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THE TESTING OF SOME EXTRA ACCURACY SCHEMES ON THE 
PROBLEM OF THE SHOCK WAVE – VORTEX INTERACTION
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Abstract. In the paper, the calculation results of the shock wave – isoentropic vortex 
interaction have been presented. A complex nonstationary shock wave pattern was analyzed. 
The influence of the scheme for approximating the convective flows on the solution accuracy 
was shown to be weak. The results of calculations conducted using some extra accuracy 
schemes are presented: the data obtained by the second-order TVD scheme and the fifth-order 
WENO one being compared. The most accurate reconstruction of the vortex structure after its 
interaction with the shock wave was found to be achieved in the calculations when taking the 
WENO scheme.

Keywords: shock wave interaction, isoentropic vortex, numerical simulation, finite volume 
method, extra accuracy scheme
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ТЕСТИРОВАНИЕ СХЕМ ПОВЫШЕННОЙ ТОЧНОСТИ НА 
ЗАДАЧЕ О ВЗАИМОДЕЙСТВИИ УДАРНОЙ ВОЛНЫ С ВИХРЕМ

Е. В. Бабич✉, Е. В. Колесник

Санкт-Петербургский политехнический университет Петра Великого,
Санкт-Петербург, Россия

✉ lll.helen.lll@mail.ru
Аннотация. Представлены результаты решения задачи о взаимодействии ударной 

волны и изоэнтропического вихря. Проанализирована сложная нестационарная ударно-
волновая картина. Показано слабое влияние схемы аппроксимации конвективных 
потоков на точность расчетов. Представлены результаты расчетов, полученных с 
применением схем повышенной точности: проведено сравнение результатов, полученных 
с использованием схем TVD второго порядка и WENO пятого порядка. Установлено, что 
наиболее точное восстановление структуры вихря после его взаимодействия с ударной 
волной достигается при расчетах с использованием схемы WENO.

Ключевые слова: ударно-волновое взаимодействие, изоэнтропический вихрь, 
численное моделирование, метод конечных объемов, схема повышенной точности
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Introduction
One of the central problems of modern gas dynamics concerns the initiation and evolution of 

turbulent supersonic flows, arising, in particular, for vortex shedding from supersonic airfoil [1], 
for intake vortices shed by upstream surfaces [1], or for two intersecting bow shocks producing 
thin vortex layers that interact with reflected shock waves.

Problems of this type are generally very complex, and modern approaches are needed to accu-
rately resolve various gas dynamic structures. For instance, simulation methods should provide 
such numerical dissipation which, on the one hand, would allow suppressing non-physical oscilla-
tions near discontinuities, and on the other hand, would be sufficiently small so as not to interfere 
with resolution of vortex structures.

The model problem of the interaction between shock waves and vortices is often used to test 
such methods [2]. When a plane shock wave collides with a vortex, this generates a perturbation 
propagating along the shock wave and deforming it. The flow field locally contracts and expands 
behind the curved shock wave, forming acoustic waves. These interesting phenomena occurring 
in laminar flow are closely related to interaction of shock waves and turbulent vortices, which is 
one of the main sources of noise.

Therefore, the problem of interaction between a shock wave and a vortex is of fundamental 
importance, with potential implications for accuracy estimates of various numerical schemes, 
which can later be used to solve more complex practical problems.

The goal of this study is to analyze the influence of schemes for approximating convective 
fluxes on the resolution quality of the flow structure, additionally evaluating the effectiveness of 
variable reconstruction schemes with increased accuracy.

The first experimental studies on the interaction between a vortex shed in the wake of a 
model airfoil and a shock wave propagating in a shock tube were carried out by Hollingsworth 
and Richards [3], and later by Dosanjh and Weeks [4]. The vortex was found to contract into 
an elliptical shape after passing through the shock wave front, with the major axis of the ellipse 
approximately equal to the diameter of the starting circular vortex, and the ratio of the major to 
the minor axis approximately equal to the ratio of densities on different sides of the shock wave. 
In turn, Naumann and Hermanns [5] conducted an experimental study in a shock tube, establish-
ing that the deformation of the vortex corresponds to either regular or Mach reflection depending 
on the vortex intensity.

Guichard et al. [6] numerically solved the problem on the interaction of a vortex and a shock 
wave using a compact 6th-order scheme. The shape of the vortex was modified, and a triple point 
was detected, along with an increase in vorticity after the interaction. We should note that even 
though a large amount of evidence has been accumulated, some aspects, such as the influence of 
the applied scheme on the accuracy of the solution and the dependence of the solution structure 
on the intensity of the vortex, are yet to be fully explored [7].

Particulars of problem statement

Consider the two-dimensional problem of the interaction of a single cylindrical isentropic 
vortex with a shock wave. In this case, unsteady gas flow containing discontinuity surfaces, i.e., 
bow shocks (in addition to the main shock wave), and contact surfaces is simulated. The com-
putational domain (Fig. 1,a) is a rectangle with the dimensions [–1, 1] × [0, 1]. The coordinate 
system x0y is associated with a shock wave whose front at the initial time (t = 0) is stationary and 
located in the section xS = 0, while the center of a two-dimensional isentropic vortex is located 
at a point with the coordinates (xV, yV) = (–0.5, +0.5).
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The working fluid is a perfect gas with the adiabatic index γ = 1.4. The main parameters of 
the problem: MS is the Mach number characterizing the intensity of the shock wave, MS = ux/c 
(ux is the flow velocity in front of the wave, c is the speed of sound); V = V(r) is the velocity 
profile of the cylindrical vortex (r is the distance from the center of the vortex); MV is the Mach 
number characterizing the intensity of the vortex, MV = Vm/c (Vm is the maximum velocity on 
the profile); r0 is the effective radius of the vortex (determined by a point on the velocity profile 
where V(r0) = Vm).

The velocity profile of the vortex (Fig. 1,b) is given by the formula

2
0

0
1 ( / )( ) ( / ) exp ,

2m
r rV r V r r

 −
=  

 

where ( ) ( )2 2 .V Vr x x y y= − + −

The remaining parameters of the problem have the following values: MS = 3; MV = 0.8; 
r0 = 0.075.

The initial field is obtained by adding a cylindrical vortex to the background flow in front of 
the shock wave. First of all, let us define the shock wave field. The parameters before the shock 
wave front are subscripted by 1, and those behind the front are subscripted by 2:

( )
( )

2
1

1 1 2 1 22
1

1 2
,  0,  ,  0,

1
S

x S y x x y
S

Mpu M u u u u
M

γ − +γ
= = = =

ρ γ +

( )
( )

( )
( )

2 2

1 1 2 1 2 12

1 2 1
1,  1,  ,  ,

1 2 1
S S

S

M M
p p p

M
γ + γ − γ −

= ρ = ρ = ρ =
γ − + γ +

where u are the velocities, pi are the pressures, and ρi are the densities.
If a vortex is introduced, the parameters in the region in front of the shock wave are deter-

mined by the following formulas:

1 0 1 0( ) / ,  ( ) / ,x x V y y Vu u y y f r u u x x f r= + − = + −

a)	 b)

Fig. 1. Problem statement for interaction of shock wave with isentropic vortex: 
a corresponds to the computational domain (MS is the shock-wave Mach number, 
r0 is the effective radius of the vortex); b shows distributions of the vortex Mach 

number MV, pressure and density (normalized quantities) in the vortex cross section
The green arrow shows the direction of the vortex propagation
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1/( 1) /( 1)
1 1,  ,g p p gγ− γ γ−ρ = ρ =

where 
( )2

1 20

1

11 ( / )( ) exp ,  ( ) 1 .
2 2m

r rf r V g r f
p

γ − ρ −
= = − ⋅  γ 

In accordance with the recommendations given in [2], the problem is solved taking into 
account the influence of gas viscosity, therefore allowing to eliminate the instability of contact 
discontinuities for high-order approximation schemes, contributing to a smoother flow structure. 
Respectively, the Reynolds and Prandtl numbers are equal: Re = 104, Pr = 3/4. The physical 
viscosity μ is assumed to be constant and equal to

1 1 0(2 ) / Re.xu rµ = ρ

A condition for flow symmetry is imposed at the upper and lower boundaries of the region, a 
supersonic inflow is set at the left boundary, and a subsonic outflow at a given pressure is set at 
the right boundary.

Computational aspects

The unstructured-grid finite-volume SINF/Flag-S code, developed at Peter the Great 
St. Petersburg Polytechnic University and validated in numerous tests over the years, was used 
for the computations [8].

The complete 2D Navier-Stokes equations for thermally and calorically perfect gas were solved. 
convective fluxes at the face of the computational cell in the Navier–Stokes equation were cal-
culated by shock-capturing methods, smearing the discontinuity surfaces on a certain number of 
grid cells due to numerical viscosity (scheme dissipation) whose effect is similar to the effect of 
physical viscosity.

This study tested methods based on the exact or approximate solution of the Riemann problem 
on the breakdown of an arbitrary discontinuity (Godunov [9], Roe [10], HLL [11], HLLC [12]) 
as well as methods using flux vector splitting of the flow vector (in particular, the AUSM-family 
schemes [13]).

The reconstruction of variables at the face was carried out using quasi-one-dimensional 
second-order TVD schemes with a van Albada limiter [14]. Calculations were also carried out by 
the WENO5 scheme with fifth-order accuracy for smooth solutions on a uniform grid (proposed 
in [15]). The advantage of the WENO-family schemes, which are currently considered the most 
effective for problems with discontinuities, is that they combine increased accuracy for smooth 
solutions and limited generation of discontinuity oscillations [15].

The computational mesh consisted of square cells of size h×h. A sequence of meshes with the 
step h = 1/200, 1/400, 1/500, 1/600, 1/800 was considered in this paper.

Computing resources of the Polytechnic Supercomputer Center (www.scc.spbstu.ru) were used 
for the computations.

Computational results

Structure of the flow. The evolution of the flow structure during the interaction of the vortex 
with the shock wave is shown in Fig. 2 (simulation by the AUSM scheme using a reference grid 
with a spacing h = 1/800, reconstruction was carried out by the second-order TVD scheme).

At the initial time, the vortex was located at some distance from the shock wave and rotated 
clockwise. At time t = 157.50 ms (Fig. 2,b), the vortex passed halfway through the shock wave, 
flattened due to high pressure and took the shape of an ellipse. As the pressure gradient inside the 
vortex is lower than in the external flow, the wave front should curve, since the pressure drop in 
the oblique shock wave is smaller.

