

u u D ρ −
=   µ 

The coefficient of friction between the liq-
uid film and the channel wall is expressed as 
follows [14]:

0,25

16 0, 079
max ; ,

Re Refw
Dhf Dhf

Cf
 

=   
 

where 

Re .f f f
Dhf

f

u Dρ α
=

µ

The geometric characteristics used should 
also be formulated for writing the closing rela-
tionships; these include: 

perimeters of interface interactions; 
perimeter of the interaction between the 

liquid film and the channel wall; 
mean thickness of the liquid film;
mean droplet diameter.
The perimeter of the interface between the 

vapor and the droplets follows the expression

6
,d

id
dD
α

Π =

The perimeter of the interface between the 
vapor and the liquid film:

( 2 ),if DΠ = π − δ

where 0,5 (1 1 )fDδ = − − α
 
(mean thickness 

of the liquid film).
The perimeter of the interface between the 

liquid film and the channel wall:

.wf DΠ = π

The droplet diameter is calculated by the 
technique described in [14]:

5
1 2max(8, 4 10 ;min[ ; ]),d d dD D D−= ⋅

1/3 2/3

3
1 7,96 10 Re ,d v

d v
v v v d

D
j

−    ρ µσ
= ⋅    ρ ρ µ   

where jv is the normalized velocity,

;v v v
v v v

v

u A
j u

A
ρ α

= = α
ρ

(19)

(20)

(22)

(24)

(25)

(18)

(21)

(23)

(26)

(28)

(27)

(29)

,
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sum of the known quantity Wp
n+1,s from the pre-

vious iteration and their increments ΔWp
n+1,s+1 

at the sought-for iteration, which transforms 
the given system to the form:

1, 1, 1
, , , 1,

, ; , ;
n s n s n

k p k p k p n s
k p

W W W
S p m e

x

+ + +
++ ∆ −

= =
∆

1, 1, 1
, , ,

1, 1, 1
1,

, ;

n s n s n
k i k i k i

n s n s n
n s
k i

W W W

x

P P P
A S

x

+ + +

+ + +
+

+ ∆ −
+

∆
 + ∆ −

+ α = ∆ 
1, 1, 1( ) 1.n s n s

k k
k

+ + +α + ∆α =∑
Leaving the increments on the left-hand 

side of the equation, we move the remaining 
terms to the right-hand side, thus reducing the 
solution of the system to finding the increments 
of the sought-for functions. In the same way, 
we represent the sought-for flux vector in terms 
of the vector of primitive variables: 

( , , , ) .T
k k kf T u P= α

As a result, the system is reduced to a ma-
trix notation of the form

1. 1, 1 1, ,n s n s n sM f+ + + +∆ = B

which is solved by the Gauss method. The 
vector Bn+1,s is the right-hand side vector; Mn+1,s 
is the matrix of transformation of the flux vector 
to the vector of primitive variables.

The coefficients of the matrix Mn+1,s can be 
obtained by vector differentiation of the flux 
vector with respect to the vector of primitive 
variables:

1,
1, 1 1, 1

1, 1, 1.

n s
n s n s

n s n s

W f

M f

+
+ + + +

+ + +

∂ ∆ = ∆ = ∂ 
= ∆

W
f

The matrix Mn+1,s has a repeating block 
structure with a block size of 3 × 3 (see Ta-
ble).

The given algorithm is applicable for solving 
problems with codirectional liquid velocities. 

Model testing

The three-fluid model described in our 
study was used to calculate two-phase flow of 
water in an adiabatic circular tube; we took 
as a basis the experimental data obtained by 

(30)

(31)

(32)

(33)

(34)

(35)

(39)

(36)

(37)

(38)

the Reynolds number  

Re .v v
v

v

j Dρ
=

µ

2
2 0,254 0,13 16 (0,13 ) ,d v vD L We We = − + +

 
2

2 0,254 0,13 16 (0,13 ) ,d v vD L We We = − + +
 

where L is the characteristic size (taken as the 
internal diameter D of the channel);

2

.v v
v

j L
We

ρ
=

σ

Numerical method

Moving on to the finite-difference for-
mulation of the system, let us introduce the 
pseudovector notation of the following form:

,
2

,

,

;
k m k k k

k i k k k

k e k k k k

W A u

W W A u

W A u H

  α ρ 
   = = α ρ   

   α ρ  



,

,

,

,
k m

k i

k e

S

Q S

S

 
 

=  
 
 

where W is the flux vector; Q is the right-
hand side vector; the subscript k indicates the 
corresponding fluid (vapor, droplet, liquid 
film).

