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Abstract. In the paper, the calculation results of the shock wave — isoentropic vortex
interaction have been presented. A complex nonstationary shock wave pattern was analyzed.
The influence of the scheme for approximating the convective flows on the solution accuracy
was shown to be weak. The results of calculations conducted using some extra accuracy
schemes are presented: the data obtained by the second-order TVD scheme and the fifth-order
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TECTUPOBAHMUE CXEM I'IOBbII.I.IEHHOFi TOYHOCTU HA
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Annoramusa. [lpencraBieHbl pe3ynabTaThl pellIeHUs] 3ada4d O B3aUMOAECUCTBUU yIapHOM
BOJIHBI Y U303HTpOMNUYecKoro Buxps. [IpoaHanu3upoBaHa cioxHasi HecTallMOHapHas yAapHO-
BoJHOBasi kKapTuHa. [lokazaHo ciaboe BIWSIHME CXEMBbl AMMPOKCUMAIIUA KOHBEKTHBHBIX
MOTOKOB Ha TOYHOCTh pacueToB. IIpeacTaBiieHbl pe3yabTaThl PACUYETOB, ITOJYYEHHBIX C
MPUMEHEHNEM CXEM MTOBBIIIEHHOW TOYHOCTHU: TIPOBEAECHO CPABHEHUE PE3YJIBTATOB, MTOTYYEHHBIX
¢ ucnonbzoBaHuem cxeM TVD Broporo nopsinka 1 WENO mnisitoro mopsinka. YCTaHOBJIEHO, YTO
HauboJyiee TOUHOE BOCCTAHOBJIEHUE CTPYKTYPbI BUXPS MOCJIE€ €r0 B3aMMOJEUCTBUS C yIapHOU

BOJIHOI JOCTUTaeTCsl MpU pacueTax ¢ ucrnojb3oBaHueM cxemMbl WENO.

KioueBble ciioBa: ymapHO-BOJHOBOE B3aMMOICHCTBUE, W309HTPONUUYECCKUA BUXPb,

YUCJICHHOC MOICIMPOBAHUEC, METOA KOHCYHBIX O6’bCMOB, CXEMa IIOBBIIIEHHON TOYHOCTU

© Babich E. V., Kolesnik E. V., 2024. Published by Peter the Great St. Petersburg Polytechnic University.
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Introduction o )
One of the central problems of modern gas dynamics concerns the initiation and evolution of

turbulent supersonic flows, arising, in particular, for vortex shedding from supersonic airfoil [1],
for intake vortices shed by upstream surfaces [1], or for two intersecting bow shocks producing
thin vortex layers that interact with reflected shock waves.

Problems of this type are generally very complex, and modern approaches are needed to accu-
rately resolve various gas dynamic structures. For instance, simulation methods should provide
such numerical dissipation which, on the one hand, would allow suppressing non-physical oscilla-
tions near discontinuities, and on the other hand, would be sufficiently small so as not to interfere
with resolution of vortex structures.

The model problem of the interaction between shock waves and vortices is often used to test
such methods [2]. When a plane shock wave collides with a vortex, this generates a perturbation
propagating along the shock wave and deforming it. The flow field locally contracts and expands
behind the curved shock wave, forming acoustic waves. These interesting phenomena occurring
in laminar flow are closely related to interaction of shock waves and turbulent vortices, which is
one of the main sources of noise.

Therefore, the problem of interaction between a shock wave and a vortex is of fundamental
importance, with potential implications for accuracy estimates of various numerical schemes,
which can later be used to solve more complex practical problems.

The goal of this study is to analyze the influence of schemes for approximating convective
fluxes on the resolution quality of the flow structure, additionally evaluating the effectiveness of
variable reconstruction schemes with increased accuracy.

The first experimental studies on the interaction between a vortex shed in the wake of a
model airfoil and a shock wave propagating in a shock tube were carried out by Hollingsworth
and Richards [3], and later by Dosanjh and Weeks [4]. The vortex was found to contract into
an elliptical shape after passing through the shock wave front, with the major axis of the ellipse
approximately equal to the diameter of the starting circular vortex, and the ratio of the major to
the minor axis approximately equal to the ratio of densities on different sides of the shock wave.
In turn, Naumann and Hermanns [5] conducted an experimental study in a shock tube, establish-
ing that the deformation of the vortex corresponds to either regular or Mach reflection depending
on the vortex intensity.

Guichard et al. [6] numerically solved the problem on the interaction of a vortex and a shock
wave using a compact 6th-order scheme. The shape of the vortex was modified, and a triple point
was detected, along with an increase in vorticity after the interaction. We should note that even
though a large amount of evidence has been accumulated, some aspects, such as the influence of
the applied scheme on the accuracy of the solution and the dependence of the solution structure
on the intensity of the vortex, are yet to be fully explored [7].

Particulars of problem statement

Consider the two-dimensional problem of the interaction of a single cylindrical isentropic
vortex with a shock wave. In this case, unsteady gas flow containing discontinuity surfaces, i.e.,
bow shocks (in addition to the main shock wave), and contact surfaces is simulated. The com-
putational domain (Fig. 1,a) is a rectangle with the dimensions [—1, 1] x [0, 1]. The coordinate
system x0y is associated with a shock wave whose front at the initial time (# = 0) is stationary and
located in the section x, = 0, while the center of a two-dimensional isentropic vortex is located
at a point with the coordinates (x,, y,) = (0.5, +0.5).

© babuu E. B., Konecnuk E. B., 2024. U3znarens: Cankr-IlerepOyprckuii monurexuuueckuit yausepcutet [lerpa Benmkoro.

9



4 St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2024. Vol. 17. No. 2

| >
a) b)
1.0
Y
1.0
0.5
0.5 0.0
3 -0.5
3 \ _—M,
0.0 : -
—-1.0 —0.5 0.0 1.0 X s p/p,
Shock wave M, =3 p/ps

Vortex M, = 0.8
N -4.0 -2.0 0.0 2.0 4.0 r/r

Fig. 1. Problem statement for interaction of shock wave with isentropic vortex:

a corresponds to the computational domain (M is the shock-wave Mach number,
r, is the effective radius of the vortex); b shows distributions of the vortex Mach
number M, pressure and density (normalized quantities) in the vortex cross section
The green arrow shows the direction of the vortex propagation

The working fluid is a perfect gas with the adiabatic index y = 1.4. The main parameters of
the problem: M is the Mach number characterizing the intensity of the shock wave, M = u /c
(u_ is the flow velocity in front of the wave, ¢ is the speed of sound); V' = W(r) is the velocity
profile of the cylindrical vortex (r is the distance from the center of the vortex); M, is the Mach
number characterizing the intensity of the vortex, M, = V /c (V is the maximum velocity on
the profile); r, is the effective radius of the vortex (determined by a point on the velocity profile
where W(r)) =V ).

The velocity profile of the vortex (Fig. 1,b) is given by the formula

V(r)=V, (r/1)exp {#}

where r:\/(x—x,,)2+(y—y,,)2.

The remaining parameters of the problem have the following values: My = 3; M, = 0.8;
r, = 0.075.
’ The initial field is obtained by adding a cylindrical vortex to the background flow in front of
the shock wave. First of all, let us define the shock wave field. The parameters before the shock
wave front are subscripted by 1, and those behind the front are subscripted by 2:

P y=1)M:+2
u, =M; p_lla U, =0, u,, :uxl((,y_'_)l—);l;’ Uy, =0,

y+1)M; 2yM: —(y-1
p=Lp =L pz:pl(y(_l)%’ » = 1%
s

where u are the velocities, p, are the pressures, and p, are the densities.
If a vortex is introduced, the parameters in the region in front of the shock wave are deter-
mined by the following formulas:

ux :ux1+(y_yV)f/r09 uy :uyl+(x_xV)f/r09

10
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1/(y=1) y/(y-1)

p=p8 s P=D& 5

2
where f(r)=V, exp{ﬂ}, g(r) :I—M-fz.
2 2yp,

In accordance with the recommendations given in [2], the problem is solved taking into
account the influence of gas viscosity, therefore allowing to eliminate the instability of contact
discontinuities for high-order approximation schemes, contributing to a smoother flow structure.
Respectively, the Reynolds and Prandtl numbers are equal: Re = 104, Pr = 3/4. The physical
viscosity p is assumed to be constant and equal to

n=pu,2r,)/Re.

A condition for flow symmetry is imposed at the upper and lower boundaries of the region, a
supersonic inflow is set at the left boundary, and a subsonic outflow at a given pressure is set at
the right boundary.

Computational aspects

The unstructured-grid finite-volume SINF/Flag-S code, developed at Peter the Great
St. Petersburg Polytechnic University and validated in numerous tests over the years, was used
for the computations [8].

The complete 2D Navier-Stokes equations for thermally and calorically perfect gas were solved.
convective fluxes at the face of the computational cell in the Navier—Stokes equation were cal-
culated by shock-capturing methods, smearing the discontinuity surfaces on a certain number of
grid cells due to numerical viscosity (scheme dissipation) whose effect is similar to the effect of
physical viscosity.

This study tested methods based on the exact or approximate solution of the Riemann problem
on the breakdown of an arbitrary discontinuity (Godunov [9], Roe [10], HLL [11], HLLC [12])
as well as methods using flux vector splitting of the flow vector (in particular, the AUSM-family
schemes [13]).

The reconstruction of variables at the face was carried out using quasi-one-dimensional
second-order TVD schemes with a van Albada limiter [14]. Calculations were also carried out by
the WENOS5 scheme with fifth-order accuracy for smooth solutions on a uniform grid (proposed
in [15]). The advantage of the WENO-family schemes, which are currently considered the most
effective for problems with discontinuities, is that they combine increased accuracy for smooth
solutions and limited generation of discontinuity oscillations [15].

The computational mesh consisted of square cells of size Axh. A sequence of meshes with the
step & = 17200, 1/400, 1/500, 1/600, 1/800 was considered in this paper.

Computing resources of the Polytechnic Supercomputer Center (www.scc.spbstu.ru) were used
for the computations.

Computational results

Structure of the flow. The evolution of the flow structure during the interaction of the vortex
with the shock wave is shown in Fig. 2 (simulation by the AUSM scheme using a reference grid
with a spacing # = 1/800, reconstruction was carried out by the second-order TVD scheme).

At the initial time, the vortex was located at some distance from the shock wave and rotated
clockwise. At time ¢ = 157.50 ms (Fig. 2,b), the vortex passed halfway through the shock wave,
flattened due to high pressure and took the shape of an ellipse. As the pressure gradient inside the
vortex is lower than in the external flow, the wave front should curve, since the pressure drop in
the oblique shock wave is smaller.

By the time ¢ = 183.75 ms (Fig. 2,c), the vortex completely passed through the shock wave
front. A triple point appeared on the wave front; the Mach stem impinged on the vortex, sepa-
rating the external region with elevated pressure from the region with reduced pressure inside the
vortex. The intrinsic velocity of the vortex in its upper part is summed up with the velocity of
incident flow, producing a region of supersonic flow (colored in black in Fig. 3,c).
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Fig. 2. Time evolution of problem solution: fields of the density gradient magnitude (Schlieren
visualization). The time points (ms) are given in the graphs. The solution was obtained using the
AUSM scheme and a grid with 2 = 1/800
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4 Simulation of Physical Processes

After t = 262.50 ms (Fig. 2,e), the triple point generated two contact discontinuities: the first
one continued to rotate clockwise (Fig. 2, d), and the second, weaker, one rotated in the opposite
direction. The distorted vortex generated acoustic waves, some of which turned into weak shock
waves with a curved front (Fig. 2,/). A configuration consisting of two contact discontinuities with
opposite vorticity vectors rotated clockwise around some axis. As the vortex moved forward, its
shape changed from elliptical to circular, but its intensity became twice as high as at the initial
moment due to high pressure. As the vortex moved away, the shock wave front was smoothened,
and the contact discontinuities separated from the triple point. The contact discontinuity rotating
counterclockwise weakened significantly (Fig. 2,4).

The influence of grid spacing. Below we consider the influence of grid spacing /# on the
problem solution for the time when the vortex completely passed through the shock wave front
(t = 446.25 ms). Fig. 3 shows the fields of the flow parameters at this time, calculated using the
most refined of the grids considered (2 = 1/800), and Fig. 4 shows schlieren images obtained by
calculations using the AUSM scheme with a sequence of refined grids. Evidently, the two contact
discontinuities are significantly further away from each other on the coarsest grid (4 = 1/200)
than in the reference solution for the grid with # = 1/800, while the resulting configuration is very
close to the reference one for the grid with 2 = 1/400. Furthermore, the more refined the grid,
the more pronounced the contact discontinuities, shock waves and weaker acoustic perturbations.

a)
Y
10
08}
06} A
0.4 F
02}
005 05 0.0 0.5 X
<) d)
Y ¥
1.0 10
0.8 08}
0.6 06| &
(]
0.4 04
0.2 0.2
X 090 0.5 0.0 0.5 X

Fig. 3. Problem solution for time ¢ = 446.25 ms for 1/800 grid spacing: schlieren imaging (a);
fields of pressure, Mach number and vorticity vector projected on the z axis, respectively (b, ¢, d)

To compare the results quantitatively, we determine the integral computational error in the
region Q including a distorted vortex (0.24 < x < 0.40, 0.46 < y < 0.62). The integral computa-
tional error ¢ is determined by the formula

b 2
e
i-iljz,;(pi’j Py 1100%

(iZ_il)(jZ_jl) P2
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Fig. 4. Schlieren images for time ¢ = 446.25 ms for calculation by AUSM scheme
for grids of different resolutions: 2 =1/200 (a), 1/400 (b) and 1/800 (c)

where p, . pr7

are the average densities for the cell (i,j), respectively, in the given calculation

and in theé reférence solution (the solution obtained by the AUSM scheme for the grid with 4 =

1/800 was taken as reference).

It can be seen from Table 1 (calculations by the AUSM scheme) that the integral error

decreases rather quickly for more refined grids.

The second important criterion for comparing the results obtained with different grids is the
integral entropy £ over the region Q, or rather its positive (£*) and negative (£) components:

Q
Table 1

Effect of grid spacing on integral
characteristics in calculations using
two variable reconstruction schemes

OE" | dE
%

h g% £ | E

TVD scheme
1/200 6.2 | 25122747 | 31
1/400 231391(294| 16
1/500 1.3 142 (309 11
1/600 0344 |318| 5| 4
1/800 — | 4.7 [33.0] —

WENQO-5 scheme

1/200 2.92(33 (2723018
1/400 122143 (319| 8 | 3
1/800 (TVD)| — | 4.7 |33.0] — | —

Notations: 4 isthe grid spacing; ¢ is the integral
computational error; E* and E~ are the positive
and negative components of entropy; 8 £ and 8 £~
are the corresponding errors of the quantities.
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E=| [%Mj dxdy, E- j[ |°’|j dxdy.

A positive value corresponds to a weaker con-
tact discontinuity, and a negative value corre-
sponds to a stronger one. The entropies obtained
in the calculations with on grids of different
dimensions, the entropy values are compared
with the values obtained in the reference calcu-
lation, and relative errors are calculated:

‘E* E

ref

-100%,

+
href

‘EE

OF -100%.

hnff‘

Table 1 compares the integral error as well as
the positive and negative components of entropy
and their relative errors for solutions obtained
using grids of different resolutions. Analyzing the
data given in Table 1 for the calculations by the
AUSM scheme, we can conclude that the abso-
lute components of entropy grow monotonically
with a decrease in grid spacing 4. Furthermore, a
faster drop in the relative entropy error is observed
compared with the drop in integral error.
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Fig. 5. Problem solution obtained on grid with spacing 2 = 1/200
using different methods for approximation of convective fluxes:
Roe (a), HLLC (b), AUSMD (c), Godunov (d), AUSM (e), HLL (/)
The reconstruction of variables on the face was carried out for all cases
by the TVD scheme [16] with the van Abada limiter [14]

Comparison of methods for calculating convective fluxes. Fig. 5 shows the fields of the
relative density gradient for the grid spacing 42 = 1/200, constructed from the calculations
using various methods for approximating convective fluxes. The reconstruction of vari-
ables at the face was carried out for all cases by the TVD scheme [16] with a van Albada
limiter [14].

Comparing the integral computational error for various methods of approximating convective
fluxes (Table 2, data for the TVD scheme), we find that the Roe scheme apparently yields the
minimum error. However, it is worth noting that the difference in the values of the integral error
¢ does not exceed 1% for all considered methods. The dependence of the entropy components on
the method selected turns out to be stronger: the difference between the most and least accurate
schemes is 20% in terms of positive entropy and 10% in terms of negative entropy. Analysis of
the field picture of the relative density gradient (see Fig. 5) indicates that more accurate solu-
tions, obtained by schemes with lower dissipation (Roe schemes, HLLC), exhibit large numerical
oscillations behind the shock wave front, whereas more dissipative schemes (HLL, AUSM) give
smooth solutions. The HLL scheme turned out to be the least accurate, strongly smearing the
second contact discontinuity (Fig. 3,/).

Comparison of schemes for reconstruction of variables with increased accuracy. High-
order approximation schemes are known to have only first-order accuracy at the shock wave
front [17]. However, a more accurate solution can be reconstructed in smoother sections
using WENO-family schemes, which should lead, in particular, to smaller vortex dissipa-
tion in this scheme. To process the discontinuities correctly, monotonicity is preserved in
this scheme family by weighing several reconstructed values taking into account smoothness
indicators [14].
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Influence of method for approximation of convective fluxes

Table 2

on integral characteristics of problem solution

| - —— - §E WENO

251

20

Relative error, %

>

Table 1 also shows the results obtained in
calculations with grids spacings 2 = 1/200 and
1/400, using the WENOS5 scheme for variable
reconstruction. The AUSM scheme was used
as an approximation scheme for convective
fluxes. Comparing the integral errors obtained

Fig. 6. Dependences of relative error
on grid spacing obtained from calculations
of integral characteristics, compared
for different reconstruction schemes

the second-order TVD schemes.

16

Method % | EY | E O (L) OF
TVD scheme

Roe 5.60 1271225 42 | 32

HLLC 5770 12.47 1228 | 47 | 31

AUSMD 6.06 |2.51(22.6| 46 | 32

Godunov 5791249 123.0| 47 | 30

AUSM 6.22 1247227 47 | 31

HLL 6.53[1.80[19.0| 62 | 42

AUSM (h=1/800) - 1469330 - -

WENQO-5 scheme

Roe 2.921330|22.5| 29 16

HLLC 3.02 1340228 | 28 16

AUSMD 2.7913.30|22.6| 29 17

Godunov 2.69(3.40|23.0| 28 16

AUSM 2.98(3.30|22.7| 30 18

HLL 3.5613.00|19.0| 37 | 20

AUSM (h=1/800) - 1469330 - -

| ———— £ TVD
- ———— SE'TVD
——~—— SETVD
| - —— - ¢WENO
— —— - SE'WENO |

in the calculations using TVD and WENO
schemes (see Fig. 6 and Table 2), we can see
that the relative computational errors for all
integral characteristics are on average half as
small for the solutions obtained by the WENO
scheme compared to those obtained by the
TVD scheme even in the case of sufficiently
coarse grids.

Fig. 7 and Table 2 give the solutions obtained
with the grid spacing 2 = 1/200 and WENO-5

reconstruction for various schemes for approxi-
mating convective fluxes. Analyzing these results,
we can conclude that significant numerical oscil-
lations are observed behind the shock wave front

in the solutions obtained by the WENO scheme,
despite the better resolution. However, as in the case of TVD schemes, the solution becomes
smoother when more dissipative methods are adopted for calculating convective fluxes. Therefore,
combining WENO-5 and HLL (or AUSM) schemes may be a suitable option to obtain a suffi-
ciently smooth solution to the problem, likely to be more accurate than those produced by any of
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Fig. 7. Problem solution obtained on grid with spacing # = 1/200
using different methods for approximation of convective fluxes:
Roe (a), HLLC (b), AUSMD (c), Godunov (d), AUSM (e), HLL (/)
The WENO-5 scheme was used for all cases

Conclusion

We solved a two-dimensional problem of the interaction of a shock wave and an isentropic
vortex. The unstructured-grid finite-volume SINF/Flag-S code developed at Peter the Great
Polytechnic University was used for the calculations. The results obtained using various schemes
for approximating convective fluxes (Godunov, Roe, HLL, HLLC, AUSM, AUSMD) were com-
pared. The influence of the scheme for variable reconstruction at the faces (second-order TVD
and fifth-order WENO) was also analyzed. The problem was tested for a sequence of refined
grids, where the solution for the most detailed one was considered as reference.

The weak influence of the method chosen for approximating convective fluxes on the integral
computational accuracy was confirmed qualitatively and quantitatively. However, the degree of
numerical oscillations in the solution varies: schemes with lower dissipation (Roe, HLLC) pro-
duce strong numerical oscillations behind the shock wave front, whereas more dissipative schemes
(HLL, AUSM) yield a smooth solution.

We established a significant dependence of the computational accuracy on the variable recon-
struction scheme: the solutions obtained using the WENO-5 scheme are several times more
accurate than those obtained using the TVD scheme. A high level of dissipation in second-order
schemes apparently leads to an artificial decrease in vorticity and less accurate resolution of the
vortex structure. One of the approaches to suppressing strong numerical oscillations occurring
behind the shock wave front consists of combining a high-order WENO scheme with a more dis-
sipative method for approximating convective fluxes. With this combination, the integral accuracy
of the solution is preserved but the oscillations become weaker.
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Introduction

Full-scale dynamic testing of building structures remains a crucial problem, especially for
unique structures, such as dams. Experimental assessment of dynamic characteristics (natural
frequencies, mode shapes, relative damping ratios) and monitoring of these characteristics allows
to control the safety, strength, integrity of the structure as well as to identify substantial changes
without resorting to specialized devices or visual inspection of each structure.

Operational modal analysis (OMA) comprises an entire group of methods aimed at experimen-
tally determining the dynamic characteristics of structures under normal operating conditions.
These methods have become increasingly widespread for diagnostics of dynamic characteristics
in various structures as advances are made in measuring and recording systems. A particular
popular method of the OMA group is Frequency Domain Decomposition (FDD) [2—4]. The
FDD method and the ARTeMIS Modal software based on it have been adopted since 2019 by
the scientists of the B.E. Vedeneev All-Russian Research Institute of Hydraulic Engineering
(St. Petersburg, Russia) [9].

In addition to determining natural frequencies and mode shapes, the EFDD method expand-
ing the capabilities of FDD also offers an algorithm for determining damping ratios [4—6], how-
ever, it is rather complex, often yielding large errors.

A simpler, more accurate algorithm is proposed in this paper for identifying the
damping parameters.

Our goal was to formulate and theoretically substantiate a new method for finding damping
ratios based on vibration surveys.

The FDD method is described in detail in [2, 3, 7], and its theoretical framework is formulated
in [1]. The algorithm of this method consists of the following mandatory steps.

Step 1. A cross-spectral density matrix (CSDM) G (co) of simultaneously measured vibration
signals is calculated for each frequency o of a given range

Step 2. A singular-value decomposition (SVD) of the matrices Gy(o)) is performed at each
frequency o, their first singular value ¢ (w) is determined, and a frequency function of the first
singular value is constructed, averaged over all measurements.

Note that the main idea of the FDD algorithm (see, for example, [2, 3, 7]) is that the first
singular value o (o) of the matrix G (m ) has local maxima near modal frequen01es The mathe-
matical Justlﬁcatlon for this was glven in [1]. Alternatively, we use the function o (o) to determine
the logarithmic decrements corresponding to each natural frequency.

Theoretical justification of the procedure for determining logarithmic decrements

The response y(f) of the system is uniquely decomposed into their linear combination (due to
the linear independence of the eigenmodes):

YO =0,-¢,()+0,-q,() +...= D q(?). (1)

As found in [7], if white noise is considered as external force, and dissipation is assumed to be
small, the following expression holds true for CSDM Gy(oa):

" Cn PP, Cn PP : c i
G (0)= ot T nin —@-diag| 2Re N @, 2
(©) Z{ io—X, T i A s io—X\, @
where A is the pole,
7\’m = _ym +i(’0dm’ (3)

¢, is the eigenmode; ® is a matrix whose columns are eigenvectors, ® = [¢,, 9,,...9,|; M is the
number of modes accounted for in decomposition (1); ¢, is a positive coefficient; 7 is the imagi-
nary unit; H is the Hermitian conjugate.

© AunppuanoBa E. A., 2024. Uznatens: Cankr-IleTepOyprckuit momutexHuyeckuit ynusepcutet [lerpa Benmkoro.
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4 Simulation of Physical Processes

The component o, of expression (3) is the natural frequency accounting for damping. In
expression (4), o, is the natural frequency without accounting for damping; ¢, is the damping ratio.
Next, we introduce the notation

o, (0)= 2Re( En ] = ¥ (5)

io-\, - (0-o, )V +y,

Notably, modal vectors ¢ _ in expression (2) are assumed to be normalized, since the coef-
ficient o contains, according to expression (5), a constant ¢, that can be supplemented with a
normalization factor.

Then expression (2) can be written as follows:

G, (0)=®-diag(a,, (w)) @", (6)

or

G, (0)=) 00,0, (7)

m=1

Dynamic testing of the structure can be used to calculate the CSDM of the measured signals
over a certain frequency range; next, the SVD of these matrices can be used to obtain the fre-
quency function of the first singular value [10—12].

It was proved in our earlier study [1] that the natural frequencies of the structure considered
are located near the local maxima of this function. This paper proposes and substantiates a
method for determining the damping ratios based on an experimentally constructed function of
the first singular value.

An obvious idea is to compare the analytical expression for the first singular value and the
experimentally constructed function [14]. Even though there is no general analytical expression

for the first singular value of CSDM, a fairly good analytical approximation can be obtained
under certain conditions.

Consider two main cases when it is possible to obtain such an approximation.

Case of single natural frequency. Here, the response y(#) of the system (see Eq. (1)) in the
vicinity of some natural frequency (let us denote it as o,) is determined mainly by eigenmode
with the same number. Then the following relation holds true:

Y(t) ~O,-4q, (t)a (8)

and the expression for the CSDM given by Eq. (4) can be rewritten as:

Gy ((’0) ~ (x‘s(PS (P.Is_l' (9)

Evidently, Eq. (9) holds true when the values of the functions o (o) significantly exceed the
other values o (o) in the vicinity of the frequency o,. Now let us find the conditions under which
this requirement is satisfied.

Consider the properties of functions o (®). It can be seen from expression (5) that these
functions depend on the corresponding natural frequencies and damping ratios. They have one
maximum each, reached at the corresponding natural frequency.

Indeed (see our study [1]), determining the extreme values of the functions a (), we obtain
foro=o,

a’m((’odm)zcm/ym’ (10)

We introduce the notation for the minimum distance d_on the frequency scale between the
frequency o, and the rest of the natural frequencies w, , namely:
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d, =min
m#s

@4 = Oy |- (11

Then the following relation holds true for the frequency o, with all m # s

¢,y c, /vy
a 0) S mim — m m .
A0S T T @y (2
Now let us introduce the notation
d,
Fom = d /ym - (13)
O‘)Om C-'m
Comparing relations (12) and (10), we can see that the condition
a‘s ((’Ods) >> am ((’Ods) (14)
is satisfied if
r,, >>1, for all s # m. (15)

Therefore, as condition (15) is satisfied, only one term in expression (7) can be taken into
account, i.e., the CSDM is calculated by Eq. (9).

An analytlcal expression can be constructed for the first singular value pf the CSDM G (0))
described by expression (9). The matrix Gy(m) is evidently square and symmetrical (it is Hermitian
for complex modes). The rank of the matrix G (m) equals unity (since the rank of the product of
the matrices does not exceed the ranks of the multlphers) therefore this matrix has no more than
one eigenvalue other than zero.

We find it by defining the eigenvalues. Let u be the eigenvector and A the eigenvalue of the matrix
Gy(m) ; then, by defining the eigenvector and the eigenvalue, we obtain the following equality:

G, (®)u =Au, (16)

then,

o0, 0, u =00 (P, u) =0, (p)u)p,=Au. (17)

An immediate consequence of equality (17) is that the only nonzero eigenvector u = ¢, and
the eigenvalue A =a ||(p || Evidently, 1 > 0, since the coefficient ¢ > 0. Consequently, the
matrix G (03) is p0s1t1ve semi-definite, arzld then (since it is also Hermltlan) its singular values
coincide with its eigenvalues. SlnceégpY 1, then, apparently, o, coincides with o_. Therefore,
the maximum singular value of the CSDM in the vicinity of natural frequencies can be written as

G =Q = csys _ CS'YS
: ’ ((,‘)_("‘)ds)2 +YS2 (O‘)_O‘)ds)2 +O)0S2'€S2 ‘ (18)

Furthermore, the natural frequencies accounting for damping (o,) and without it (w,) prac-
tically coincide for small damping ratios.

If we compare the function of the first singular value, obtained by processing experimental
data, with analytical dependence (18), we can estimate the logarithmic decrements. Let us rewrite
Eq. (18) in the following form:

A
(0-0,)" +o,’ B’ '

(19)

G, =
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4 Simulation of Physical Processes

Then we use the least squares method (for example), making it possible to determine the coef-
ficients A4 and B that approximate the analytical function o, as close as possible (see Eq. (19)) to
the experimentally obtained dependence in the vicinity of some natural frequency. The value of
the parameter B apparently corresponds to the damping decrement.

The case of two converged natural frequencies. Let us now consider the second case, when the
values of two natural frequencies numbered k and k + 1 (o, and o, ) are located close to each
other (such frequencies are generally known as converged in the literature), i.e., condition (15) is
not satisfied for frequencies with these numbers.