By the time t = 183.75 ms (Fig. 2,c), the vortex completely passed through the shock wave 
front. A triple point appeared on the wave front; the Mach stem impinged on the vortex, sepa-
rating the external region with elevated pressure from the region with reduced pressure inside the 
vortex. The intrinsic velocity of the vortex in its upper part is summed up with the velocity of 
incident flow, producing a region of supersonic flow (colored in black in Fig. 3,c).
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g) 446.20	 h) 761.25

e) 262.50	 f) 341.25

c) 183.75	 d) 210.00

a) 26.25	 b) 157.50

Fig. 2. Time evolution of problem solution: fields of the density gradient magnitude (Schlieren 
visualization). The time points (ms) are given in the graphs. The solution was obtained using the 

AUSM scheme and a grid with h = 1/800
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After t = 262.50 ms (Fig. 2,e), the triple point generated two contact discontinuities: the first 
one continued to rotate clockwise (Fig. 2, d), and the second, weaker, one rotated in the opposite 
direction. The distorted vortex generated acoustic waves, some of which turned into weak shock 
waves with a curved front (Fig. 2,f). A configuration consisting of two contact discontinuities with 
opposite vorticity vectors rotated clockwise around some axis. As the vortex moved forward, its 
shape changed from elliptical to circular, but its intensity became twice as high as at the initial 
moment due to high pressure. As the vortex moved away, the shock wave front was smoothened, 
and the contact discontinuities separated from the triple point. The contact discontinuity rotating 
counterclockwise weakened significantly (Fig. 2,h).

The influence of grid spacing. Below we consider the influence of grid spacing h on the 
problem solution for the time when the vortex completely passed through the shock wave front 
(t = 446.25 ms). Fig. 3 shows the fields of the flow parameters at this time, calculated using the 
most refined of the grids considered (h = 1/800), and Fig. 4 shows schlieren images obtained by 
calculations using the AUSM scheme with a sequence of refined grids. Evidently, the two contact 
discontinuities are significantly further away from each other on the coarsest grid (h = 1/200) 
than in the reference solution for the grid with h = 1/800, while the resulting configuration is very 
close to the reference one for the grid with h = 1/400. Furthermore, the more refined the grid, 
the more pronounced the contact discontinuities, shock waves and weaker acoustic perturbations.

To compare the results quantitatively, we determine the integral computational error in the 
region Ω including a distorted vortex (0.24 < x < 0.40, 0.46 < y < 0.62). The integral computa-
tional error ε is determined by the formula

( )
2 2

1 1

2

, ,

2 1 2 1 2

100% ,
( )( )

i j
ref

i j i j
i i j j

i i j j
= =

ρ −ρ
ε = ⋅

− − ρ

∑∑

c)	 d)

a)	 b)

Fig. 3. Problem solution for time t = 446.25 ms for 1/800 grid spacing: schlieren imaging (a); 
fields of pressure, Mach number and vorticity vector projected on the z axis, respectively (b, c, d)
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where ,i jρ , ,
ref
i jρ  are the average densities for the cell (i,j), respectively, in the given calculation 

and in the reference solution (the solution obtained by the AUSM scheme for the grid with h = 
1/800 was taken as reference).

It can be seen from Table 1 (calculations by the AUSM scheme) that the integral error 
decreases rather quickly for more refined grids.

The second important criterion for comparing the results obtained with different grids is the 
integral entropy E over the region Ω, or rather its positive (E+) and negative (E–) components:

2 2

,  .
2 2

E dxdy E dxdy+ −

Ω Ω

 ω+ ω   ω− ω 
= =   

   
∫ ∫

A positive value corresponds to a weaker con-
tact discontinuity, and a negative value corre-
sponds to a stronger one. The entropies obtained 
in the calculations with on grids of different 
dimensions, the entropy values are compared 
with the values obtained in the reference calcu-
lation, and relative errors are calculated:

100%,  

100%.
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h h
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h h
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E E
E

E
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−
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Table 1 compares the integral error as well as 
the positive and negative components of entropy 
and their relative errors for solutions obtained 
using grids of different resolutions. Analyzing the 
data given in Table 1 for the calculations by the 
AUSM scheme, we can conclude that the abso-
lute components of entropy grow monotonically 
with a decrease in grid spacing h. Furthermore, a 
faster drop in the relative entropy error is observed 
compared with the drop in integral error.

a)	 b)	 c)

Fig. 4. Schlieren images for time t = 446.25 ms for calculation by AUSM scheme 
for grids of different resolutions: h =1/200 (a), 1/400 (b) and 1/800 (c)

Tab l e  1

Effect of grid spacing on integral 
characteristics in calculations using 
two variable reconstruction schemes

h ε, % E+ E– δE+ δE–

%
TVD scheme

1/200 6.2 2.5 22.7 47 31
1/400 2.3 3.9 29.4 16 11
1/500 1.3 4.2 30.9 11 6
1/600 0.3 4.4 31.8 5 4
1/800 – 4.7 33.0 – –

WENO-5 scheme
1/200 2.92 3.3 27.2 30 18
1/400 1.22 4.3 31.9 8 3

1/800 (TVD) – 4.7 33.0 – –
Nota t i on s :  h is the grid spacing; ε is the integral 
computational error; E+ and E– are the positive 
and negative components of entropy; δE+ and δE– 
are the corresponding errors of the quantities.
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Comparison of methods for calculating convective fluxes. Fig. 5 shows the fields of the 
relative density gradient for the grid spacing h = 1/200, constructed from the calculations 
using various methods for approximating convective fluxes. The reconstruction of vari-
ables at the face was carried out for all cases by the TVD scheme [16] with a van Albada 
limiter [14].

Comparing the integral computational error for various methods of approximating convective 
fluxes (Table 2, data for the TVD scheme), we find that the Roe scheme apparently yields the 
minimum error. However, it is worth noting that the difference in the values of the integral error 
ε does not exceed 1% for all considered methods. The dependence of the entropy components on 
the method selected turns out to be stronger: the difference between the most and least accurate 
schemes is 20% in terms of positive entropy and 10% in terms of negative entropy. Analysis of 
the field picture of the relative density gradient (see Fig. 5) indicates that more accurate solu-
tions, obtained by schemes with lower dissipation (Roe schemes, HLLC), exhibit large numerical 
oscillations behind the shock wave front, whereas more dissipative schemes (HLL, AUSM) give 
smooth solutions. The HLL scheme turned out to be the least accurate, strongly smearing the 
second contact discontinuity (Fig. 5,f).

Comparison of schemes for reconstruction of variables with increased accuracy. High-
order approximation schemes are known to have only first-order accuracy at the shock wave 
front [17]. However, a more accurate solution can be reconstructed in smoother sections 
using WENO-family schemes, which should lead, in particular, to smaller vortex dissipa-
tion in this scheme. To process the discontinuities correctly, monotonicity is preserved in 
this scheme family by weighing several reconstructed values taking into account smoothness 
indicators [14].

d)	 e)	 f)

a)	 b)	 c)

Fig. 5. Problem solution obtained on grid with spacing h = 1/200 
using different methods for approximation of convective fluxes:

Roe (a), HLLC (b), AUSMD (c), Godunov (d), AUSM (e), HLL (f)
The reconstruction of variables on the face was carried out for all cases 

by the TVD scheme [16] with the van Abada limiter [14]
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Table 1 also shows the results obtained in 
calculations with grids spacings h = 1/200 and 
1/400, using the WENO5 scheme for variable 
reconstruction. The AUSM scheme was used 
as an approximation scheme for convective 
fluxes. Comparing the integral errors obtained 
in the calculations using TVD and WENO 
schemes (see Fig. 6 and Table 2), we can see 
that the relative computational errors for all 
integral characteristics are on average half as 
small for the solutions obtained by the WENO 
scheme compared to those obtained by the 
TVD scheme even in the case of sufficiently 
coarse grids.

Fig. 7 and Table 2 give the solutions obtained 
with the grid spacing h = 1/200 and WENO-5 
reconstruction for various schemes for approxi-
mating convective fluxes. Analyzing these results, 
we can conclude that significant numerical oscil-
lations are observed behind the shock wave front 
in the solutions obtained by the WENO scheme, 

despite the better resolution. However, as in the case of TVD schemes, the solution becomes 
smoother when more dissipative methods are adopted for calculating convective fluxes. Therefore, 
combining WENO-5 and HLL (or AUSM) schemes may be a suitable option to obtain a suffi-
ciently smooth solution to the problem, likely to be more accurate than those produced by any of 
the second-order TVD schemes.

Fig. 6. Dependences of relative error 
on grid spacing obtained from calculations 

of integral characteristics, compared 
for different reconstruction schemes

Tab l e  2

Influence of method for approximation of convective fluxes 
on integral characteristics of problem solution

Method ε, % E+ E– δE+ δE–

%
TVD scheme

Roe 5.60 2.71 22.5 42 32
HLLC 5.70 2.47 22.8 47 31

AUSMD 6.06 2.51 22.6 46 32
Godunov 5.79 2.49 23.0 47 30
AUSM 6.22 2.47 22.7 47 31
HLL 6.53 1.80 19.0 62 42

AUSM (h=1/800) – 4.69 33.0 – –
WENO-5 scheme

Roe 2.92 3.30 22.5 29 16
HLLC 3.02 3.40 22.8 28 16

AUSMD 2.79 3.30 22.6 29 17
Godunov 2.69 3.40 23.0 28 16
AUSM 2.98 3.30 22.7 30 18
HLL 3.56 3.00 19.0 37 20

AUSM (h=1/800) – 4.69 33.0 – –
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Conclusion

We solved a two-dimensional problem of the interaction of a shock wave and an isentropic 
vortex. The unstructured-grid finite-volume SINF/Flag-S code developed at Peter the Great 
Polytechnic University was used for the calculations. The results obtained using various schemes 
for approximating convective fluxes (Godunov, Roe, HLL, HLLC, AUSM, AUSMD) were com-
pared. The influence of the scheme for variable reconstruction at the faces (second-order TVD 
and fifth-order WENO) was also analyzed. The problem was tested for a sequence of refined 
grids, where the solution for the most detailed one was considered as reference.

The weak influence of the method chosen for approximating convective fluxes on the integral 
computational accuracy was confirmed qualitatively and quantitatively. However, the degree of 
numerical oscillations in the solution varies: schemes with lower dissipation (Roe, HLLC) pro-
duce strong numerical oscillations behind the shock wave front, whereas more dissipative schemes 
(HLL, AUSM) yield a smooth solution.

We established a significant dependence of the computational accuracy on the variable recon-
struction scheme: the solutions obtained using the WENO-5 scheme are several times more 
accurate than those obtained using the TVD scheme. A high level of dissipation in second-order 
schemes apparently leads to an artificial decrease in vorticity and less accurate resolution of the 
vortex structure. One of the approaches to suppressing strong numerical oscillations occurring 
behind the shock wave front consists of combining a high-order WENO scheme with a more dis-
sipative method for approximating convective fluxes. With this combination, the integral accuracy 
of the solution is preserved but the oscillations become weaker.

d)	 e)	 f)

a)	 b)	 c)

Fig. 7. Problem solution obtained on grid with spacing h = 1/200 
using different methods for approximation of convective fluxes: 

Roe (a), HLLC (b), AUSMD (c), Godunov (d), AUSM (e), HLL (f)
The WENO-5 scheme was used for all cases
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Introduction

Full-scale dynamic testing of building structures remains a crucial problem, especially for 
unique structures, such as dams. Experimental assessment of dynamic characteristics (natural 
frequencies, mode shapes, relative damping ratios) and monitoring of these characteristics allows 
to control the safety, strength, integrity of the structure as well as to identify substantial changes 
without resorting to specialized devices or visual inspection of each structure.