Using two-point approximation, let us write 
the finite-difference formulation of the system 
of equations:
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where the subscript p indicates the corresponding 
balance equation (m for mass, i for momentum, 
e for energy).

At the same time, the balance equations for 
momentum and energy are written identically in 
pseudovector notation, so we combined them. 
Since the flux vector is not linear, in order to 
achieve convergence of the process, at the next 
step we divide the sought-for quantities by the 
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Würz in [15], considering two-phase water-
vapor flow in adiabatic round tubes with inter-
nal diameters of 10 and 20 mm, with pressures 
ranging from 3 to 9 MPa and total flow rates of  
500 – 3000 kg/(m2⋅s).

We used the given model to calculate a to-
tal of 90 experimental points. Fig. 1 shows a 
comparison of the calculated dependences of 
the total pressure drop dp/dx on the relative 
flow rate Gvrel of vapor with the measured val-
ues. Gvrel is the ratio of the absolute flow rate 

of vapor the sum of flow rates of all three “liq-
uids”.

It can be seen from the given results that 
the calculated dependences practically coincide 
with the experimental ones from a qualitative 
standpoint: they have the same slopes, even for 
dependences with an alternating-sign derivative. 
Quantitative analysis of the data reveals slight 
discrepancies, which can be clearly observed by 
plotting the calculated total pressure drops ver-
sus the experimentally measured ones (Fig. 2). 

Tab l e

Coefficients of the transformation matrix Mn+1,s

Balance 
equation k∆α kT∆ ku∆ … P∆

mass A uρ A u
T
∂ρ

α
∂

Aαρ … A u
P
∂ρ

α
∂

momentum 2A uρ 2A u
T
∂ρ

α
∂ 2A uαρ … 2A u A

P
∂ρ

α + α
∂

energy A uHρ
A uE

T
e

A u
T

∂ρ
α +

∂
∂

+ αρ
∂

2( )A H uαρ + … 1
e

A u E
P P
∂ρ ∂ α + ρ + ∂ ∂ 

...
...

...
...

...
phases 1 0 0 … 0

Fig������������������������������������������������������������������������������������������������������. 1. Experimental (symbols) and calculated (lines) dependences of the total pressure drop in the chan-
nel versus the relative vapor flow rate for internal channel diameters D = 10 mm (a) and 20 mm (b), with 

different total flow rates, kg/(m2∙s): 500 (1), 750 (2), 1000 (3), 2000 (4), 3000 (5). 
Pressure P = 7 Mpa

b)а)
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three-fluid model. Optimizing the closing rela-
tions was not among the goals of this study. 
However, we can confirm that taking into ac-
count additional factors, such as tube rough-
ness (which complicates the expression for the 
coefficient of friction between the film and the 
channel wall), makes it possible to bring the 
calculated results to closer agreement with the 
experimentally measured values. Fig. 3. shows 
the results obtained by adjusting the calculated 
results in this manner. For simplicity, the tube 
roughness is taken into account in the coef-
ficient of friction as a variation of the mul-
tiplier, and the calculations were carried out 
only for one series of experiments (pressure of 
3 MPa, total flow rate of 1000 kg/(m2∙s), inter-
nal channel diameter of 10 mm). The data in 
Fig. 3 clearly demonstrate that the calculated 
total pressure drops can be better fitted to the 
experimentally measured values by increasing 
the roughness coefficient.

Conclusion

We have developed a numerical procedure 
for solving the stationary problem of two-
phase water-vapor flow in a one-dimensional 
approximation with an annular dispersed- 
flow regime using a three-fluid formulation. 
The integrated system of equations includes 
the heat transfer between the phases and 
the channel wall, the friction between the 
phases and the channel wall, entrainment and 
deposition on the surface of the liquid film, 
as well as interaction of the gravity field for 
channels with constant and variable cross-
sections. 