However, if condition (15) is satisfied for all other natural frequencies, except for frequencies
numbered k and k£ + 1, then CDSM can be calculated by Eq. (7) with only two terms:

k+1

G, ()= 0,0,0,. (20)

m=k

or the matrix has the coordinate form

RS (1) < M, ,(2) < 1, (N)
N
Za Oy >a,el el Do, 0l el
k+1 k+1 k+1
2) (D) (2)2 (2) (N)
G | 2000 2 e, () 2.2, 0,9,
— | m=k m=k m=k . (21)

k+1 k+1 k+1

Za (P(N) M Za (p(N) (2) Zam((PEnN))Z
m=k a

This matrix has the dimensions N x N, and it is difficult to find its singular values (or
eigenvalues) analytically.
To simplify the task, we compose a Gram matrix (denoting it as K) based on the vectors

o, @, and (o, @, .

The matrix K has the following coordinate form:

K _ OLk \] 0Lkockﬂ ((pk s (pk+1)
VOO (@r,150) Oy

This matrix, like the matrix G is Hermitian and positive semi-definite (a property of the
Gram matrix). A proof that nonzero eigenvalues of the matrix Gy coincide with the eigenvalues
of the matrix K (the Gram matrix constructed from the corresponding vectors) was given in [1],
and the eigenvalues of the matrices K and G coincide with their singular values. Thus, the first
singular value of the matrix G_ is equal to thé spectral radius of the matrix K.

In this case, the matrix K has the dimensions of 2 x 2, and we can easily construct an analytical
expression for the value of its spectral radius [16]:

(22)

_ tr(K)+tr’ (K) - 4det(K)

(23)
2
Since it follows from the expression for matrix (22) that
det(K)=0,0,,, —a,0,,, |((pk, (24)
tr((K)=0a, +a,,,, (25)
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we obtain the following expression for the spectral radius of the matrix K (and therefore, for the
first singular value of the matrix Gy):

>

2
O T, +\/(ak —oy,)’ a0, |((Pk P )| (26)
5 .

c, =

It follows directly from Eq. (26) that if ¢, is orthogonal to ¢,, , then &, = max a., , regardless of
whether condition (15) is satisfied. i=kodrd

Fig. 1 shows graphs of functions ¢, and o, calculated for a system with three degrees of free-
dom. Evidently, in the vicinity of the first natural frequency o,, function of the first singular value
o, coincides well with the function o, in a fairly wide frequency range (7, =12.7 in this example).
However, the behavior of the function o, changes for the second and third natural frequencies (
1y, =0.85, 15, =1.7, respectively), while the greatest difference between the graph of this function
and the corresponding graphs of functions a, is observed in the frequency range corresponding to
the interval between the maxima of the curves for the functions a, and a,.

0’1,0(,' T T T

Fig. 1. Behavior of first singular value o, compared with functions o(w)
for system with three degrees of freedom (o, — ©,)

Note that expression (26) is simplified at the point of intersection of the curves for o, and o
(o, and a, in the example):

k+1

o, =o,(1+ |((Pk 5P )|) (27)

In other cases, expression (26) as a function of logarithmic decrements is a rather complex
expression, so using it to find the necessary parameters turns out to be a difficult task.

We propose a different approach to solving this problem in the case of converged frequencies.
It is known from linear algebra that the sum of the eigenvalues of a square matrix is equal to its
trace [15—17], and since, as noted above, the eigenvalues and singular values of the matrix K
coincide in this case, the following formula holds true:

c,+0,=0, +0,,,. (28)
Let us introduce the notation
s(w) =0 (0) +0,(m). (29)
Then expression (28) can be rewritten as follows:
s=o, +o,, (30)

(for brevity, the argument is omitted here).
If we substitute the expressions for a, and o,

26
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_ Ckyk ck+1Yk+l
T 2, 7t _ 2, 2"
(0—w,) 0,6, (0O—0y,,) +0. G,

€1V

Fig. 2 shows a comparison of the sum of the first two singular values s and the sum o, + o,
for the previously considered case (see Fig. 1), a system with three degrees of freedom (o, + a,
in the example).

5’ Gi T T T T

Fig. 2. Sum of first two singular values s(®) compared with functions o ()
and sum o, + o, for system with three degrees of freedom (see Fig. 1)

Singular-value decomposition of the matrix Gy(co) is performed during processing of experi-
mental data obtained by dynamic measurements at each frequency o of a given range; not only
the first singular value ¢ (w) but also the remaining singular values of the function are determined.
Thus, the sum of the first two singular values is known.

Similar to the case of a single natural frequency, the natural frequencies accounting for damp-
ing (w,) and without it (w,) practically coincide for small damping ratios. Therefore, the analyt-
ical expression for the sum s of the first two singular values has the form

A C
§ = 2 g2 + 2 D
(0=0,) + o0y (O=04u.,) +Oy

2 (32)

where A, B, C, D are unknown parameters.

The least squares method can be used to determine these unknown parameters. Evidently,
the coefficient B is an estimate of the damping ratio ¢, and the coefficient D corresponds to the
ratio g, .

Example calculations of damping ratios

The method for determining logarithmic decrements was tested with a mathematical model of
a system with 8 degrees of freedom (Fig. 3).

Fig. 3. Model of dynamic system with 8 degrees of freedom
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Table 1

Parameters set for model of dynamic system with 8 degrees
of freedom and their values (see Fig. 3)

Mass, kg Stiffness, N/m Force amplitude, N
(applied to mass)
=M C,=770,C,=1000, | F,=.=F=1,
Moo C,= 950 F=F=10

Note. The damping ratios (logarithmic decrements) were set to be the same and
equal to 0.01.

The inertial and stiffness parameters were set in the adopted model. The damping ratios were
assumed to be the same and equal to 0.01. Then, a proportional damping matrix was calculated at
each natural frequency by the specified damping parameters. Forces with a white noise spectrum
were applied to masses M| — M,. The values of the force amplitude and other parameters of the
system are given in Table 1. The loading modeled was non-uniformly distributed over the degrees
of freedom: the amplitude of the force at degrees of freedom 7 and 8 was increased by 10 times.

Next, vibrational responses at all degrees of freedom were determined as time series with a
given frequency from the exact solution of the dynamic problem.

The measurement data obtained by this approach were used to test the FDD technique and
to subsequently identify the damping parameters by the proposed method. The results were com-
pared with the parameters set for the model. The frequency function of the first singular value is
shown in Fig. 4. Evidently, the six peaks corresponding to the natural frequencies (1—5 and 8)
can be regarded as, i.e., the problem of determining the damping ratios corresponds to the case
of a single natural frequency. The damping ratios corresponding to frequencies 1—5 and 8 were
calculated by Eq. (19) based on to the algorithm described above (Table 2, upper lines).

O -
20,0 4 8 g
15.01 7 y
10.0 =
1
6
5.0 2 3 i
A ;
; | . N2

1 I
0.6 0.8 1.0 152 1.4 1.6 1.8 2.0 22 24 2.6 Wradss

Fig. 4. Frequency spectrum for function of first singular value
in CSDM for system with 8 degrees of freedom (see Fig. 3)

S -

12.00}

8.00f

2.00 2.05 Mg Wy 215 220 W radss

Fig. 5. Calculated sum of first two singular values (points)
and obtained dependence approximated by Eq. (32) (solid line
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Table 2

Calculated damping ratios and corresponding coefficients of determination

Natural Damping Coefficient
Peak . ..
frequency ratio of determination
Case of 'single’ natural frequency
1 0.64 0.0107 0.9985
2 1.03 0.0109 0.9995
3 1.54 0.0104 0.9957
4 1.73 0.0104 0.9975
5 1.93 0.0140 0.9357
8 2.39 0.0106 0.9983
Case of two 'converged' natural frequencies
2.06 0.01014 0.9977
7 2.10 0.01070 0.9981

Note. The least squares method was used to find the values of the
coefficient of determination.

The graph in Fig. 5 for the case of converged frequencies (these are frequencies 6 and 7 in
the example) shows the points corresponding to the sum of the first and second singular values
(obtained by the simulation model) as well as a function approximating them by Eq. (32).

The values of the identified damping ratios and the corresponding coefficients of determination
found by the above method are also given in Table 2.)

Conclusion

The paper proposes a simple method for determining the damping ratios after identifying
the natural frequencies of a structure based on experimental data using the FDD technique.
Analytical expressions are obtained in the vicinity of natural frequencies for the first singular value
as well as for the sum of the first two singular values as frequency functions. The method for
determining the damping ratios is based on approximating the values obtained from processing the
experimental data by analytical expressions with unknown parameters. The least squares method
allows to determine the damping ratios. The first singular value is approximated in the case of a
single natural frequency, the sum of the first two singular values is approximated in the case of
converged natural frequencies.

The damping ratios were identified for a model problem. The proposed method has an advan-
tage over the well-known EFDD method presented in [4], due to its lower complexity; further-
more, unlike the EFDD method, it allows determining the damping characteristics in the case of
natural frequencies that are close in value.

29



4 St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2024. Vol. 17. No. 2 >
I

REFERENCES

1. Andrianova E. A., Novitskii D. V., Onischuk V. S., Theoretical justification of natural fre-
quency identification in the FDD (Frequency Domain Decomposition) method, St. Petersburg
State Polytechnical University Journal. Physics and Mathematics. 16 (1) (2023) 82—96 (in Russian).

2. Brincker R., Zhang L., Andersen P., Modal identification from ambient responses using
frequency domain decomposition, In: Proc. 18th Int. Modal Analysis Conf. (IMAC 18), San
Antonio, Texas, USA, Febr. 7—10 (2000) 625—630.

3. Brincker R., Zhang L., Andersen P., Modal identification of output-only systems using fre-
quency domain decomposition, Smart Mater. Struct. 10 (3) (2001) 441—445.

4. Brincker R., Ventura C. E., Andersen P., Damping estimation by frequency domain decom-
position, In: Proc. 19th Int. Modal Analysis Conf. (IMAC 19), Kissimmee, Florida, USA, Febr.
5—8 (2001) 698—703.

5. Zhang L., Tamura Y., Damping estimation of engineering structures with ambient response
measurements, In: Proc. 21st Int. Modal Analysis Conf. & Expos. 2003 (IMAC XXI) “A Conf. &
Expos. on Structural Dynamics”. In 3 Vols. Vol. 1. Kissimmee, Florida, USA, Febr. 3—6, 2003.
(2003) 1023—1029.

6. Brincker R., Zhang L., Frequency domain decomposition revisited, In: Proc. 3rd Int.
Operational Modal Analysis Conf. (IOMAC), Portonovo (Ancona), Italy, May 4—6, 2009.
(2009) 615—626.

7. Brincker R., Ventura C., Introduction to operational modal analysis, John Wiley and Sons,
Ltd., Hoboken, New Jersey, USA, 2015.

8. Rainieri C., Fabbrocino G., Operational modal analysis of civil engineering structures: An
introduction and guide for applications, Springer, New York, 2014.

9. Amador S., Juul M., Friis T., Brincker R., Application of Frequency Domain Decomposition
Identification technique to half spectral densities, In book: “Topics in Modal Analysis & Testing”.
Vol. 9. Conf. Proc. of the Soc. for Experimental Mechanics. Ed. by M. Mains, B. J. Dilworth. Ch.
39. The Society for Experimental Mechanics, Inc. Springer, Cham, New York (2019) 343—346.

10. ARTeMIS Modal. Software for Operational Modal Analysis and Experimental Modal
Analysis. URL: http://www.svibs.com/. Date of last access: 10.12.2023.

11. Hasan M. D. A., Ahmad Z. A. B., Leong M. S., Hee L. M., Enhanced frequency domain
decomposition algorithm: A review of a recent development for unbiased damping ratio estimates,
J. Vibroengineering. 20 (5) (2018) 1919—1936.

12. Lang G. F., Matrix madness and complex confusion. Review of complex modes from mul-
tiple viewpoints, Sound Vib. (November — Structural Analysis) (2012) 8§—12.

13. Tarpo P., Olsen P., Amador S., et al., On minimizing the influence of the noise tail of
correlation functions in operational modal analysis, Proc. Eng. 199 (2017) 1038—1043.

14. Kravchenko K. I., Kugaevsky S. S., Zhuravlyov M. P., Elkind D. M., Detection of natu-
ral oscillation frequencies and coefficients of relative damping of dynamic system at milling by
method of operation modal analysis, Bulletin of the Bryansk State Technical University. (8 (61))
(2017) 14—24 (in Russian).

15. Ilyin V. A., Poznyak E. G., Linear algebra, Victor Kamkin, 1987.

16. Karchevskiy E. M., Karchevskiy M. M., Lektsii po lineynoy algebre i analiticheskoy geo-
metrii [Lectures on linear algebra and analytical geometry], Lan’ Publishing, St. Petersburg, 2018
(in Russian).

17. Fomin V. 1., On the lower linear bound of the spectral radius for a normal matrix, Tambov
University Reports. Series: Natural and Technical Sciences. 6 (2) (2001) 145—146 (in Russian).

30



4 Simulation of Physical Processes

CNMUCOK JIUTEPATYPbI

1. Aunpuanosa E. A., Hosuukmii /1. B., Onnmyk B. C. Teopetnueckoe 000CHOBaHUE UISHTU(DUKALINHT
COOCTBEHHBIX YacTOT B MeToae FDD (mekoMIto3uimu B 4aCTOTHOM o6iactn) // HaydHO-TeXHMUeCcKHe
BegomocTtu CIIGI'TIY. ®dusuko-marematnyeckue Hayku. 2023. T. 16. Ne 1. C. 82—96.

2. Brincker R., Zhang L., Andersen P. Modal identification from ambient responses using frequency
domain decomposition // Proceedings of the 18th International Modal Analysis Conference (IMAC
18). San Antonio, Texas, USA, February 7—10, 2000. Pp. 625—630.

3. Brincker R., Zhang L., Andersen P. Modal identification of output-only systems using frequency
domain decomposition // Smart Materials and Structures. 2001. Vol. 10. No. 3. Pp. 441—445.

4. Brincker R., Ventura C. E., Andersen P. Damping estimation by frequency domain decompo-
sition // Proceedings of the 19th International Modal Analysis Conference (IMAC 19), Kissimmee,
Florida, USA. February 5—8, 2001. Pp. 698—703.

5. Zhang L., Tamura Y. Damping estimation of engineering structures with ambient response mea-
surements // Proceedings of the 21st International Modal Analysis Conference & Exposition (IMAC
XXI) “A Conference & Exposition on Structural Dynamics”. In 3 Vols. Vol. 1. Kissimmee, Florida,
USA, February 3—6, 2003. Pp. 1023—1029.

6. Brincker R., Zhang L. Frequency domain decomposition revisited // Proceedings of the 3rd
International Operational Modal Analysis Conference (IOMAC), Portonovo (Ancona), Italy. May
4—6, 2009. Vol. 1. Pp. 615—626.

7. Brincker R., Ventura C. Introduction to Operational Modal Analysis. Hoboken, New Jersey,
USA: John Wiley and Sons, Ltd., 2015. 360 p.

8. Rainieri C., Fabbrocino G. Operational Modal Analysis of civil engineering structures: An intro-
duction and guide for applications. New York: Springer, 2014. 322 p.

9. Amador S., Juul M., Friis T., Brincker R. Application of Frequency Domain Decomposition
Identification technique to half spectral densities // Topics in Modal Analysis & Testing. Vol. 9.
Conference Proceedings of the Society for Experimental Mechanics. Edited by M. Mains, B. J.
Dilworth. Chapter 39. The Society for Experimental Mechanics, Inc. New York: Springer, Cham,
2019. Pp. 343—346.

10. ARTeMIS Modal. Software for operational modal analysis and experimental modal analysis.
Pexxum moctyma: http://www.svibs.com/. Jlata mocnemaHero oopamenust: 10.12.2023.

11. Hasan M. D. A., Ahmad Z. A. B., Leong M. S., Hee L. M. Enhanced frequency domain
decomposition algorithm: A review of a recent development for unbiased damping ratio estimates //
Journal of Vibroengineering. 2018. Vol. 20. No. 5. Pp. 1919—1936.

12. Lang G. F. Matrix madness and complex confusion. Review of complex modes from multiple
viewpoints // Sound & Vibrations. 2012. November — Structural Analysis. Pp. 8—12.

13. Tarpo P., Olsen P., Amador S., Juul M., Brincker R. On minimizing the influence of the noise
tail of correlation functions in operational modal analysis // Procedia Engineering. 2017. Vol. 199.
Pp. 1038—1043.

14. Kpasuenko K. 0., Kyraesckunii C. C., 2Kypasnes M. I1., Daskuna JI. M. BoisiieHne cOOCTBEHHBIX
4acToT KoyiebaHU U KO3(h@PUIHUEHTOB OTHOCUTEIBLHOTO IeMIT(UPOBAHUS IMHAMUUYECKOU CUCTEMBbI
npu (pe3epoBaHMM METOIOM OIepAllMOHHOTO MOAaJbHOTO aHamm3a // BectHuxk bpsHckoro
roCyIapCTBEHHOIO TexHu4eckoro ynusepcurera. 2017. Ne 8 (61). C. 14—24.

15. Wmenn B. A., Io3ugak D. T'. Jluneitnasa anre6pa. 6-e uzm., crep. M.: @usmatinr, 2007. 280 c.

16. Kapueckuii E. M., Kapuesckuit M. M. Jlekiuy 1o JMHEHHON ajnredbpe M aHAJIUTUYECKOMI
reomeTpuu. 2-¢ uza. CII6.: M3n-Bo «Jlanb», 2018. 424 c.

17. @®omun B. 1. O HIKHUX JTMHEHNHBIX OILIEHKAX CIIEKTPaJIbHOTO pamuyca HOPMaJIbHON MaTPHUIIBI
// BectHuk TambGoBckoro yHuBepcureta. Cepust: EcrecTtBeHHble 1 TexHuuyeckue Hayku. 2001. T. 6.
Ne 2. C. 145—146.

31



4 St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2024. Vol. 17. No. 2 >
I

THE AUTHOR

ANDRIANOVA Elena A.
“B. E. Vedeneev VNIIG”, JSC

21 Gzhatskaya St., Saint Petersburg, 195220, Russia
elena-andrianova@bk.ru
ORCID: 0000-0001-9199-6875

CBEAEHUA Ob ABTOPE

AHIPUAHOBA Enena AJeKCaHIpPOBHA — HAY4Hbll COMPYOHUK AKUUOHEPHO20 obujecmea
«Bcepoccutickuii Hayuno-uccaedosamenvciuil uncmumym euopomexuuxu (BHUHUT) um. b. E. Bedeneesa».

195220, Poccus, r. Cankr-Iletepbypr, Ixarckas yi., 21

elena-andrianova@bk.ru

ORCID: 0000-0001-9199-6875

Received 07.12.2023. Approved after reviewing 07.02.2024. Accepted 07.02.2024.

Cmamovsa nocmynuaa 6 pedaxyuro 07.12.2023. Odobpena nocae peuensuposanus 07.02.2024.
Ilpunama 07.02.2024.

© Peter the Great St. Petersburg Polytechnic University, 2024

32



A St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2024. Vol. 17. No. 2
HayuyHo-TexHnueckme sBegomocTtun CM6IMY. ®dusnko-matematudeckme Hayku. 17 (2) 2024

Original article
DOI: https://doi.org/10.18721/IPM.17203

THE WAYS TO FORM FULLERENS STRUCTURE
EXEMPLIFIED BY C,, AND C,, ISOMERS

A. N. Matvienko®
Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
= matvienko_an@spbstu.ru

Abstract. The systematization of possible ways to form C,, and C,, fullerene isomers has
been completed in this work. An additional confirmation was obtained that fullerenes created
by incorporating dimers into the initial structure had a minimum energy. Two other methods
for the formation of new fullerenes were also considered, namely, the connection of two domes
with the same symmetry and that of fullerenes with compatible symmetry. The symmetry order
of the studied fullerenes varied from the second to the seventh ones. A collaboration analysis
of the formation energy values and geometric simulation results allowed us to draw conclusions
about the structural changes in the resulting fullerenes.

Keywords: dimer, isomer, symmetry, fullerene, energy

Citation: Matvienko A. N., The ways to form fullerens structure exemplified by C,, and C,;
isomers, St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 17
(2) (2024) 33—38. DOI: https://doi.org/10.18721/IJPM.17203

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.
org/licenses/by-nc/4.0/)

HayuyHas cTaTbs
Y[OK 54.022
DOI: https://doi.org/10.18721/IPM.17203

CMOCO6bl ®OPMUPOBAHUSA CTPYKTYPbl ®Y/IJIEPEHOB
HA NMPUMEPE U3OMEPOB C,, U C,,

A. H. MamGBueHko™
CaHKT-TNeTepbyprckuin NonMTEXHUYecKnin yHuBepeuTeT MNeTpa Benvkoro, CaHkT-MeTepbypr, Poccus
= matvienko_an@spbstu.ru

AnHoranusa. B pabGore 3aBepllieHa cUcTeMaTU3alldsl BO3MOXHBIX IIyTeil 00pa3oBaHUs
uzomepos ysuiepeHos C,, u C, . [Toay4eHO OTIONTHUTENBHOE OATBEPKAEHUE, YTO (DYIUIEPEHDI,
o0pa3oBaHHBIC BCTpaMBaHWEM IMMEPOB B MCXOIHYIO CTPYKTYpPy, WMEIOT MUHHMAJbHYIO
oHepruio. PaccMoTpeHbl u Ba Apyrux crocoba 00pa3oBaHUs HOBBIX (DYJIJIEPEHOB, @ UMEHHO
— COeJIMHEHME IBYX KYyIOJIOB C OIMHAKOBOM CUMMETpHUEil M coeauHeHUe (QYJLIEPEHOB C
COBMECTUMOI cuMmMeTpueil. TTopsimok cMMMeTpUM MCCIIeAyeMbIX (PYIEpEHOB MEHSIETCSI OT
BTOPOTO K ceabMoMy. COBMECTHBII aHaJIM3 3HAYCHUI SHeprur (GOpMUPOBAHUS U PE3YJIHTaTOB
FeOMETPUYECKOr0 MOAEIMPOBAHUS (DYIIEPEHOB MO3BOJIMJ COeJaTh BBIBOABI O CTPYKTYPHBIX
W3MEHEHUSX TTOJYYEHHBIX CTPYKTYP.

KmoueBbie cioBa: nuMep, U3oMep, CUMMETPUSI, QyJiepeH, sHepTUs

Ccbiika ang murupoBanus: MarBueHko A. H. CrocoObl ¢opMupoBaHUS CTPYKTYpPbI
(dynnepenos Ha npumepe usomepos C,, u C,, // Hayuno-texnuueckue segomoctu CIIOITIY.
®dusuko-maremaTudeckue Hayku. 2024. T. 2 Ne .17. C. 33—38. DOI: https://doi.org/10.18721/
JPM.17203

CraTbhsl OTKPHITOTO nocTyma, pacrnpoctpansiemast o juiieHsnu CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/)

© Matvienko A. N., 2024. Published by Peter the Great St. Petersburg Polytechnic University.

33



4 St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2024. Vol. 17. No. 2 >
I

Introduction

A classification of the most natural mechanisms for the formation of new fullerenes was carried
out in [1]. These are fusion of fullerenes with compatible symmetry, embedding of a carbon dimer
into the initial fullerene and fusion of carbon domes with the same symmetry [2—5].

This study concludes the consideration of structures and energies of C, and C,; fullerenes
formed by these mechanisms.

The goal of the study is to examine a series of fullerene isomers from C, to C,, using
them as reference for verifying the particular mechanisms (discovered earlier) for formation of
new fullerenes.

Structures of fullerenes with single (simple) and double bonds were analyzed for this pur-
pose. The criterion for the presence of double bonds was symmetrical arrangement of their
maximum number.

Formation of C,; fullerene isomers

Let us consider five main methods for obtaining new fullerene models.

Embedding of a dimer into a C,, polyhedron

Perfect fullerenes

Method 1. Embedding a dimer into the hexagon from the front, parallel to the third-order axis,
turns fullerene C, into fullerene C,.. A perfect fullerene with second-order rotation/reflection
symmetry is formed. Such a fullerene contains twelve pentagons and four hexagons.

Method II. A dimer is embedded at a 60° angle to the third-order symmetry axis of the initial
fullerene. A perfect fullerene with second-order rotation/reflection symmetry is obtained. The
initial fullerene should be rotated by 90° to obtain a mirror image in case I, and only by 30° in
case II. The resulting fullerene also contains twelve pentagons and four hexagons (Fig. 1).

Fig. 1. Embedding of carbon dimer into initial perfect fullerene; methods with parallel
embedding (method I) and embedding at a 60° angle (method II) are shown

Method 111. Embedding of a dimer into a C,; polyhedron. Topological symmetry. Embedding
a dimer into a hexagon in the background transforms the fullerene C,, into the fullerene C,.
Since it contains two additional interstices, an imperfect fullerene with topological symmetry of
the third order is obtained [6]. The resulting fullerene contains two triangles, six pentagons and
eight hexagons.

Method 1V. Fusion of two different domes with compatible symmetry. One of the possible
techniques is fusion of the C ; dome with the C, bowl. Such a reaction can be written in the
following form:

CIO + C18 - C28'

Method V. Fusion of two heptagonal prisms. Both initial fullerenes have the same seventh-order
symmetry. The reaction has the following form (Fig. 2):

C14 + C14 - (C14C14) - Czs‘

© MatBuenko A. H., 2024. Uznarens: Cankr-IletepOyprekuii monutexHuueckuii yausepcuret I[letpa Bennkoro.

34



4 Simulation of Physical Processes

Formation of C30 fullerene
isomers

Two angular methods for embedding the dimer.
Perfect fullerenes

Method VI. A carbon dimer is embedded
into perfect fullerene C, [7] (see method I) in
one of two hexagons at the equator of the ini-
tial fullerene. Fullerene C,; is transformed to
fullerene C,. The polyhedron formed contains
twelve pentagons and five hexagons.

Method VII. The initial configuration is
shown in Fig. 1 (see method II). The initial
half of the fullerene must be rotated by 90°
to obtain a mirror image in the previous case
Fig. 2. Fusion of two different domes (see method VI). In this case, rotation by only
(method 1V) and two heptagonal prisms 30° is sufficient. There is another difference:
(method V) the embedding is performed at a 60° angle.

Such operations transform the initial fullerene
. The resulting fullerene also contains twelve pentagons and five hexagons

into fullerene C3
(Fig. 3) [8].

0

Fig. 3. Two angular methods for dimer embedding: at the equator (method VI)
and at 60° angle (method VII)

Method VIII. Fusion of dome C,  with dome C,. Perfect fullerene. Both initial configurations
have fifth-order symmetry. A fullerene consisting of five squares, two pentagons and ten hexagons
is formed after fusion. A perfect fullerene with fifth-order symmetry is produced.

Method IX. Fusion of two C,, domes. Perfect fullerene. Both domes have fifth-order symmetry.
The resulting fullerene has twelve pentagons and five hexagons. The obtained structure is a perfect
fullerene with fifth-order symmetry (Fig. 4) [9].

iy @0

Fig. 4. Fusion of different (method VIII) and identical (method IX) domes

Obtained isomers and their formation energy

Energy calculations for the considered isomers were performed in the Avogadro editor. The
table shows the calculated values of the minimum energy for fullerenes with single bonds (£ ;)
and the maximum energy for fullerenes with double bonds (£ ).
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Table
Calculated formation energies of fullerene isomers
Energy, kJ/mol
Chemical formula Method

Emin Emax

1 924 1790

11 689 1872

Cy 111 2250 3867

1Y 924 1172
\% 1119 2264

VI 832 847
C VII 689 1872
30 VIII 1840 2548
IX 852 1907

Practically all isomers presented in Table are (with the exception of those formed by method
I1I) perfect fullerenes. The analysis of the obtained results shows that fullerenes formed by embed-
ding a dimer into the initial fullerenes [5] have minimal energies (highlighted in bold). The energy
of fullerene formation increases when different or identical domes are fused. The fullerenes con-
sidered have second, third, fifth and seventh order symmetry.

Conclusion

The study concludes the systematization of possible methods for forming chains of fullerene
isomers from C,; to C,,, specifically, C, and C,. This systematization allowed to obtain addi-
tional evidence confirming the conclusions drawn in the previous work [10]. It was found earlier
that formation of fullerenes by embedding a dimer in the initial fullerene is energetically advan-
tageous. The resulting fullerenes are perfect. An exception is the case when the initial fullerene
contains two additional interstices. Such a fullerene turns out to be imperfect with topological
symmetry, taking high energy costs to produce.