Operational modal analysis (OMA) comprises an entire group of methods aimed at experimen-
tally determining the dynamic characteristics of structures under normal operating conditions. 
These methods have become increasingly widespread for diagnostics of dynamic characteristics 
in various structures as advances are made in measuring and recording systems. A particular 
popular method of the OMA group is Frequency Domain Decomposition (FDD) [2–4]. The 
FDD method and the ARTeMIS Modal software based on it have been adopted since 2019 by 
the scientists of the B.E. Vedeneev All-Russian Research Institute of Hydraulic Engineering 
(St. Petersburg, Russia) [9].

In addition to determining natural frequencies and mode shapes, the EFDD method expand-
ing the capabilities of FDD also offers an algorithm for determining damping ratios [4–6], how-
ever, it is rather complex, often yielding large errors.

A simpler, more accurate algorithm is proposed in this paper for identifying the 
damping parameters.

Our goal was to formulate and theoretically substantiate a new method for finding damping 
ratios based on vibration surveys.

The FDD method is described in detail in [2, 3, 7], and its theoretical framework is formulated 
in [1]. The algorithm of this method consists of the following mandatory steps.

Step 1. A cross-spectral density matrix (CSDM) Gy(ω) of simultaneously measured vibration 
signals is calculated for each frequency ω of a given range.

Step 2. A singular-value decomposition (SVD) of the matrices Gy(ω) is performed at each 
frequency ω, their first singular value σ1(ω) is determined, and a frequency function of the first 
singular value is constructed, averaged over all measurements.

Note that the main idea of the FDD algorithm (see, for example, [2, 3, 7]) is that the first 
singular value σ1(ω) of the matrix Gy(ωm) has local maxima near modal frequencies. The mathe-
matical justification for this was given in [1]. Alternatively, we use the function σ1(ω) to determine 
the logarithmic decrements corresponding to each natural frequency.

Theoretical justification of the procedure for determining logarithmic decrements

The response y(t) of the system is uniquely decomposed into their linear combination (due to 
the linear independence of the eigenmodes):

1 1 2 2( ) ( ) ( ) ( ).t q t q t t= ⋅ + ⋅ + =y ϕ ϕ Φ q (1)

As found in [7], if white noise is considered as external force, and dissipation is assumed to be 
small, the following expression holds true for CSDM Gy(ω):

H H
H

*
1

( ) diag 2Re ,
M

m m m m m m m
y

m m m m

c c c
i i i=

  
ω = + = ⋅ ⋅   ω−λ − ω−λ ω−λ  

∑ ϕ ϕ ϕ ϕ
Φ ΦG (2)

where λm is the pole,

,m m dmiλ = −γ + ω (3)

0 );m m m(γ = ω ς (4)

φm is the eigenmode; Φ is a matrix whose columns are eigenvectors, Φ = [φ1, φ2,…φM]; M is the 
number of modes accounted for in decomposition (1); cm is a positive coefficient; i is the imagi-
nary unit; H is the Hermitian conjugate.
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The component ωdm of expression (3) is the natural frequency accounting for damping. In 
expression (4), ω0m is the natural frequency without accounting for damping; ςm is the damping ratio.

Next, we introduce the notation

2 2( ) 2Re .
( )

m m m
m

m md m

c c
i

  γ
α ω = = ω−λ ω−ω + γ 

(5)

Notably, modal vectors φm in expression (2) are assumed to be normalized, since the coef-
ficient αm contains, according to expression (5), a constant cm that can be supplemented with a 
normalization factor.

Then expression (2) can be written as follows:

( ) H( ) diag ( ) ,y mω = ⋅ α ω ⋅Φ ΦG (6)

or

H

1
( ) .

M

y m m m
m=

ω = α∑ ϕ ϕG (7)

Dynamic testing of the structure can be used to calculate the CSDM of the measured signals 
over a certain frequency range; next, the SVD of these matrices can be used to obtain the fre-
quency function of the first singular value [10–12].

It was proved in our earlier study [1] that the natural frequencies of the structure considered 
are located near the local maxima of this function. This paper proposes and substantiates a 
method for determining the damping ratios based on an experimentally constructed function of 
the first singular value.

An obvious idea is to compare the analytical expression for the first singular value and the 
experimentally constructed function [14]. Even though there is no general analytical expression 

for the first singular value of CSDM, a fairly good analytical approximation can be obtained 
under certain conditions.

Consider two main cases when it is possible to obtain such an approximation.
Case of single natural frequency. Here, the response y(t) of the system (see Eq. (1)) in the 

vicinity of some natural frequency (let us denote it as ωds) is determined mainly by eigenmode 
with the same number. Then the following relation holds true:

( ) ( ),s st q t≈ ⋅ϕy (8)

and the expression for the CSDM given by Eq. (4) can be rewritten as:

H( ) .y s s sω ≈ α ϕ ϕG (9)

Evidently, Eq. (9) holds true when the values of the functions αs(ω) significantly exceed the 
other values αm(ω) in the vicinity of the frequency ωds. Now let us find the conditions under which 
this requirement is satisfied.

Consider the properties of functions αm(ω). It can be seen from expression (5) that these 
functions depend on the corresponding natural frequencies and damping ratios. They have one 
maximum each, reached at the corresponding natural frequency.

Indeed (see our study [1]), determining the extreme values of the functions αm(ω), we obtain 
for ω = ωdm

( ) c .m dm m mα ω = γ (10)

We introduce the notation for the minimum distance ds on the frequency scale between the 
frequency ωds and the rest of the natural frequencies ωdm, namely:
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min .s ds dmm s
d

≠
ω ω= − (11)

Then the following relation holds true for the frequency ωdm with all m ≠ s:

2 2 2

/( ) .
( / ) 1

m m m m
m d s

s m s m

c c
d d

γ γ
α ω ≤ =

+ γ γ +
(12)

Now let us introduce the notation

0
.s

sm s m
mm

dr d= γ =
ω ς⋅ (13)

Comparing relations (12) and (10), we can see that the condition

( ) ( )s d s m d sα ω >> α ω (14)

is satisfied if

1, for all .sm s mr >> ≠ (15)

Therefore, as condition (15) is satisfied, only one term in expression (7) can be taken into 
account, i.e., the CSDM is calculated by Eq. (9).

An analytical expression can be constructed for the first singular value pf the CSDM Gy(ω) 
described by expression (9). The matrix Gy(ω) is evidently square and symmetrical (it is Hermitian 
for complex modes). The rank of the matrix Gy(ω) equals unity (since the rank of the product of 
the matrices does not exceed the ranks of the multipliers), therefore this matrix has no more than 
one eigenvalue other than zero.

We find it by defining the eigenvalues. Let u be the eigenvector and λ the eigenvalue of the matrix 
Gy(ω); then, by defining the eigenvector and the eigenvalue, we obtain the following equality:

( ) ,y u uω = λG (16)

then,

H H H( ) ( ) .s s s s s s s s su u u uα = α = α = λϕ ϕ ϕ ϕ ϕ ϕ (17)

An immediate consequence of equality (17) is that the only nonzero eigenvector u = φs, and 
the eigenvalue 2

s sλ = α ϕ . Evidently, λ ≥ 0, since the coefficient cm ≥ 0. Consequently, the 
matrix Gy(ω) is positive semi-definite, and then (since it is also Hermitian), its singular values 
coincide with its eigenvalues. Since 

2
sϕ = 1, then, apparently, σ1 coincides with αs. Therefore, 

the maximum singular value of the CSDM in the vicinity of natural frequencies can be written as

1 2 2 2 2 2
0

.
( ) ( )

s s s s
s

d s s d s ss

c cγ γ
σ = α = =

ω−ω + γ ω−ω +ω ⋅ς (18)

Furthermore, the natural frequencies accounting for damping (ωdk) and without it (ω0k) prac-
tically coincide for small damping ratios.

If we compare the function of the first singular value, obtained by processing experimental 
data, with analytical dependence (18), we can estimate the logarithmic decrements. Let us rewrite 
Eq. (18) in the following form:

1 2 2 2 .
( )ds ds

A
B

σ =
ω−ω +ω

(19)
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Then we use the least squares method (for example), making it possible to determine the coef-
ficients A and B that approximate the analytical function σ1 as close as possible (see Eq. (19)) to 
the experimentally obtained dependence in the vicinity of some natural frequency. The value of 
the parameter B apparently corresponds to the damping decrement.

The case of two converged natural frequencies. Let us now consider the second case, when the 
values of two natural frequencies numbered k and k + 1 (ωdk and ωdk+1) are located close to each 
other (such frequencies are generally known as converged in the literature), i.e., condition (15) is 
not satisfied for frequencies with these numbers.

However, if condition (15) is satisfied for all other natural frequencies, except for frequencies 
numbered k and k + 1, then CDSM can be calculated by Eq. (7) with only two terms:

1
H( ) ,

k

y m m m
m k

+

=

ω = α∑ ϕ ϕG (20)

or the matrix has the coordinate form

1 1 1
(1) 2 (1) (2) (1) ( )

1 1 1
(2) (1) (2) 2 (2) ( )

1 1 1
( ) (1) ( ) (2) ( ) 2

( )

( )

... ... ...

( )

k k k
N

m m m m m m m m
m k m k m k
k k k

N
m m m m m m m m

m k m k m ky

k k k
N N N

m m m m m m m m
m k m k m k

+ + +

= = =

+ + +

= = =

+ + +

= = =

 α ϕ α ϕ ϕ α ϕ ϕ 
 
 

α ϕ ϕ α ϕ α ϕ ϕ =  
 
 
 α ϕ ϕ α ϕ ϕ α ϕ
  

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

G . (21)

This matrix has the dimensions N × N, and it is difficult to find its singular values (or 
eigenvalues) analytically.

To simplify the task, we compose a Gram matrix (denoting it as K) based on the vectors 
k kα ϕ  and 1 1k k+ +α ϕ .

The matrix K has the following coordinate form:

1 1

1 1 1

( , )
.

( , )
k k k k k

k k k k k

+ +

+ + +

 α α α
=  

α α α  

ϕ ϕ

ϕ ϕ
K (22)

This matrix, like the matrix Gy, is Hermitian and positive semi-definite (a property of the 
Gram matrix). A proof that nonzero eigenvalues of the matrix Gy coincide with the eigenvalues 
of the matrix K (the Gram matrix constructed from the corresponding vectors) was given in [1], 
and the eigenvalues of the matrices K and Gy coincide with their singular values. Thus, the first 
singular value of the matrix Gy is equal to the spectral radius of the matrix K.