We have carried out initial testing of the 
developed computational model by comparing 
the simulation results with the experimental 
data reported by Würz [15]. The comparison 
confirmed that the three-fluid model considered 
in our study provides an adequate description of 
the given series of experiments with vapor-fluid 
flow and qualitatively speaking, the obtained 
dependences fully agree with the experimental 
ones. There are quantitative discrepancies but 
they do not exceed 20%. However, we have 
established that these discrepancies can be 
reduced by adjusting the closing relations.

Fig. 2. Relationship between the calculated total 
pressure drop in the channel and the measured 
values for all experimental data used from [15]

Fig. 3. Dependences similar to those shown  
in Fig. 1, which were obtained for different 

roughness coefficients: 1.00 (1), 1.20 (2), 1.50 (3), 
1.85 (4); P = 3 MPa, D = 10 mm

A possible explanation for these discrepancies 
is that the chosen formulation of the closing 
relations was not optimal. It is these relations 
that describe the physics of the processes and, 
therefore, determine the calculated result in the 
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Radio emission of stars in the MONOCEROS CONSTELLATION

A.A. Lipovka, N.M. Lipovka
 Center of Physical Studies, University of Sonora, Hermosillo, Mexico

In the present paper, the optical identifications of the bright stars from the 
Monoceros constellation with strong radio sources have been suggested. The Monoceros 
constellation is projected on the bright region of the Milky Way, where the densities 
of the stars and gas are rather high. 17 stars brighter than 11m are located within the 
one square degree plate under investigation. All these stars were identified with radio 
sources from NVSS survey of NRAO observatory. Considerable radio refraction was 
revealed in the interstellar medium. It was found that twelve stars among seventeen 
ones exhibited radio emission characterized by non-thermal spectrum.
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Introduction

The existence of the interstellar medium 
was first hypothesized by Vasily Struve, who 
concluded in 1847, based on theoretical 
considerations, that the space between the stars 
is filled with gas. Struve’s hypothesis was later 
confirmed by the independent observations 
made by Vorontsov-Velyaminov and Trumpler, 
who both discovered the absorption of light by 
the interstellar medium. Observations of outer 
space in the meter and centimeter wavelengths 
began with the advent of radio astronomy in 
the 1930s; independent experimental data 
proving that the interstellar space is filled with 
gas ionized by nearby stars were obtained after 
World War II [1]. Propagation of radio waves 
in outer space and in the Earth’s ionosphere 
and atmosphere depends on the properties of 
the interstellar medium, which is why these 
properties should be taken into account in 
studies on celestial radio sources and identifying 
these sources with optical objects.

The distribution of radio emission in the 
Milky Way (i.e., its “radio brightness”), 
obtained from observations at 6.4 cm with the 
12 m parabolic radio telescope [2] and the Large 
Pulkovo Radio Telescope (LPRT) 100 m in 
diameter [3], confirmed that ionized hydrogen 

(HII) is concentrated towards the Galactic 
plane, where the stellar density is high. 

Analysis of all radio data was carried out in 
[3] for the distribution of radio brightness of the 
northern sky in the frequency range from 0.4 to 
7,700 MHz. It was found that the Galactic co-
rona is radio emission produced by relativistic 
electrons moving in the magnetic field of this 
corona (synchrotron radiation) and therefore 
has a non-thermal character, covering an area 
of 20 × 25 kiloparsecs around the center of the 
Galaxy. The size of the Galactic corona turned 
out to be two times larger than previously as-
sumed [1]. The characteristics of the radio me-
dium (relativistic electrons and magnetic field) 
in the Galactic corona [3] were calculated in 
accordance with the mechanism of synchro-
tron radio emission of relativistic electrons in a 
magnetic field [4].

The mismatch between the radio and opti-
cal coordinates of celestial objects was first dis-
covered when radio astronomy emerged as an 
independent branch of astrophysics. The first 
error in matching the radio emission of celestial 
objects to the optical sky was made when the 
updated 3C Catalog [5] was introduced in 1962 
as reference without listing which observed ra-
dio objects corresponded to the optical ones. 
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However, this was not particularly critical at 
the time, since the survey was carried out with 
poor angular resolution (Ө = 13.6′ × 4.6°) at a 
frequency of 178 MHz, in fact, averaging all 
the positions of the radio sources located in a 
plate of one square degree. The reason for this 
error was that the radio telescope had a high-
directivity pencil beam pattern [5].