Our findings provide a deeper understanding of fullerene structure. From a practical stand-
point, these data can be useful to researchers choosing a specific fullerene with a focus on its
formation energy in a wide variety of projects.
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¢yHKIMI B pasHOOOpa3HBIX NPUIOXKEHUSIX He HcYepraHbl M moHbIHEe. [Ipemmaraembie
oIpenesieHUs] HacaeayloT 0a30BYIO UIIEI0 OPUTMHAIBbHOM CTaThbU: OINPEASsITh LEeMOYKU HOBBIX
(YHKIMIA C TOMOIIBIO PEKYPPEHTHBIX JUHEHHBIX (DYHKIIMOHAIbHBIX COOTHOLIEHUM, HAUYMHAs
C HEKOTOpOWl OAMHOYHON OAHOPOJHOW (yHKUUM Dijaepa; 3TO MO3BOJSET MCIOJb30BaTh
COOTBETCTBYIOIINE PE3YIbTaThl HE TOTBKO IIsT TN PepeHIMPYEMBIX M HETTPEPBIBHBIX (DYHKIINIA,
HO W IUIST Pa3pbIBHBIX, B TOM YKCJIC pa3pbIBHBEIX BO BceX TOYKax. [lokazaHa BO3MOXKHOCTH
IIOCTPOEHUSI Pa3BEPHYTOM HernpoTuBopedrBoil Teopun ITO®D BelleCTBEHHBIX IIEPEMEHHBIX,
OIpeleNisieMbIX C TOMOIIBIO ILIEMOYKM JIMHEHHBIX PEeKYPPEHTHBIX (YHKIIMOHAIbHBIX
COOTHOILIEHUI 001Iero Buaa. GopMyIUpYIOTCS M TOKAa3bIBAlOTCS 0Aa30BbIE TEOPEMbl TEOPUU
paccmatpuBaeMblix (yHkuui. OOcyxkaalTcsl AajlbHellIde IMyTH 0000LIEeHUs YKa3aHHOTO
KJlacca (PYHKILIMMA.
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Introduction

A fundamental study by Gelfand and Shapiro published in [1] introduced, along with other
important categories, the concept of infinite chains of associated homogeneous functions (ASFs),
also used by the authors to construct a special kind of generalized functions. This concept was
later used almost unchanged in monograph [2]. This was perhaps the first significant advance
made in the general theory of homogeneous functions (see §§187, 188 in [3]) since Euler’s time'.

Like many seemingly abstract mathematical constructs, homogeneous Euler functions and,
consequently, associated homogeneous Gelfand functions turn out to be a useful tool for solving
a variety of applied problems, including those far removed from the original goals intended by the
authors. Such applications include the similarity principle of nonrelativistic trajectories of charged
particles in Euler-homogeneous electrostatic fields, proposed by Golikov [5—10]. It is proved in
the above studies that the trajectory of a charged particle in the given electrostatic field is scaled
as a single entity with proper scaling of initial coordinates and initial kinetic energy (preserving
the initial exit angles). Practical examples of this effective tool for synthesis of various electron
and ion-optical systems can be found in [11—21].

The new idea proposed in [1] was quickly developed by other mathematicians (see, for
example, [22—33]). Unfortunately, unlike the original study [1], where differentiation with respect
to degree of homogeneity was used to construct a chain of functions, the associated homogeneous
functions in subsequent publications are determined axiomatically using binomial functional
recurrence relations?>. However, with this approach, researchers actually deal only with a narrow
subset of Gelfand functions instead of the supposed infinite chain of associated homogeneous
functions f, (namely, the cases k = 0 and k = 1, see below). As a result, without serious revision
of definitions and proofs the statements to be proved are generally speaking only valid for this
narrow subset.

"'In this regard, it is also worth mentioning the theory of spherical functions that are homogeneous harmonic
functions of three variables [4], developed in the 19th century.

2 This approach to defining associated homogeneous functions is mentioned in [1, 2] as an alternative technique
but is not used in practice, see Appendix

© bepnnukoB A. C., bynguuna A. JI., ConoeeB K. B., 2024. Uznarens: Cankr-IleTepOyprckuil moJMTEXHUUECKUI
yHuBepcuteT Ilerpa Benukoro.
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However, this important remark does not apply to the results obtained in the original study
by Gelfand and Shapiro. In our opinion, the logic by which a new class of functions of real vari-
ables’ is defined in [1, 2] is as follows (the corresponding reasoning is presented more accurately
in the Appendix).

Homogeneous Euler functions of degree p satisfy the functional relation

VAeRVXxeR": f (A, hxy,..,hx, ) =" £, (x,%,,...,X, ). (1)

If x, > 0, these functions can be represented in the most general form as

fp(xl,xz,...,xn) )

Il
—
—

st
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7\
| =
[ 3]
R
=
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where 4 is an arbitrary function (n = 1) of real variables (see §§187, 188 in book [3]).

Performing k-fold differentiation of homogeneous functions (2) with respect to the parameter p
(homogeneity degree of the function), we obtain functions f y with log-periodic power-law sin-
gularities. Indeed, in view of Eq. (2), if x, > 0 and k> 0, these functions can be represented with
an accuracy up to an auxiliary multlpher 1/k! as

£ (s, ) =~ ()" (Inx, )" h(x—x—x—j 3)

k! XX X

where k is a non-negative integer (the order of the function)*.
Ref. [1] primarily concentrates on studying the integrals of the form

b

I 7In* x-o(x) dx, J.|x| In*[x|-@(x

0

where ¢(x) are functions without singularities, including at zero, which can be differentiated with
respect to the variable x a sufficient number of times.

Furthermore, it is important to study similar multidimensional integral expressions. Evidently,
if p < -1, the given integrals diverge. However, it is proved in [1] using the analytical continuation
procedure and the framework of generalized function theory that these integrals can be given a
meaningful numerical value, thus defining a new class of generalized functions.

Functions of form (3) comprise the basis for functions with log-periodic power-law singular-
ities, serving to solve the problem under consideration with increased efficiency. Differentiation
with respect to the parameter p as well as expansion into Laurent series and into power series with
respect to the parameter p serve in [1] (and especially in monograph [2]) as the main tool for
constructing new generalized functions, whose values are associated with these integrals.

Chains of functions f, are of undoubted interest in themselves. The authors of [1] call the
functions f , associated flomogeneous by analogy with associated eigenvectors of linear opera-
tors’, and 51fferent1at10n with respect to the parameter p is used as the main tool.

3 The presentation in this paper is focused on functions of real variables, although all of these results are of course
also largely valid for functions of complex variables.

4 Note that the differentiation procedure requires caution, since the function /# in Eq. (2) may depend explicitly
or implicitly on the homogeneity degree p. It also requires a reasoned transition from a fixed homogeneity degree
to a continuously variable parameter which is differentiable. In particular, the homogeneity degree in Eq. (2) can
be considered as function w(p) of the abstract parameter p with respect to which differentiation is performed, and
the identity w(p) = p, generally speaking, is not guaranteed.

> Homogeneous Euler functions of degree p can be considered as eigenfunctions of the linear scaling operator L[f]:
fix) — f(xx) corresponding to the eigenvalues of 2.
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However, along with defining associated homogeneous functions as a result of differentiation
of homogeneous functions with respect to homogeneity degree p, Refs. [1, 2] also formulate the
assumption (not quite accurate and not particularly significant for the authors’ further reasoning)
that chains of functions f L can be regarded as partial solutions of the following linear functional
recurrence relations:

rx)=a(k) f,,(x),
)=a(r) £, (x)+b(R) £,40 (),

with the coefficients a (7») =M, b(?») =A"InA.
It follows from analysis of relations (4) given in [1, 2] for particular cases kK = 0 and k£ = 1 that
the functions

fork=0, f,, ( @
(

fork>1, f,,(Ax

a(M)=2", b(h)=cA’ Ik,

where ¢ # 0 is an arbitrary constant, are the only situation where nontrivial continuous solutions
are possible (but not necessarily exist) for system (4).

Without loss of generahty, a value ¢ = | can be used, since the parameter ¢ # 0 is reduced upon
substitution of f (x) —>c f & (X) Apparently, the chalns of functions f of form (3) with the
subscript k shlfted by m >0, which’ are padded with zeros, namely,

1 p k—m X, X X
——(x;) (Inx h | =22, 2| fork>m,
flfk)(xl,xz, xn)z (k—m)!( 1) ( 1) m(xl X, xlj

()
0 for k <m,

while their linear combinations® are also solutions of functional relations (4), if such a solution is
a chain of functions f

The authors of [1, 2] subsequently confined the consideration to functions of form (3), since
more complex constructs are not required to study integrals with log-periodic power-law singu-
larities and give these integrals reasonable meaning at negative degrees.

As mentioned earlier, unlike the original studies [1, 2], subsequent works by other authors [22—33]
used binomial functional relations (4), where a(?») =A", b(?\,) =A"InA, as a formal definition
of associated homogeneous functions. Unfortunately, however, direct substitution shows, in par-
ticular, that associated homogeneous functions (3), obtained from homogeneous functions (2) by
repeated differentiation with respect to the parameter p (as done in [1, 2]), are not solutions to
functional relations (4) even when k > 2:

Sro (Ax)= A S (x),
foa(Ax)=A"In)f  (x)+ A" [, (x),

A7 In* A
Sy (1) =522 1, (0) 27, () 422, (). (©)
A In’ A A” In* A
f,2(Ax) :Tnfp,0 (x)+Tnfp,l (X)+ 27 AL, 5 (X)+ A7, 5 (X))o -
¢ No other solutions are possible. Substituting t=x, t,=x,/x, t;=x/x, .., t,=x,/x , after differentiating

equations (4) with respect to the parameter A at the point L = 1, a system of ordinary differential equations with
an independent variable ¢ is obtained. The general solution consists of linear combinations of functions (5), where
the constants /, defining the initial conditions are arbitrary functions of ¢, #, ..., #. The operations performed
are not invertible and therefore it is necessary to verify that functions (5) really satlsfy relations (4); however, the
verification shows that this condition is not fulfilled for k£ > 1.
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Notably, the multiplier 1/k! in Eq. (3) provides the equality of coefficients for the lower triangular
matrix of linear relations (6):

a,; (1) =2 (1) /(k = j)!

along the diagonals k — j = const , as is the case for binomial relations (4).

It can be proved that nontrivial solutions are generally only possible for binomial systems of
functional relations of form (4) if k = 0 and k£ = 1 (see [31]). However, the fact that [1, 2] assigns
binomial functional relations (4) rather than functional relations (6) given as a lower triangular
matrix for associated homogeneous functions (3) should be considered an unfortunate inaccuracy,
which does not affect subsequent results obtained by the authors of [1, 2].

Indeed, to differentiate relations (4) with respect to parameter p, it is important to take
into account that not only the functions f but also the functional coefficients a(K) AP and
b(A)=A"InA depend on the parameter p However as noted earlier, relations (4) are not used
in [1, 2] for construction of new generalized a55001ated functions, only playlng the role of a formal
definition, which was not elaborated further.

Thus, we believe that the authors of numerous subsequent publications using form (4) as a
starting point in the formulation and proof of new theorems are not quite correct.

Unfortunately, this truncated definition of associated homogeneous functions has persisted
in various publications for over half a century (see, for example, [22—30]). For this reason, the
corresponding theorems have much less generality than their authors intended, and, as already
noted above, they make sense only for degenerate cases k = 0 and k = 1 if careful revision is not
undertaken both for definitions and for proofs of the corresponding theorems.

It is possible that the problems with the definition of associated homogeneous functions in form
(4) are well known to the scholars specializing in them (according to some experts), although we
have unable to uncover discussions of this issue in the available literature. However, the rather
convincing assumption of these experts about the obviousness and even triviality of both the prob-
lem itself and the approach to rectifying it, unfortunately, contradicts the state of affairs that form
(4) has long been used in numerous publications and even in authoritative reference books (see,
for example, the handbook edited by Kreyn [34], republished abroad).

Apparently, any mathematicians noticing the inconsistency of definitions in [1, 2] will cor-
rect it based on their own subjective ideas and preferences, which other researchers may not
always agree with. For example, an alternative approach presented in [31] and continued by
Albeverio et al. [32, 33] (without excessive emphasis on the problem) as well as similar results
in monograph [35] probably were not sufficiently appreciated by the mathematical community,
since studies with binomial relations (4) as a starting premise remain popular (see, for example,
monograph [30] published in 2012). There is also a risk that instead of a single line of research,
a number of disparate definitions will arise for mathematical objects that are close, but do not
completely coincide, for which the conditions of equivalence to each other will have to be spe-
cifically formulated and proved.

It is worth noting there are certain doubts about the proposal (introduced in [31]) to preserve
the term ‘associated homogeneous functions’ for binomial relations (4), which have meaning only
when k£ = 0 and k = 1, additionally using the term "quasi-associated homogeneous functions”
for mathematical objects with a lower triangular matrix of coefficients. In this case, the binomial
Gelfand relations, valid for £k = 0 and k& = 1, should become special cases of the proposed qua-
si-associated homogeneous functions. In our opinion, such an approach to the problem would
thoroughly belittle the value of the innovative ideas proposed in [1, 2] and definitely contradicts
the fact that the associated homogeneous functions are successfully used in the original publica-
tions for any orders of k in explicit form. The reinterpretation of the concept in [1, 2] and in [31]
is not so drastic that it would be advisable to introduce a new term (see also the comments in
the Appendix).

The goal of this study is to prove that linear functional relations are suitable for to correctly
define associated homogeneous functions of several real variables as a separate class of functions.
These relations can be used as a substitute for differentiation by degree of homogeneity, which
requires a certain accuracy, has not been defined unambiguously and is not always feasible.
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A number of theorems are proved to achieve this goal, which should demonstrate that this
approach is quite productive and deserves further development.

>

Elementary definitions and theorems

Definition 1. A finite or infinite chain of functions f, (x) (k=0,1,2,...) is called associated
homogeneous functions of the general form of degree p and order k if there exist such functions
a, (K) and a (K) # 0 forming a lower triangular matrix of coefficients with the same coefficients
a()) along the main diagonal that the following linear functional relations are satisfied for VA >0
and VxeR":

fork 0.1, () =a (1), (x),
fork 21,7, (%) = S0, ()1, (x) (1) 1, (x). ”

J=0

Definition 2. A finite or infinite chain of functions f, (x (k=0,1,2,...) is called normalized
associated homogeneous functions of degree p and order & if relations (7) are satisfied for VA > 0
and VxeR", where the coefficients a, ;(A)=a,_; (1) and a(X)=a,(1)#0 form a lower tri-
angular matrix with the same coefficients along any diagonalsk — j = const .

Definition 3. A finite or infinite chain of functions f, ()? (k=0,1,2,...) is called fundamen-
tal associated homogeneous functions of degree p and order k if relations (7) are satisfied for
VA >0 and VxeR", where the coefficients are given by explicit formulas

a; (M) =a,; (M) =2 " (1) /(k= ), a(h)=ay () =2

Definition 1 gives the widest possible conditions of type (4), when the solutions are linear
combinations composed of functions (3) with constant but not completely arbitrary coefficients
(see Theorems 1 and 4 below).

Definition 2 leads to a narrower class of functions, but it allows you to formulate and prove
additional statements that are not generally fulfilled. It uses the idea proposed by the authors of
[1, 2] about previously unknown functional coefficients that are identical along the diagonals of
the matrix. In this case, the solutions are linear combinations composed of functions (3) with a
narrower set of constant but not completely arbitrary coefficients.

Definition 3 sets the closest possible constraints for linear functional relations (7), when one
of the possible solutions, or even the unique solution (unfortunately, this requirement is unattain-
able) are functions of form (3).

Separate statements for normalized associated homogeneous functions and fundamental asso-
ciated homogeneous functions are not given here if they are corollaries of the corresponding
Theorems for associated homogeneous functions of a general form.

Remark 1. Functions in Definition 1 apparently represent the most general case of the approach
under consideration, when the theory developed still has a manageable form.

Functions in Definition 2 are called normalized due to the presence of normalizing factors 1/k!
in Eq. (3). These multipliers are necessary so that the coefficients a, ; (k) for the lower triangular
matrix are the same along the diagonals k — j = const (compare with the notations in [31—33],
where the authors do not use the normalizing multiplier, and the multipliers before the functional
coefficients that arise for this reason are ignored).

Functions in Definition 3 are called fundamental, since any associated homogeneous functions
of the general form from Definition 1 are linear combinations of functions of form (3), although
their coefficients are not completely arbitrary but rather selected by a special technique (see
Theorems 1 and 4 below).

Remark 2. Conditions taking the form VA >0 and Vx e R" may seem too rigid for some appli-
cations (for example, when considering electron and ion-optical systems with Euler-homogeneous
electric and magnetic fields [5—21]). These conditions can be replaced by more practical ones.
Let Q< R" be some region of n-dimensional space, so that the numbers A, (x) and A, (x) are
defined for Vx € Q2 , satisfying the conditions
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0<A,(x)<I<n,(x),
for which the points Ax € Q at
A, (x) <A<, (x).

Then, with minimal changes in definitions as well as formulations and proofs of theorems, the
conditions Vx € R and VA > 0 can be replaced with conditions

VxeQand Vie[ L, (x).,(x)].

Remark 3. 1f the function f(x) in relations (7) is continuous at least at one point at which its
value is not zero, then the function a(X) is nonzero at A = 1, continuous at the point A = 1 and
thus continuous and strictly positive on the entire positive semi-axis A > 0. Furthermore,

Yi,u>0: a(%u)za(%)a(u)

(see Theorem 2 below).

In this case, a(k) =A? is the only possible option (see monograph [36]), while fo(f) is a
positively homogeneous Euler function of degree p (see §§ 187, 188 in [3]). Everywhere discon-
tinuous functions f, ()?) form a special class of functions considered separately from positively
homogeneous Euler functions, and Theorem 6 is intended for analyzing them. Theorems 1 and
2 are formulated in such a way that they are applicable to both continuous and everywhere
discontinuous functions.

Theorem 1. If VA, u> 0, the coefficients a(?») and a, ; (k) in relations (7) satisfy the equalities

a(r)=a(2)a(w),

8
szl,j<k:ak Zaks )s ®

where a(L)#0, akk(K) a(n).

Then the following statements hold true.
1. System of relations (7) has solutions other than identically zero, which can be represented as

X, X, X
a(xl)ho (—,—,...,—”], x, >0,

fo(x)= e ©)
X, X X,
a(|xl|)g0 (X—T,;j,...,;j, x, <0,
X, 2 Xy Xy

a(xl)hk[ 1 Xl x1]+2ak] xl (Xl x1,...,x1 j, x, >0,
fi(x)= . (10)

X, X Xy 0

) o 1 ) P o) SR

where hj g are arbitrary functions of (n 1) variables.

2. System of relations (7) has no other solutions: any solution can be represented as (9), (10)
with proper selection of functions h g

3. The following conditions are satlsﬁed for the functions given by Egs. (9) and (10):

hi(ty,t55.. 01, ) = [, (Lity by, .0t ),

(11)
g (toty,.nt)) = £, (—L—t,,—t5,...,—1,).
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Proof. Eq. (9) for separate cases x, > 0 and x, < 0 for positively homogeneous functions
follows from the arguments used in [3, §§ 187, 188] for homogeneous Euler functions.

We follow the induction method: let parameterization (10) for x, > 0 hold true for func-
tions f at j=0,1,...,k—1. Let us write the function f, in the form (11), where the func-
tions at j =0,1,...,k—1 are inherited from the previous steps, and an arbitrary function
h, (xl,x2 / X peen X, / xl) of n variables is used as 4,. Apparently, freedom of choice of the function
J, is not limited in any way at this step. After substituting this expression into relation (7) with
subscript £ and additional algebraic transformations, we obtain the condition

YA>0: h (xxlﬁﬁJ = h, [xlﬁﬁJ
X X X X

It follows that the function /4, does not depend on the first argument, which means that con-
dition (10) must be fulfilled for the function f, satisfying the relations (7). All algebraic trans-
formations are invertible, therefore, it follows from the representation of the function f in the
form (10), where the function 4, does not depend on the first argument, that relations (7) for the
subscript k hold true. The reasoning for x;, < 0 is repeated for x, > 0.

Theorem 1 is proved.

Remark 4. Conditions (8) are sufficient but not necessary for relations (8) to have nontrivial
solutions. However, as Theorems 2 and 3 (see below) show, conditions (8) are rather general,
and examples when they are not satisfied are rare exceptions to the common rule. For normal-
ized associated homogeneous functions (see Definition 2), conditions (8) are not only sufficient
but also necessary if the function f; is not identically zero. The functions a ; (k) and a(K)
Definition 3 themselves satisfy relations (8). In particular, this is the reason why the most com-
mon notation for fundamental associated homogeneous functions has the form (9) and (10) after
substituting the following functions into these formulas:

a,,(M)=2" "7 (1) /(k= ) a(r)=a,, () =2".

Theorem 2. [frelations (7) have a solution in the form of linearly independent functions f, ( ) then,
Jor Yh,u>0, the coefficients a(\) and a, (7») are determined uniquely and must satisfy relations (8).

Proof. If fo (x) # 0 at least at one pomt then, if k = 0, conditions (7) lead to equalities of
the form

fo(hux)=a(in) £y (x)=a(n) fy (nx) =a(r)a(n) £ (x),

that is, for VA, u>0:a (M,t) =a (k)a(p).. It follows, in particular, that a(}) is either identically
zero or strictly greater than zero at all points.

By induction, if k£ > 0, the remaining relations (8) are obtained from relations (7) considered
at point Aux. If we assume that elations (7) are satisfied for a certain set of linearly independent
functions f,(x) 51mu1taneously for two sets of functions a, (x) and q, ; (k), then the equalities
a())= a(i) Vk>j:a (h)=a, (1) follow 1mmed1ately

Theorem 2 is proved.

Theorem 2. If a(k) # 0 in relations (7) and the coefficients a, , 1( ) Jor Nk >1 are not iden-
tically zero, then any chain of functions f,(X) satisfying relations ( 7) consists of linearly independent
Jfunctions, if the initial function f(X) is not identically zero.

Proof. Let us assume that f, is the first function that is linearly dependent on the previous
functions f (j=0,1,...,k—1). We represent f, as a linear combination of functions f with constant
coefficients and substltute it into relation (7) w1th the subscript k. Let us group the multipliers at
different functions f. The multiplier for the function f,_, will turn out to be equal to a, , , 7») and
should be equal to zero due to the linear independence of the functions f however, this leads to
a contradiction, provided that a, | (K) is not equal to zero for at least one value of A.

Theorem 3 is proved.

46



Mathematical Physics
A ysics

Theorem 4. If each of the coefficients a()) and a, (x) in relations (8) is continuous at least at one
point, and a(K) #0, then the following statements hola’ true.
1. These coefﬁc1ents take the form
a(M)=M\" and a, ;(A)=1"b_;(In}),
where b, (1) are polynomials of degree k — j, which ensures differentiability of any order for functions
a(i) ancf a, (7»)
2. Polynomlals b are uniquely determined from the following differential recurrence relations:

for Vk >0, bkk( )E

12
forVk>1, j=k-1,k-2,... Ob,:j Zpk”j (0):0, (12)
or (which produces the same result) of the following differential recurrence relations:
for Vk >0, b, (t) =1,
: (13)

forVk>1,j=k-1, k-2,...,0, b, ,(t)= D, b, (1) p, ;; b, (0)=0,

s=j+1

where p, . are arbitrary constants, and a, (1) =b, (0) =

3. Equlvalent recurrence conditions ( Ié) and ( ]3) are botb necessary and sufficient to fulfill rela-
tions (&) with the functions a(h and a, (k)

Proof. The condition a ) for functions a()) that are nonzero and continu-
ous at least at one point 1mphes t e condltlon a(A)=A? with some real exponent p. After adopt-
ing, instead of functions a,, new functions b in accordance with the equalities:

forj <k a,,(1)=2"b, (In}),
forj=k a(x)=a,, (\)=2"b,, (InX)=2",

equivalent additive relations for functions b are obtained from multiplicative relations (8) after
substitution y=Ini, z=Inp:

k
for Vk>1,0< j<k b, (y+2z)=D.b(»)b,,(2).
s=j (14)

for vk >0, b, (y)=1,
where the following initial conditions are also satisfied for the functions b, and ka.:

forVk>1, 0<j<k bk’j(0)=0,

15

for vk 20, b, (0)=1 (1)
(equalities (15) are derived by induction from the condition bk’k ( y) =1 and relations (14) con-
sidered with y=2z=0).

Relations (12) and (13) are necessary conditions for differentiable functions: relations (12) are
obtained by differentiating relations (14) with respect to y at point y = 0 and substituting z — ¢,
and relations (13) are obtained by differentiation with respect to z at point z = 0 and substituting
y — t. Using a system of conditions (12) or a system of conditions (13), functions (polynomials)
b, Wlth sequentially iterated subscripts k£ =0,1,2,.. j k,k—1,...0 are reconstructed uniquely as
soon as a set of constants p,; (k>0,0<;< k- 1) is found.

To reverse the transition from relatlons (12) to relations (14), consider the following functions
for k20 and 0< j<k:
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k
®,,(1.2)=by; (y+2)= 20 (¥)b,,(2)
s=j

If relations (12) are satisfied, the derivative of the function @, ; ( y,z) with respect to the
variable y for j < k, by virtue of the condition b];’k ( y) =(, obeys the equality

@, \
D2y (y2)- 3 ()0, () -
m=j

k-1 k=1 ( k-1
= pk,sbx,j (y+Z)_Z£ pk,sbs,m (y)bm,] (Z)J:
J m=j

s=

=

-1 k-1 s
= Apk,sbs,j (y + Z)_ [ Apk,sbs,m (y)bm,/ (Z)] =

K j \ . m=

Il
~
v
Il
~
~

_ gpk,s (bs,j (y+2)-b,,(»)b,, (Z)J _

k-1
:Zpk,sq)s,j (y,Z).

§=Jj
If 00, l(y,z)/ﬁyEO, then Cij(y,z)Eq)kj(O,z)EO. In addition, ®,,(y,z)=0 for
Vk > 0. Therefore, by induction, ®, (y,z)=0 under any k>0, 0< j<k. This means that
relations (14) hold true if relations (12’5 are satisfied.

Similarly, the sufficiency of relations (13) for relations (14) is proved by differentiating the
function @, . (y,z) with respect to z. Since conditions (12) follow conditions (14), and condi-
tions (14) follow conditions (13) and vice versa, systems of recurrence relations (12) and (13) are
equivalent to each other (which is not always immediately obvious).

Now let the functions ka be merely continuous at individual points. It is required to prove that
in this case the functions b,w.(t), if they obey conditions (14), are differentiable at all points and,
as a result, are determined by recurrence relations (12) or (13).

By definition, b, , (t) =1,and for k>1, j=k—1, relation (8) is reduced to the Cauchy addi-
tive functional equation with respect to the function b, , ,. Its solution, due to its continuity at least
at one point, must be a linear and thus everywhere differentiable function: b, _, (t) = Praat [36].
Such a function b, ,_, (¢) obeys relations (12) and (13) with a constant p, .

We follow the induction method: let 0 < j <k —2, then the required statement is proved for
the functions b, (t), by s (t) N (t) Let us use recurrence relations (12) (the reasoning
is similar for relations (13)). _

We construct the function b, ;(¢) using the condition

b, (t)= Z b, (t)p,,3 b, (0)=0.

s=j+1

It corresponds to condition (12) with a constant p, =0 and constants p , inherited
from previous induction steps. Such a function bk, ; (t) is infinitely differentiable and satisfies
condition (14):

Ek,j (y+2) :b~k,j (»)b,, (Z)+Z b, (¥)b,,;(2)+b.s (y)l;k,j (2)=
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Let b, (1) =b, J ()+c(t), where the auxiliary function ¢(f) must be continuous at the same
points as the function b, (t) Condition (14) is satisfied for the function b, (7). This means that the
function c¢(7) satisfies the Cauchy additive equation and, due to its cont1nu1ty, it is a linear function
differentiable everywhere: c( ) Dyt [36]. Therefore, the function b J(t) is infinitely differentiable
at all points and satisfies relations (li) and (13), where a constant Dy, 1s added to the list of constants.

Theorem 4 is proved.

Remark 5. The polynomials b, (t) are determined unambiguously from the differential recur-
rence relations (12) or (13), as soon as the constants p,, are found. For normalized associated
homogeneous functions, the equalities b, (t)—ck ( ) and p,  =gq, ; hold true, where the
polynomials ¢,(7) are determmed from the fecurrence relations

I
S

k k=1
¢ (t)=1 Vk=1: ¢, (t)= quck_s (1)= qu_scs (1), ¢, (0)
s=1 s=0

including the constants ¢g,. Finally, for fundamental associated homogeneous functions Di; =0
at j=0,1,..,k=2, p,,, =1 and b_ (t)=1""/(k—j)!

Theorem 5 (Euler crlterlon) Let the chain of functions f, (x) (k=0,1,2,...) consist of differen-
tiable functions for which, with ¥Yx € R" (possibly excluding the point x = O) the Jollowing relations
are satisfied:

CAOII AT A

fork=0 =

or , X ox, ) ox, " ox Pl (X), ”
of, (x of, (x of, (x <

fork>1, x, k)El )+x2 g}fz )+"'+xn%n):pf}c(x)+jOpk,jf;(x)

with some constants p and Py
Then the following statements hold true.
Functions f, ( ) satisfy relations (7), where

a(M)=2" and a, (1) =2"b, ,(In1),

where the functions b, (y) are polynomials of degree k — j satisfying recurrence relations (12) and
(13) with the constants P, included in relations (16).

2. If the functions k(/ ) differentiable at ¥Yx € R" (possibly with the exception of point x = 0)
and the functions a(?» and a; ( ) differentiable at N\ >0 (possibly with the exception of r=0)
satzsfj/ the system of functional relations (8), then the relations (16) with the constants p = a (1) and

are satisfied.

f’rootl ?Jke Euler’s differential criterion for homogeneous functions (see §§ 187, 188 in
[3]), differential relations (16) necessarily follow from relations (7) after their differentiation with
respect to A at the point A = 1. To prove the sufficiency of relations (16), by analogy with the
calculations in the above-mentioned paragraphs of [3], the functions €, (k, Xg are used:

Zwb —In2) £, (2x),

where the functions b, (t) are calculated in accordance with relations (12) and (13) including
constants p, ; from relatlons (16).