In this case, the matrix K has the dimensions of 2 × 2, and we can easily construct an analytical 
expression for the value of its spectral radius [16]:

2tr( )+ tr ( ) - 4det( )
.

2
ρ =

K K K (23)

Since it follows from the expression for matrix (22) that
2

1 1 1det ) ( , ) ,k k k k k k+ + +( = α α −α α ϕ ϕK (24)

1tr ) ,k k+( = α +αK (25)
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we obtain the following expression for the spectral radius of the matrix K (and therefore, for the 
first singular value of the matrix Gy):

22
1 1 1 1

1

+ + ( ) 4 ( , )
.

2
k k k k k k k k+ + + +α α α −α + α α

σ =
ϕ ϕ (26)

It follows directly from Eq. (26) that if φk is orthogonal to φk+1, then 1 , 1
max ii k k= +

σ = α , regardless of 
whether condition (15) is satisfied.

Fig. 1 shows graphs of functions σ1 and αi calculated for a system with three degrees of free-
dom. Evidently, in the vicinity of the first natural frequency ω1, function of the first singular value 
σ1 coincides well with the function α1 in a fairly wide frequency range ( 12 12.7r =  in this example). 
However, the behavior of the function σ1 changes for the second and third natural frequencies (

23 320.85, 1.7r r= = , respectively), while the greatest difference between the graph of this function 
and the corresponding graphs of functions αi is observed in the frequency range corresponding to 
the interval between the maxima of the curves for the functions α2 and α3.

Note that expression (26) is simplified at the point of intersection of the curves for αk and αk+1 
(α2 and α3 in the example):

1 1(1 ( , ) ).k k k+σ = α + ϕ ϕ (27)

In other cases, expression (26) as a function of logarithmic decrements is a rather complex 
expression, so using it to find the necessary parameters turns out to be a difficult task.

We propose a different approach to solving this problem in the case of converged frequencies. 
It is known from linear algebra that the sum of the eigenvalues of a square matrix is equal to its 
trace [15–17], and since, as noted above, the eigenvalues and singular values of the matrix K 
coincide in this case, the following formula holds true:

1 2 1.k k+σ + σ = α +α (28)

Let us introduce the notation

1 2( ) ( ) ( ).s ω = σ ω +σ ω (29)

Then expression (28) can be rewritten as follows:

1k ks += α +α (30)

(for brevity, the argument is omitted here).
If we substitute the expressions for αk and αk+1 in Eq. (30), then the following relation holds true:

Fig. 1. Behavior of first singular value σ1 compared with functions αi(ω) 
for system with three degrees of freedom (ω1 – ω3)
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1 1
2 2 2 2

0 1 0 1 1

.
( ) ( )

k k k k

dk k k dk k k

c cs + +

+ + +

γ γ
= +

ω−ω +ω ς ω−ω +ω ς
(31)

Fig. 2 shows a comparison of the sum of the first two singular values s and the sum αk + αk+1 
for the previously considered case (see Fig. 1), a system with three degrees of freedom (α2 + α3 
in the example).

Singular-value decomposition of the matrix Gy(ω) is performed during processing of experi-
mental data obtained by dynamic measurements at each frequency ω of a given range; not only 
the first singular value σ1(ω) but also the remaining singular values of the function are determined. 
Thus, the sum of the first two singular values is known.

Similar to the case of a single natural frequency, the natural frequencies accounting for damp-
ing (ωdk) and without it (ω0k) practically coincide for small damping ratios. Therefore, the analyt-
ical expression for the sum s of the first two singular values has the form

2 2 2 2 2 2
1 1

,
( ) ( )dk dkdk dk

A Cs
B D+ +

= +
ω−ω +ω ω−ω +ω

(32)

where A, B, C, D are unknown parameters.
The least squares method can be used to determine these unknown parameters. Evidently, 

the coefficient B is an estimate of the damping ratio ςk, and the coefficient D corresponds to the 
ratio ςk+1.

Example calculations of damping ratios

The method for determining logarithmic decrements was tested with a mathematical model of 
a system with 8 degrees of freedom (Fig. 3).

Fig. 2. Sum of first two singular values s(ω) compared with functions αi(ω) 
and sum αk + αk+1 for system with three degrees of freedom (see Fig. 1)

Fig. 3. Model of dynamic system with 8 degrees of freedom
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The inertial and stiffness parameters were set in the adopted model. The damping ratios were 
assumed to be the same and equal to 0.01. Then, a proportional damping matrix was calculated at 
each natural frequency by the specified damping parameters. Forces with a white noise spectrum 
were applied to masses M1 – M8. The values of the force amplitude and other parameters of the 
system are given in Table 1. The loading modeled was non-uniformly distributed over the degrees 
of freedom: the amplitude of the force at degrees of freedom 7 and 8 was increased by 10 times.

Next, vibrational responses at all degrees of freedom were determined as time series with a 
given frequency from the exact solution of the dynamic problem.

The measurement data obtained by this approach were used to test the FDD technique and 
to subsequently identify the damping parameters by the proposed method. The results were com-
pared with the parameters set for the model. The frequency function of the first singular value is 
shown in Fig. 4. Evidently, the six peaks corresponding to the natural frequencies (1–5 and 8) 
can be regarded as, i.e., the problem of determining the damping ratios corresponds to the case 
of a single natural frequency. The damping ratios corresponding to frequencies 1–5 and 8 were 
calculated by Eq. (19) based on to the algorithm described above (Table 2, upper lines).

Fig. 4. Frequency spectrum for function of first singular value 
in CSDM for system with 8 degrees of freedom (see Fig. 3)

Fig. 5. Calculated sum of first two singular values (points) 
and obtained dependence approximated by Eq. (32) (solid line

Tab l e  1

Parameters set for model of dynamic system with 8 degrees 
of freedom and their values (see Fig. 3)

Mass, kg Stiffness, N/m Force amplitude, N
(applied to mass)

M1 =…= M8 = 25.9 C1 = 770, C2 =1000,
C3 = 950 

F1 =…= F6 = 1,
F7 = F8 = 10

Note . The damping ratios (logarithmic decrements) were set to be the same and 
equal to 0.01.
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The graph in Fig. 5 for the case of converged frequencies (these are frequencies 6 and 7 in 
the example) shows the points corresponding to the sum of the first and second singular values 
(obtained by the simulation model) as well as a function approximating them by Eq. (32).

The values of the identified damping ratios and the corresponding coefficients of determination 
found by the above method are also given in Table 2.)

Conclusion

The paper proposes a simple method for determining the damping ratios after identifying 
the natural frequencies of a structure based on experimental data using the FDD technique. 
Analytical expressions are obtained in the vicinity of natural frequencies for the first singular value 
as well as for the sum of the first two singular values as frequency functions. The method for 
determining the damping ratios is based on approximating the values obtained from processing the 
experimental data by analytical expressions with unknown parameters. The least squares method 
allows to determine the damping ratios. The first singular value is approximated in the case of a 
single natural frequency, the sum of the first two singular values is approximated in the case of 
converged natural frequencies.

The damping ratios were identified for a model problem. The proposed method has an advan-
tage over the well-known EFDD method presented in [4], due to its lower complexity; further-
more, unlike the EFDD method, it allows determining the damping characteristics in the case of 
natural frequencies that are close in value.

Tab l e  2

Calculated damping ratios and corresponding coefficients of determination 

Peak Natural
frequency

Damping 
ratio

Coefficient
of determination

Case of 'single' natural frequency
1 0.64 0.0107 0.9985
2 1.03 0.0109 0.9995
3 1.54 0.0104 0.9957
4 1.73 0.0104 0.9975
5 1.93 0.0140 0.9357
8 2.39 0.0106 0.9983

Case of two 'converged' natural frequencies
6 2.06 0.01014 0.9977
7 2.10 0.01070 0.9981

Note .  The least squares method was used to find the values of the 
coefficient of determination.
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Abstract. The systematization of possible ways to form C28 and C30 fullerene isomers has 
been completed in this work. An additional confirmation was obtained that fullerenes created 
by incorporating dimers into the initial structure had a minimum energy. Two other methods 
for the formation of new fullerenes were also considered, namely, the connection of two domes 
with the same symmetry and that of fullerenes with compatible symmetry. The symmetry order 
of the studied fullerenes varied from the second to the seventh ones. A collaboration analysis 
of the formation energy values and geometric simulation results allowed us to draw conclusions 
about the structural changes in the resulting fullerenes.
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СПОСОБЫ ФОРМИРОВАНИЯ СТРУКТУРЫ ФУЛЛЕРЕНОВ 
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Аннотация. В работе завершена систематизация возможных путей образования 
изомеров фуллеренов С28 и С30. Получено дополнительное подтверждение, что фуллерены, 
образованные встраиванием димеров в исходную структуру, имеют минимальную 
энергию. Рассмотрены и два других способа образования новых фуллеренов, а именно 
– соединение двух куполов с одинаковой симметрией и соединение фуллеренов с 
совместимой симметрией. Порядок симметрии исследуемых фуллеренов меняется от 
второго к седьмому. Совместный анализ значений энергии формирования и результатов 
геометрического моделирования фуллеренов позволил сделать выводы о структурных 
изменениях полученных структур.
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Introduction

A classification of the most natural mechanisms for the formation of new fullerenes was carried 
out in [1]. These are fusion of fullerenes with compatible symmetry, embedding of a carbon dimer 
into the initial fullerene and fusion of carbon domes with the same symmetry [2–5].

This study concludes the consideration of structures and energies of C28 and C30 fullerenes 
formed by these mechanisms.

The goal of the study is to examine a series of fullerene isomers from C20 to C30, using 
them as reference for verifying the particular mechanisms (discovered earlier) for formation of 
new fullerenes.

Structures of fullerenes with single (simple) and double bonds were analyzed for this pur-
pose. The criterion for the presence of double bonds was symmetrical arrangement of their 
maximum number.

Formation of С28 fullerene isomers

Let us consider five main methods for obtaining new fullerene models.
Embedding of a dimer into a С26 polyhedron
Perfect fullerenes
Method I. Embedding a dimer into the hexagon from the front, parallel to the third-order axis, 

turns fullerene C26 into fullerene C28. A perfect fullerene with second-order rotation/reflection 
symmetry is formed. Such a fullerene contains twelve pentagons and four hexagons.

Method II. A dimer is embedded at a 60° angle to the third-order symmetry axis of the initial 
fullerene. A perfect fullerene with second-order rotation/reflection symmetry is obtained. The 
initial fullerene should be rotated by 90° to obtain a mirror image in case I, and only by 30° in 
case II. The resulting fullerene also contains twelve pentagons and four hexagons (Fig. 1).

Method III. Embedding of a dimer into a С26 polyhedron. Topological symmetry. Embedding 
a dimer into a hexagon in the background transforms the fullerene C24 into the fullerene C26. 
Since it contains two additional interstices, an imperfect fullerene with topological symmetry of 
the third order is obtained [6]. The resulting fullerene contains two triangles, six pentagons and 
eight hexagons.