Studies on optical identification of radio 
and optical sky, carried out in 1990 at the 
National Institute of Astrophysics, Optics and 
Electronics (Tonantzintla, Mexico), confirmed 
the mismatch between optical objects with dif-
fuse image and radio sources [6].

A survey of the northern sky was carried out 
in 1993–1997 at the National Radio Astronomy 
Observatory (NRAO), VA, USA, via a radio 
telescope with high sensitivity and good resolu-
tion (Ө = 45″) at 1400 MHz. The mismatch 
between radio and optical objects was recon-
firmed by this survey [7]. It was hypothesized 
based on the data obtained that the sources of 
radio emission are mainly distant celestial ob-
jects (quasars and distant galaxies with redshifts 
greater than unity) [7], while the interstellar 
and intergalactic media are empty spaces where 
radio beams propagate along null geodesics and 
reach the most distant objects with millisecond 
precision.

Based on these considerations, the 2009 
General Assembly of the International As-
tronomical Union Congress recommended 
the International Celestial Reference Frame 
(ICRF2) system [8] to match the radio and 
optical objects. The catalog included 3,414 ref-
erence radio sources. The identifications in the 
catalog were obtained by cross-correlation of 
the coordinates of celestial radio and optical 
objects, with these objects taken as reference. 
The majority of the reference objects were ra-
dio sources that randomly coincided with dis-
tant optical objects of a quasi-stellar structure 
whose density was very high. This was where 
the error made in ill-considered attempts to 
identify radio objects with optical ones origi-
nated from.

The goal of this study has been to carry out 
alternative optical identifications of bright stars 
from the Monoceros constellation, which are 
strong radio sources.

Substantiating why the radio object 
J(062153.45-041807.69) cannot  

be accepted as reference

In this study, we have considered a sky plate 
projected onto the local Galactic arm with high 
densities of both stars and the gas component 
of the interstellar medium consisting mainly of 
atomic and ionized hydrogen. A radio source 
recommended as a reference object for matching 
radio and optical objects by the ICRF2 catalog 
[8] is located at the edge of this plate.

Fig. 1 shows the image of the radio object 
J(062153.45-041807.69) as isophotes (lines of 
equal radio emission intensity) [7] superimposed 
on the image of the optical sky based on the 
data in [9]. Evidently, the given radio object 
has a two-component structure, and more than 
15 other optical objects of the quasi-stellar 
structure fall into the region of this object. 
For this reason, it is impossible to determine 
which of the optical objects emits radio waves, 
and therefore the radio object J(062153.45-
041807.69) should be excluded from the list of 
reference objects of the catalog [8], where it is 
recommended for high-precision matching of 
the radio and optical skies.

In addition, if we use the reference proposed 
in catalog [8], not a single radio source coincides 
with any optical object in the immediate vicinity 
of the reference object, which has a size of about 
two square degrees. Notably, the coordinates 
of the radio object J(062153.45-041807.69) 
included in the reference catalog [8] were 
determined in the meter wavelength range [10], 
where significant radio refraction is observed in 
the Earth’s ionosphere; this phenomenon was 
not taken into account when radio coordinates 
of this object were determined.

In 1962, Komesaroff carried out a survey of 
the sky at a frequency of 19.7 MHz in Australia 
and New Zealand and discovered that radio 
waves experience significant radio refraction 
in the meter wavelength range in the Earth’s 
ionosphere at altitudes over 350 km [11]. 

At present, it has been established that the 
coordinates of radio objects obtained in the 
centimeter wavelength range have been altered 
by radio refraction in the Earth’s troposphere 
and, as a result, differ from the coordinates of 
radio objects obtained in the meter range. 