When dlfferentlatlng functions Q, (A x) with respect to A, a weighted sum of relations (16),
calculated at the point AX, is obtame at points x # 0, Wthh are zero for all A and x. Since the
derivative of the function Qk (K, x) with respect to the parameter X is identically zero, the identity
Q, (X,x) =Q, (l,x) is fulfilled; so after substitutions A —1/p, x = pux, u—2A, Telations 7
for the subscript k with the functions a(L)=A" and a, ;(A)=A"b, (ln 7\,) are obtained.

Theorem 5 is proved.
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Remark 6. Theorem 5 for associated homogeneous functions of a general form is an equivalent
of Euler’s criterion for homogeneous functions (see §§ 187, 188 in [3]). For normalized associated
functions, where a, ;(t)=a,_;(t) (see Definition 2), equalrty Py =4,_,; holds true in relations

J o/
(16), where the constants q; are determined by conditions q,=4a;
Therefore, the Euler critérion for normalized associated homogeneous functions has the form

for k=0, x, 8f0(x)+x2 8ﬁ)(x)+---+xnafg—(x)=pﬁ)(x),
X

X, 0ox,

%), %)

X, 0ox,

fOI'kZl, X +...+xn 6fa(x)

= pf; (x Z%fk i

Accordingly, for fundamental associated functions (see Definition 3) the equalities p, , , =1
and p, . =0 hold true for 0< j<k-2 in relations (16), and the Euler criterion takes the
followrng form:

DT AC TN

fork=0 =
or X ox, ) ox, N ox Pl (X),
o, (x of, (x AR
for k>1, x, (;El )+x2 g£2)+---+ g—(n)—]?fk( )+ it (%)

Remark 7. There are examples when the same chain of differentiable functions f; (X) simul-
taneously satisfies several systems of form (7) with different coefficients a ; (X) In this case,
the functions

a(A)=2" anda, () =2"h, ,(In})

correspond to only one of the many possible systems of form (7) for the functions f, (x) under
consideration. Here b, ( y) are determined from recurrence relations (12) or (13) with the con-
stants p, ; taken from equalities (16).

However if the functions fk( ) are linearly independent (for which it is sufficient that for
Vk>1: p,,, #0 and that the function f, (X) is not identical to zero (see Theorem 3), then the
coefficients a(?») and a; (K) of system (7) are defined uniquely (see Theorem 2) and thus must
coincide with the expressrons

a(1) and a,  (L)=A"b, ;(In}k),
used in the proof of Theorem 5.

Associated homogeneous functions discontinuous at all points

If each of the coefficients a(k) and q, ; (K) in relations (7) is continuous at least at one
point, then Theorem 4 gives an exhaustive answer to the question of what form the coefficients
a(K) and q, (k) should have in order for functional relations (8) to be satisfied and for system
(7) to have nontrivial solutions (the general form of these solutions is given in Theorem 1). In
this case, the coefficients a(kg and a, ; (k) continuous at least at one point, will be infinitely
diﬁ"erentiable at all points A > However there are everywhere discontinuous coefficients a(k)
and q, (k) for which relations (8) are satrsﬁed and thus, in accordance with Theorem 1, there
are nontrivial everywhere discontinuous solutrons of system (7).

Theorem 6. Let O ( ) and 0, ( ) be arbitrary (generally speaking, everywhere discontinuous)
solutions of the Cauchy additive functtonal equation [36]:

6(x+y):6(x)+9(y).
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Then the general solution for functional relations (8) are the functions
a(r)= exp(@0 (In X)) anda, (1) = exp(eo (In k))(pk,]. (Ink),

where functions P ( ) are obtained through substitutions p, . —>0 ( ), y —>1 from functions
bk] (y) that are glven by the recurrence relations (12) or (13). At © /( ) pt and 0, (t) =Dt
these solutions coincide with the functions used in Theorem 4.

Unfortunately, we do not have a sufficiently short proof of Theorem 6 at our disposal to
present it in this paper at least concisely. This goes beyond the scope of this study and requires

separate consideration. A separate publication will be dedicated to the proof of this theorem.

Mutually homogeneous associated functions

The functions considered in [39] correspond to the case when the fundamental associated
homogeneous functions are complex-valued and can be represented as the sum of real and
imaginary parts that are functionally independent of each other, and the homogeneity degree is
a complex number. Then each of Egs. (7) turns into a pair of linear functional relations of the
same length, written for pairs of mutually homogeneous associated functions. Similarly, Eqgs. (7)
of the general form will also be transformed by adopting complex-valued functions and complex
homogeneity degrees.

Apparently, it will not be possible to obtain any other classes of functions from such paired
relations, written in the most general form, but this problem requires separate study. It also
remains an open question whether it is possible to obtain interesting mathematical objects if trip-
lets, quadruplets, etc., of functions characterized by dense matrices of linear functional relations
of a general form are similarly combined into a single whole [37], with the resulting equations
then extended to an infinite block-triangular structure of associated linear functional relations.
The particular case when the coefficient matrix is block-triangular (instead of the lower triangular
matrix corresponding to linear functional relations (7)) and the «seed» of the chain of associated
functions consists of several homogeneous functions with different degrees of homogeneity is
briefly discussed later in the section “Vector-associated homogeneous functions”.

Generalized associated homogeneous functions

If we apply the approach proposed in [1, 2], then the results obtained in the previous section
can be extended to generalized functions (linear continuous functionals defined in the corre-
sponding linear space of trial functions). This allows to correctly define generalized associated
homogeneous functions of a general form, generalized normalized associated homogeneous func-
tions and generalized fundamental homogeneous functions.

Evidently, everywhere discontinuous (and thus nowhere integrable) associated homogeneous
functions cannot have equivalents in the class of generalized functions. A more detailed consid-
eration of these interesting problems (in particular, the formulation and proof of Euler’s differ-
ential criterion for generalized associated homogeneous functions) is planned to be presented in
a separate specialized paper.

Vector-associated homogeneous functions

A further development of Gelfand’s idea of associated homogeneous functions are vector-asso-
ciated functions, where the initial «seed» for a chain of functions are several Euler-homogeneous
functions with dlfferent degrees of homogenelty

Definition 4. A chain of functions fk (x) (k=0,1,2,...; i=1,2,...m) is called m-associated
(vector-associated) homogeneous functions of a general form if the following conditions are sat-
isfied for VA >0 and VX e R" with i=1,2,...m

for k =0, f" (kx) =a, (1) £ (x),

for k>1, £/ ( ia’j 2) 9 (x)+a, (2) £ (x),

Jj=0 s=1

(17)

with some functions that are not pre-defined:
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a, (1) and @) (M) (k=12,...; j=0,L....k=1; i=1,2,...m; s=12,...m),

where for VA >0, a,(L)#0 and g, (L) #a,(A) fori=# j.

Rerr{_ﬁlrk 8. If each of the functions a, (1) is continuous at least at one point, then g, ()= A"
and f;" (x) are positively homogeneous functions (see §§ 187, 188 in [3]) with different degrees
of homogeneity p,, satisfying the condition p, # p, for i #s.

For vector-associated homogeneous functions, the equivalents of the statements given above
hold true (for the most part). In particular, the concept of vector-associated homogeneous func-
tions can be transferred without any loss to the class of generalized functions.

Neither the formulations of these equivalents nor their proofs are given in this study, since
their consideration goes beyond the scope of the main topic of the paper.

Regrettably, this far, we have been unable to answer the question about the general form of
everywhere discontinuous solutions for relations (17).

Conclusion

The paper continues and summarizes the research presented earlier in [37—39], considering
the basic concepts related to the general theory of functions of a real variable. It is assumed that
associated homogeneous Gelfand functions can be effective for generalizing Golikov’s principle
of similarity for trajectories in Eulerian fields to a wider class of electrostatic potentials if we focus
on the similarity of paraxial trajectories.

The theorems formulated and proved in this paper are new original results that we obtained for
the first time, previously not publicly available.

It is proved that it is possible to construct a detailed consistent theory of associated homoge-
neous functions of real variables determined using a chain of linear recurrent functional relations
of a general type, and also that this approach is quite productive and deserves further development.

The proofs of individual theorems in the paper are sometimes given here in a concise form,
since they are not as practically oriented as the formulations of the theorems themselves. It is
assumed that in most cases complete proof can be reconstructed in all details by readers who are
mathematics graduates, whereas the details and aspects of the proofs that require special attention
are of interest mainly to dedicated specialists. The publication of these materials (if continued by
the authors) will probably be presented in the relevant specialized journals.

Appendix

Definition of a new class of functions in the original article

In this section, we briefly explore the logic behind defining a new class of functions (associ-
ated homogeneous Gelfand—Shapiro functions, ordinary and generalized), described in [1, 2],
as we understand it. Additional comments are provided for the aspects that we deem crucial for
the discussion.

Thus, the fragments of the Appendix marked as ‘Statements’ represent a brief retelling of the
corresponding sections of the original study [1] (with the utmost respect for this classical work),
whereas the fragments of the Appendix marked as ‘Comments’ have been entirely constructed by
the authors of this paper.

Statement 1A. For a linear operator Af (x =f (lx) giving a similar transformation of function
arguments, homogeneous Euler functions of degree p that satisfy the identity f (Kx) =\ f (x)
are eigenfunctions with eigenvalues A” . In a typical case, along with the eigenfunction f, corre-
sponding to the given eigenvalue a, a linear transformation (operator) also has associated eigen-
functions f,, f,, ... f,, ... of various orders that satisfy the relations

Afy = ofs
Af, = of, +Bfo,

Afy = of +Bfis
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where k is the order of the function; o is the eigenvalue under consideration; p is some constant
that, with proper normalization of the associated eigenfunctions, can be taken to equal unity (in
the general case B#0).

Therefore, for homogeneous Euler functions, we can try to determine the equivalent of the
associated eigenfunctions, i.e., the attached homogeneous functions.

Comment 1A. Strictly speaking, the lower triangular matrix of linear relations with the same
coefficients a along the main diagonal can be used with equal success to determine the associated
eigenfunctions of linear operators. Indeed, in their physical meaning, associated eigenfunctions
are such chains of linearly independent functions for which the result of the action of a given
linear operator will be a linear combination composed of the function itself (with a multiplier
equal to its eigenvalue) and the preceding functions. At the same time, for a fixed eigenvalue o,
it is always possible to move from the lower triangular matrix of equalities

k-1
Af, = ZB,(,].f]. +af, (where B, #0)
=0

to binomial relations (1A) with normalized coefficients =1 along the diagonal k—j=1, a
linear combination of the preceding functions f,, f,, ..., f,_, Wwith the corresponding weight
coefficients is properly subtracted from each function f, for Vk >2. Similarly, we can always
adopt, instead of the binomial relations (1A) (which, of course, are much easier to work with), an
almost arbitrary lower triangular matrix, for which the condition Bis # 0 is the only constraint.

However, homogeneous Euler functlons i.e., eigenfunctions that do not contain a parameter
but belong to a single-parameter family of hnear similarity operators with a single-parameter set
of eigenvalues, are a special case. In view of this, it is necessary to consider associated eigenfunc-
tions that do not contain a parameter and are characterized by single-parameter linear associated
relations (if such functions exist).

Apparently, the transition from a single-parameter lower triangular matrix to a single-param-
eter two-diagonal one through linear replacement of functions that do not contain a parameter
cannot be performed in this case. The two methods cease to be equivalent, and we have to deal
with a full-fledged lower triangular coefficient matrix, which is not so convenient. The meaningful
difference between binomial relations and relations in the form of a lower triangular matrix is not
so fundamental that there is a real need to introduce a new term in addition to the Gelfand term,
as done in [31].

Statement 2A. A first-order associated homogeneous function of degree p is a function f, of real
variables, which for any A >0 satisfies the equality

() =27 £, (x)+h (1) f3(x), (2A)

where f (x) is a homogeneous function of real variables of degree p.
It is proved that a continuous function h(k) must have the form

h(1)=cA” I,

where ¢ # 0 is an arbitrary constant.
Due to normalization of the function f£;, it can be assumed that ¢ =1 without loss of generality.
As an example of a first-order associated homogeneous function with zero degree of homoge-
neity, consider the function 1n|x| that for A >0 satisfies the condition

ln|7»x| = 1n|x|+lnk

(unity is a homogeneous function of zero degree).

Statement 3A. A generalized homogeneous function of degree p is defined as a linear con-
tinuous functional T given over a linear space of infinitely differentiable functions ¢(x) of real
variables of dimension n tending to zero at |X| — oo faster than any power function 1/jx[* (k > 0)
if this functional obeys the identity
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T, {@Gﬂ =T [o(x)]. (3A)

Condition (3A) is constructed by analogy with the relations
T[(p ] J. jf X)dx, ...dx,,

j Ika x)dx, .. dx_xj jf (del dy, =

400

=2 [ -jf x)dx, ...dx,,

—00

which are satisfied when the prototype of the generalized function is a homogeneous function
fix) of real variables, characterized by the degree of homogeneity p.

As an example, it is proved that the n-dimensional delta function is a generalized homoge-
neous function of degree —n in the sense of definition (3A).

Similarly, by analogy with equality (2A) at h(?») =A”InA, which must be satisfied for ordi-
nary first-order associated homogeneous functions, a generalized first-order associated function
T, defined as a linear continuous functional that obeys the identity

Tp,[(P( H AT [(p :|+X‘””lnkTp’0[(p(x)], (4A)

where T , is some generalized homogeneous function of degree p, not equal to zero.

Flnalfy, by analogy with the relations (1A), a chain of linear continuous functionals T,,
is called generalized associated functions of order k£ and degree p if the following 1dent1tles
are satisfied:

T

p’k{(p(%ﬂ:k‘””]"pjk[(p :|+7J’“’lnk pkl[(p(x)]. (5A)

Comment 24. There is an inaccuracy in the reasoning here, since (as established, in particular,
in [31]) there are no functionals T,, with such properties even for k>2. It follows from the
chain of equalities

X n n
Tp,k+2 |:(p(}\l_uj:| 7\'17 Tpk+2 |:(P(M]:|+7\'p ln}\'TpkH{ :|

:7"17”( p+nTpk+2 [(P }4‘”“" InpT Dokl [(P
+A" lnk( P*"Tpk+1[(p ]+;,LP+" lnqu’k[(p X ]),

T o [0 7 Lo e, ()]

that the generalized function 7, must be zero.

Statement 4A. Comparing expressions (3A) and (4A), we can conclude that the derivative of a
generalized homogeneous function T, of degree p with respect to homogeneity degree is a gen-
eralized first-order associated homogeneous function T, of degree p.
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Indeed, differentiating equality (3A) with respect to parameter p (if such differentiation is pos-
sible) produces the following identity:

A AT R AT

dp

dT o
-2 L [o(x)]+ 2 mAT, [o(x)].

which coincides with equality (4A) with an accuracy up to the notations.

Similarly, it is argued (without further substantiation of this statement) that the derivative of
a generalized associated homogeneous function of order k£ with respect to homogeneity degree is
always a generalized associated homogeneous function of order k+1.

Comment 34. Unfortunately, this statement turns out to be incorrect for k>1, if we take
equality (5A) as the definition of a generalized associated function T ok of order k. leferentlatmg
condition (5A), we obtain a generalized function 7,,,, on the left hand side of the equality, and
a three-term expression involving generalized functions T wans Ly, and T, on the right-hand
side, since the coefficients A7 and A" In)\ also depend on tﬁe parameter p. This three-term
expression coincides with the two-term one (5A) for order k+1 if and only if the generalized
function 7, | in equality (5P) is zero or if the order £ is zero.

Slmllarly, given the validity of the assumption arising from this statement that a generalized
associated homogeneous function 7', of order k and degree p is the kth derivative of a homoge-
neous generalized function T with respect to the parameter p, after repeatedly differentiating the
basic relation (3A) with respect to homogeneity degree p, more and more preceding generalized
functions T,, will appear in the corresponding functional equalities with nonzero coefficients
as multipliers.

Statement 5A. In the future, constructing new generalized associated homogeneous functions
of degree p and order k, the authors of [1] consistently apply differentiation with respect to the
parameter p, as well as decomposition of the corresponding functionals into a Laurent series or
a power series. In addition, in most cases the consideration is confined to the order k=1 for
which the binomial identity (6P) that arises during differentiation holds true. In the general case,
generalized functions obtained by differentiation are considered to be associated homogeneous
functions of the respective order by the very fact that they were obtained, without additional ver-
ification of relation (5A).

Comment 4A4. Thus, defining generalized associated homogeneous functions using relations
(5A) turns out to be a dead-end in the reasoning both for the study in [1] and for the more
detailed study in monograph [2]. In fact, this definition is not once applied in any way after it
has been formulated. All calculations performed by the authors of [1, 2] turn out to be immacu-
lately accurate, keeping intact the important and unique scientific results they have obtained, if
differentiation with respect to the parameter p of generalized associated homogeneous functions
of a lower order is used as a formal definition, and generalized associated homogeneous functions
of zero order are considered generalized homogeneous functions ensuring that condition (3A)
is fulfilled.
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Abstract. In the article, we have proposed to use microwave-fluctuation meters resistant to
external intense electromagnetic noise in order to measure the low-frequency (LF) noise of
microwave transistors working under these conditions. The transistor located on the board is
excited by a low-noise microwave generator, the oscillation amplitude of which, being modulated
by the LF noise of the transistor, is measured by a microwave spectrum analyzer. The proposed
method was tested on GaN/AlGaN heterotransistors, in whose channels the electron density
was formed by spontancous and piezoelectric polarization. In addition to experimental testing,
a theoretical justification for the method is presented. We obtained conditions in which the
normalized spectra of oscillation amplitude fluctuations were similar to the normalized LF
noise of the transistor current.
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Annoramus. [11s usmepenust HuzkouactotHsix (HY) mrymoB CBY-Tpan3ncTopoB, paboTatonimx
B YCJOBMSIX BHELIHMX MHTEHCHBHBIX 3JICKTPOMATHUTHBIX IOMEX, Ipenjaraercs MCIOJIb30BaTh
yCTOMUMBBIE K HUX Bo3aeicTBuio uaMeputenun ¢aykryauuii CBY-konebanuii. TpaHauctop,
HaxoAsILMIACs Ha riate, Bo30yxaaoT ManowymsimMm CBY-reHeparopoM, amMriinTyaa KojaedaHuit
KoToporo, MomyiupoBaHHas HY-mymamu Tpansuctopa, wusmepsiercsi CBY-ananmzaTopom
crnekTtpa. Meromnka ompoboBaHa Ha reTeporpaH3ucTopax GaN/AlGaN, B KaHallax KOTOPBIX
IUTOTHOCTDh 3JIEKTPOHOB (POPMHMPOBAIACh ITOCPEICTBOM CITOHTAHHOM M IIbE303JICKTPUUECKOM
MoJISIpU3aluK 0e3 KaKoro-jaubo AOMOJIHUTEIbHOrO jierupoBaHus. [loMrMMO 3KCepUMEHTaIbHOTO
TECTUPOBAHMSI, IIPEACTABJICHO TEOPETUUECKOE 0OOOCHOBAHME MPEII0KEHHOro MeToaa. [lomydeHbl
YCJIOBUSI, TIPM KOTOPBIX HOPMHUPOBAHHBIC CHEKTPHI (QIYKTyalllMii aMIUITUTYIbl KOJIeOaHUs
aHaJIOTUYHBI HOpMHUpOBaHHBIM HY-11yMaM ToKa TpaH3ucTOpa.
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Introduction

Since the 1950s, low-frequency (LF) noise whose spectrum is localized in the 0 < F <
10¢ Hz frequency range has served to provide insights into structural defects in semiconduc-
tor crystals and various types of devices [1—7]. In practice, LF noise limits the sensitivity
of sensors as well as other measuring and recording instruments operating in a wide variety
of frequency ranges. For example, the detection accuracy of Doppler radars for low-slow-
small (LSS) targets is largely limited by low-frequency noise of transistors used in microwave
generators, mixers and amplifiers. New semiconductor materials and devices based on them
appear as constant advances are made in semiconductor technology. There is also continued
interest towards low-frequency noise and its origin; measuring the level of this noise remains
a crucial problem.

However, measurement and analysis of this noise, especially in operating facilities, are greatly
hindered by numerous intense electromagnetic interference generated externally in the LF range
by various technical and industrial devices. The experience accumulated indicates that the tech-
niques that previously proved successful for shielding and reduction of interference [8] can no
longer combat the problem, so it is increasingly difficult to use LF instrumentation without
additional measures. Practical evidence suggests that highly sensitive microwave instrumentation
is better protected from LF interference. Due to operational need, we previously tested whether
such devices were capable of measuring LF noise in microwave transistors. These experiments
were successful.

The goal of this study is to practically test the technique for measuring LF noise in microwave
transistors and provide a theoretical justification for this technique.

Problem statement and solution

One particular case when it is necessary to measure LF noise in transistors is the design of
ultra-low-noise microwave devices such as amplifiers. This type of noise is measured when the
transistor operates in DC mode, switching from one set of key parameters (drain voltage U, drain
current /,, gate voltage Ug ) to another. The measurement results are then summarized to predict
the inevitable fluctuations in the amplitude and phase of microwave oscillations of a self-excited
generator or amplifier incorporated into such a transistor.

We propose the reverse approach, i.e., we consider a prototype microwave amplifier installed
on the given transistor, feed a low-noise microwave oscillation to its input, and then measure the
energy spectrum of amplitude fluctuations for this oscillation, generated by transistor noise. In
many cases, this sequence of operations allows to extract a sufficient amount of data for practical
purposes. However, it is also useful to obtain additional information, establishing the relationship
of amplitude fluctuations with the mean (direct) current noise

This allows to conduct dynamic rather than static measurements of noise, where the transis-
tor parameters U, U, I, vary nonlinearly along with microwave oscillations. We simultaneously
obtain information about LF noise of the transistor (averaged over the oscillation period) both in
microwave and DC mode.

The practical implementation of this procedure was as follows: a transistor mounted on a
microwave PCB (printed circuit board) was connected to low-noise gate-bias and drain-bias
sources. A bandpass filter was located on the board in the drain circuit, tuned to a carrier fre-
quency of 3 GHz = f= 2n/w >> F;, here F is the high-frequency cutoff, exceeding the carrier
frequency f by orders of magnitude.

© Ycwuenko B. I'., Uepnosa A. C., 2024. Uznatens: Cankr-IleTepOyprekuit momutexHnyeckuit ynusepcutet [lerpa Benmkoro.
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The simplified transfer characteristic of the
transistor /,(U,) , measured at constant
voltage U, is shoti“i Fig. 1 by a solid line.
The LF noise sources in the transistor modu-
late the drain current, so the transfer charac-

U, teristic fluctuates deviating from its mean level

(this is schematically shown by the dashed line

! in Fig. 1). A DC bias voltage U, = U, equal to

—;D: the threshold value of U, is appfied to the gate.

—_ | A highly stable (carrier) microwave oscillation
= Ug coswt is applied to the gate along with the
<> DC bias voltage; its amplitude U;, < U, is suf-
|y _} ficiently large, and the transistor operates in

gm- saturation. This nonlinear mode is typical for

> self-excited generators and microwave power

amplifiers. The shape of the drain current dif-
fers significantly from the sine wave applied
Fig. 1. Generation of amplitude-modulated to the gate. Instead, a periodic train of uni-
drain current pulse train in nonlinear mode: polar pulses is generated (see Fig. 1), simi-
time dependences of voltage U and [, transfer lar to a trapezoid or rectangular pulse with a

characteristic (cyan curve) of the transistor rounded peak.
at constant U, as well as other key parameters This sequence can be expanded into a trig-
of the process are shown onometric Fourier series:

c
I,t)=1, | 2+c coswt+c,cos®t+c,cosOf+... |=
2 (1)
=1,,+1,,cosot+1,, cos2mwt+1,  cos3ml+...,
where [, is the amplitude of the pulse, /, ; is the DC component of the current; 7, |, [ iy ATC the
amplitudes of the carrier frequency and the jth harmonics of the current, respectively; ¢, are the
series coefficients.
LF fluctuations of the transfer characteristic in turn induce fluctuations in the current pulse
amplitude, expressed as

Idm(t):Tdm+Mdm(t):Tdm(1+u(t))s (2

where [, is the average current amplitude; A/, (7) are the low-frequency amplitude fluctuations;
a(?) are the relative amplitude fluctuations, o(t) =Al,, (¢t)/1,,.

Since the frequency of LF noise F'is several orders of magnitude lower than the carrier fre-
quency f (F << f), fluctuations are very slow compared to the oscillation period.

Substituting expression (2) into Eq. (1), we obtain the following series:

L) =(1+a(®))[ 10 + I, cOSOL + 1, cOS 200t + 1, cos 30t +.. | (3)

As the bandpass filter located in the drain circuit eliminates all microwave harmonics except
the first-order and the zeroth-order one, only the fluctuations of the DC component of the cur-
rent and the carrier remain. As a result, we obtain the following expression:

L,(6) = (14 a(t)] Ty + 1, cOSOF |. (4)

Both currents on the right-hand side of the equality fluctuate by the same law. Let us measure
the carrier current fluctuations.

To avoid complicating the formulas, let us consider the case when, instead of noise o(7) with
continuous spectrum, only one of its spectral components, o, (7), located at frequency F in a
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narrow band AF << F, influences the oscillations. The narrowband noise component can be
replaced by an oscillation with a slowly varying amplitude 5(f) and phase [9], i.e.,

0(t): o, (t) = b(t)cos [Qt + G(t)] ,
where Q=2nF .

If we ignore the phase fluctuations, which do not play a significant role in the considered
example, we obtain:

1, (0)=1,,,[1+b(t)cos Qt ]|+ 1, [1+b(r) cos Q| cos wr =

=1,, [1 +b(t)cos Qt] +1, {cos ot +— ( ) cos(m+Q)f + (2 ) cos(m— Q)t}

Noise is typically measured in units of power. The amplitude of narrowband DC fluctuations
is equal to

A]dmo(t) = b(t)]_dm()’
which means that its power (with an accuracy up to the resistance) follows the expression
P(F)=b1},/2;

and the electric power P, =1 a0 -
The ratio of these powers is expressed by the formula

P 1>

0 dm0

=b"/2. (5)

The microwave oscillation consists of a carrier oscillation and two modulation sidebands with
the amplitudes bl,, /2. The carrier power is equal to B=1; /2, and the power of the two
sidebands is

P (F) — [dzmlb2 + It/l’zmlb2 — Ia’zmlb2 .
’ 8 8 4

The power ratio

P

1 dml

=p*/2

turns out to be the same as for the currents (see Eq. (5)):

2 2
AIdmO — AIdml
T2 T2
]dmO ]dml

Thus, the power of the relative fluctuations in the amplitude of the two sidebands of the
carrier frequency.
Moving from narrowband fluctuation to continuous spectrum, we obtain:

2
ShF) _SHF) s ©
IdmO dml
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where S (F), S;(F) are the power spectral densities (PSDs) of LF noise from direct current
and sidebands of the carrier frequency, respectively.

We replace these two equal spectral densities by a single quantity 8Si2 (F'); this is the spectral
density of relative intensity noise (RIN), normalized by the rms current, measured in Hz™'. Non-
normalized noise spectral density Sl.z0 (F) is also often considered in practice, measured in A?2/Hz.

Notably, the normalized PSDs of amplitude noise in amplifiers are generally measured in
decibels relative to the power of the carrier frequency in 1-Hz bandwidth, where the measure-
ment unit is dBn/Hz. For example, the relative amplitude fluctuations measured with a carrier
frequency offset F equal to

8S*(F)=2-10" Hz ",
which, in measurement units adopted in microwave technology, equals

101g(2-10™)=3-140 = —137 dBc/Hz

Turning to the measurement procedure, we should note that instead of the microwave current
of the amplifier appearing in the equations above, it is the output microwave voltage with fluctu-
ating amplitude that is applied to the input of the microwave spectrum analyzer:

U(t)=[1+v(1)]U cos o,

where U =1, - R, is the mean amplitude of the microwave voltage, and

Al
o =20 g @)

dml

e

are the relative fluctuations in the amplitude of the microwave voltage of the amplifier.

R in these expressions is the equivalent resistance of the bandpass filter located in the drain
01rcu1t R = pQ; it is typically equal to the wave resistance of the microwave circuit on the board,
R = 50 ohms. Such equalities R, = pQ = 50 ohms are obtained by selecting the Q factor, the
wave resistance p of the filter and the coupling parameters at the carrier frequency.

Agreement between theory and practice should be observed in noise measurements. In theory,
the amplitude of the carrier current exceeds the amplitudes of other harmonics; this condition
must be also satisfied in practice. The shape of the current pulse influencing the distribution of
the amplitudes of Fourier harmonics does not fundamentally change if the following inequality
is satisfied:

Ud _Ugm > Udml = IdmlRe' (8)

Otherwise, rather than flow from the source to the drain at times when the oscillation ampli-
tudes at the gate and drain are in opposite phase, the current flows in a more complex pattern.
This can significantly change the ratio between the amplitudes of harmonics, cause misalignment
of circuits and distort the measurement results.