Method IV. Fusion of two different domes with compatible symmetry. One of the possible 
techniques is fusion of the C10 dome with the C18 bowl. Such a reaction can be written in the 
following form:

С10 + С18 → С28.
Method V. Fusion of two heptagonal prisms. Both initial fullerenes have the same seventh-order 

symmetry. The reaction has the following form (Fig. 2):

С14 + С14 → (С14С14) → C28.

Fig. 1. Embedding of carbon dimer into initial perfect fullerene; methods with parallel 
embedding (method I) and embedding at a 60° angle (method II) are shown
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Formation of С30 fullerene  
isomers

Two angular methods for embedding the dimer. 
Perfect fullerenes

Method VI. A carbon dimer is embedded 
into perfect fullerene C28 [7] (see method I) in 
one of two hexagons at the equator of the ini-
tial fullerene. Fullerene C28 is transformed to 
fullerene C30. The polyhedron formed contains 
twelve pentagons and five hexagons.

Method VII. The initial configuration is 
shown in Fig. 1 (see method II). The initial 
half of the fullerene must be rotated by 90° 
to obtain a mirror image in the previous case 
(see method VI). In this case, rotation by only 
30° is sufficient. There is another difference: 
the embedding is performed at a 60° angle. 
Such operations transform the initial fullerene 

into fullerene C30. The resulting fullerene also contains twelve pentagons and five hexagons 
(Fig. 3) [8].

Method VIII. Fusion of dome С10 with dome С20. Perfect fullerene. Both initial configurations 
have fifth-order symmetry. A fullerene consisting of five squares, two pentagons and ten hexagons 
is formed after fusion. A perfect fullerene with fifth-order symmetry is produced.

Method IX. Fusion of two C15 domes. Perfect fullerene. Both domes have fifth-order symmetry. 
The resulting fullerene has twelve pentagons and five hexagons. The obtained structure is a perfect 
fullerene with fifth-order symmetry (Fig. 4) [9].

Obtained isomers and their formation energy

Energy calculations for the considered isomers were performed in the Avogadro editor. The 
table shows the calculated values of the minimum energy for fullerenes with single bonds (Emin) 
and the maximum energy for fullerenes with double bonds (Emax).

Fig. 2. Fusion of two different domes 
(method IV) and two heptagonal prisms 

(method V)

Fig. 3. Two angular methods for dimer embedding: at the equator (method VI) 
and at 60° angle (method VII)

Fig. 4. Fusion of different (method VIII) and identical (method IX) domes
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Practically all isomers presented in Table are (with the exception of those formed by method 
III) perfect fullerenes. The analysis of the obtained results shows that fullerenes formed by embed-
ding a dimer into the initial fullerenes [5] have minimal energies (highlighted in bold). The energy 
of fullerene formation increases when different or identical domes are fused. The fullerenes con-
sidered have second, third, fifth and seventh order symmetry.

Conclusion

The study concludes the systematization of possible methods for forming chains of fullerene 
isomers from C20 to C30, specifically, C28 and C30. This systematization allowed to obtain addi-
tional evidence confirming the conclusions drawn in the previous work [10]. It was found earlier 
that formation of fullerenes by embedding a dimer in the initial fullerene is energetically advan-
tageous. The resulting fullerenes are perfect. An exception is the case when the initial fullerene 
contains two additional interstices. Such a fullerene turns out to be imperfect with topological 
symmetry, taking high energy costs to produce.

Our findings provide a deeper understanding of fullerene structure. From a practical stand-
point, these data can be useful to researchers choosing a specific fullerene with a focus on its 
formation energy in a wide variety of projects.

Tab l e

Calculated formation energies of fullerene isomers

Chemical formula Method
Energy, kJ/mol

Emin Emax

С28

I 924 1790
II 689 1872
III 2250 3867
IV 924 1172
V 1119 2264

C30

VI 832 847
VII 689 1872
VIII 1840 2548
IX 852 1907
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Abstract. The paper proposes refined definitions for associated homogeneous functions 

(AHFs) of real variables, which are of great practical importance for a wide range of problems. 
I. M. Gelfand and Z. Ya. Shapiro were the first in 1955 to introduce AHFs into scientific use. 
However, the possibilities of using these functions in various applications have not been exhausted 
to this day. The proposed definitions inherit the basic idea of the original paper to define chains 
of new functions using the recurrent linear functional relations, where some homogeneous 
Euler function is the starting point. This makes it possible to apply the corresponding results 
not only for differentiable and continuous functions, but also for discontinuous functions, 
including discontinuous ones at all points. The possibility of constructing a detailed consistent 
theory of AHFs of real variables, defined by a chain of linear recurrent functional relations 
of a general form, is shown. The basic theorems are formulated and proven. Further ways of 
generalizing the functions under consideration, are discussed.
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Аннотация. В статье предлагаются уточненные определения для присоединенных 

однородных функций (ПОФ) вещественных переменных, имеющих большое прикладное 
значение для широкого круга задач. Понятие ПОФ было впервые сформулировано 
И. М. Гельфандом и З. Я. Шапиро в 1955 году, но возможности использования этих 
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функций в разнообразных приложениях не исчерпаны и поныне. Предлагаемые 
определения наследуют базовую идею оригинальной статьи: определять цепочки новых 
функций с помощью рекуррентных линейных функциональных соотношений, начиная 
с некоторой одиночной однородной функции Эйлера; это позволяет использовать 
соответствующие результаты не только для дифференцируемых и непрерывных функций, 
но и для разрывных, в том числе разрывных во всех точках. Показана возможность 
построения развернутой непротиворечивой теории ПОФ вещественных переменных, 
определяемых с помощью цепочки линейных рекуррентных функциональных 
соотношений общего вида. Формулируются и доказываются базовые теоремы теории 
рассматриваемых функций. Обсуждаются дальнейшие пути обобщения указанного 
класса функций.

Ключевые слова: присоединенные однородные функции Гельфанда, однородные 
функции Эйлера, рекуррентные линейные функциональные соотношения
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Introduction
A fundamental study by Gelfand and Shapiro published in [1] introduced, along with other 

important categories, the concept of infinite chains of associated homogeneous functions (ASFs), 
also used by the authors to construct a special kind of generalized functions. This concept was 
later used almost unchanged in monograph [2]. This was perhaps the first significant advance 
made in the general theory of homogeneous functions (see §§187, 188 in [3]) since Euler’s time1.

Like many seemingly abstract mathematical constructs, homogeneous Euler functions and, 
consequently, associated homogeneous Gelfand functions turn out to be a useful tool for solving 
a variety of applied problems, including those far removed from the original goals intended by the 
authors. Such applications include the similarity principle of nonrelativistic trajectories of charged 
particles in Euler-homogeneous electrostatic fields, proposed by Golikov [5–10]. It is proved in 
the above studies that the trajectory of a charged particle in the given electrostatic field is scaled 
as a single entity with proper scaling of initial coordinates and initial kinetic energy (preserving 
the initial exit angles). Practical examples of this effective tool for synthesis of various electron 
and ion-optical systems can be found in [11–21].

The new idea proposed in [1] was quickly developed by other mathematicians (see, for 
example, [22–33]). Unfortunately, unlike the original study [1], where differentiation with respect 
to degree of homogeneity was used to construct a chain of functions, the associated homogeneous 
functions in subsequent publications are determined axiomatically using binomial functional 
recurrence relations2. However, with this approach, researchers actually deal only with a narrow 
subset of Gelfand functions instead of the supposed infinite chain of associated homogeneous 
functions fk (namely, the cases k = 0 and k = 1, see below). As a result, without serious revision 
of definitions and proofs the statements to be proved are generally speaking only valid for this 
narrow subset.

1 In this regard, it is also worth mentioning the theory of spherical functions that are homogeneous harmonic 
functions of three variables [4], developed in the 19th century.
2 This approach to defining associated homogeneous functions is mentioned in [1, 2] as an alternative technique 
but is not used in practice, see Appendix
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However, this important remark does not apply to the results obtained in the original study 
by Gelfand and Shapiro. In our opinion, the logic by which a new class of functions of real vari-
ables3 is defined in [1, 2] is as follows (the corresponding reasoning is presented more accurately 
in the Appendix).

Homogeneous Euler functions of degree p satisfy the functional relation

( ) ( )1 2 1 2, : , , , , , , .n p
p n p nR R f x x x f x x x∀λ∈ ∀ ∈ λ λ λ = λx   (1)

If x1 > 0, these functions can be represented in the most general form as

( ) ( ) 32
1 2 1

1 1 1

, , , , , ,p n
p n

x xxf x x x x h
x x x

 
=  

 
  (2)

where h is an arbitrary function (n = 1) of real variables (see §§187, 188 in book [3]).
Performing k-fold differentiation of homogeneous functions (2) with respect to the parameter p 

(homogeneity degree of the function), we obtain functions fp,k with log-periodic power-law sin-
gularities. Indeed, in view of Eq. (2), if x1 > 0 and k ≥ 0, these functions can be represented with 
an accuracy up to an auxiliary multiplier 1/k! as

( ) ( ) ( ) 32
, 1 2 1 1

1 1 1

1, , , ln , , ,
!

p k n
p k n

x xxf x x x x x h
k x x x

 
=  

 
  (3)

where k is a non-negative integer (the order of the function)4.
Ref. [1] primarily concentrates on studying the integrals of the form

( ) ( )
0

0

ln ,  ln ,
b

pp k k

a

x x x dx x x x dx
−

⋅ϕ ⋅ϕ∫ ∫

where φ(x) are functions without singularities, including at zero, which can be differentiated with 
respect to the variable x a sufficient number of times.

Furthermore, it is important to study similar multidimensional integral expressions. Evidently, 
if p ≤ -1, the given integrals diverge. However, it is proved in [1] using the analytical continuation 
procedure and the framework of generalized function theory that these integrals can be given a 
meaningful numerical value, thus defining a new class of generalized functions.

Functions of form (3) comprise the basis for functions with log-periodic power-law singular-
ities, serving to solve the problem under consideration with increased efficiency. Differentiation 
with respect to the parameter p as well as expansion into Laurent series and into power series with 
respect to the parameter p serve in [1] (and especially in monograph [2]) as the main tool for 
constructing new generalized functions, whose values are associated with these integrals.

Chains of functions fp,k are of undoubted interest in themselves. The authors of [1] call the 
functions fp,k associated homogeneous, by analogy with associated eigenvectors of linear opera-
tors5, and differentiation with respect to the parameter p is used as the main tool.