106

St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 11(3) 2018

precision of

RA  DEC  1.5 " 1.5 "σ × σ = ×

according to standard astrometric practices.
We have found that radio objects fall into 

an empty field in the optical image of the 
sky [6]. The general consensus on the reason 
for the mismatch between radio sources and 
optical celestial objects, which still exists today, 
has long been that radio emission comes from 
very distant compact objects (radio galaxies and 
quasars) located at the edge of the observable 
Universe.

The advent of computer technologies and the 
Internet has offered countless new opportunities 
for astrophysics and other sciences. In fact, 
virtually all observations of celestial objects in 
the radio and optical ranges can be found on 
the Internet, giving the perfect opportunity to 
reconsider the existing identifications of radio 
and optical objects.

In 2007, we carried out further identifications 
of these objects and found that radio objects 
were incorrectly matched with optical ones and 
that most bright stars emit in the RF range.

We have developed and successfully used 
the method for identifying radio and optical 
objects based on matching radio sources to 
bright stars (the Lipovka – Kostko – Lipovka 
method, or LKL) [13]. 

In this study, we have identified radio sources 
with stars in the Monoceros constellation 
based on the NVSS radio survey of the NRAO 
observatory [14]. The given sky plate (Fig. 2) is 
projected onto the local arm of the Galaxy with 
high stellar density.

Matching radio objects to stars (Fig. 2) 
confirmed significant radio refraction in the 
interstellar medium, which is rather predictable, 
since this region of the sky is located in the local 
spiral arm characterized by a high content of 
gas. This region also has a high stellar density, 
which is why 17 stars brighter than 11m have 
been identified with radio objects. In addition, 
seven faint stars were identified with “weak” 
radio sources whose flux density lies below 
the detection threshold (P < 2.5 mJy); such a 
threshold value was taken in [14]. These stars 
are denoted by the letter “a” in Fig. 2 and are 
not considered in this paper, since they are 
absent in catalog [15]. However, 7 faint stars 

Fig. 1. The coordinates of the reference radio 
object J(062153.45041807.69) (according to [8]) 

superimposed on the optical image: 
the radio object is shown as isophotes superimposed 
on an image of a region of the optical sky (plate). 

Coordinates for the epoch J2000.0 are plotted  
on the axes. RA is the right ascension (h, min) and DEC 

is the declination (deg, min)

The errors made in the matching radio and 
optical objects are discussed in detail in [12]. 
Identifications of celestial radio sources with 
optical object should take into account the 
parameters of the medium which affects the 
nature of radio wave propagation in interstellar 
and intergalactic media.

According to our procedure for matching 
radio and optical objects [13], identification 
was assumed to be correct if three or more 
radio sources matched the objects visible in 
the optical wavelength range for a given plate 
of one square degree. This is also necessary 
for taking into account the azimuth slew of 
the given plate, often occurring in scans of 
sky regions of one square degree with a radio 
interferometer [14].

Identification of radio objects with stars  
in the Monoceros constellation

We have carried out the first optical iden-
tifications at the National Institute of Astro-
physics, Optics and Electronics (INAOE, To-
nantzintla, Mexico) in 1985, 1990, 1993 and 
1994 using a Zeiss blink comparator with the 
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matching 7 weak radio sources in a plate less 
than 0.2 square meters in size confirms that the 
identifications given in Fig. 2 and in Table 2 
are correct.

The method we have developed for 
matching the radio to the optical sky (the 
LKL method [13]) is based on the data from 
fundamental catalogs of stars [16], and radio 
sources are identified with stars whose density 
and accuracy of measured coordinates are 
sufficient to confidently match the coordinates 
of celestial radio objects to objects detected 
through optical observations. 

The conventional names for stars [16] and 
their equatorial coordinates according to the 
UCAC3 catalog [17] for the epoch J2000.0 
are given in Table 1 (columns 3 and 4). The 
parallaxes for the stars are given in column 5, 
and the stellar magnitudes in column 6.

No single radio source could be identified 
with an optical object in the given region 

of the sky based on the NVSS survey [14], 
while using our method for matching the 
radio objects [13] made it possible to identify 
17 strong radio sources with bright stars  
(see. Fig. 2 and Table 2).

Table 2 shows the equatorial coordinates 
of radio sources at a frequency of 1400 MHz 
(columns 2 and 3) according to the data of [15], 
which we obtained by identifying the optically 
observed stars (see Table 1 and Fig. 2).