Measurements of HFET characteristics and results

The technique described above was used to study LF noise in GaN/AlGaN-based hetero-
structure field-effect transistors (HFETs), with the density of two-dimensional electron gas in the
channel formed by spontaneous and piezoelectric polarization [10] without any additional dop-
ing. These are high-power transistors assembled on a silicon carbide substrate by molecular beam
epitaxy (MBE) technology. They operate at frequencies f< 6 GHz, have a gate length of 0.5 um,
and a source-drain gap of 4.8 um. According to the manufacturer’s specifications, the transistor
operating at a frequency /= 3 GHz amplifies the power P, = 100 MW of the input microwave
signal by 25 times with an efficiency coefficient Eff = 65% at a drain voltage U, = 28 V. The
measurement circuit for the transistor noise is shown in Fig. 2. Three tran51stor models were
examined, yielding similar measurement results.
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Gain power supply Drain power supply
Rigol DP811a HMP2030
o o ® o
(Y S
Signal U - 7Ud Attenuator Noise
generator |5/ g & o — N analyzer
SMW200A 20dB FSWP26
RF DUT RF
n out

Fig. 2. Measurement circuit

The signal from a low-noise SMW200A generator is applied to the microwave input of the tran-
sistor considered; the oscillation amplified by the transistor is applied to an R&S FSWP26 noise
analyzer equipped with an attenuator to prevent overload. Rigol DP811a and R&S HMP2030
power supplies were used to power the drain and gate of the transistor, each supplemented with
filters suppressing their intrinsic LF noise and electrical interference. An HMP2030 display was
used to monitor voltages and currents in the gate and drain circuits. Voltage monitoring in the
drain circuit was carried out with an external Agilent U3401A voltmeter, which was disconnected
from the circuit during noise measurements.

The power of the SMW200A low-noise microwave generator used did not exceed 63 MW,
which is equivalent to an amplitude U = 2.5 V at a load resistance R = 50 ohms. The transistor’s
transconductance, which was initially very high, reaching 0.5 A/V and rapidly transitioning to satu-
ration, provided the drain current with a shape similar to that shown in Fig. 1 at such an amplitude.

The gate bias U was equal to the threshold value U,. Since U, changes when the drain voltage
is adjusted, it was ‘determined by varying the gate Voltage U SO that the drain current /, at the
nominal value U, = 28 V was about three orders of magmtude less than the hlghest perm1351ble
current of the trans1st0r The value U:g U, = —3.14 V was obtained at /,, = 1 mA. The value
U U, = 0 was maintained constant durmg noise measurements at any level of U, which was
limited only by the dissipated power of the transistor P = 1.5 W at high excitation amphtudes of
U;, , (this is shown in the legends to the figure).

a) b)
1525 U-U=0; U =1V 1525 U-U=0; U =2V
g Tt am g Tt am

68, 1/Hz ——Ud= 28V 1d=356mA 65, 1/Hz Ud=20V 1d=78.2 mA
——Ud= 25V [d=332mA —Ud=17V [d=70.6 mA
- Ud= 20V 1d=28.0 mA - ——Ud=15V 1d=654 mA
10 —Ud= 17V 1d=247 mA 10 —Ud=13V Id=60.2 mA
—Ud= 15V 1d=223 mA Ud=10V Id=53.4mA
j ——Ud= 13V 1d=20.0 mA —Ud= 8V [d=48.1 mA
o' A Ud= 10V 1d=172 mA Lo —Ud= 4V 1d=37.8mA
T —Ud= 8V Id=155mA \ —Ud= 2V Id=31.7mA
\' —Ud= 4V ld=11.8mA —Ud= 1V 1d=245mA
——Ud= 2V ld= 96mA Ud=05V [d=18.2 mA

10712 i —Ud= 1V id= 80mA 10712 —Supp

Ud=0,5V ld= 7.0 mA

1013 1013

I07[4 IOVH

103 103

Io-t(v Io-t(x

Fig. 3. Measured frequency dependences for relative fluctuations in transistor
drain current at 1 V (a) and 2 V (b) amplitudes of Ug ., €xcitation.
Black curve corresponds to the instrumentation’s intrinsic noise PSD (Sapp)
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Fig. 3 shows the experimental dependences for drain-current RIN spectral density in transistor
1525 excited by microwave oscillations with amplitudes U equal to 1 and 2 V. The sharpened
peaks on the spectra are caused by parasitic interference. “The bold black curve corresponds to
the instrumentation’s intrinsic noise PSD. These noises were determined in accordance with the
manual by analyzer (see Fig. 2), bypassing the transistor. However, the input oscillation noise
is reduced in nonlinear mode of the transistor due to saturation of the transfer characteristic
(see Fig. 1). We did not take this phenomenon into account, so the instrumentation noise was
somewhat overestimated in our experiments.

a) b)

1525 U-U=0; U =1V 1825 U-U=0; U =2V

35, 1/Hz —Ud=28V 1d=35.6mA] | 85, 1/Hz Ud=20V Id=78.2mA
——Ud=25V 1d=33.2mA —Ud=17V 1d=70.6 mA
Ud=20 V 1d=28.0mA

10 ——Ud=15V 1d=65.4mA

10 —Ud=17V 1d=24.7 1! ]
- 247 mA —Ud=13V 1d=60.2 mA
——Ud=15V 1d=22.3 mA Ud=10V 1d=53.4mA
—Ud=13V 1d=20.0mA —Ud= 8V 1d=48.1mA

Ud=10V 1d=17.2mA 101! —Sapp
—Ud= 8V 1d=15.5mA
—Sapp

lnrlt

]042
103 Lo
]0-14
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10s 10
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100 F,Hz 10! 107 10° 10* 10° F,Hz

Fig. 4. Dependences similar to those in Fig. 3, with distortions removed

It can be seen from Fig. 3 that part of the measured spectra lies below the noise level of the
instrumentation. Such distortions appear because condition (8) is not satisfied. The dependences
with the distortions removed are shown in Fig. 4. Analyzing the data, we can conclude that a
twofold increase in the amplitude Ug , of the exciting oscillation at constant U, leads to an approx-
imately three-fold increase in the drain current and, accordingly, to increased power dissipated by
the transistor. To prevent transistor overloading in U = 2 V mode, the maximum drain voltage

was limited to U, = = 20 V.

Results and discussion

Let us analyze the experimental data presented in the previous section. The normalized PSDs
of transistor current noise measured in the voltage ranges 8 V < U, < 15V and current ranges
15.5 mA < I, < 65.4 mA (Fig. 4) overlap, varying as 1/F with frequency tuning (a small rise in
the high-frequency region is caused by instrumentation noise added to the curves from below).
The noise PSDs at a frequency F = 1 kHz, measured at the amplitudes of exciting vibrations U
= 1 and 2 V and calculated taking into account the instrumentation noise (see Fig. 4, a and bi,
amounted to 77.5-10"*and 10-2.07'* Hz™!, respectively. Thus, the noise level in the second case
is almost four times lower than the level obtained in the first case. The overlapping of normalized
noise PSDs measured at different currents implies that they are generated by the same source
of noise.

The results obtained are consistent with the data published by other authors (see [11—13]) for
microwave high-electron-mobility transistors (HEMTs).

However, at elevated drain voltages, when U, > 15 V, the noise begins to increase at the ana-
lyzed frequencies F < 1 kHz, reaching progressively higher levels the higher the value of U, The
shape of its elevated spectra is characteristic for generation-recombination noise [1—4], gradually
tending back towards the 1/F-type dependence with decreasing frequency, but at a higher level.
A source of LF noise of a different physical nature prevails in this frequency range.

Let us first discuss the possible nature of primary (1/F) noise, starting with the simpler case
when microwave oscillation is not applied to the gate.
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The drain current does not appear at a bias voltage U:g — U, <0, the height of the gate gap
through which electrons drift from the source to the drain is zero, which means that the resistance
R of the gate region of the channel can be considered infinitely large. As the voltage increases, the
gap opens slightly at U U, > 0, its height increases, the resistance R decreases, and the current
flowing through the channel increases. If the resistance

R(t)=R+AR(t) = R(1+r(t))

fluctuates, its fluctuations AR(f), generated by the processes also occurring in the transistor in the
absence of current, modulate the drain current. These fluctuations can be generated by random
interactions of electrons in the gate region of the channel with donor traps [13], whose energy
levels are below the Fermi level, mainly in the GaN layer under the channel. Relative resistance
fluctuations 7(¢)=AR(t)/ R do not depend on current, so the RIN spectral densities S’ (F)
also do not depend on current: they overlap each other (see Fig. 4).

In our case, when microwave oscillation with an amplitude U is superimposed on the DC
bias voltageU U, = 0, the height of the gate gap corresponds {o its height averaged over the
oscillation perlod Then the higher the U value, the greater the gap height and the lower the 1/F
noise level. This is exactly the behavior CXhlblted by 1/F-noise shown in Fig. 4: the noise PSD in
Fig. 4,a is almost four times lower than in Fig. 4,b. Noise reduction with an increase in potential
dlfference U U, > 0 is typical for HEMTs [12 13].

Now consider the source of generation-recombination noise (GRN) appearing at frequencies
F < 1 kHz at elevated drain voltages U, > 15 V. If the GRN source is localized in any small
region of a semiconductor device, then its RIN spectral density is proportional to the rms current
flowing through this region. At the same time, the PSD normalized by the rms current does not
depend on the current. A localized source of 1/F noise behaves similarly: as evident from Fig.
4, its spectral densities, measured at different currents, overlap each other. However, the GRN
under consideration behaves differently. It can be seen from Fig. 4,a that GRN starts to appear
at currents /, > 15.3 mA and their RIN increases with increasing U,

Understanding the physical nature of this noise source is a separate complex problem beyond
the scope of this study.

Conclusion

The considered microwave technique allows to measure the low-frequency noise of transistors
under conditions of intense electromagnetic interference, where it was virtually impossible to use
low-frequency instrumentation. Unfortunately, the technique is inapplicable for precision-based
physical studies, for example, analysis of the influence of various technological operations on the
noise levels in devices. However, the method can be useful for cases where the intensity of the
LF noise of the transistor is higher than the noise level of the instrumentation. Such situations
are possible, for example, in studies into the influence of long-term external factors, such as
temperature, radiation, vibration on the device, as their gradual accumulation leads over time to
degradation of the device characteristics. Degradation is always accompanied by the accumulation
of various atomic defects; the process leads to an increase rather than a decrease in transistor
noise, whose level begins to exceed the noise level of the instrumentation.
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thin (6—10 nm) films of refractory metals (Mo or Zr) deposited on flat Si substrates. Now, we
have investigated the changes in the films’ morphology induced by thermo- and electroforming
procedures and by the extraction of emission current. In SEM images of the samples taken
after emission experiments, we observed the signs of solid-state dewetting (agglomeration)
of the films, presumably caused by ion bombardment. This hypothesis was verified by SRIM
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AnHoramua. Hacrosiimass paboTa sIBisieTCs IPOAOJDKEHMEM HCCIICIOBAHUIL  CBOMCTB
HU3KOIOPOrOBOM aBTOJIEKTPOHHOM 3Muccun u3 ToHKUX (10 — 6 HM) MIeHOK MeTa/uioB Mo u
Zr, chopMHUPOBAHHBIX Ha TNTIOCKUX MOIJI0XKKaX Si. Terneppb N3yyaanch U3MeHEHNUST MOP(HOJIOTUH
IUICHOK, BBI3BIBAEMBIC TEPMOIIOJCBBIM aKTMBUPOBAHMEM M OTOOPOM SMUCCHOHHOTO TOKa.
OCHOBHbBIM 3KCIIEPUMEHTAJbHBIM METOAOM Oblla 3JCKTPOHHAs MMKPOCKOIMS. BblaBuHyTa
CUIIOTE3a, YTO MEXaHWM3M YKa3aHHbIX BO3IACHCTBUIA MOXHO OIMCATh KaK TBEPIOTEIbHbIA
JNEBETTUHI (arjoMepauusi) TOKPBITHS, MOABEPTrHYTOr0 HOHHOII OoMOapaupoBke. [list ee
npoBepku cpeacrBamu nakera SRIM mpoBeaeHO 4yMcClIeHHOE MOAEIMPOBAHUE BO3ACHCTBUS
MOHOB Ha CTPYKTYpy Mo-1uieHKa — Si-TOIJIOXKKA, a TaKKe ITOCTaBJICH 3SKCIEPUMEHT C
HCITOJIb30BaHMeM noHHoro nMiianTepa HVEE-500.

KitoueBbie ciioBa: TOHKasi MeTaJJIMUecKasl MJIEHKA, HU3KOBOJBTHASI SMUCCUS 3JIEKTPOHOB,
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Introduction

Many types of nanostructured materials and films are capable of emitting electrons at room
temperature in moderate electric fields (several V/um or less) [1—3]. This is unsurprising in car-
bon nanotubes, nanowalls, fibers and other similar structures capable of providing significant local
geometric amplification of the applied field at the tips and edges. However, structures relatively
smooth surfaces that do not contain morphological elements with a high geometric aspect ratio
were also found to be capable of low-threshold cold emission [4—11]. In particular, we previously
found that this property may be inherent in thin metal films, namely, molybdenum and zirconium
films with the thickness ranging from 6 to 10 nm deposited on the surface of naturally oxidized
silicon. The results of the experiments shedding light on the problem were presented in [12, 13].
In particular, it was reported that the threshold current of 100 nA/s can be extracted in samples
of such films at the flat top of a cylindrical anode 6 mm in diameter (located 0.5—0.6 mm away
from the sample) for macroscopic electric fields as low as of 1.8—6.4 V/um. It was also observed

© buszses U. C., Kapaces I1. A., Kapa6emkun K. B., Fa6aynmun I1. T'., Apxumnios A. B., 2024. Uznarens: Cankr-IletepOyprekui
rnosiMTexHuueckuit yuusepcuret [letpa Benukoro.
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that the structure of the coating had to be partially transformed from initially solid to that con-
taining nanoislands to stabilize the emission current. Thermal field (TF) treatment consisting of
electroforming at elevated temperature was performed for this purpose.

This work focuses on the mechanism behind the transformation of the structure of emissive
coatings due to TF treatment and/or prolonged extraction of emission current.

There is much interest in this phenomenon because of the potential applications of metal
island films, for instance, in plasmonics and in thermoelectric converters.

>

Experimental procedure

The studies were performed for the same
metal film samples as in our earlier works [12,
13]. Magnetron sputtering was used to deposit
molybdenum and zirconium films whose thick-

: ae s ness ranged from 8 to 10 nm on naturally oxi-

s e e F R0 dized plates of KDB—10 grade monocrystalline

BEAEL st — ’ @ silicon with p-type conductivity. A Mantis HEX

‘ 7 system (Mantis Deposition, Thame, UK) was
used for deposition; sputtering of the targets was
carried out in argon atmosphere at a pressure
of 5-107* mbar at a rate of about 0.1—1.0 E/s,
the temperature of the substrates was 100—150
. L . °C. The thickness of the deposited coatings was

U 4s0im somm L 10um § 8  dctermined by a quartz balance.

HmE L Before the experiments to determine the
capability for emission started, the samples were
baked in vacuum for several hours for surface
degassing. After that, the samples were subjected
to electroforming or TF treatment at tempera-
tures up to 600 °C. The emission characteristics
were measured at room temperature and residual
pressure of the order of 10~ mbar.

4 An HVEE 500 kV ion implanter was used
e e e in the experiment to simulate the effects of ion

SRR % irradiation on the coating structure. The sample
was irradiated with 10 keV fluorine ions at room
temperature and/or at 500 °C.

In all cases, data on the structure of the
films were obtained using scanning electron
microscopes (SEM) manufactured by Tescan,
Y " Czech Republic (Mira, Lyra and Solaris mod-
.‘ - els). The resulting images were processed using

5 the Gwyddion program to eliminate technical

M 125pm 520mm  [2000m) B 229um502mm 3kev _S000m |

b o ; : defects and increase contrast.

Fig. 1. Surface SEM images for Experimental results and discussion

10 nm thick Mo film samples (a—d) Microscopic images of the surface. Microscopic
and 8 nm thick Zr film samples (e—#4) images of Mo and Zr films with an average thick-
after emission experiments ness of 8 or 10 nm were obtained using the SEM

(scale bars correspond to different resolutions) method. Analysis of the films indicates that the
coatings were solid prior to the emission experi-
ments and consisted of grains with characteristic lateral dimensions of the order of tens of nano-
meters. One of these images (also presented in previous publications [12, 13]) is given below.
The surface of the coatings from which the highest emission currents were extracted was consid-
erably transformed after the emission experiments: regions with a modified (damaged) structure
appeared, evidently acting as the centers of low-threshold cold electron emission. Different sam-
ples exhibited markedly different transformations.
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Fig. 1, a—d shows surface images of the Mo film with the effective thickness of 10 nm yield-
ing the best emission properties: the threshold macroscopic field strength (for a current of 100
nA) was 1.8 V/um with the extracted stabilized current of the order of tens of pHA for tens of
hours [13]. Evidently, the main type of defects were circular, crater-like holes ranging in size from
fractions to tens of um, sometimes merging with each other. Comprehensive analysis of high-res-
olution SEM images (see Fig. 1, ¢,d) as well as data from X-ray microanalysis and atomic force
microscopy confirmed that the amount of molybdenum inside the craters is reduced tenfold and
the metal in these regions is preserved only as separate nanoscale-size islands. The craters are
surrounded by elevated rims to which the coating material migrates. Notably, the redistribution
of the material did not affect the substrate; its exposed regions remained flat.

The described reconstruction behavior of the metal coating (Fig. 1, a—d) was achieved for a
Mo film sample yielding the best stable emission properties, which is why it was subjected to the
longest emission tests with the highest extracted current. Somewhat different types of damage
were accumulated in other samples under TF treatment, electroforming and current extraction.

As an example, Fig. 1, e—h shows SEM images for 8§ nm thick Zr film, obtained after emission
testing. The overview images (see Fig. 1, e, f) show an extensive network of coating regions con-
taining line defects. Their fine structure can be seen in the images with the highest magnification
(see Fig. 1, g, h). The same as in the case above, the process of morphological transformation of
the film apparently began with the formation of submicron-sized holes (see Fig. 1,#). However,
a slightly different picture was subsequently observed for the material from the vacated regions
of the surface, composing relatively large (up to 100 nm) circular islands (see Fig. 1, g) rather
than rims.

Noteworthy structures were also detected on the surfaces of several samples of metal films
whose emission properties rapidly degraded during testing. Fig. 2, a—c shows SEM images of the
regions of the 8§ nm thick Mo film, Fig. 2, d—fthose of the regions of the Zr film with the same
thickness. The structures shown in the overview images a, b, d and e consist of several (4—6)
relatively wide branches emanating from a common center. As evident from the SEM images, a
fraction of the film material moved from the inside of each branch to the surrounding rim. The
large-scale images in Fig. 2, ¢, fshow a network of light lines, probably also corresponding to the
line defects on the surface.

68.8 im 526 mm 2y

SE 10 ke 2.70 kx

U 670um s1omm L 208m | U 247um 524mm Spm 879pm 523mm __2HM |
SE 10kev 278 kx SE 10 ke 7.52 kx SE 10keV  212kx

Fig. 2. Branched structures found in SEM images of Mo (a—c) and Zr (d—e) coatings (8 nm thick)
Images shown in panels ¢ and f represent the same regions
of the coatings as in b and d, but at a higher magnification
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Thus, we can confirm that regions with modified morphology appeared in the initially solid
thin-film samples due to the influence of factors associated with the activation of emission ability.
Agglomeration of the films occurred in this case: the amount of coating material in some regions
of the surface was significantly reduced due to its lateral transfer to other regions. In some cases,
the film structure clearly started to contain islands in some regions (see Fig. 1 d, g, 4), which may
explain the ability to low-threshold cold electron emission observed in such samples [4, 9, 10].

Mechanism of film agglomeration. The SEM images obtained (see Figs. 1 and 2) combined with
the findings from earlier studies using AFM and X-ray microanalysis [12, 13] indicate that the
damage in the coatings occurred during emission experiments with metal films largely due to acti-
vated material transfer along the surface rather than due to its evaporation or atomization, which
could be expected upon rapid local energy release, for example, during electrical breakdown.

The transformation of solid thin metal films into island ones due to lateral transfer of the mate-
rial is known as solid-state dewetting (the term agglomeration is also used in Russian-language
literature) [14—16]. When metal is deposited on a dielectric substrate (poorly wetting it), a solid
coating can form at initial low temperatures due to low surface mobility of atoms. Such a coating
is transformed into an island coating during subsequent thermal annealing, with temperatures
significantly below the melting point of the metal generally required for this purpose. The cause
of the dewetting phenomenon is the thermodynamic instability of films whose thicknesses range
from units to tens of nanometers. This instability is due to the peculiarities of interatomic forces,
specifically, the repulsive (short-range) and attractive (long-range) van der Waals forces [17]; or,
in another formulation, the forces of diffusion and surface tension.

The general picture (see, for example, [14—18]) is that the dewetting process of a solid coating
begins with the appearance of small holes (craters) whose number and size gradually increase. The
coating material transferred from the hole forms elevated rims surrounding them. Next, the holes
begin to come into contact, and the final coating structure is formed as a result of redistribution
of the material in the rims. It can be different and depends on the parameters of the interaction of
the atoms in the coating material with each other and with the substrate as well as on the anneal-
ing conditions. The formation of both large discrete particles, similar to those shown in Fig. 1,g,
and branched (also called web-like) structures [15, 18]), similar to those shown in Fig. 1, e, fand
Fig. 2, b, d, was previously described in the literature.

Thus, there is every reason to interpret the appearance of most types of defects in metal films
subjected to TF treatment and emission experiments as dewetting occuring under the influence
of factors related to extraction of the emission current. In particular, this interpretation allows
to explain the correlation of the emission ability observed earlier (in experiments with car-
bon films [9, 10]) with the presence of a natural oxide layer on silicon substrates: the adhesion
of coatings to silicon dioxide is typically lower than their adhesion to pure silicon surface, which
can facilitate the transformation of the film structure during activation of their emission ability.

Estimation of dewetting conditions. Thus, an island film is the thermodynamically stable mor-
phological shape for metal coatings up to several tens of nanometers thick deposited on dielec-
tric substrates, since its free energy is lower than the free energy of a solid coating [14—16].
However, solid coatings are transformed into island coatings only at elevated temperatures, since
this requires lateral atomic transfer with sufficiently high activation energies. The temperature at
which dewetting can be observed depends on the material and thickness of the coating, as well as
on the characteristics of the substrate.

Consider gold coatings whose quantitative patterns of dewetting are the best understood. For
instance, the activation energy of dewetting was determined in [16] for gold coatings of different
thicknesses on silicon nitride substrates. Its values were 1.04 eV for 15 nm thick films and 1.42 eV
for 22 nm thick films. The observations were carried out in the temperature range from 300 to
600 °C, which is significantly below the melting point of gold (1064 °C).

The TF treatment aimed at activation of the emission ability of films in our experiments was
also carried out at temperatures up to 600 °C. However, we considered metals with much higher
melting points (their tabular values are 2623 °C for molybdenum and 1852 °C for zirconium).

Notably, there are scarce data in the literature on dewetting in molybdenum or zirconium
films. A significant study [18] observed the process of agglomeration in a 20 nm thick Mo coating
deposited on a sapphire substrate. The dewetting of this coating occurred within tens or hundreds
of minutes, which approximately corresponds to the duration of the TF treatment in our studies.
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However, the samples in [18] were heated to a temperature of 940 °C, significantly higher than the
values that we used. This observation is in good agreement with the fact that Mo films exhibited
no morphological transformations outside the «projection» of the anode in the region where the
only factor influencing the film was the elevated temperature, while the influence of the electric
field and the factors associated with extraction of emission current was excluded (this is discussed
in our earlier paper [13]). The specific local influence of these factors might have been the reason
for the observed local transformation of the film structure and activation of their emission ability.

It was found [19—23] that the dewetting process can be stimulated not only by heating the
sample, but also by optical, electronic or ion irradiation (induced by local heating). Estimates of
the expected effectiveness of such local contributors are given below for experimental conditions
described in [12, 13].

Let us evaluate the temperature of local Joule heat released from the flow of emission cur-
rent through the emission centers. TF treatment of the samples in [12, 13] was carried out with
the extracted emission current / = 100 nA = 1077 A. Suppose that as current flows through the
emission center, each electron transfers energy of the order AE = 1 eV to heat (this assumption is
substantiated in [24]). The power of such a heat source is P = I'AE/e = 1077 W = 100 NW. An
initial estimate of the temperature drop AT produced by this source can be obtained by solving
the simple problem on the propagation of a stationary heat flow from a local surface source of
size d into a thick silicon wafer (with the thermal conductivity x = 148 W/(m-K)). The result of
the solution is

P
2nkd

AT = (1)

If we select the typical size of the observed craters d = 1 um as the size of the heat release
region, we obtain a negligible value for estimating the temperature increment: AT = 107+ K.
Apparently, the local temperature increment remains insignificant, amounting to A7 = 0.01 K,
even for the smallest possible size of the heat release region d = 10 nm (the order of size of indi-
vidual nanostructures detectable in microscopic images in Fig. 1, d and #4).

However, the above evaluation ignores the specifics of nanoscale heat transfer processes, where
the contribution from the interface between the media to the total thermal resistance of structures
turns out to be predominant [25]. If at least one of the contacting media is not a metal and heat is
transferred mainly by phonons, each interface is characterized by the so-called Kapitza resistance
R, [26]. This parameter relates the interfacial temperature drop to the heat flux ¢: AT = R, -q. In
effect, it turns out [25, 27, 28] that the value of the Kapitza resistance for most practically inter-
esting cases lies in a relatively narrow range:

R, =(0.6—3.0):10* m>K/W.

The maximum estimate of AT is obtained taking the value of R, at the right endpoint of the
given range and setting the smallest size of the heat release region: d = 10 nm.
Estimating the heat flux across the boundary as ¢ = P/d?, we obtain that

AT=R -P/d*~30K.

This value still seems insufficient for explaining the observed transformations in the morphol-
ogy of the coatings.

The above estimates indicate that local heating of the sample surface induced by the flow of
emission current cannot activate the film dewetting process to a sufficient extent.

Let us consider the scenario when the activating factor was the bombardment of the coating
regions adjacent to the emission center with ions formed by ionization of residual gas by the emit-
ted electron current. Fig. 3 shows a schematic representation of the experimental device used for
TF treatment of samples and measurement of emission current—voltage characteristics.

Let us again set the value of the emission current /= 100 nA. The concentration of neutral mol-
ecules in the field gap, », can be estimated based on the residual gas pressure of 107 Torr (it may
be higher than in other parts of the experimental device), which corresponds to # = 3.6-10' m™3.
Generally speaking, the ionization cross section of gas molecules by electron impact depends on
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Fig. 3. Schematic of field gap of experimental device
The region colored in pink is where the energy of the emitted electron current (blue lines) reaches
the maximum ionization cross section of residual gas and where the largest number of ions (+)
bombarding the sample surface are produced (the direction of bombardment is shown by arrows)

the type of gas and on the electron energy of the electrons, varying as they move in the field gap
(see Fig. 3). We choose the value of the cross section ¢ = 1072 m? as an averaged estimate. The
width of the field gap in the experiments was # = 0.6 mm. In view of this, the ion current /, can
be written as

[=Inch=2-10"5 A,

Next, we estimate the ion beam fluence D for time # = 1000 s, corresponding in order of mag-
nitude to the typical duration of the TF treatment procedure. We assume that the ion current is
distributed over an area S = 1 um?= 107> m? (this is the area of a typical crater in microscopic
images, see Fig. 1, ¢, d and #). We obtain:

I
1):4;z1018m2 =10"cm™. (2)
e

This value can be compared with the literature data on ion beam fluences sufficient for initiat-
ing dewetting in metal films. For example, a transformation (caused by ion irradiation) of a solid
gold film deposited on monocrystalline silicon was observed in [23]; the solid film was transformed
into a coating consisting of discrete islands with the lateral size of the order of tens of microm-
eters. This transformation required irradiation with a fluence in the range (4.0—9.5)-10" cm™2,
which is comparable to estimate (2).

Notably, however, there are several significant differences in the conditions of the compared
experiments. The sample considered in [23] was a 1.5 nm thick gold film, while our experiments
were carried out with more refractory metals and with coatings of greater thickness. These two
differences would be expected to increase the activation energy of atomic migration on the sur-
face. On the other hand, PF,*, BF,* and Ta*" ions with sufficiently high energy (0.65 keV/u) were
used in [23], typically penetrating deep into the samples. This can weaken the activating effect of
radiation on surface migration. The nature of the coating materials seems to be the most signifi-
cant among these factors; unfortunately, we were unable to uncover any data on the effect of ion
irradiation on dewetting of molybdenum and zirconium films in the literature. For this reason,
we decided to conduct an additional experiment to directly observe the effect of ion irradiation
on one of the film samples whose properties were studied in this paper and earlier in [12, 13].

Effects of ion irradiation: experiment and simulation

Experimental The effect of ion irradiation on the morphology of a Mo film was studied based
on the experiment with a sample of 10 nm thick Mo coating on a KDB-10 grade silicon plate.
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The peripheral part of the film was used for irradiation and microscopic studies, laying outside
the region to which the electric field was applied during the earlier emission testing and therefore
not contributing to the emission current.

At the first stage of the experiment, two sections of the sample were exposed to ion irradia-
tion with a fluence (dose) of 10'> and 10" cm™ at room temperature. Fluorine ions whose mass
is close to atomic masses of atmospheric gases were used. The ion energy was equal to 10 keV,
i.e., the minimum value technically achievable for implantation system used. After morphological
control of the irradiated and non-irradiated parts of the coating, the sample was reloaded into the
implanter and irradiated with the same ions for a second time, but at a dose of 10'* cm™2 and at
a temperature of 500 °C.

Fig. 4 shows images of the sample surface before and after irradiation with doses of 10" and
10'* ¢cm™2. The brightest points in the images correspond to defects produced due to prolonged
irradiation of the surface by a stopped scanning electron beam.