3 The presentation in this paper is focused on functions of real variables, although all of these results are of course 
also largely valid for functions of complex variables.
4 Note that the differentiation procedure requires caution, since the function h in Eq. (2) may depend explicitly 
or implicitly on the homogeneity degree p. It also requires a reasoned transition from a fixed homogeneity degree 
to a continuously variable parameter which is differentiable. In particular, the homogeneity degree in Eq. (2) can 
be considered as function ω(p) of the abstract parameter p with respect to which differentiation is performed, and 
the identity ω(p) ≡ p, generally speaking, is not guaranteed.
5 Homogeneous Euler functions of degree p can be considered as eigenfunctions of the linear scaling operator L[f]: 
f(x) → f(λx) corresponding to the eigenvalues of λp.
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However, along with defining associated homogeneous functions as a result of differentiation 
of homogeneous functions with respect to homogeneity degree p, Refs. [1, 2] also formulate the 
assumption (not quite accurate and not particularly significant for the authors’ further reasoning) 
that chains of functions fp,k can be regarded as partial solutions of the following linear functional 
recurrence relations:

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

,0 ,0

, , , 1

for 0, ,

for 1, ,
p p

p k p k p k

k f a f

k f a f b f −

= λ = λ

≥ λ = λ + λ

x x

x x x
(4)

with the coefficients ( ) ( ),  ln .p pa bλ = λ λ = λ λ
It follows from analysis of relations (4) given in [1, 2] for particular cases k = 0 and k = 1 that 

the functions

( ) ( ),  ln ,p pa b cλ = λ λ = λ λ

where c ≠ 0 is an arbitrary constant, are the only situation where nontrivial continuous solutions 
are possible (but not necessarily exist) for system (4).

Without loss of generality, a value c = 1 can be used, since the parameter c ≠ 0 is reduced upon 
substitution of ( ) ( )*

, ,
k

p k p kf c f→x x . Apparently, the chains of functions fp,k of form (3) with the 
subscript k shifted by m ≥ 0, which are padded with zeros, namely,

( ) ( ) ( ) ( ) ( ) 32
1 1

, 1 2 1 1 1

1 ln , , for ,
, , , !

0 for ,

p k m n
m m

p k n

x xxx x h k m
f x x x k m x x x

k m

−  
≥  = −  

 <



 (5)

while their linear combinations6 are also solutions of functional relations (4), if such a solution is 
a chain of functions fp,k.

The authors of [1, 2] subsequently confined the consideration to functions of form (3), since 
more complex constructs are not required to study integrals with log-periodic power-law singu-
larities and give these integrals reasonable meaning at negative degrees.

As mentioned earlier, unlike the original studies [1, 2], subsequent works by other authors [22–33] 
used binomial functional relations (4), where ( ) pa λ = λ , ( ) lnpb λ = λ λ , as a formal definition 
of associated homogeneous functions. Unfortunately, however, direct substitution shows, in par-
ticular, that associated homogeneous functions (3), obtained from homogeneous functions (2) by 
repeated differentiation with respect to the parameter p (as done in [1, 2]), are not solutions to 
functional relations (4) even when k ≥ 2:

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

,0 ,0

,1 ,0 ,1

2

,2 ,0 ,1 ,2

3 2

,3 ,0 ,1 ,2 ,3

,

ln ,

ln ln ,
2
ln ln ln ,  .
6 2

p
p p

p p
p p p

p
p p

p p p p

p p
p p

p p p p p

f f

f f f

f f f f

f f f f f

λ = λ

λ = λ λ + λ

λ λ
λ = + λ λ + λ

λ λ λ λ
λ = + + λ λ + λ

x x

x x x

x x x x

x x x x x 

(6)

6 No other solutions are possible. Substituting 1t x= , 2 2 1t x x= , 3 3 1t x x= , …, 1n nt x x= , after differentiating 
equations (4) with respect to the parameter λ at the point λ = 1, a system of ordinary differential equations with 
an independent variable t is obtained. The general solution consists of linear combinations of functions (5), where 
the constants hm defining the initial conditions are arbitrary functions of t2, t3, …, tn. The operations performed 
are not invertible and therefore it is necessary to verify that functions (5) really satisfy relations (4); however, the 
verification shows that this condition is not fulfilled for k > 1.
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Notably, the multiplier 1/k! in Eq. (3) provides the equality of coefficients for the lower triangular 
matrix of linear relations (6):

( ) ( ) ( ), ln !p k j
k ja k j−λ = λ λ −

along the diagonals k j const− = , as is the case for binomial relations (4).
It can be proved that nontrivial solutions are generally only possible for binomial systems of 

functional relations of form (4) if k = 0 and k = 1 (see [31]). However, the fact that [1, 2] assigns 
binomial functional relations (4) rather than functional relations (6) given as a lower triangular 
matrix for associated homogeneous functions (3) should be considered an unfortunate inaccuracy, 
which does not affect subsequent results obtained by the authors of [1, 2].

Indeed, to differentiate relations (4) with respect to parameter p, it is important to take 
into account that not only the functions fp,k but also the functional coefficients ( ) pa λ = λ  and 
( ) lnpb λ = λ λ  depend on the parameter p. However, as noted earlier, relations (4) are not used 

in [1, 2] for construction of new generalized associated functions, only playing the role of a formal 
definition, which was not elaborated further.

Thus, we believe that the authors of numerous subsequent publications using form (4) as a 
starting point in the formulation and proof of new theorems are not quite correct.

Unfortunately, this truncated definition of associated homogeneous functions has persisted 
in various publications for over half a century (see, for example, [22–30]). For this reason, the 
corresponding theorems have much less generality than their authors intended, and, as already 
noted above, they make sense only for degenerate cases k = 0 and k = 1 if careful revision is not 
undertaken both for definitions and for proofs of the corresponding theorems.

It is possible that the problems with the definition of associated homogeneous functions in form 
(4) are well known to the scholars specializing in them (according to some experts), although we 
have unable to uncover discussions of this issue in the available literature. However, the rather 
convincing assumption of these experts about the obviousness and even triviality of both the prob-
lem itself and the approach to rectifying it, unfortunately, contradicts the state of affairs that form 
(4) has long been used in numerous publications and even in authoritative reference books (see, 
for example, the handbook edited by Kreyn [34], republished abroad).

Apparently, any mathematicians noticing the inconsistency of definitions in [1, 2] will cor-
rect it based on their own subjective ideas and preferences, which other researchers may not 
always agree with. For example, an alternative approach presented in [31] and continued by 
Albeverio et al. [32, 33] (without excessive emphasis on the problem) as well as similar results 
in monograph [35] probably were not sufficiently appreciated by the mathematical community, 
since studies with binomial relations (4) as a starting premise remain popular (see, for example, 
monograph [30] published in 2012). There is also a risk that instead of a single line of research, 
a number of disparate definitions will arise for mathematical objects that are close, but do not 
completely coincide, for which the conditions of equivalence to each other will have to be spe-
cifically formulated and proved.

It is worth noting there are certain doubts about the proposal (introduced in [31]) to preserve 
the term ‘associated homogeneous functions’ for binomial relations (4), which have meaning only 
when k = 0 and k = 1, additionally using the term "quasi-associated homogeneous functions" 
for mathematical objects with a lower triangular matrix of coefficients. In this case, the binomial 
Gelfand relations, valid for k = 0 and k = 1, should become special cases of the proposed qua-
si-associated homogeneous functions. In our opinion, such an approach to the problem would 
thoroughly belittle the value of the innovative ideas proposed in [1, 2] and definitely contradicts 
the fact that the associated homogeneous functions are successfully used in the original publica-
tions for any orders of k in explicit form. The reinterpretation of the concept in [1, 2] and in [31] 
is not so drastic that it would be advisable to introduce a new term (see also the comments in 
the Appendix).

The goal of this study is to prove that linear functional relations are suitable for to correctly 
define associated homogeneous functions of several real variables as a separate class of functions. 
These relations can be used as a substitute for differentiation by degree of homogeneity, which 
requires a certain accuracy, has not been defined unambiguously and is not always feasible.
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A number of theorems are proved to achieve this goal, which should demonstrate that this 
approach is quite productive and deserves further development.

Elementary definitions and theorems

Definition 1. A finite or infinite chain of functions ( )  ( 0,1, 2, )kf k = …x  is called associated 
homogeneous functions of the general form of degree p and order k if there exist such functions 

( ),k ja λ and ( ) 0a λ ≡/  forming a lower triangular matrix of coefficients with the same coefficients 
a(λ) along the main diagonal that the following linear functional relations are satisfied for 0∀λ >  
and nR∀ ∈x :

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0

1

,
0

for 0,  ,

for 1,  .
k

k k j j k
j

k f a f

k f a f a f
−

=

= λ = λ

≥ λ = λ + λ∑

x x

x x x
(7)

Definition 2. A finite or infinite chain of functions ( )  ( 0,1, 2, )kf k = …x  is called normalized 
associated homogeneous functions of degree p and order k if relations (7) are satisfied for 0∀λ >  
and nR∀ ∈x , where the coefficients ( ) ( ),k j k ja a −λ = λ  and ( ) ( )0 0a aλ = λ ≡/  form a lower tri-
angular matrix with the same coefficients along any diagonals k j const− = .

Definition 3. A finite or infinite chain of functions ( )  ( 0,1, 2, )kf k = …x  is called fundamen-
tal associated homogeneous functions of degree p  and order k  if relations (7) are satisfied for 

0∀λ >  and nR∀ ∈x , where the coefficients are given by explicit formulas

( ) ( ) ( ) ( ) ( ) ( ), 0ln !,  .p k j p
k j k ja a k j a a−

−λ = λ = λ λ − λ = λ = λ

Definition 1 gives the widest possible conditions of type (4), when the solutions are linear 
combinations composed of functions (3) with constant but not completely arbitrary coefficients 
(see Theorems 1 and 4 below).

Definition 2 leads to a narrower class of functions, but it allows you to formulate and prove 
additional statements that are not generally fulfilled. It uses the idea proposed by the authors of 
[1, 2] about previously unknown functional coefficients that are identical along the diagonals of 
the matrix. In this case, the solutions are linear combinations composed of functions (3) with a 
narrower set of constant but not completely arbitrary coefficients.

Definition 3 sets the closest possible constraints for linear functional relations (7), when one 
of the possible solutions, or even the unique solution (unfortunately, this requirement is unattain-
able) are functions of form (3).

Separate statements for normalized associated homogeneous functions and fundamental asso-
ciated homogeneous functions are not given here if they are corollaries of the corresponding 
Theorems for associated homogeneous functions of a general form.

Remark 1. Functions in Definition 1 apparently represent the most general case of the approach 
under consideration, when the theory developed still has a manageable form.

Functions in Definition 2 are called normalized due to the presence of normalizing factors 1/k! 
in Eq. (3). These multipliers are necessary so that the coefficients ( ),k ja λ  for the lower triangular 
matrix are the same along the diagonals k j const− =  (compare with the notations in [31–33], 
where the authors do not use the normalizing multiplier, and the multipliers before the functional 
coefficients that arise for this reason are ignored).