The coordinates of radio objects whose 
matches to stars were corrected are given in 
columns 6 and 7 (Table 2).

The numbering of radio sources in Table 2 
corresponds to the numbering of stars in Table 
1 and Fig. 2. Flux density based on the data in 
[15] is given in column 4 of Table 2.

Flux density measurements are available for 
several radio sources located in this plate (see 
Fig. 2), at frequencies ν = 150 – 1400 MHz 
according to catalog [15]. The spectral index of 

Fig. 2. Image of the sky plate with 17 stars (numbered) identified with strong radio sources 
according to the data of radio surveys [9, 14];

celestial objects marked with “a” have been identified with very weak radio sources  
and are not considered in this paper.
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should be added (taking into account the sign) 
to the coordinates measured in the radio range 
(Table 2, columns 2, 3) in order to obtain the 
corrected coordinates of radio objects matched 
to optical objects (Table 2, columns 6, 7). 

Conclusion

Prior to our study, the method for matching 
the radio to the optical sky proposed in the NVSS 
survey [14] proved unsuccessful for matching 
any radio sources to optical objects within the 
given region of the sky [14, 15]; the method 
uses the ICRF2 catalog [8] recommended for 
identifying radio objects with optical ones.

The method for matching the radio and 
optical sky that we have proposed and used 
(the LKL method) increased the number of 
radio sources identified with optical objects by 
tens of times. We have established that radio 
sources are primarily identified with stars. The 
corrections obtained for the radio coordinates 
are due to a number of factors:

Tab l e  1

Names [16] and coordinates of stars according to the UCAC3 catalog [17] for the epoch J2000.0  

Star RA(J),
h   m   s  

DEC(J)
deg, min, s

ε Pos
mas

Mag
mNo. Name

1 HD 44286 06 20 50,466 –04 35 43,70 1270 6,68
2 HD 44335 06 21 10,845 –04 21 00,18 10 7,84
3 HD 44457 06 21 43,488 –05 18 34,15 26 8,92
4 HD 294985 06 21 58,328 –04 26 14,34 34 9,02
5 HD 44546 06 22 10,445 –04 45 13,06 11 7,92
6 HD 44565 06 22 10,867 –05 10 20,73 29 8,80
7 HD 44566 06 22 12,414 –05 16 31,21 26 8,38
8 HD 294989 06 22 17,423 –04 42 10,80 21 10,74
9 HD 44620 06 22 31,967 –05 04 53,95 91 8,18
10 HD 44619 06 22 32,671 –04 51 26,77 18 9,02
11 HD 44678 06 22 49,984 –04 58 25,83 32 8,30
12 HD44702 06 22 59,160 –04 11 13,50 22 8,50
13 HR 2295 06 23 22,793 –04 41 15,20 376 6,89 
14 HD 44841 06 23 53,623 –04 43 43,88 102 6,99
15 HD 44856 06 23 53,863 –04 48 09,35 32 9,29
16 HD 295031 06 24 31,450 –04 27 58,40 42 8,44
17 HD295031 06 25 01,010 –04 40 00,00 20 10,08

Note. The numbers of the stars correspond to those shown in Fig. 2.

Notations: RA(J) is the right ascension, DEC(J) is the declination, ε Pos mas is the optical 
parallax, Mag m is the stellar magnitude.

radio emission α was calculated for these ob-
jects (Table 2, column 5). The radio spectrum 
of these stars turned out to be non-thermal; 
the radio flux density is P ~ ν–α,  where ν is the 
frequency of observation in the radio range.

Table 3 shows corrections to the 
coordinates of radio sources for three groups 
of objects. These corrections have different 
values because the given objects are located 
at different distances from the observer and 
because of the apparently significant radio 
refraction in this direction of the interstellar 
medium. The numbers of radio sources in 
each of the three groups are given in column 
1 and correspond to the numbers in Tables 1, 
2 and in Fig. 2. 

These corrections have different values 
because the given objects are located at different 
distances from the observer and because of the 
apparently significant radio refraction in this 
direction of the interstellar medium. 