Even though the maximum fluence was equal to the calculated value (from Eq. (2)), no signs
of coating dewetting could be detected in the SEM images. The only transformation observed is
in the structure of the grains whose boundaries are practically absent in Fig. 4,c, obtained after

SEM HV- 10.0 KV SEM HV: 10.0 kv WD: 3.13 mm T SEM HV: 10.0 kv WD:3.03 mm
View fleld: 1.50 pm |  Det: In-Beam SE | 200 nm View field: Det: In-Beam SE | 200 nm View field: Det: In-Beam SE_ 200 nm

Fig. 4. Surface SEM images for 10 nm thick Mo coating sample obtained at 23 °C before
(D = 0) (a) and after (D > 0) single (b) and double (¢) irradiation with 10 keV F* ions
with different fluences D, cm™2: 103 (b); 103 (23 °C) + 10" (500 °C) (c)

irradiation with the highest ion fluence, which can be interpreted as a sign of amorphization of
the coating.

Coating dewetting at such a fluence value occurred in the experiments with films of more fusible
gold [23], even in the case of irradiation at room temperature. On the other hand, the studies in
[23] also found that the smoothing of the surface of the gold film at relatively small irradiation doses
precedes the period when the film starts to break into islands. This suggests that coating dewetting
could also be achieved with a further increase in the dose in our experiment with the implanter.

A significant difference (for the dewetting process) between the ion bombardment accom-
panying the extraction of the emission current and that in the experiment with the implanter is
possibly in the lower average ion energy in the first case, which should lead to a difference in the
penetration depth of these ions into the sample.

The maximum ion energy in the emission experiments was determined by the magnitude of
the voltage applied to the field gap, which did not exceed 4.5 kV. As for samples with the best
emission ability, this voltage did not exceed 1 kV [12, 13]. The average ion energy could be even
lower: a wide energy distribution from zero to the value corresponding to the anode potential can
be expected for ions produced due to ionization of the residual gas by electron impact (see Fig. 3).

Numerical simulation To confirm the possible role of the voltage factor applied to the field gap,
we carried out numerical simulation of the interaction between the ions normally incident on 8
nm thick Mo film on silicon substrate and this structure. The standard SRIM package which is
the most widespread for simulations of ion implantation was used. The threshold displacement
energies were assumed to be 25 and 15 eV for molybdenum and silicon atoms, respectively. To
reduce the statistical error, 15,000 independent cases were simulated. The simulation results are
shown in Fig. 5.
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Fig. 5. Calculated distributions of defects produced per ion over target depth (a)
and concentrations of injected impurity (b) in Mo (8 nm)-Si structure
during bombardment with different ions (given in the legend)

According to the calculation results, 10 keV ions corresponding to the conditions of the
implanter experiment penetrate all the way through the Mo film and a significant number of
defects are produced in the surface layer of the silicon substrate. This should adversely affect the
coating dewetting process, contributing to mutual diffusion of the film materials, the substrate and
the silicon dioxide layer separating them. However, in the case of 1.5 keV ions, it is only the coat-
ing that is mostly exposed to them, while the interface with the substrate is virtually unaffected.
Therefore, the ion beam bombarding the surface of the samples during TF treatment and emis-
sion current extraction in our experiments described in [12, 13] could more effectively stimulate
the dewetting process, transferring additional energy to the coating atoms and contributing to an
increase in their surface mobility.

The proposed explanation should not be considered as the only possible one. For example,
it is known that the action of the electric field itself can increase the surface mobility of atoms
and cause agglomeration of films [15]. Studies on electron emission in current flow along thin
metal films (see, for example, [29]) interpreted the activating effect of electroforming on coatings
precisely as the increase in atomic mobility in a strong electric field. Another potential activating
factor is the excitation of electrons in the atomic outer shells by direct action of the electron
emission current; this phenomenon of film agglomeration electron irradiation was also described
in the literature [19, 20].

Conclusion

The paper analyzes microscopic surface images of thin molybdenum and zirconium film sam-
ples, both initially solid and after their thermal field treatment consisting of applying an electric
field and extracting an emission current under heating to a predetermined temperature (no higher
than 600 °C). The samples subjected to this procedure exhibited (to a greater or lesser extent)
cold electron emission in a low-intensity macroscopic electric field (on the order of several V/
um). It was found that the best emission properties of 10 nm thick molybdenum films correlate
with a certain type of transformation of their surface during treatment and current extraction,
i.e., holes evolving in the film, inside which the coating metal is present as isolated nanoislands.
Regions of a different structure appeared during treatment and current extraction in the samples
exhibiting the worst emission parameters (in particular, in 8§ nm thick molybdenum and zirconium
films). The results of image analysis, numerical estimates, simulation and additional experiments
indicate that the transformation of the coating structure occurred by the mechanism of solid-state
dewetting stimulated by ion bombardment. This opens up the possibilities for developing ion-
beam technologies aimed at synthesis of effective emission or thermoelectric structures based on
arrays of metal islands.
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Annoranuga. B crathe paccMaTpuBalOTCS aHAIMTUYECKWE BBIPAXKEHMS IS TOTCHIIMAIOB
3JIEKTPUYECCKUX I10JICi1, KOTOPbIE COOTBETCTBYIOT PAAMOYaCTOTHBIM BOPOHKAM C KBaApaTUYHbIM,
KyOMUeCKMM M OUKBaApaTHLIM MNPOPUISIMU. DIEKTPOAbl BOPOHOK MPEACTaBISIOT CO00it
MOCJIeIOBATEIBHOCTE AradparM ¢ KpyroBoi WJIM MYJIBTUIIOIBHON CTPYKTYPO W anepTypaMu
MePEeMEeHHOTO pa3Mepa, KOTOPBIN M3MEHSIETCS BIOJIb KaHajla TpaHCIIOPTUPOBKY 10 3aJaHHOMY
3akoHy. [lonmydeHHBIC BBIPAXEHMS MOTYT OBITH ITIOJIE3HBI JISI OBICTPOrO KauyeCTBEHHOTO
MOJIEIMPOBAHUSI PAaMOYACTOTHBIX YCTPOWCTB, TMPEAHA3HAUYEHHBIX IS TPAHCTIOPTUPOBKU U
(OKYCUPOBKU MOHOB.
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Introduction

The present study is a direct continuation of the analysis in [1], considering analytical expres-
sions for the potentials of electric fields in cylindrical transporting channels [2, 3] (in fact, in
SRIG-type cylindrical radio frequency traps, first proposed in [4, 5] and studied in detail in [2,
6—9]), and conical ion funnels [10—16]. However, when designing ion-optical devices, it is con-
venient to use RF focusing funnels whose profile is not conical (this is shown, for example, in
[13]), as well as segmented quadrupole or multipole electrodes (see, for example, [33]).

The analytical electrical potentials considered in this paper are intended for modeling ion fun-
nels with quadratic, cubic and biquadratic profiles, and, more generally, for modeling SRIG—type
transport systems with circular, non-circular and multipole apertures, as well as with profiles
described by polynomials of the appropriate degree.

These analytical solutions of the three-dimensional Laplace equation are of separate interest,
since they can be used to solve the corresponding problems of mathematical physics.

© bepnuukoB A. C., Macwokesuu C. B., IlomozoB T. B., Xacun 0. U., ConoseeB K. B., 2024. Wznmartenp: CaHKT-
[MeTepOyprckuii moauTexumyeckuii yaupepcuter [letpa Bennkoro.
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RF traps with a cylindrical transport channel

Traps with circular electrodes. In the simplest case, RF traps and SRIG-type ( Stacked Ring
Ion Guides) transport channels are a sequence of circular apertures with RF voltages applied to
them (in particular, sequences of pulses) with a phase shift = between adjacent apertures [2—10].
Assuming that the condition of quasi-static electric field is satisfied, the high-frequency potential
of this field can be expressed as a function of time setting the law for voltage variation at the
electrodes, which is multiplied by the potential of the electrostatic field corresponding to DC
voltages at the electrodes.

The assumption about the quasi-static nature of a high-frequency electric field is valid when
the time of the characteristic change in electrical voltages at the electrodes significantly exceeds
the time of propagation of electromagnetic perturbation within the device. Typical sizes of elec-
trode configurations used in the designs of ion-optical systems are no more than a few tens of
centimeters (as a rule, much smaller). Taking into account the equality of the speed of light and
the speed of propagation of an electromagnetic perturbation, this assumption is obviously satisfied
for the frequencies of electrical voltages commonly used in ion-optical devices (from hundreds of
kilohertz to several megahertz, rarely several gigahertz).

Under such conditions, the electromagnetic perturbation propagates almost instantly, and
the high-frequency electric potential, which varies in time and space, can indeed be represented
as a product of a function of time and electrostatic potential depending on spatial coordinates.
A time-dependent multiplier describes a temporal change in electrical voltages, and a coordi-
nate-dependent potential corresponds to constant voltages at the electrodes, which change syn-
chronously and proportionally over time.

Thus, an electric field is created within the framework of the model under consideration,
which changes synchronously and proportionally at each point in space. Although such a step is,
in fact, a disregard for electrodynamic effects, i.e., the accompanying electromagnetic wave, it is
quite acceptable if the frequency of voltages applied to the electrodes is not too high (in the sense
indicated above).

In a typical case, the signs and amplitudes of the voltages applied to individual apertures of a
cylindrical trap or a cylindrical transport channel alternate according to the rule

+U,, —Up, +Upy —Up, + Uy, —Ul, .. (1)

Due to the symmetry of the geometric shape of the electrodes and the antisymmetry of the
voltages applied to the electrodes, the plane along which the electric potential is identically zero
is located in the middle between adjacent electrodes. This makes it possible to add fictitious
zero-voltage apertures without distorting the electric field and thus consider periodic sequences of
voltages that alternate according to another rule:

+U,, 0, -U,;, 0, +U,,0,-U,,0,+U,, 0, =U,, ... )

If the electrode configuration and the analytical expression for the electric potential with volt-
ages (2) applied to the apertures are shifted by one step along the z axis, a solution is obtained for
the voltages at the apertures organized by the rule

0,+U;,0,-U,;,0,+U,,0,-U,,0,+U,, 0, ... 3)
Fig. 1 shows a SRIG-type cylindrical RF trap with circular apertures.

Fig. 1. Structure of periodic ring electrodes of a cylindrical RF trap
or a cylindrical SRIG-type transport channel
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It is known [2] that the electrostatic potential of a system of electrodes with the periodic
voltages applied to them corresponding to sequence (1) is described with good accuracy by the
following expression away from the edges of the electrodes, in the vicinity of the axis of the
transport channel:

U(zr)= Iol(ij) cos(Az+@) 1, (Ar), (4)

where z, r are the axial and radial coordinates (7 = \/x + y ); U, are the static potentials applied
to the apertures; [ is the modified zero-order Bessel function [17 19]; A is a parameter of the
geometric scale, K TC/ L (L is the distance between adjacent apertures); R is the radius of circular
apertures; ¢ is the parameter determining the shift of the aperture sequence relative to the origin.
Equipotential lines and a three-dimensional graph of the electric potential given by Eq. (4) in
normalized coordinates (z, 7) are shown in Fig. 2.
Potential (4) includes the sum of two linearly independent potentials with constant coefficients:

a) b)

o

0.5¢

0.0t

-0.5¢

e

0.0 2.0 4.0 6.0 z

Fig. 2. Field lines for static electric potential (5) in (#,z) plane
in normalized coordinates for SRIG-type RF trap:
a corresponds to equipotential lines on the plane, b to the three-dimensional graph

Ue(z,r) = IOEJ;R)COS(M)IO(M), )
U, (2.r) = IOE;RR) sin(32) 1, (), ®)

Potential (5) behaves as U, cos(?»z) on the axis of symmetry » = 0, and potential (6) behaves
as U, sin(kz) where U, is the amplitude of spatial oscillations of the correspondlng electrostatic
potentlal on the axis of the system, U, =U / 1 (XR) Electrostatic potentials (5), (6) prove to
be useful auxiliary tools for constructlng analytlcal models of the electric field for more complex
electrode configurations.

Functions (5) can be used to describe the electrostatic field of a periodic sequence of circular
apertures with the voltages corresponding to periodic sequence (2), and functions (6) can be used
to describe apertures with the voltages corresponding to periodic sequence (3). To achieve this,
however, it is necessary to use a geometric scale A =T $2L .

Indeed, the voltage chains (2) and (3) are obtained from voltage chain (1) by inserting addi-
tional zero-voltage apertures between the initial apertures (as noted earlier, this operation does
not distort the electric field for a sequence of geometrically identical electrodes with antisymmet-
ric periodic voltages of form (1)). The distance between adjacent apertures becomes equal to L/2
on the initial scale of distances, so the geometric scale A should be recalculated.
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A practical example of using potentials (5), (6) in combination with circuits for supply-
ing electrical voltages (2) and (3) are analytical electric fields used for modeling ion-optical
devices [8, 9, 21—32].

Traps with quadrupole segmentation of electrodes. Segmented quadrupole apertures can be used
instead of circular apertures (Fig. 3). Namely, circular apertures are divided into four segments,
and then electric voltages are applied to the resulting electrodes in such a way that opposite-po-
larity electric voltages appear at adjacent electrodes. Such a device is the first stage of a two-stage
transport channel, considered, in particular, in [33], using numerical simulation rather than ana-
Iytical models of the electric potential.

w TN

Fig. 3. Structure of periodic segmented quadrupole electrodes of cylindrical RF trap

A good approximation for the electrode configuration shown in Fig. 3, in the axial region
sufficiently away from the edges of the circular electrodes, is expressed as electrostatic potentials
taking the form

(@ Uy -y’
uY (x’y’z):](;R) > cos(rz) 1, (rr), (7)
2
U(q) 22
U (x3,2) =~ (;R)x rzy sin(Az) 1, (\r), )
2

where r = \/xz + y2 (as before); iU,(f) are the electrical voltages with alternating signs, applied
to individual multipole segments of a thin quadrupole-segmented aperture; /, is the modified
second-order Bessel function [17—19].

The estimate [ (r) ~7’ / 8 is valid for the function /, with »~ 0. Because the limit of the
expression 1/, (Kr) 7 r*is finite for » — 0, potential (7) behaves as follows near the symmetry axis
r=0:

U ~ul? (x2 -y’ )cos(?»z),
and potential (8) behaves as
U ~ Uy (x* = y? )sin(z),

where U,? is the spatial oscillation amplitude of the corresponding quadrupole field component
near the system axis,

U =220 /81, (AR).

Good approximations of the electric field in the axial region for the electrode configuration,
rotated relative to the axis of symmetry by 45, are analytical functions of the form
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. U(’)
U(c)(x’y’z):] (;R)j—fcos(kz)lz(%r), 9)
2
) Uy w.
U (x,y,z)zl (kR)r—zsm(kz)Iz(?ur). (10)
2

Potential (9) behaves as ~ U(gr)xy cos(kz) near the symmetry axis » = 0, and potential (10)
behaves as ~ U, xysin(Az).

Analytical solutions (7)—(10) can be combined to obtain an analytical solution for a segmented
quadrupole trap with alternating orientations of adjacent electrodes (Fig. 4).

NS

Fig. 4. Structure of periodic segmented quadrupole electrodes of cylindrical RF trap
with quasi-octupole placement symmetry of even and odd electrodes

We use voltage sequence (2) for circular apertures with traditional quadrupole segmentation
(see Fig. 3). The electrostatic potential of such a system is described with good accuracy by
analytical expression (7), using the geometric scale A = n/ ( ZL) . The electrostatic potential for a
sequence of voltages (3) and circular apertures with rotated quadrupole segmentation is described
with good accuracy by analytical expression (8) with the geometric scale A = n/ (2L). Now let
us combine these two solutions to obtain an analytical expression of the electric potential for the
configuration of the circular apertures in Fig. 4.

The shape of circular electrodes in the corresponding section is of no particular consequence
for zero potentials in a first approximation. The circular segmented quadrupole electrodes for even
voltage positions (2) generating electrostatic potential (7) within the volume of the trap can be
replaced with rotated segmented quadrupole electrodes. Similarly, the rotated circular segmented
quadrupole electrodes for odd voltage positions (3) generating electrostatic potential (7) within
the volume of the trap can be replaced with conventional segmented quadrupole electrodes. In
accordance with the principle of superposition of electric fields, summation of voltages for a fixed
geometric structure of electrodes involves summation of the corresponding electric fields. This
yields additional analytical solutions describing the electrostatic field for a trap with rotated seg-
mented quadrupole electrodes (see Fig. 4):

U(“)(x,y,z)inéq) (x,y,z)iUé’)(x,y,z), (11)
U(b)(x,y,z):iU(C’)(x,y,z)iUéq)(x,y,z), (12)

where the functions U, (Cq), U é"), U (Cr), U§’> are defined by expressions (7)—(10), and the geometric
scale parameter is selected in accordance with equality A = n/ (ZL) .

Note. The given scheme for combining two analytical solutions can be used with different
electrical voltages, different radii of circular apertures, different electrode segmentation schemes
(see the next section) and even with different shapes of non-circular apertures for even and odd
positions. However, such exotic solutions are of theoretical rather than practical interest.
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Traps with multipole segmentation of electrodes. In general, a multipole of arbitrary order n can
be used instead of quadrupole segmentation of circular electrodes. For this purpose, circular aper-
tures are divided into 2z identical segments, and then electric voltages are applied to the resulting
electrodes in such a way that electric voltages of opposite polarity appear at adjacent electrodes. A
good approximation in the axial region sufficiently away from the edges of the circular electrodes
(depending on the rotation of segmented multipole electrodes relative to the symmetry axis) is
expressed as electrostatic potentials taking the form

U9 (x,,2) = Tl o (e )eos (421 () (13)
U (x, y,z):]n((] 7 cos(n Arg(x3)sin(32) 1, (1) (14)
U (x.p.2) = zn((]fR)r" sin(n Arg(x, y))cos(Az) 1, (r)/r" (15)
UC) (x,9,2) = . ((’;R) " sin (n Arg (v, y))sin (Az) 1, (Ar) /7" (16)

where Arg(x, y) is the argument of the complex number x + iy; A = TC/ L is the parameter of the
geometric scale; / is the modified Bessel function of nth order [17—19], n is the order of multi-
pole segmentation of circular apertures of a cylindrical trap.

If = 0, the function /, (r) behaves as

I,(r)~ 27" [n),
and if » — oo, it behaves as
I ~ exp /\/2751’

In view of this, potentials (13)—(16) behave as follows at »= 0 (i.e., near the axis of symmetry):

Ugf»"> ~ Uy cos(n Arg(x,y))cos(Az), (17)
Ul U cos(n Arg(x,y))sin(%z), (18)
UU™) ~ Uy sin(n Arg(x, y))cos(Az), (19)
UY™ ~ Uy sin(n Arg(x, y))sin(2z), (20)

where U, is the spatial oscillation amplitude of the corresponding multipole component of the
electric potential near the axis of the system,

U, =U, (272") [(n'1, (AR)).

It is easy to verify that functions (13)—(16) do indeed satisfy the Laplace equation (as well as
the asymptotic behavior of functions at » — 0 and r — ) by direct substitution using the pro-
gram from [38]. Egs. (5), (6) and (7)—(10) are special cases of analytical expressions (13)—(16).
Linear combinations with constant coefficients composed of axisymmetric potentials (5),
(6) and multipole potentials (7)—(10) and (13)—(16) with appropriate weights can be used
to analytically describe the electric fields of RF traps and SRIG-type transport devices with
non-circular apertures.
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As in the case of circular segmented quadrupoleapertures discussed in the previous section,
segmented multipole solutions can be combined and analytical solutions can be obtained for seg-
mented multipole apertures with alternating rotation angles:

U(a,n) (x,y,z) = iUéq’n) (xayaz)i Ué”’”) (-xayaz)’ (21)
U(b,n) (x,y,z) _ iUg’n) (x’ Vs Z) + qu’") (x’ v, Z)- (22)

The functions Ué”’"), qu’"), Ug’"), Uf;’”) in these expressions are defined by Egs. (13)—(16),
while A = n/(ZL) .
Two-dimensional multipole multipliers. The expressions in Egs. (13)—(20)

0,(x,y)=r" cos(n Arg(x,y)), (23)

R, (x,y)=r" sin(n Arg(x,y)), (24)

are homogeneous harmonic polynomials satisfying the two-dimensional Laplace equation. The
Euler homogeneity property of degree n for the functions Q (x,y) and R (x,y)follows directly
from Egs. (23), (24):

for VA >0, Vx, y:0, (kx, ky) =A"0, (x,y), R, (Xx,ky) =A"R, (x,y),

and harmonicity is verified by direct substitution of expressions (23), (24) into the Laplace equation.

The sequence of two-dimensional homogeneous harmonic polynomials Q (x,y) u R (x.y),
calculated by Eqgs. (23), (24) and ordered by increasing homogeneity degree (multipole order),
has the form:

laxay, xz_yza 2Xy, x - Y‘Xyz, 3x2y_y3, ee s

The multipliers Q (x,y) and R (x,y) provide multipole symmetry with respect to the sym-
metry axis OZ for the potentials under consideration. Expressions (23), (24) obey the following
recurrence relations:

0, (x,¥)=1, R, (x,¥)=0, (25)
0, (x,y)=x0,(x,y)~yR,(x,y), (26)
R..(x.y)=y0,(x.y)+xR,(x,y). 27)

General expressions for functions defined using recurrence relations (25)—(27) are Egs. (23),
(24). This either follows from the uniqueness of the functions that must be calculated in accor-
dance with recurrence relations (25)—(27), or is easily proved by induction, or becomes obvious
after writing recurrence relations (25)—(27) in complex form:

O, (x,y)+iR,(x,y)=1,

O, (x%.7)+iR, (%.y) = (x+)(Q,1 (x.3) +iR,., (x. 7)),

0, (x,y) +iR, (x,y) = (x+iy)" .
The last equality means that
0, =Re(x+iy)", R, =Im(x+iy)",
then, the trigonometric notation of complex numbers can be used to obtain formulas (23), (24).

101



4 St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2024. Vol. 17. No. 2

>

The polynomial nature of functions (23), (24) as well as the homogeneity of these polynomials
(each of them is a sum of homogeneous monomials of degree n, which have the form c¢x*y"*,
where £k = 0, 1, ..., n) automatically follow from recurrence relations (25)—(27). The fact that
these polynomials satisfy the two-dimensional Laplace equation can be obtained without using
the general formulas (23), (24), as the Cauchy—Riemann relations are satisfied for the functions
Q, (x,y) and R (x, y), obeying recurrence relations (25)—(27):

aQn (x’y) — aRn ('x’y) aQn (x’y) :_aRn (x’y). (28)

ox oy oy ox

Property (28) is proved by induction using auxiliary equalities that follow from recurrence
relations (25)—(27):

aQn+1 _ 8Rn+l — Qn +x 8Qn _yai_Qn -y aQn —x aRn =x 6Qn _ aRn -y aQn + aRn ,
Ox oy Ox Ox oy oy ox oy oy Ox

00, ., N OR ., ZxaQn R _ya&+y8&+Rn +X8Rn . 00, N OR, iy o0, OR, _
oy ox oy oy ox ox oy  Ox ox oy

RF funnels with conical transport channel

Funnels with circular electrodes. The classical version of an RF ion funnel is a sequence of
circular apertures with decreasing radii, varying by the law for the radii of the circular cone cut
by planes located in the plane of the aperture and perpendicular to the axis of the cone (Fig. 5).

Fig. 5. Structure of periodic ring electrodes of conical RF funnel

The behavior of the axisymmetric electric potential V(z,r) is to be expected for such a geomet-
ric configuration of the electrodes on the axis of the system as the sum of potentials

Ve ~Uyzcos(Az) and Vg ~U,zsin(Az),

where U is the scaling factor for the linearly increasing spatial oscillation amplitude of the corre-
sponding electric potential on the axis of the system.

The following analytical formulas were proposed in [1] for conical RF funnels with
circular apertures:

Ve(z,r)=U, [z cos(Az) 1, (Ar)+rsin(rz), (M)], (29)
Vi(z,r)=U,[ zsin(rz) I, (hr)—rcos(rz) I, (Ar) ], (30)
where A = TE/ L is the geometric scale, / is a modified first-order Bessel function [17—19].

If r = 0, the estimate /(r) = r/2 is valid for the function /,. These analytical solutions behave
as follows on the z axis of the system:

Ve ~Uyzcos(Az), Vs ~U,zsin(Az).
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Equipotential lines and a three-dimensional graph of the electric potential given by Eq. (29)
in normalized coordinates (z, r) are shown in Fig. 6. Function (29) turns into function (30) when
substituting z — z + n/2X, so their graphs merge into each other with a shift along the OZ axis.

a) \\\ﬂ/vv

i

0.0

B

20 40 60 80 =z

Fig. 6. Field lines for static electric potential (29) in (z,7) plane
in normalized coordinates for SRIG-type RF trap:
a corresponds to equipotential lines on the plane, b to the three-dimensional graph

Solutions (29), (30) are obtained by differentiation of solutions (5), (6) with respect to the
parameter A after the substitution

U, =U,/I,(AR),
where U is the amplitude of spatial oscillations of the electrostatic potential on the axis of the

SRIG-type RF trap.

Funnels with segmented quadrupole electrodes. Similarly, differentiating with respect to the
parameter A yields analytical solutions for conical segmented quadrupole funnels from Egs. (7)—
(10) (by analogy with Fig. 3):

Vc(q) (x,3,2)= U(()q) (x2 -y ){z cos(%z)—gliz(;r) +
(31)
ar(d (A I(Ar))—41, (A
+4r? sin (Az) r( () ;3( 2r)) :{ r):l
r
(«) (2 2\ 2ein (1) S (A7)
v (x,y,z):UO (x -y ) zsin(Az) o
M([ (Ar)+1 (Kr))—4[ (Ar) 4
~4r? cos(hz)—— ;3 - 2 }
r

where [, is a modified third-order Bessel function [17—19].
The estimate I, (r) ~r / 48 is valid for the function /, with r = 0.
A device such as the second stage of a two-stage transport channel was considered, in particu-
lar, in [33] but using numerical simulation, rather than analytical models of the electric potential.
If =0, i.e., near the symmetry axis, potential (31) behaves as follows:

vl ~yld (x2 — yz)zcos (rz),
and potential (32) behaves as
Vi ~ U (57 = y* ) zsin(Az).
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Similarly, analytical solutions for the corresponding static electric potentials for the configu-
ration of segmented quadrupole circular electrodes rotated 45° relative to the symmetry axis are
functions of the form

I ar (1 (W) + I, (W) ) =41, (W) |
Vc(r)(x,y,z)=Uér)xy Zcos(kz)glzz(ﬁr)+4rsin(kz) r( () 33( 3r)) 2( r) , (33)
| AT Ar

I A (1 (W) + I, (W) ) =41, (W) |
Vs(r)(x,y,z):Ué’)xy zsin(%z) 81;2(3;)—41’008(7»2) r( 1( r)+ ;3(r3r)) 2( r) , (34)

If =0, i.e., near the symmetry axis, potential (14) behaves as:
V) ~ U xyz cos(hz),
and potential (15) behaves as
Vi ~ U xyzsin(1z).

As in the case of SRIG-type segmented quadrupole RF traps, by analogy with Fig. 4, com-
bining quadrupole potentials with different rotations of the electrodes relative to the symmetry
axis yields analytical models of electric potentials for conical funnels with different rotations of
composite electrodes relative to the funnel axis for even and odd apertures:

V(“)(x,y,z):irVC(") (x,y,z)iVS(’)(x,y,z), (35)

y®) (x,»,2)= ch(r) (x,p,2)* Vs(q) (x,»,2). (36)

Funnels with multipole-segmented electrodes. In general, analytical solutions for a conical RF
trap with segmented multipole electrodes are obtained by differentiating Egs. (13)—(16) with
respect to the parameter A after substitution

U, =U,/1,(AR),

where U, is the spatial oscillation amplitude of the corresponding multipole component of the
electrostatic potential on the axis of the RF trap:

& (x.3,2) = Uy cos (n Arg (x.y)) [zcos (Az) fy (br) #rsin (a2) £, (Ar) |- 37)
()], 68
> (39)

)]
A ], o)

where
fy(p) =22l p) 1)
p
10)= 2 (0 () (0) 201, (o)) @)

Expressions (41), (42) have no singularities at zero, and the following equalities are fulfilled
for p=0:
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1 1 ;
+ .
2(n+1)" T8y (n+2)”
By analogy with SRIG-type segmented multipole RF traps with rotated electrodes for even and
odd apertures (see Fig. 4), it is possible to combine multipole potentials with different rotations

of multipole configurations, allowing to obtain analytical models of electric potentials for the
corresponding conical funnels:

Ve (x,p,2) = £V (x,,2) £V (x,0,2), (43)

fi(p)=

V(b,n) (X, y,Z) _ iVc(r,n) (x’y, Z) + V;‘I»") (x,y,Z)- (44)

Radio frequency funnels with polynomial channel profile
Circular electrodes. It was found in [13] that RF funnels with circular apertures and quadratic
profile of the transport channel (Fig. 7) can provide additional advantages compared to con-
ventional conical funnels. Analytical expressions for axisymmetric electric potentials that follow
the dependences

W. ~U,z’ cos(Az) and Wy ~ Uz’ sin(Az),

on the z axis can be obtained by differentiating expressions (29), (30) with respect to the parameter A.