Functions in Definition 3 are called fundamental, since any associated homogeneous functions 
of the general form from Definition 1 are linear combinations of functions of form (3), although 
their coefficients are not completely arbitrary but rather selected by a special technique (see 
Theorems 1 and 4 below).

Remark 2. Conditions taking the form 0∀λ >  and nR∀ ∈x  may seem too rigid for some appli-
cations (for example, when considering electron and ion-optical systems with Euler-homogeneous 
electric and magnetic fields [5–21]). These conditions can be replaced by more practical ones. 
Let nRΩ⊂  be some region of n-dimensional space, so that the numbers ( )aλ x  and ( )bλ x  are 
defined for ∀ ∈Ωx , satisfying the conditions
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( ) ( )0 1 ,a b< λ < < λx x

for which the points λx ∈ Ω at

( ) ( ).a bλ ≤ λ ≤ λx x

Then, with minimal changes in definitions as well as formulations and proofs of theorems, the 
conditions ∀x ∈ Rn and ∀λ > 0 can be replaced with conditions

( ) ( ) and , .a b∀ ∈Ω ∀λ∈ λ λ  x x x

Remark 3. If the function f0(x) in relations (7) is continuous at least at one point at which its 
value is not zero, then the function a(λ) is nonzero at λ = 1, continuous at the point λ = 1 and 
thus continuous and strictly positive on the entire positive semi-axis λ > 0. Furthermore,

( ) ( ) ( ), 0 : a a a∀λ µ > λµ = λ µ

(see Theorem 2 below).
In this case, ( ) pa λ = λ  is the only possible option (see monograph [36]), while ( )0f x  is a 

positively homogeneous Euler function of degree p (see §§ 187, 188 in [3]). Everywhere discon-
tinuous functions ( )0f x  form a special class of functions considered separately from positively 
homogeneous Euler functions, and Theorem 6 is intended for analyzing them. Theorems 1 and 
2 are formulated in such a way that they are applicable to both continuous and everywhere 
discontinuous functions.

Theorem 1. If ,  0∀λ µ > , the coefficients ( )a λ  and ( ),k ja λ  in relations (7) satisfy the equalities

( ) ( ) ( )

( ) ( ) ( ), , ,

,

1, : ,
k

k j k s s j
s j

a a a

k j k a a a
=

λµ = λ µ

∀ ≥ < λµ = λ µ∑
(8)

where ( ) ( ) ( ),0,  .k ka a aλ ≡ λ = λ/
Then the following statements hold true.
1. System of relations (7) has solutions other than identically zero, which can be represented as

( )
( )

( )

2 2
1 0 1

1 1 1
0

2 2
1 0 1

1 1 1

, , , , 0,

, , , , 0,

n

n

xx xa x h x
x x x

f
xx xa x g x

x x x

  
>  

  = 
  <   

x




(9)

( )
( ) ( )

( ) ( )

1
2 2 2 2

1 , 1 1
01 1 1 1 1 1

1
2 2 2 2

1 , 1 1
01 1 1 1 1 1

, , , , , , , 0,

, , , , , , , 0,

k
n n

k k j j
j

k k
n n

k k j j
j

x xx x x xa x h a x h x
x x x x x x

f
x xx x x xa x g a x g x

x x x x x x

−

=

−

=

    
+ >    

    = 
    + <       

∑

∑
x

 

 

(10)

where hj, gj are arbitrary functions of ( )1n −  variables.
2. System of relations (7) has no other solutions: any solution can be represented as (9), (10) 

with proper selection of functions hj, gj.
3. The following conditions are satisfied for the functions given by Eqs. (9) and (10):

( ) ( )
( ) ( )

2 3 2 3

2 3 2 3

, , , 1, , , , ,

, , , 1, , , , .
j n j n

j n j n

h t t t f t t t

g t t t f t t t

=

= − − − −

 

 

(11)
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Proo f .  Eq. (9) for separate cases x1 > 0 and x1 < 0  for positively homogeneous functions 
follows from the arguments used in [3, §§ 187, 188] for homogeneous Euler functions.

We follow the induction method: let parameterization (10) for x1 > 0 hold true for func-
tions fj at 0,1, , 1j k= − . Let us write the function fk in the form (11), where the func-
tions hj at 0,1, , 1j k= −  are inherited from the previous steps, and an arbitrary function 

( )1 2 1 1, , ,k nh x x x x x  of n variables is used as hk. Apparently, freedom of choice of the function 
fk is not limited in any way at this step. After substituting this expression into relation (7) with 
subscript k and additional algebraic transformations, we obtain the condition

2 2 2 2
1 1

1 1 1 1

0 : , ,..., , ,..., .k k
x x x xh x h x
x x x x

   
∀λ > λ =   

   

It follows that the function hk does not depend on the first argument, which means that con-
dition (10) must be fulfilled for the function fk satisfying the relations (7). All algebraic trans-
formations are invertible, therefore, it follows from the representation of the function fk in the 
form (10), where the function hk does not depend on the first argument, that relations (7) for the 
subscript k hold true. The reasoning for x1 < 0 is repeated for x1 > 0.

Theorem 1 is proved.
Remark 4. Conditions (8) are sufficient but not necessary for relations (8) to have nontrivial 

solutions. However, as Theorems 2 and 3 (see below) show, conditions (8) are rather general, 
and examples when they are not satisfied are rare exceptions to the common rule. For normal-
ized associated homogeneous functions (see Definition 2), conditions (8) are not only sufficient 
but also necessary if the function f0 is not identically zero. The functions ( ),k ja λ  and ( )a λ  in 
Definition 3 themselves satisfy relations (8). In particular, this is the reason why the most com-
mon notation for fundamental associated homogeneous functions has the form (9) and (10) after 
substituting the following functions into these formulas:

( ) ( ) ( ) ( ) ( ), ,ln !,  .p k j p
k j k ka k j a a−λ = λ λ − λ = λ = λ

Theorem 2. If relations (7) have a solution in the form of linearly independent functions ( )kf x , then, 
for , 0∀λ µ > , the coefficients a(λ) and ak,j(λ) are determined uniquely and must satisfy relations (8).

Proo f .  If ( )0 0f ≠x  at least at one point, then, if k = 0, conditions (7) lead to equalities of 
the form

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 ,f a f a f a a fλµ = λµ = λ µ = λ µx x x x

that is, for ( ) ( ) ( ),  0 : .a a a∀λ µ > λµ = λ µ . It follows, in particular, that a(λ) is either identically 
zero or strictly greater than zero at all points.

By induction, if k > 0, the remaining relations (8) are obtained from relations (7) considered 
at point λμx. If we assume that elations (7) are satisfied for a certain set of linearly independent 
functions fk(x) simultaneously for two sets of functions ak,j(λ) and ( ),k ja λ , then the equalities 
( ) ( )a aλ ≡ λ , ( ) ( ), ,: k j k jk j a a∀ > λ ≡ λ  follow immediately.
Theorem 2 is proved.
Theorem 2. If ( ) 0a λ ≠  in relations (7) and the coefficients ( ), 1k ka − λ  for 1k∀ ≥  are not iden-

tically zero, then any chain of functions fk(x) satisfying relations (7) consists of linearly independent 
functions, if the initial function f0(x) is not identically zero.

Proo f .  Let us assume that fk is the first function that is linearly dependent on the previous 
functions fj ( 0,1, , 1)j k= − . We represent fk as a linear combination of functions fj with constant 
coefficients and substitute it into relation (7) with the subscript k. Let us group the multipliers at 
different functions fj. The multiplier for the function f k–1 will turn out to be equal to ( ), 1k ka − λ  and 
should be equal to zero due to the linear independence of the functions fj; however, this leads to 
a contradiction, provided that ( ), 1k ka − λ  is not equal to zero for at least one value of λ.

Theorem 3 is proved.



47

Mathematical Physics

Theorem 4. If each of the coefficients a(λ) and ak,j(λ) in relations (8) is continuous at least at one 
point, and ( ) 0a λ ≡/ , then the following statements hold true.

1. These coefficients take the form

( ) ( ) ( ), ,  ln ,p p
k j k ja and a bλ = λ λ = λ λ

where bk,j(t) are polynomials of degree k – j, which ensures differentiability of any order for functions 
a(λ) and ak,j(λ).

2. Polynomials bk,j are uniquely determined from the following differential recurrence relations:

( )

( ) ( ) ( )

,

1

, , , ,

for 0,  1,

for 1,  1, 2, ,0 ; 0 0,

k k

k

k j k s s j k j
s j

k b t

k j k k b t p b t b
−

=

∀ ≥ ≡

′∀ ≥ = − − = =∑

(12)

or (which produces the same result) of the following differential recurrence relations:

( )

( ) ( ) ( )

,

, , , ,
1

for 0,  1,

for 1, 1,  2, ,0, ; 0 0,

k k

k

k j k s s j k j
s j

k b t

k j k k b t b t p b
= +

∀ ≥ ≡

′∀ ≥ = − − = =∑

(13)

where pk,j are arbitrary constants, and ( ) ( ), , ,1 0k j k j k ja b p′ ′= = .
3. Equivalent recurrence conditions (12) and (13) are both necessary and sufficient to fulfill rela-

tions (8) with the functions a(λ) and ak,j(λ).
Proo f .  The condition ( ) ( ) ( )a a aλµ = λ µ  for functions a(λ) that are nonzero and continu-

ous at least at one point implies the condition ( ) pa λ = λ  with some real exponent p. After adopt-
ing, instead of functions ak,j, new functions bk,j in accordance with the equalities:

( ) ( )
( ) ( ) ( )
, ,

, ,

for ln ,

for ln ,

p
k j k j

p p
k k k k

j k a b

j k a a b

< λ = λ λ

= λ = λ = λ λ = λ

equivalent additive relations for functions bk,j are obtained from multiplicative relations (8) after 
substitution lny = λ , lnz = µ :

( ) ( ) ( )

( )

, , ,

,

for 1, 0 ,

for 0,  1,

k

k j k s s j
s j

k k

k j k b y z b y b z

k b y
=

∀ ≥ ≤ < + =

∀ ≥ =

∑
(14)

where the following initial conditions are also satisfied for the functions bk,k and bk,j:

( )
( )

,

,

for 1,  0 0 0,

for 0,  0 1
k j

k k

k j k b

k b

∀ ≥ ≤ < =

∀ ≥ =
(15)

(equalities (15) are derived by induction from the condition ( ), 1k kb y ≡  and relations (14) con-
sidered with 0y z= = ).

Relations (12) and (13) are necessary conditions for differentiable functions: relations (12) are 
obtained by differentiating relations (14) with respect to y at point y = 0 and substituting z → t, 
and relations (13) are obtained by differentiation with respect to z at point z = 0 and substituting 
y → t. Using a system of conditions (12) or a system of conditions (13), functions (polynomials) 
bk,j with sequentially iterated subscripts 0,1, 2,...k = , , 1,...0j k k= − are reconstructed uniquely as 
soon as a set of constants ,k jp  ( 0k > , 0 1j k≤ ≤ − ) is found.