These corrections (columns 2, 4, Table 3) 
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Tab l e  2 

Data comparison for radio sources in the NVSS survey and the corrected matches to the stars

No.

 NVSS data [14, 15]] Corrected coordinates
RA(J)
h  m  s  

DEC(J)
deg, min, s    

P 
MJy

α RA(J)
h  m  s  

DEC(J)
deg, min, s

1 06  19 13,97 –04  35 53,2 13,5 0,60 06  20 48,8 –04 34 50,0

2 06  19 37,76 –04  22 21,0 46,7 0,70 06  21 12,7 –04 21 17,8

3 06  21 54,53 –05  27 22,6 26,7 0,86 06  21 47,6 –05 18 15,0

4 06  20 26,93 –04  27 13,1 51,7 – 06  22 01,4 –04 26 09,0

 5 06  22 20,51 –04  53 57,6 319* – 06  22 08,8 –04 44 49,3

 6 06  22 17,87 –04 55 48,8 37,7 – 06  22 12,0 –05 10 03,5

7 06  22 23,71 –05 19 10,8 23,9 0,57 06  22 15,0 –05 16 25,0

8 06  22 26,70 –05  25 32,0 15,3 – 06  22 10,9 –04 41 38,8

9 06  22 47,48 –05  01 03,7 7,3 0,80 06  22 22,0 –05 05 14,4

10 06  22 28,50 –05 19 25,5 46,1 – 06  22 35,8 –04 52 00,0

11 06  22 42,36 –05 11 27,4 10,0 – 06  22 49,3 –04 57 17,0

12 06  21 19,50 –04 12 33,1 8,8 – 06  22 54,4 –04 11 29,0

13 06  23 17,87 –04 55 48,8 37,7 0,40 06  23 24,7 –04 41 38,1

14 06  23 43,57 –04 58 28,2 246,8 0,80 06  23 50,4 –04 44 18,2

15 06  22 21,56 –04 49 43,4 60,7 0,60 06  23.55,8 –04 48 49,4

16 06  24 38,40 –04 37 41,5 114,9 0,75 06  24 26,7 –04 28 34,5

17 06  24 49,73 –04 53 59,5 174,4 0,70 06  24 55,8 –04 39 49,0

No t e . The numbers of the stars correspond to those shown in Fig. 2 and in Tables 1 and 2.

No t a t i on s : P is the flux density of radio objects, α is the spectral index of radio emission of these objects 
(P~ ν–α, ν is the frequency of observation in the radio range). The rest of the notations are given in Table 1.

Tab l e  3 

Corrections for coordinates of radio objects matched   to optical data for stars 

Star number
ΔRA ±σ1 ΔDEC ±σ2

  m    s  s min, s s

1, 2, 4, 12, 15    1   30 2.9 –10   00  35.5

8, 9, 10, 11, 13, 14, 17  –7 1.3  –14  00  15.2

3, 5, 6, 7, 16         10 1.2    –7  00  10.6

Notes. 1. The numbers of stars correspond to the ones in Fig. 2 and in Tables 
1 and 2.
2. To obtain the corrected coordinates for each star, the corrections have to be 
added (taking into account the sign) to the coordinates of the radio source from 
the NVSS survey [14, 15] (see Table 2). 

No t a t i on s : σ is the absolute correction error. The rest of the notations are 
given in Table 1.
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objects;

accuracy in measuring radio coordinates;
presence of radio refraction in the given 

region of space. 
Our findings are conclusive proof that 

optical identifications for the NRAO (National 
Radio Astronomy Observatory, VA, USA) and 
DSS (Palomar Observatory, CA, USA) surveys 
should not be performed based on coordinate 
matches of radio sources and objects visible 
in the optical wavelength range, since these 
matches are incorrect. Each one-degree 
astronomical plate scanned in the NVSS survey 
should be matched to the optical sky using the 
LKL method, regardless of the given coordinate 
match.

Applying the proposed method yields 
correct information about the astrophysical 
characteristics of the identified objects in a 
wide wavelength range (for radio and optical 
objects).

Based on the results obtained, we have 
resolved the paradox that stars do not emit 
radio waves. Given the correct identification 
of radio and optical skies, 17 stars brighter 
than 11m were matched in the plate under 
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