Fig. 7. Structure of periodic circular electrodes of RF funnel with quadratic profile

a) b)

0.5

0.0

-0.5

Fig. 8. Field lines for static electric potential (45) in (z,r) plane
in normalized coordinates for SRIG-type radio frequency trap:
a corresponds to equipotential lines on the plane, b to the three-dimensional graph
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>

2

We(z,r)=U, [zz cos(Az) I, (Ar)+2rzsin(Az) 1, (kr)—%cos(kz)([o (Ar)+1,(Ar)) |, 45)

Wy (z,r)=U, |:22 sin(Az) 1, (Ar)—2rzcos(Az)I, (Ar) —gsin(kz)(lo (Mr)+1, (kr))} (46)

Equipotential lines and a three-dimensional graph of the electric potential given by Eq. (45) in
normalized coordinates (z, r) are shown in Fig. 8. As in the case of funnels with a conical profile,
function (45) turns into function (46) upon substituting z — z + n/2X, so their graphs merge into
each other with a shift along the OZ axis.

Similar analytical expressions are obtained for axisymmetric electric potentials obeying the
following dependences on the z axis:

G, ~U,z’ cos(Az), Gy ~U,z’sin(Az), H. ~Uz" cos(Az), Hg ~U,z" sin(Az),
namely,
G.(z,r)=U, [23 cos(Az) 1, (Ar)+3rz* sin(Az) 1, (Ar) -
3r’z ’ } (47)

5 cos(kz)([o(kr)+Iz(kr))—%sin(kz)(yl(kr)+13(kr))

G, (z,r)=U, [23 sin(Az) 1, (Ar)—3rz* cos(Az) 1, (Ar) -

2 i (02) (1, () 1 () + = sin 02) (31 (xr)us(xr))} “

H.(z,r)=U, [24 cos(Az) 1, (Ar)+4rz’sin(rz) 1, (Ar)—
31z cos(kz)(]0 (Ar)+1, (kr))—ﬁz sin(?»z)(?,l1 (Ar)+1, (Xr)) +

\ (49)
+%cos(k2)(3[0 (hr)+4L, () +1, (M))},
Hg(z,r)=U, [24 sin(Az) 1, (Ar)—4rz* cos(rz) 1, (hr)—
=3r°z* sin(Az)(1, () + 1, (M) +r°z cos (Az) (31, (Ar) + 15 (Ar) ) + 50)

+%sin(k2)(3]0(kr)+4lz (kr)+l4(kr))}.

Segmented quadrupole and multipole electrodes. Differentiation of expressions (37)—(40) with
respect to the parameter A yields analytical expressions for the electric potentials of RF funnels
with multipole segmentation (or with quadrupole segmentation at # = 2) of circular apertures, a
nonlinear (quadratic, cubic and biquadratic) profile of the transport channel and the correspond-
ing rotation of multipole segments relative to the symmetry axis:

wlem) (z.r) =Uyr" cos(n Arg(x,y))x

x[zz cos(kz)fo(7u1f)+2rzsin(kz)fl (M)_},z COS(}\,Z)A(}\,]/')}’ (51

W (z,r) = Uyr” cos(n Arg(x,y))x

X[Zz sin(Az) f, (Ar)—2rzcos(Az) f, (Ar)—r’sin(Az) f, (kr)], (52)
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Wi (z,r)=Uy" sin(n Arg(x, y))x

><[z2 cos(Az) fy (Ar)+2rzsin(Az) £, (Ar)—r* cos(Az) f, (Xr)},

Wi (z,r)=Uyg" sin(n Arg(x,y))x

><[z2 sin(Az) f, (Ar)—2rzcos(Az) f, (Ar)—r’sin(Az) f, (Xr)],

G (z,r)=Uyr" cos(n Arg(x, y))x
x| 2* cos (Az) f, (Ar) +327rsin (Az) £, () -
=3z% cos (Az) f, (M) = f; (Ar)sin (Az) ],
G\ (z,r)=Uyr" cos(n Arg(x, y))x
x| 2’ sin(2z2) f, (Ar) = 3277 cos (Az) £; (Ar) -
=3z sin(Az) f, (hr) + 7 £, (Ar) cos(Az) .

[z cos(Az) f, (Ar)+3z%rsin(Az) f; (Ar

GU )( r)=Uyr" sm(nArg (x,») )x

)-

—3zr? cos(Az) f, (Ar)—r’ £, (Ar)sin( }»z)]
)

Gg"’)( r)=Uyr" sm(nArg x,y))x
x| 2’ sin(2z) f, (Ar) = 3277 cos (Az) £, (Ar) -
—3zr’sin(Az) f, (M) + 7 £, (Xr)cos(?»z)} ,
Hé"’")( r)=Uy" cos(n Arg(x, y))x
><[z4 cos(Az) fy (Ar)+4z°rsin(Az) £, (Ar)—
—62°r* cos(Az) f, (hr)—4zr’ f; (Ar)sin(rz) +
+r' f, (Kr)cos(kz)],
HY" (z,r)=Ug" cos(n Arg(x,y))x
x| z*sin(Az) £, (hr)—42’rcos(Az) £, (hr) -
—62°r*sin(Az) f, (Ar)+4zr’ £, (Ar)cos(hz) +
+r* f, (hr)sin(Az) ]
HI (z,r)=Uyr" sin(n Arg(x,y))x
x| z* cos(Az) £, (hr) +42’rsin(Az) £, (hr) -
—62°r* cos(Az) f, (hr)—4zr’ f; (Ar)sin(rz) +
+r' f, (M)cos(kz)],

(33)

(54)

(35)

(56)

(57)

(38)

(39)

(60)

(61)
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H" (z,r)=Uy" sin(n Arg(x,y))x
x| z*sin(Az) £, (hr)—4z’rcos(Az) £, (hr) -
—62°r* sin(Az) f, (Ar)+4zr’ f, (Ar)cos(rz)+
+r* £, (hr)sin(Az) ],

(62)

where

fo(p)ZT%[n"(p)a

2n—1 n'

51(p) =" p(L. (P)+ 1, (p))-2nL,(p)]-

1) =220 (1 0) 20,00+ ()

=p (1,1 (P)+ 1, (P))+
+4n(n+1) ():l,
500~ 20 (1 ()30, (0) 430, (0) 1, o) -

—6np* (1., (p)+21, (p)+1,..(p)) +
+12n(n+l)p(1,,,1(p)+ L.(p ))
—8n(n+l)(n+2)ln(p)],

£ (0)= 2 ¢ (1, 4 (0) 41, 4 (9)+ 61, () + 41,5 (p) + 1, 4 (0)) -

p
(P)+37,,(P)+31L,, (P)+ 1,5 (P)) +
+24n(n+1)p*(1,.,(p)+21,(p)+1,.,(p))-
=32n(n+1)(n+2)p(1,,(p)+1,.(p))+
+16n(n+1)(n+2)(n+ ), ( )]
The functions f; (p), /,(p). /> (p 2, f3( ), /. (p) have no singularities at zero; the following

— 8np3 I

approximate equalities are satisfied for p= 0
1

~1 2

f(p) +4(n+1)p ’
fi(p)= L oo 1 p’
1 2(n+1)" 8(n+1)(n+2)
N 1 1 )
L) Sy S

3 5 3

f;(P)z 4(n+1)(n+2)p+16(n+l)(n+2)(n+3)p )
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/. (p) N 3 N 15 )
! 4(n+1)(n+2) 16(n+1)(n+2)(n+3)
It is also possible to combine multipole potentials with different rotations of multipole con-

figurations to obtain analytical models of electric potentials for the corresponding funnels with
nonlinear profiles:

=W (x,3,2) £ W (x,3,2),

WO (x,p,2) =W (x,3,2) £ W) (x,,2),
G(a,n) X, V,z :iGéq’n) (an’aZ)iGL(s*r’n) (X,y,Z);
y ,2)£ G (x,y,2),

=+H'"" (x,y,2) 2 H" (x,3,2),
( )£ HY" (x,9,2).

Estimation of approximation accuracy
As we already discussed, the above analytical expressions do not accurately describe the required
electric fields near the edges of the electrodes. It is required to obtain an estimate the distance
from the edges of the electrodes sufficient for guaranteeing the obtained analytical expressions.
Consider, for example, the axisymmetric electric potential given by Eq. (6). In the case when
the distance between adjacent apertures is equal to L, the radius of the aperture is equal to R,
and the voltages at the apertures are set according to Eq. (1), leading to the analytical expression

U _gin[ =) [™
US(Z,I")—WR/L)SIH(LJIO(LJ. (63)

The boundary condition set along the line » = R for potential (63) is a sinusoidal function
with the amplitude U, (Fig. 9, a). However, the potential along the horizontal line » = R for real
geometry with infinitely thin circular apertures must be exactly equal to + U, at the points

Zy = (L/2) +2Lk,
must be exactly equal to -U, at the points
Zype = (3L/2) +2Lk,

and must be a smooth monotonic function at intermediate points z,, <z <z, , antisymmetric
with respect to the central point located between the reference points z,, and z,,,,. In particular,
it is acceptable to use a piecewise linear function as a model edge distribution of the potential
(Fig. 9,b).

The boundary condition for the electric potential, given along the horizontal line » = R, is obvi-
ously a periodic function of the z coordinate with a period of 2L and therefore can be expanded
into a Fourier series. Due to the symmetry of the geometric configuration of the electrodes and
the antisymmetry of the potentials applied to the electrodes, only odd sinusoidal harmonics will
be present in the Fourier series expansion, whereas cosine harmonics are strictly equal to zero.

For example, the considered Fourier series for the piecewise linear potential distribution shown
in Fig. 9,b takes the form

U,(z)= 8U2R sin Ej—8U§ sin 3nzj+ 8UR2 sin oz _ 8UR2 sin Inz +.. (64)
P T L) 9n L ) 25z L ) 49z L

The exact analytical solution for boundary condition (64) has the form:
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Fig. 9. Boundary conditions (in normalized coordinates) along the line » = R in the interval between
two adjacent apertures for calculation of electric field in SRIG-type trap for various model cases:
a corresponds to analytical solution (9); b to infinitely thin apertures; ¢ to apertures
of finite thickness; d to substituting the linear approximation of the boundary value of the potential
with an accurate analytical solution (see example 5 in paragraph 49, § 2, Chapter III in book [34])

. 8U nz), (mr 8U SUAVREL
et bl o ey R G (A Gl

8U, . [ 5mz Snr 8U, . [Tz Tmr
+ 5 sin I, - > sin 1, +
25m°1, (57R/L) L L ) 497’1, (7nR/L) L L

The following equation holds true for the ratio of the amplitude of the third (parasitic) spatial
harmonic to the amplitude of the first (main) spatial harmonic at a distance » from the symmetry
axis in accordance with expression (65):

A(r)=l I, (37tr/L)/10(nr/L)

91,(3nR/L)/ I,(nR/L)

(65)

(66)

Fig. 10 shows the dependences of A on the dimensionless quantity r/L for different values
of the dimensionless geometric parameter R/L. It follows from these graphs, for example, that
amplitude of the third harmonic for R/ L >2 does not exceed 5% of the amplitude of the first
harmonic if r/ L <1.75. (The thin horizontal line in Fig. 10 corresponds to the 5% level for the
quantity A). The amplitudes of the remaining parasitic spatial harmonics will be significantly
smaller, and their influence can be ignored.

Notably, the relationship between the oscillation amplitude U, of the static electric potential
on the axis of the system and the voltages U, applied to the circular apertures for the «ideal»
solution (63) is established by

U,=U,/I,(nR/L).
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Fig. 10. Dependence of quantity A (see Eq. (66)) on dimensionless
quantity /L for different values of geometric parameter R/L:
R/L =15 (curve 1), R/ZL=2.0 (2), R/L=2.5 (3), R/L=3.0 (4.

The horizontal line shows the level of 0.05 (5%)

On the other hand, this relationship for model Fourier series (64) is established as

U, =(8/n*)U, /1, (nR/L).

Note. A piecewise linear function used in the intervals between reference points does not fully
yield the required accuracy, however, it is rather acceptable for obtaining an approximate estimate
of the sufficient distance to the edges of the electrodes. If it is necessary to take into account a
more realistic model distribution of the potential along the horizontal line » = R, an analytical
solution can be used for the boundary field of a parallel-plate capacitor, given in book [34] (see
example 5 in paragraph 49, § 2, Chapter I1I of this monograph). This analytically accurate poten-
tial distribution along the cross section y = 0 at the edge of a parallel-plate capacitor is shown in
Fig. 9,d; it follows that the piecewise linear function is largely acceptable as a model for estimat-
ing the contribution of the initial correction terms of the Fourier series along the horizontal line
r = R. In particular, if the circular apertures are «thick» (Fig. 9,c¢), then the graphs in Fig. 9,5
become piecewise trapezoidal within the framework of the considered piecewise linear model, and
Fourier series (64) takes the following form:

U ()= 8cos(my/2)U, sin(Ej— 8cos(3my/2)U, sin(3m]+

n* (1-y) L 9n* (1-7) 6
8cos(5ny/2)U, . (Sﬂz] 8cos(7my/2)U, . (77tzj ©n
+ sin - sin 4o,
25152(1—7) L 49n2(1—y) L

where y is a dimensionless parameter calculated by the formula y = h/ Le [O,l] (A is the thickness
of the aperture, L is the distance between the centers of neighboring apertures (see above)).

Interestingly, within the framework of this model, the amplitude of the first spatial harmonic at
Y= 1/ 4 coincides with the amplitude of the "ideal" case (63). However, the optimal choice here
is the case y = 1/ 3 when the third parasitic spatial harmonic vanishes.

Similarly, the rigorous shape of thin apertures corresponding to analytical solutions (13)—
(16), (37)—(40) and (51)—(62) for segmented multipole transport channels differs from identical
circular arcs with insulating gaps between them shown in Figs. 3, 4. A similar approach can be
used to estimate how fast parasitic higher-order harmonics decay with distance away from the
edges of segmented multipole circular apertures, so analytical formulas (13)—(16), (37)—(40) and
(51)—(62) will be sufficient to describe the electric potential of the corresponding electric field
with high accuracy.

As an example, consider a circular segmented quadrupole trap, for the electric field of which
it was previously proposed to use analytical expressions (7)—(10), equivalent to each other up to
rotation relative to the axis and displacement along the axis.
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Fig. 11. Shape of individual elements of thin aperture for quadrupole segmentation of circular
electrodes: a corresponds to analytical solution (9); b to circular segmented aperture
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Fig. 12. Model angular distributions of potential in apertures under two boundary conditions:
for analytical solution (9) (a) and for circular segmented quadrupole apertures (b)
The boundary conditions are set along the circle » = R in the plane of the thin circular
aperture of the SRIG-type RF trap with quadrupole segmentation of electrodes

Fig. 11,a shows the shape of the electrodes of thin apertures corresponding to analytical expres-
sion (9), Fig. 11,b shows those corresponding to thin circular segmented quadrupole apertures.

Consider circles x = Rcosp and y = Rsing with radii » = R in cross-sections z = z, with thin
apertures to which electrical voltages alternating in sign (z,, = 2kL and z,,,, = (2k+1) L) are applied.

Potential (9) is expressed along these circles by a sinusoidal function of the angular coordinate
(Fig. 12,a). Fig. 12,b shows the model potential distribution for the circular segmented quadru-
pole aperture of radius R, where an approximate linear function is used instead of the true sinu-
soidal potential for the cross-sections of the circle corresponding to the insulating gaps. Expansion
of this boundary condition into a Fourier series with respect to the angular coordinate

¢ =Arg(x,y)e[-n,+7]

produces the expression

U, (o)~ 8007:2((7;8_/?)UR sin(2¢) - 800;523 2118—/28))(]]3 sin (6¢) +
8cos(5n8/2)U, 8cos(7m8/2)U
se(i-s) U)o )

(68)

sin(14¢)+

where § is the relative angular size of a single multipole segment, calculated by the formula
o= ZB/ TE O,l]( B~ n/ 2)— A/ R) is the absolute angular size of the given segment, A is the
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gap between the segments, R is the radius of the circular aperture, n/2 is the angular distance
between the centers of circular multipole segments in the case of quadrupole segmentation).

The coefficients of Fourier series (68) coincide with the coefficients of Fourier series (67).
In view of this, despite the different physical meanings of the quantities § and vy, if o zl/ 4,
the amplitude of the first angular spatial harmonic coincides with the amplitude of the "ideal"
case (9). However, as in the previous case, the optimal choice is the value 6 = 1/ 3 when the third
parasitic angular harmonic vanishes.

The exact analytical solution corresponding to boundary condition (68) takes the form:

Uéq,*)(z’x’y): 8U )I:COS(TCS/Q.) Q2 (x,y) IZLTCWJ_

n’(1-8)| I,(7R/L)  #* L

_cos(3m8/2) Oy (x, y)l (n\jx2+y2 J_,_

)
9l (nR/L)  r° L

. cos(518/2) O (x,y )Ilo(n\/mJ_

251, (nR/L) L

_ cos(7n5/2) Q14(X,y)l [m/x2+y2J+“}cos[Ej
14 L b

491, (nR/L) " L

(69)

where the multipole multipliers O, (x, y) are expressed as follows in accordance with recurrence
relations (25)—(27):

0, (x,y) =2xy,
0.2 (3532,
O (x,y)= 2xy(x4 —-10x°y° +5y4)(5x4 —10x%)? +y4),

O (%)= 2xp(x° =21x"y* +3527y" = 7y° ) (7x° = 352"y +21x°y* —5°).

The ratio of the amplitude of the sixth (parasitic) spatial angular harmonic to the amplitude
of the second (main) spatial angular harmonic is expressed as follows at a distance r from the
symmetry axis, in accordance with expression (69),

cos(3md/2 cos(md/2
Q(V):l(/)ls(mj (/)IZ[W]. (70)
9 I (nR/L) L I, (nR/L) L

Fig. 13 shows graphs for the dependence of Q on the dimensionless ratio »/L for different
values of the geometric parameter R/L; the value 8 = 1/5 is used in this example'. In particular,
it follows from the graphs that the amplitude of the sixth spatial angular harmonic for R/ L>2
does not exceed 5% of the amplitude of the second spatial angular harmonic if r/ L<1.75. (As
in Fig. 10, the thin horizontal line in Fig. 13 corresponds to the 5% level of the quantity Q.) The
amplitudes of the remaining parasitic spatial angular harmonics will be significantly smaller and,

as in the previous case, their influence can be neglected.
Notably, the relatlonshlp between the oscillation amplitude U, of the static electric potential

on the axis of the system and the quadrupole voltages U, (r) apphed to the quadrupole segments
of thin circular apertures for the "ideal" solution (9) is estabhshed by the equality

! Varying the parameter § € [0,1] allows to change the factor multiplying Q from 0 at § = 1/3 to 3 at § = 1. This
multiplier is 0.618 for § = 1/5. Naturally, at 5 = 1/3, when the sixth harmonic vanishes, it is necessary to evaluate
the ratio of the tenth harmonic to the second harmonic.
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Fig. 13. Dependences of Q (see Eq. (70)) on dimensionless ratio r/L
for different values of geometric parameter R/L:
R/L =15 (curve 1), R/ZL=2.0 (2), R/L=2.5 (3), R/L=3.0 (4.
The horizontal line shows the level of 0.05 (5%)

U, =UY /I, (nR/L).
At the same time, this relationship for model Fourier series (68) is established by the relation

U, = (8cos(7ty/2)/1t2 (1 —y))U,(;)/I2 (nR/L).

The distance from the edges of the electrodes where it is acceptable to use the analytical
expressions given in this paper for conical RF funnels and RF funnels with curved profiles is
estimated by a similar procedure.

Importantly, the boundary condition for analysis of conical RF funnels and RF funnels with
curved profiles should be imposed using the envelope of the inner edge of the funnel rather than
the straight line » = R. This envelope is determined from the condition that the analytical expres-
sion at the points Szk, rk) is equal to the electric voltage applied to the aperture and is the same
(up to a sign) for all apertures.

Conclusion

Analytical expressions for electrical potentials obtained in this paper can be used for ana-
lyzing ion motion in radio frequency traps and radio frequency funnels incorporating circular
apertures (in particular, segmented multipole apertures) with polynomial profiles. For instance,
analytical expressions can be used to quickly qualitatively investigate and optimize the behavior
of ions in these devices using a pseudopotential model of ion motion in high-frequency electric
fields [35—37].

Considering weighted sums of analytical expressions that correspond to circular apertures and
segmented multipole apertures placed along the axis with the same pitch allows to model the
behavior of ions in traps and funnels with non-segmented sections different from the circular
shape. If these sums correspond to the cases of apertures placed along the axis with multiple pitch
and/or multiple multipole segmentation of electrodes, then it is possible to investigate the influ-
ence of parasitic spatial angular harmonics of the electric field induced by the imperfect geometric
shape of the electrodes on ion motion.

The obtained analytical expressions for three-dimensional harmonic functions with polynomial
oscillating behavior on the axis can also be useful in solving certain problems of mathematical physics.
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Annotanus. B paboTe uccienoBaHO BIMSHUE POCTOBBIX YCJIOBUI U COCTOSIHUS TTOBEPXHOCTHU
KpeMHMsI Ha mpolecchl ¢GopmupoBaHus OydepHbIXx ciioeB ¢dochuaa ramaus GaP Ha
noanoxkax kpemHus Si (001). ITpeanoxeH U pa3BUT ABYXCTaAUNHBIN METOJI SITUTAKCUATIbHOTO
BBIpAIIMBAHUS TICEBIOMOP(MHBIX OAHOMOMEHHBIX OydepHbix cmoeB GaP nwa Si (001),
obecrneynBaOIINil pa3aeJeHue CTaauii 3apOoXKICHUS W POCTa CJIOSI Ha IMOIJIOXKe. B ormmume
OT MeTOAa 3MUTAKCHU C MOBBIIICHHONW MMIpallMeil, MPemokeHHAasT TEXHOJIOTUSI IO3BOJISICT
YIIPaBIATh MpoduieM JerupoBanust o0ypepHbix cioeB GaP Ha Si, uTo BaxkHO 1151 JadbHENIINX
(GyHKIIMOHAIbHBIX TpUMeHeHU. HalineHbl OCHOBHBIE (haKTOPbI, OMPEaeIsoNnie OPUSHTAIIUIO
Kpuctajuimyeckon pemetku GaP mpu ee 3apoXneHuM Ha BULIMHAJIBHOW IMOBEPXHOCTU
mouToxku. [TyTem TiaTeTbHOTO KOHTPOJISI POCTOBOTO TIpoliecca Ha 00enX CTaausIX MeTodaMu
MIpocBeuMnBaloleil 3aeKTpoHHOW MuKpockonuu (TEM), mudpakium OBICTPHIX 3JEKTPOHOB
Ha oTtpaxeHue (RHEED), atomHo-cunoBoii mukpockonuu (AFM) u BbicoKOpa3speliarleit
peHTreHoBckoit nudpakromerpun (HRXRD) nokazaHo BEICOKOE CTPYKTYPHOE COBEPIIEHCTBO
BbIpallleHHBIX OYy(epPHBIX CITOEB.

KioueBbie cioBa: TeTepOCTPYKTYpa, MOJEKYIISIPHO-ITYYKOBAasT SIUTAaKCHsI, Oy(epHbBIil CIIOi,
docohun rannusi, KpeMHUEBasT MOIAI0XKKA

OunancupoBanue: VccienoBaHue BBHITIONHEHO 3a cyeT TpaHTa Poccuiickoro HaydyHOTO
donga Ne 01080-29-22 (https://rscf.ru/project/22-29-01080).

Ccepiika mis murupoBanus: @enopoB B. B., ®enuna C. B., KaseeB A. K., Kupuienko /.
A., ®anee H. H., Myxun U. C. ®opmupoBaHre OTHOOOMEHHBIX Oy(pepHBIX ciioeB ochraa
rajuimsgd Ha KpEeMHHUEBOM ITOIIOXKKEe 0e3 MPUMEHEHHMS METOma SMIUTAKCUM C ITOBBIIICHHOM
murpauueii // Hayuno-texunueckue Begomoctu CIIOITTY. dusuko-mMareMaTuyeckKue HayKu.
2024. T. 17. Ne 2. C. 120—133. DOI: https://doi.org/10.18721/IPM.17209

CraTbsl OTKPHITOro noctyma, pacrnpoctpansiemass no juieHsnu CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/)

Introduction

Integration of heterostructures based on A""BY semiconductor compounds on silicon allows to
combine the advantages of highly developed silicon-integrated technology with the unique capa-
bilities of the technology for growing A"BY heterostructures, such as the implementation of elec-
tronic and optical interconnects by constructing a lateral energy band profile of the structure [1].

© ®enopos B. B., ®enuna C. B., KaseeB A. K., Kupunenko . A., ®@anees H. H., Myxun U. C., 2024. Usnatenn: CaHKT-
[MeTepOyprckuii moauTexumyeckuii yaupepcuter [letpa Bennkoro.
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A particular focus in the literature is on monolithic (epitaxial) integration of A"'BY hetero-
structures on silicon substrates. It is assumed that directly growing A"BY makes it possible to
expand the functionality of the resulting heterostructures and reduce the number of technological
stages, compared with the purely hybrid technology (where preformed elements are transferred
to silicon wafers).

However, high-precision epitaxial growth of A"BY layers on silicon surfaces is associated with
a number of obstacles characteristic for heteroepitaxy, including the following:

defects in the crystal structure, appearing due to inelastic relaxation of misfit stresses (the mis-
match between the lattice parameters of the layer and the substrate);

symmetry mismatch between the crystal lattices of A"BY layer (zinc-blende structure) and
Si substrate (diamond structure), leading to the formation of antiphase domains and antiphase
domain boundaries between them in the epitaxial layer;

undesirable surface chemical reactions at the heterointerface;

significant difference in surface energies of silicon, epitaxial layer and heterointerface.

One of the most significant systems comprises the epitaxial layers of gallium phosphide (GaP)
on the surface of a Si (001) silicon substrate. Even though all binary A"'BY compounds exhibit the
lowest mismatch of the GaP and Si crystal lattices (Aa/a amounts to only about 0.37% for these
structures), the crystalline perfection of GaAs layers recently grown on Ge(001) substrate (Aa/a =
0.07%) or even GaAs layers grown through a metamorphic [2, 3] buffer on Si(001) (Aa/a = 4%)
often turns out to be higher than the quality of GaP layers on Si [4, 5]. The difficulties in growing
gallium phosphide layers are due to the tendency of this material to the three-dimensional growth
mechanism on the silicon surface and the possibility of undesirable surface chemical reactions. For
example, phosphorus atoms can replace surface silicon atoms, disrupting the homogeneity of the
surface [6, 7], while gallium can etch the silicon surface, leading to the formation of hollow voids [8§].

Migration-enhanced epitaxy with alternate exposure of the substrate to phosphorus and gallium
fluxes is commonly used to create epitaxial GaP layers on Si [9]. However, this technique makes
it difficult to control the doping profile and inevitably reduces the service life of the shutters in
the molecular beam epitaxy (MBE) system [10]. It is for these reasons that extensive research into
alternative approaches to growing GaP buffer layers on Si is still underway [11].

The goal of this study is to develop a two-stage method of epitaxial growth of single-domain
GaP buffer layers on a silicon substrate, which would ensure the separation of nucleation and
growth stages of the gallium phosphide layer and include both low- and high-temperature stages,
additionally allowing to forego the migration-enhanced epitaxy method.

For this purpose, it was necessary to establish the main factors determining the orientation of
GaP lattice during nucleation on the vicinal surface of Si (001).

Two-stage method of epitaxial growth of GaP on Si (001)

Epitaxial heterostructures were grown on three-inch (75 mm) silicon wafers by molecular
beam epitaxy (MBE). The heterostructures were grown on p-type vicinal Si (001) substrates with
the electrical resistivity ranging from 0.3 to 3.0 Ohms-cm and the misorientation angle equal to
4.0£0.5° in the <110> direction.

The Veeco GEN-III PA-MBE (plasma-assisted molecular beam epitaxy) system (Veeco,
USA), equipped with cracker-type phosphorus and arsenic sources with needle valves was used in
the study. The surface temperature was controlled by a thermocouple and a pyrometer calibrated
by monitoring the surface phase transition Si (111) 7 x 7 — 1 x 1. The sources were calibrated
by recording the molecular beam pressure (P(P,), P(Ga), P(Al)) with a Bayard—Alpert ionization
gauge. The stoichiometric flux ratio P,/Ga (pressure ratio P(P,)/P(Ga) ~ 6) was found by moni-
toring the accumulation of gallium droplets on the surface of the structure.

Before the silicon wafers were loaded into the MBE chamber, they were cleaned by the Shiraki
method; a thin layer of SiO_oxide was formed on the surface of the wafer at the final stage of
cleaning [12]. The surfaces of the Si (001) substrate and the forming epitaxial layer of gallium
phosphide were studied in sifu by reflection high-energy electron diffraction (RHEED). The sur-
face silicon oxide was removed by thermal annealing at 7= 820 = 10 °C (minimum required) for
30 minutes. RHEED patterns exhibited one type of (2x1) reconstructed Si (001) surface.

Notably, higher annealing temperatures contributed to a (2 x 2) surface reconstruction. The
detected phenomenon is likely associated with contamination of the silicon surface due to an
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increase in the background pressure of group V elements [13, 14]. In order to reduce this pressure,
relatively low temperatures were used for the sources, so that low growth rates were consequently
obtained. The growth rate of the gallium phosphide layer was 90 nm/hour.

A uniform distribution of molecular fluxes during the growth process was achieved by azi-
muthal rotation of the substrate at 5 rpm. The phosphorus flux value P, used for growing GaP and
AlGaP layers exceeded the stoichiometric value by 1.33 times (pressure ratio P(V)/P(I1I) = §).

An increase in the surface density and lateral size of defects representing voids with the depth
exceeding the thickness of the formed layer was observed for a gallium phosphide layer grown
with a stoichiometric ratio of P,/Ga fluxes. An excessive number of Ga atoms apparently accu-
mulated at the initial stages of growth at low values of the , flux, serving to etch the silicon sur-
face. The surface roughness increased significantly with a further increase in the ratio of P,/Ga
fluxes, up to values exceeding the stoichiometric value by half or more, as a result of suppressed
diffusion of group III atoms.

The technique we propose for epitaxial growth of gallium phosphide buffer layers on silicon
substrates includes two stages: low- and high-temperature. The seed AlGaP layer and the first
GaP layer are grown at the first stage, and the second GaP layer is grown at the second stage.
This technology provides excellent conditions for a heterostructure to form both at the nucleation
stage and at the growth stage of the epitaxial layer.

The main stages of the growth process and the structural model of the buffer layer are shown

in Fig. 1.
Ty 1580 °Co NI 1.
AT/ At=0.7 °Cls
| - Gap {3.-19 nm |30 nm
owt= 440..460 °C— | g

e Al 6Gag,P ]0..3 nm
p-Si:B (001)

misoriented by 4 degs.
to <110>

Tq

Fig. 1. Main steps of two-stage technique for growing GaP structure
on p-Si(001) substrate (data on the left) and general structural model
(the thickness values of low- and high-temperature GaP layers are given on the right)

We previously established that this technique allows to produce layers with smooth surface
morphology [15], but studies of nucleation and growth of the crystalline structure of the layers
went beyond the scope of the analysis. A separate low-temperature stage was considered in this
study, with a seed AlGaP layer introduced, because a homogeneous epitaxial layer had to be
grown over the entire surface of the substrate [16] at the initial stage. Therefore, immediately after
the surface oxide was removed, the silicon substrate was cooled to a sufficiently low growth tem-
perature (440—460 °C), ensuring a small diffusion length of adatoms (atoms on the crystal surface)
and a high nucleation density of GaP islands while preserving their structural quality. The sub-
strate was exposed to a P, flux for 10 seconds immediately before the start of the growth process.

The growth process was not interrupted during transition to the high-temperature stage, and
the substrate temperature was raised to 580 °C at a rate of 0.7 °C/s. Conversely, experiments
indicate that if the growth process was stopped, the layer was no longer homogeneous, with voids
appearing on its surface, which persisted and were not overgrown upon further growth of the
gallium phosphide layer.

The temperature providing high quality of GaP (001) layers during homoepitaxy as chosen
based on literature data [17] for the high-temperature stage. The high mobility of adatoms con-
tributed to a decrease in the density of structural defects, smoothing of the growth surface and
consequent surface reconstruction observed from RHEED patterns. The total thickness of the
GaP layer did not exceed 30 nm to avoid the formation of structural defects caused by inelastic
relaxation of misfit stresses. The optimal conditions for growing gallium phosphide on silicon
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substrate were determined by synthesizing samples with different temperatures chosen for forming
the low-temperature I—GaP layer (440 and 460 °C), different thicknesses of this layer (from 3 to
19 nm) and the seed layer that was a solid Al, (Ga_ P solution (from 0 to 3 nm).

The quality of the buffer layer was preliminarily evaluated by atomic force microscopy (AFM)
in tapping mode by comparing the roughness of the surface formed during coalescence of anti-
phase domains. The structural characteristics of buffer layers on silicon were studied by transmis-
sion electron microscopy (TEM) and high-resolution X-ray diffractometry (HRXRD) in symmet-
ric and asymmetric scattering geometries; this made it possible to establish the lattice matching
in the plane of the layer and estimate the elastic stresses. The Panalytical X’PERT PRO MRD
Extended X-ray diffractometer (Panalytical, the Netherlands) was used for HRXRD studies.

>

Growth of gallium phosphide on a silicon substrate

As known from the literature, two mutually orthogonal orientations of the crystal lattice with
oppositely ordered sublattices of group III and V atoms can be observed under heteroepitaxy
of A"BY compounds on the silicon surface, due to lower symmetry of the crystal lattice of the
epitaxial layer compared with the substrate [9, 10]. For this reason, a crucial condition for grow-
ing single-domain GaP on Si(001) is the stabilization of the homogeneous P-terminated (2x1)
Si(001) surface. Furthermore, it is required to find the nucleation conditions under which one
type of chemical bond is established over the entire area of the heterointerface.

RHEED measurements allowed to not only study the state of the silicon surface but also to
determine the preferred orientation of the nucleating GaP layer. Varying the incidence angle of
the RHEED beam relative to the (001) crystallographic plane and, consequently, varying the
position of the Bragg reflections and Kikuchi bands observed under azimuthal rotation of the
vicinal substrate allowed to establish the orientation of the surface reconstructions of Si and GaP
relative to the azimuthal misorientation of the substrate (Fig. 2).

Evidently, after thermal annealing of vicinal silicon substrate, superstructural reflections with
double periodicity are only observed for the electron beam incident along the direction of azi-
muthal misorientation. This observation indicates that the dimer rows forming one type of (2x1)
reconstructed Si surface are predominantly oriented perpendicular to the edges of the atomic

a) RHEED beam RHEED beam _
A= -4 degs. [110]g; [110]g;

Fig. 2. Schematic for RHEED measurements in mutually orthogonal azimuthal
orientations of Si substrate (a); resulting RHEED patterns for Si (001) (2x1) (b)
and GaP (001) (2x4) (c¢) surface reconstructions
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steps and, consequently, most of the surface area of the substrate is occupied by atomic terraces
separated by .S, monoatomic steps or D, double steps. It was previously reported [10, 18—20]
that one type of (2 x 1) reconstructed Si surface can be observed at high temperature (1000 °C)
annealing of the vicinal Si (001) surface, which leads to the formation of a system of double
atomic steps. We assume that an orthogonally oriented Si (1 x 2) reconstruction was not observed
due to narrow atomic terraces on the vicinal Si surface (less than 10 nm) and low annealing tem-
perature (820 °C), insufficient for activation of surface diffusion in silicon and rearrangement of
the system of atomic steps [21].

Analyzing the RHEED patterns for the high-temperature growth stage, we concluded that, two
different orientations are obtained for the P-stabilized (2 x 4) reconstructed GaP (001) surface,
depending on the temperature of the substrate selected for the low-temperature stage of GaP
nucleation (440 or 460 °C).

The corresponding AFM images of the surface morphology and the RHEED patterns of GaP
structures on Si with a 3 nm thick low-temperature [-GaP layer are shown in Fig. 3, a and b. In
the case of GaP nucleation on a P-terminated silicon surface at 440 °C, the [110] direction [1/20]
of GaP lattice turns out to be oriented perpendicular to dimer rows (parallel to the edges of the
atomic steps in Si) forming the Si (2 x 1) superstructure [17]. Evidently, the Si (2 x 1) surface
reconstruction corresponds to the GaP (2 x 4) surface reconstruction (Fig. 2,c¢).

The azimuthal orientations of RHEED patterns at which superstructural reflections are
observed for GaP (2 x 4) are rotated by 90° in the case of GaP nucleation on Si surface at 460 °C
(see Fig. 3,b); in this case, the Si (2 x 1) surface reconstruction corresponds to the GaP (4 x 2)
reconstruction. Notably, rotation of the azimuthal orientation of GaP surface reconstruction
cannot be caused by the transition from a phosphorus-stabilized to gallium-stabilized surface,
as observed, for example, for the GaAs(001) surface [22], since both types of GaP (001) surface
termination have identical periodicity and orientation of the (2 x 4) surface superstructure [23].
It is most likely that not only termination but also substitution of silicon atoms with phosphorus
atoms becomes possible at higher temperatures of Si (001) surface. As a result, the [110] direction
of the GaP lattice is oriented parallel to Si dimer rows (perpendicular to the edges of Si atomic
steps), and the Ga and P sublattices turn out to be inverted relative to the first case.

It can be seen from the AFM images that the surface morphology of the samples also varies
depending on the temperature selected at the initial growth stage. If the growth temperature of

1 to Si steps
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Fig. 3. Morphology and crystallographic orientation of GaP layers on vicinal Si (001)
substrates (a—c); scheme for overgrowth of antiphase regions by dominant domain (d).
AFM surface images and corresponding RHEED patterns (collected at the final stage of layer growth)
for growth temperatures of 460 °C (a) and 440 °C (b); AFM image for misorientation angle of 0.2 ° (c).
The red arrows indicate the directions of azimuthal misorientation of the substrate
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the I-GaP layer is 440 °C, a relatively smooth surface is observed with further high-temperature
growth of GaP, embedded with separate regions deepened by 5—6 nm. The surface of the GaP
layer formed on the low-temperature I-GaP layer grown at 460 °C consists of separate islands
varying in height by about 30 nm.

The diffusion length of adatoms and the energy of the Ehrlich—Schwoebel barrier on the sur-
face of A"BY (001) compounds depend on the mutual orientation of step edges and the number
of broken chemical bonds on the surface [24—26]. Therefore, the growth rate of GaP islands
becomes higher if the [110] direction of the GaP lattice turns out to be oriented parallel to the
edge of the atomic steps on the growth surface.

This effect was demonstrated for a structure grown on Si (001) surface with a small misori-
entation angle (about 0.2°) towards the <110> azimuth. The corresponding AFM image of the
structure surface is shown in Fig. 3,¢). Due to the anisotropy of growth rates, a prominent GaP
domain is formed on the surface of the structure, and its islands evolve along the [110] direction
oriented parallel to the edges of the atomic steps (see the schematic in Fig. 3,d).

As a result, atomically smooth regions are observed in the AFM images, whose surface rises
above the antiphase regions of the layer with an orthogonally oriented GaP lattice (dark regions
in AFM images, see Fig. 3.). Appearance of the corresponding antiphase regions in GaP can
be associated both with the presence of atomic steps on the silicon surface with orthogonally
oriented broken silicon bonds, and with the inhomogeneous chemical bonding at the GaP/Si
interface. The first scenario is illustrated in Fig. 3,c: this is the case of the silicon surface with a
small misorientation angle.

Thus, the growth experiments conducted indicate that the formation of antiphase domains is
effectively suppressed only for a single mutual orientation of GaP lattice relative to the edges of
silicon steps, observed under low-temperature nucleation of GaP on Si (001) surface at 440 °C. It
was found that the proportion of the surface occupied by antiphase regions decreases with increas-
ing thickness of the low-temperature I-GaP layer. The corresponding AFM image of surface
morphology of the GaP layer grown using the 10 nm thick I-GaP layer is shown in Fig. 4,a. The
short diffusion length and high nucleation density at the low-temperature growth stage contribute
to effective overgrowth of antiphase domains at the initial growth stage.
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Fig. 4. AFM images for surface morphology of I-GaP layers (10 nm thick) on Si (001),
illustrating the influence of Al (Ga P seed layer thicknesses, nm: 0.0 (a), 1.0 (b), 3.3 (c)

However, the height difference between the surfaces of the dominant and antiphase domains
also increases due to the small lateral size (less than 10 nm) and the low growth rate of the anti-
phase regions. Consequently, void-like defects which not overgrown at the high-temperature stage
may form on the surface of the GaP layer.

It was found in [27] that the presence of chemically active aluminum adatoms at the initial
growth stage ensures uniform nucleation of the AlGaP solid solution layer and helps prevent an
interfacial chemical reaction between Ga and Si.

We conducted a series of growth experiments, discovering that pre-growing a seed layer of
Al Ga, P or AIP solid solution no more than 1 nm thick at the low-temperature stage improves
the smoothness of the surface of GaP layers. A comparative analysis for the dependence of buffer
layer morphology on the thickness of the AlIGaP seed layer is shown in Fig. 4. It is most likely
that Al adatoms have a shorter diffusion length due to the higher chemical bond energy, which
contributes to more homogeneous nucleation of the AlGaP layer on Si compared with GaP.
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Conversely, excessively high thicknesses of the AlGaP seed layer (3 nm or more) produce a
rougher growth surface.

The described observations show that overgrowth of antiphase regions in the GaP layer should
be carried out at the low-temperature stage. The thickness of the low-temperature layer should
be comparable with the lateral size of the antiphase regions. The subsequent high-temperature
growth stage determines the structural perfection and atomic smoothness of the GaP surface.

Therefore, it is possible to almost completely suppress the formation of antiphase regions as
well as increase the smoothness of the GaP layer surface, if an AlGaP seed layer about 1 nm
thick is used, and the thickness at the low-temperature stage is doubled, up to 20 nm. The final
arrangement of the structure layers as well as the AFM image of the surface are shown in Fig. 5,
a and b, respectively.

AT=0.7"° C/s'

|- GaP [19mm
Toroun= 440 °C
nucl. Al (Gag P |1nm

p-Si:B (001)
misoriented by 4 degs.
to <110>

Fig. 5. Experimental search for optimal conditions for single-domain
formation of GaP buffer layer on Si(001) with atomically smooth surface:
model of resulting structure with growth factors (a); AFM image of surface morphology ()
(main crystallographic directions of GaP and direction of azimuthal orientation of Si are marked
by white and red arrows, respectively); dark-field TEM image with diffraction contrast (c)
(g = 002 is the applied diffraction vector)

Structural properties of thin GaP layers on Si (001)

The microscopic nature of structural defects in the GaP buffer layers on Si grown by the
optimized two-stage technique was investigated by the TEM method. A characteristic dark-field
TEM image with diffraction contrast for orientations of the diffraction vector g = 002 is shown
in Fig. 5,c. A thin layer formed by a network of misfit dislocations is visible in the region of the
heterointerface with the substrate [28]. Notably, the contrast associated with antiphase domains
could not be reliably detected in dark-field TEM images [29].

Accordingly, the TEM data confirm that the formation of antiphase domains stops at the ini-
tial stages of buffer layer growth.

Integral information on the structural characteristics of GaP buffer layers was obtained by
HRXRD in symmetric and asymmetric scattering geometries; this allowed to establish the lattice
matching in the plane of the layer and to estimate the elastic stresses. The XRD w26 scans,
obtained for the GaP layer grown by the optimized two-stage technique (Fig. 6,a),exhibit well-re-
solved interference fringes pointing to the formation of an atomically smooth GaP surface and a
sharp GaP/Si heterointerface.

The period of these fringes corresponds to a GaP layer thickness of 33 nm, which is in good
agreement with the computational value (30 nm). The reciprocal space map obtained for the dif-
fraction intensity near the asymmetric Si (224) Bragg peak (see Fig. 6,b) indicates that the GaP
lattice in the (001) plane exactly repeats the substrate lattice, i.e., Bragg reflections of the film and
the substrate correspond to identical values of lateral momentum transfer Q

To summarize, uniaxial anisotropic deformation along the [001] direction is observed in the
GaP layer. In turn, the w-rocking curves near the (004) Bragg peak (see the inset in Fig. 6,a)
exhibit both an intense narrow coherent component with a FWHM of about 11-12", which is
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Fig. 6. Data from high-resolution X-ray diffractometry of GaP buffer layers on Si substrate:
experimental (blue) and computational (red) X-ray diffraction ®—26 scans near specular Si (004) Bragg
peak (a); reciprocal space map of diffraction intensity distribution near asymmetric Si (224) Bragg peak (b)

Inset: o-rocking curve near GaP (004) reflection

only twice the FWHM of the substrate peak, and a weak wide diffuse component (more than
200"), which indicates a nonuniform distribution of elastic stresses. In general, the rocking curves
indicate a high degree of lateral spatial coherence of the epitaxial layer (about 2.45 um), suggest-
ing a high level of structural perfection.

Conclusion

In this paper, we established the influence of growth factors and the state of the silicon surface
on the formation of GaP buffer layers on Si(001) substrates.

It was proved that single-domain GaP layers of high structural perfection can be grown epi-
taxially on the vicinal Si (001) surface with a misorientation angle and azimuth of 4.0 = 0.5° and
<110>, respectively, without resorting to migration-enhanced epitaxy methods or synthesis of
homoepitaxial buffer layers of silicon.

We also clarified the effect of seed layers in solid AlGaP structures of nanometer thickness
on the process of annihilation of antiphase domains and the density of point defects on the
GaP surface.

A two-stage procedure was developed for epitaxial growth of GaP buffer layers on Si (001),
providing separation of the stages of nucleation and growth of the GaP layer and consisting of
low-temperature (440 °C) and high-temperature (580 °C) stages. Unlike the migration-enhanced
epitaxy method, the proposed approach provides the ability to control the doping profile of GaP
buffer layers on Si. The thin GaP buffer layers grown on silicon have a pseudomorphic single-do-
main structure and an atomically smooth surface (the RMS roughness was less than 2 nm).

We believe that our study makes as an important step towards further advances in the technol-
ogy for growing A""BY heterostructures on silicon, valuable for manufacturing applications.
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Abstract. In the paper, the experimental data on the temperature effect on the breakdown
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samples were heated, the breakdown electric field strength was found to decrease slightly but to
reveal a significant scatter of values. It was shown that the experimental results on the pulsed
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AnHoTtanusa. B pabore uccieqoBaHO BIMSHUE TEMIIEPATyphl Ha IPOOUBHYIO HAMIPSIKEHHOCTh
MJIEHOK MOJMATUJIEHA, ToJuKapOoHaTa M TMOJUATUIIeHTepedTanaTa TojwuHoi 2,5 — 2,0
MKM B TeMIlepaTypHoM auanazoHe 363 — 293 K. YcTraHOBIEHO, 4TO MPU HarpeBe oOpasIioB
TUIEHOK TIPOOMBHASI HATIPSDKEHHOCTh 2JIEKTPUYECKOTO TIOJISI YMEHbBIIAETCSI HEe3HAYMTETbHO,
HO OOHAapyXMBaeT CYLIECTBEHHbIM pa30opoc 3HaueHuii. ITokazaHO, YTO 3KCIIEPUMEHTAIbHbIE
JIaHHbIE [0 MMIYJIbCHOMY IIpO0OOIO IIOJMMEPHBIX IJIECHOK MOXHO OIMCaTh Ha OCHOBE
MpeacTaBieHuss 00 MOHM3AUMOHHOM MeEXaHu3Me IIpo0osi IIOJMMEpPOB, HE CBSI3aHHOM C
pa3BUTUEM yAapHOW MOHU3ALMU UX MOJEKYII.
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Introduction

Steady interest towards the dielectric strength of polymer dielectrics has persisted for many
decades, due to the great scientific and practical implications of this characteristic for studies of
the breakdown phenomenon. The vast majority of publications on this issue consider electrical
breakdown in polymers exposed to DC and AC voltages. Considerably scarcer data are available on
the picture of impulse breakdown of polymers, mainly consisting of results obtained decades ago
[1—3]. Technical advances made in recent years allow detecting breakdown characteristics under
nanosecond voltage pulses, recording breakdown times and voltages with high accuracy [4—9].

One of the most important factors influencing the evolution of electrical degradation and breakdown
in polymer dielectrics is temperature. Its role under the influence of voltage pulses was studied in large
samples of poly (methyl methacrylate) (PMMA) [2], polyethylene (PE) and polytetrafluoroethylene
(PTFE) [3]. The effect of temperature on the breakdown strength F, turned out to be different for
different polymers. F, decreased by more than 25% in PMMA samples under heating from 293 to 433
K, while the value of F for PE and PTFE remained virtually constant in the same temperature range.

Polymer films are a special group in the diverse range of dielectric materials. They are widely
used in electrical engineering, for example, for manufacturing high-voltage capacitors, or for syn-
thesis of films ranging in thickness from several to tens of um that serve as convenient samples for
studies of electrical aging and breakdown in polymer material. However, the effect of temperature
on the impulse strength of polymer films is yet to be fully explored.

The goal of this study is to understand the nature of the temperature effect on the characteris-
tics of impulse strength of various polymer films at room and elevated temperatures.

Experimental procedure

Industrial films made of polypropylene (PP) with the thickness of 2.0 um, polycarbonate (PC)
and polyethylene terephthalate (PET) with the thickness of 2.5 um were used. The polymers used
to synthesize these films are characterized by varying degrees of polarity, glass transition and soft-
ening temperatures as well as different morphology of the material structure.

The films were fixed in a special circular holder and placed between steel electrodes, one disc-
shaped (40 mm in diameter) and the other sphere-shaped (6 mm in diameter). The surface of the
electrodes was polished to a specular gloss. The space between the spherical electrode and the film was
filled with capacitor oil to prevent edge and surface discharges. A high-voltage pulse of negative polarity
with an amplitude of 2.5 kV and rise time of about 130 ns was applied once to the given film samples.

The electrode system used provided an electric field close to homogeneous in the region of film
breakdown. Since breakdown of films occurred at the leading edge of the pulse, it is preferable
to use the value of the breakdown strength F, to evaluate their impulse strength, defining it as

F,=U,J/d,

where U, is the voltage in the sample at the time of breakdown, d is the thickness of the film.

U, Was measured with an ADS-2332 broadband storage oscﬂloscope and a high-voltage broad-
band "divider with a cutoff frequency of 300 MHz, allowing to directly record the voltage varia-
tions in the sample. The time of film breakdown was detected in the waveforms by a sharp voltage
drop and occurrence of oscillations. A typical waveform recorded at the time of breakdown at the
leading edge of the pulse is shown in Fig. 1.

Electrical tests were carried out in the temperature range of 293—363 K. We should note
that the chosen upper temperature limit was lower than the softening temperature of any of the
polymers considered to prevent the spherical electrode from penetrating through the film with a
consequent decrease in its breakdown voltage.

© CewmenoB C. E., 2024. Uznarens: Cankr-IlerepOyprckuii monurexuuueckuii yuusepeutet [letpa Benukoro.

142



4 Physical Materials Technology >

Experimental results and discussion

The voltages U, of polymer dielectric mate-
) rials, including polymer films, are characterized
{ by a significant scatter, therefore, breakdown tests
should be repeated multiple times, and their results
r\ /] R - should be statistically processed. At least 50 sam-
i M}w st ples of each polymer film were tested for break-
down at each temperature; the values of F, found
were used to calculate the empirical distribution
function f{F) determining the breakdown proba-
bility in polymer film when the voltage U (elec-
trostatic field strength F) is reached. The values of
the function f{F) were calculated by the formula

1000 V

Fig. 1. Typical signal waveform at time
instant of breakdown for 2.0 or 2.5 um thick SE) =niN, (1
polymer film at pulse leading edge
where N is the number of tests performed,
N > 50; n is the number of samples experiencing breakdown when the field strength F'is reached.
It was established in [10—12] that the Weibull model of failure probability is applicable for
statistical analysis of the results obtained for electrical breakdown under both DC and pulse
voltages applied to polymer dielectrics. For this reason, a two-parameter Weibull distribution
was used to approximate the empirical distribution function determined by relation (1), taking
the form

JE) =1 = exp[~(F/F)"], ()

where m is the shape parameter, F, is the scale parameter.

The parameters m and F, are easily evaluated using the least squares method
with expression (2) linearized.

Fig. 2 shows a typical form of the linearized functions f{F) for polymer films studied for break-
down at different temperatures. The correlation coefficient of the approximating lines turned out
to be higher than 0.97 in all cases, confirming the validity of the linear approximation used. The
values of the parameters m and F| were calculated by the least squares method, and then used to
calculate the first four moments p, of the distribution function [13]:

o= Fok'[xk/’” exp(—x)dx. 3)
0

This is the expected value of the Weibull distribution F, (at k = 1), its variance ¢ (at k = 2),
skewness 1, (at k = 3) and Kkurtosis p, (at k = 4).

Fig. 3 shows the temperature dependences for the skewness and kurtosis of the function f{F) of
the studied polymer films. Evidently, p, # 0 for all temperatures, and the skewness values calcu-
lated at different temperatures are close; therefore, the functions f{F) cannot be considered sym-
metric. However, the values of skewness i, are small and predominantly positive, which indicates
a slight positive skewness of the function f{F).

The kurtosis p, of this function varies from 2.5 to 3.5 in the studied temperature range,
and does not depend on temperature. Note that the normal distribution should have zero
asymmetry and a kurtosis equal to 3 [13]. The values of p, and p, that we calculated are close
to these values, however, the breakdown voltage distributions that we obtained cannot be
considered normal.

The temperature dependences of the most probable breakdown strength and the corresponding
variances at each temperature are shown in Fig. 4 for all three types of polymer films. The values
of F, show a significant scatter for all polymers in the temperature range considered, showing a
trend towards decrease with increasing temperature (at least for PP and PC films).
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Fig. 2. Linearized Weibull distribution functions for PP (a), PET (b)
and PC (c¢) films at different temperatures in the range of 293—363 K
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Student’s 7-test was applied to statistically validate the hypothesis of the decrease in F, in poly-
mer films under heating taking into account a small number of sample elements (determined by
the number of temperature points for which the tests were carried out). The sample of F, values
for each polymer was divided into two groups with equal number of temperature points, low-
temperature and high-temperature ones; next, Student’s t-test (with a confidence interval of 90%)
was used to compare the corresponding average values calculated for each of these groups [14].
The results obtained by this technique indicate that the hypothesis formulated about the effect of
temperature on F, can be accepted only for the PC film within the given confidence interval. The
effect of temperature on F, cannot be estimated as significant for PP and PET films.

a) b)

Flop MVIm £pp MV/m
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1000 1000
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Fig. 4. Temperature dependences of most probable breakdown strength
for PP (a), PET (b) and PC (c¢) films

Notably, neither the PP film nor the PC film changed their phase state during the heating
process, since in the first case, the glass transition region is 253—263 K [15] and the PP film was
in elastic state at a temperature above room temperature; on the contrary, in the second case, the
glass transition temperature T 415 K and the PC film was in a glassy state, even at the hlghest
temperature of 363 K (used in our study). As for the PET film, its glass transition temperature is
T ~ 343 K, i.e., T lies in the temperature range we c0n51dered but no noticeable change in F,
was observed at th1s point.

Additional data obtained during electrical tests of polymers in a DC field confirm that a sharp
decrease in their breakdown strength occurs in the glass transition temperature region [16, 17].
Thus, it can be assumed that unfreezing of molecular mobility in polymers does not have a notice-
able effect on impulse strength of polymer dielectric films, which is likely due to the short-term
effect of the electric field on the polymer. Indeed, this time interval does not exceed 100 ns for
film breakdown at the leading edge of the pulse.

br
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It was found that the time interval for the final stage of electrical breakdown in polymer films,
when fracture of the dielectric material occurs accompanied by the formation of a breakdown
channel, is approximately 107°—107% s; the amplitude of breakdown current density reaches values
of about 107 A/cm? [17, 18].

Note that the voltage oscillations in the sample, always detected in the waveforms after break-
down, can last for several hundred nanoseconds (see Fig. 1), but their occurrence is due to
response of the measuring circuit to a short-term pulse of the breakdown current [18]. Evidently,
finding out the reason behind such a rapid increase in current during breakdown remains one of the
most important goals, which should allow to gain a better understanding of the picture of impulse
breakdown in polymer dielectric films, as no consensus has been reached on this phenomenon.

Two possible physical mechanisms governing electrical breakdown in polymers are collisional
ionization generating an electron avalanche [4, 9, 19, 20] and field-induced (tunneling) ioniza-
tion of macromolecules [6—8]. We should note that the hypothesis of collisional ionization in
polymers has faced much criticism in the recent years (see, for example, [6—8]). The cause for
criticism is that the mean free path of electrons in polymer dielectrics does not exceed 1—3 nm,
while electrons cannot gain the energy of 6—7 eV necessary for ionization of polymer macromol-
ecules in a realistically achievable electric field.

On the other hand, the probability of large nanopores appearing in polymers increases with
increasing temperature [21]. It is hypothesized in [22] that collisional ionization occurs precisely
in such pores. The theory based on these hypotheticals [22] suggests a sharp dependence of break-
down strength on temperature, especially pronounced at temperatures above the glass transition
temperature of the polymer. However, as mentioned above, the value of F, is virtually indepen-
dent of temperature in the case of impulse breakdown of polymer films.

As discussed in [6—8], the theory behind field-induced (tunneling) ionization of macromol-
ecules can be used to explain the picture of impulse breakdown in polymers. According to this
theory, electrons and positively charged molecular ions (holes) appear as a result of field-induced
ionization of macromolecules. The explosive increase in their concentration is due to the Debye
screening effect, manifesting when a certain critical charge density is reached. Debye screening
leads to a decrease in the ionization energy of macromolecules and consequently to self-acceler-
ation of the field-induced ionization process. The theory was expanded in [8], suggesting expo-
sure to voltage pulses accelerates the field-induced ionization of macromolecules at the leading
edge of the pulse. The reason for this effect is that electrons injected from the cathode can gain
energy sufficient to excite molecules but not to ionize them in an electric field. Excited polymer
molecules are ionized at lower field strengths than molecules in the ground state. Therefore, the
critical concentration of electrons and holes is achieved in less time, which is the actual reason
for breakdown at the leading edge of the pulse. According to the explanation given in [8], a slight
decrease in the breakdown strength of polymer films under heating is associated with an increase
in the free electron concentration both due to an increase in injected current density and due to
an increased probability of thermally stimulated electron emission from traps.

Conclusion

This paper reports on the experimental study of the temperature effect on the breakdown
strength of thin polymer dielectric films of polypropylene, polycarbonate and polyethylene tere-
phthalate in the temperature range from 293 to 363 K. We found that the two-parameter Weibull
distribution can be used for statistical processing of experimental results. The parameters of this
distribution, determined at each temperature for each film, allow to calculate the most probable
breakdown strength F, and its variance o. It was found that the value of F, decreases slightly in
polymers heated in the given range but is characterized by significant scatter that does not depend
on temperature.

We established that the experimental data on the temperature effect on the impulse strength
of polymers can be explained via the ionization mechanism of polymer breakdown, which is not
associated with collisional ionization developing in the polymers.
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