To reverse the transition from relations (12) to relations (14), consider the following functions 
for 0k ≥  and 0 j k≤ ≤ :
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( ) ( ) ( ) ( ), , , ,, .
k

k j k j k s s j
s j

y z b y z b y b z
=

Φ = + −∑
If relations (12) are satisfied, the derivative of the function ( ), ,k j y zΦ  with respect to the 

variable y for j < k, by virtue of the condition ( ), 0k kb y′ ≡ , obeys the equality

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

,
, , ,

1 1 1

, , , , ,

1 1

, , , , ,

1

, , , ,

, ,

,

, .

k
k j

k j k m m j
m j

k k k

k s s j k s s m m j
s j m j s m

k k s

k s s j k s s m m j
s j s j m j

k s

k s s j s m m j
s j m j

k s s j

y z
b y z b y b z

y

p b y z p b y b z

p b y z p b y b z

p b y z b y b z

p y z

=

− − −

= = =

− −

= = =

−

= =

∂Φ
′ ′= + − =

∂

 = + − = 
 

 
= + − = 

 
 

= + − = 
 

= Φ

∑

∑ ∑ ∑

∑ ∑ ∑

∑ ∑
1k

s j

−

=
∑

If ( ), , 0k j y z y∂Φ ∂ ≡ , then ( ) ( ), ,, 0, 0k j k jy z zΦ ≡ Φ ≡ . In addition, ( ), , 0k k y zΦ ≡  for 
0k∀ ≥ . Therefore, by induction, ( ), , 0k j y zΦ ≡  under any 0k ≥ , 0 j k≤ ≤ . This means that 

relations (14) hold true if relations (12) are satisfied.
Similarly, the sufficiency of relations (13) for relations (14) is proved by differentiating the 

function ( ), ,k j y zΦ  with respect to z. Since conditions (12) follow conditions (14), and condi-
tions (14) follow conditions (13) and vice versa, systems of recurrence relations (12) and (13) are 
equivalent to each other (which is not always immediately obvious).

Now let the functions bk,j be merely continuous at individual points. It is required to prove that 
in this case the functions bk,j(t), if they obey conditions (14), are differentiable at all points and, 
as a result, are determined by recurrence relations (12) or (13).

By definition, ( ), 1k kb t = , and for 1k ≥ , 1j k= − , relation (8) is reduced to the Cauchy addi-
tive functional equation with respect to the function , 1k kb − . Its solution, due to its continuity at least 
at one point, must be a linear and thus everywhere differentiable function: ( ), 1 , 1k k k kb t p t− −=  [36]. 
Such a function ( ), 1k kb t−  obeys relations (12) and (13) with a constant , 1k kp − .

We follow the induction method: let 0 2j k≤ ≤ − , then the required statement is proved for 
the functions ( ),k kb t , ( ), 1k kb t− , ..., ( ), 1k jb t+ . Let us use recurrence relations (12) (the reasoning 
is similar for relations (13)).

We construct the function ( ),k jb t  using the condition

( ) ( ) ( )
1

, , , ,
1

; 0 0.
k

k j k s s j k j
s j

b t b t p b
−

= +

′ = =∑ 

It corresponds to condition (12) with a constant , 0k jp =  and constants ,s jp  inherited 
from previous induction steps. Such a function ( ),k jb t  is infinitely differentiable and satisfies 
condition (14):

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

, , , , , , ,
1

1

, , , ,
1

.

k

k j k j j j k s s j k k k j
s j

k

k j k s s j k j
s j

b y z b y b z b y b z b y b z

b y b y b z b z

−

= +

−

= +

+ = + + =

= + +

∑

∑

  

 
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Let ( ) ( ) ( ), ,k j k jb t b t c t= + , where the auxiliary function c(t) must be continuous at the same 
points as the function bk,j(t). Condition (14) is satisfied for the function bk,j(t). This means that the 
function c(t) satisfies the Cauchy additive equation and, due to its continuity, it is a linear function 
differentiable everywhere: ( ) ,k jc t p t=

 
[36]. Therefore, the function bk,j(t) is infinitely differentiable 

at all points and satisfies relations (12) and (13), where a constant pk,j is added to the list of constants.
Theorem 4 is proved.
Remark 5. The polynomials bk,j(t) are determined unambiguously from the differential recur-

rence relations (12) or (13), as soon as the constants pk,j are found. For normalized associated 
homogeneous functions, the equalities ( ) ( ),k j k jb t c t−=

 
and ,k j k jp q −=  hold true, where the 

polynomials ck(t) are determined from the recurrence relations

( ) ( ) ( ) ( ) ( )
1

0
1 0

1;  1:  ,  0 0
k k

k s k s k s s k
s s

c t k c t q c t q c t c
−

− −
= =

′= ∀ ≥ = = =∑ ∑

including the constants qk. Finally, for fundamental associated homogeneous functions , 0k jp =  
at 0,1,..., 2j k= − , , 1 1k kp − =  and ( ) ( ), !k j

k jb t t k j−= −
Theorem 5 (Euler criterion). Let the chain of functions ( )kf x  ( 0,1, 2, )k =  consist of differen-

tiable functions for which, with nR∀ ∈x  (possibly excluding the point x = 0), the following relations 
are satisfied:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0 0
1 2 0

1 2

1

1 2 ,
01 2

for 0,  ,

for 1,  

n
n

k
k k k

n k k j j
jn

f f f
k x x x pf

x x x
f f f

k x x x pf p f
x x x

−

=

∂ ∂ ∂
= + + + =

∂ ∂ ∂

∂ ∂ ∂
≥ + + + = +

∂ ∂ ∂ ∑

x x x
x

x x x
x x





(16)

with some constants p and pk,j.
Then the following statements hold true.
Functions ( )kf x  satisfy relations (7), where

( ) ( ) ( ), , and ln ,p p
k j k ja a bλ = λ λ = λ λ

where the functions bk,j(y) are polynomials of degree k j−  satisfying recurrence relations (12) and 
(13) with the constants pk,j included in relations (16).

2. If the functions ( )kf x  differentiable at nR∀ ∈x  (possibly with the exception of point x = 0) 
and the functions ( )a λ  and ( ),k ja λ  differentiable at 0∀λ ≥  (possibly with the exception of λ = 0) 
satisfy the system of functional relations (8), then the relations (16) with the constants ( )1p a′=  and 

( ), , 1k j k jp a′=  are satisfied.
Proo f .  Like Euler’s differential criterion for homogeneous functions (see §§ 187, 188 in 

[3]), differential relations (16) necessarily follow from relations (7) after their differentiation with 
respect to λ at the point λ = 1. To prove the sufficiency of relations (16), by analogy with the 
calculations in the above-mentioned paragraphs of [3], the functions ( ),kΩ λ x  are used:

( ) ( ) ( ),
0

, ln ,
k

p
k k j j

j
b f−

=

Ω λ = λ − λ λ∑x x

where the functions bk,j(t) are calculated in accordance with relations (12) and (13) including 
constants ,k jp  from relations (16).

When differentiating functions ( ),kΩ λ x  with respect to λ, a weighted sum of relations (16), 
calculated at the point λx , is obtained at points x ≠ 0, which are zero for all λ and x. Since the 
derivative of the function ( ),kΩ λ x  with respect to the parameter λ is identically zero, the identity 

( ) ( ), 1,k kΩ λ ≡ Ωx x  is fulfilled; so after substitutions 1λ → µ , →µx x , µ→ λ , relations (7) 
for the subscript k with the functions ( ) pa λ = λ  and ( ) ( ), , lnp

k j k ja bλ = λ λ  are obtained.
Theorem 5 is proved.
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Remark 6. Theorem 5 for associated homogeneous functions of a general form is an equivalent 
of Euler’s criterion for homogeneous functions (see §§ 187, 188 in [3]). For normalized associated 
functions, where ( ) ( ),k j k ja t a t−=  (see Definition 2), equality ,k j k jp q −=  holds true in relations 
(16), where the constants jq  are determined by conditions ( )1j jq a′= .

Therefore, the Euler criterion for normalized associated homogeneous functions has the form

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0 0
1 2 0

1 2

1 2
11 2

for 0,  ,

for 1,  .

n
n

k
k k k

n k j k j
jn

f f f
k x x x pf

x x x
f f f x

k x x x pf q f
x x x −

=

∂ ∂ ∂
= + + + =

∂ ∂ ∂

∂ ∂ ∂
≥ + + + = +

∂ ∂ ∂ ∑

x x x
x

x x
x x







Accordingly, for fundamental associated functions (see Definition 3) the equalities , 1 1k kp − =  
and , 0k jp =  hold true for 0 2j k≤ ≤ −  in relations (16), and the Euler criterion takes the 
following form:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 0 0
1 2 0

1 2

1 2 1
1 2

for 0,  ,

for 1,  .

n
n

k k k
n k k

n

f f f
k x x x pf

x x x
f f f

k x x x pf f
x x x −

∂ ∂ ∂
= + + + =

∂ ∂ ∂

∂ ∂ ∂
≥ + + + = +

∂ ∂ ∂

x x x
x

x x x
x x





Remark 7. There are examples when the same chain of differentiable functions ( )kf x
 
simul-

taneously satisfies several systems of form (7) with different coefficients ( ),k ja λ . In this case, 
the functions

( ) ( ) ( ), , and lnp p
k j k ja a bλ = λ λ = λ λ

correspond to only one of the many possible systems of form (7) for the functions ( )kf x  under 
consideration. Here ( ),k jb y  are determined from recurrence relations (12) or (13) with the con-
stants ,k jp  taken from equalities (16).

However, if the functions ( )kf x  are linearly independent (for which it is sufficient that for 
, 11: 0k kk p −∀ ≥ ≠  and that the function ( )0f x  is not identical to zero (see Theorem 3), then the 

coefficients ( )a λ  and ( ),k ja λ  of system (7) are defined uniquely (see Theorem 2) and thus must 
coincide with the expressions

( ) ( ) ( ), , and ln ,p
k j k ja a bλ λ = λ λ

used in the proof of Theorem 5.

Associated homogeneous functions discontinuous at all points

If each of the coefficients ( )a λ  and ( ),k ja λ  in relations (7) is continuous at least at one 
point, then Theorem 4 gives an exhaustive answer to the question of what form the coefficients 
( )a λ  and ( ),k ja λ  should have in order for functional relations (8) to be satisfied and for system 

(7) to have nontrivial solutions (the general form of these solutions is given in Theorem 1). In 
this case, the coefficients ( )a λ  and ( ),k ja λ , continuous at least at one point, will be infinitely 
differentiable at all points 0λ > . However, there are everywhere discontinuous coefficients ( )a λ  
and ( ),k ja λ , for which relations (8) are satisfied, and thus, in accordance with Theorem 1, there 
are nontrivial everywhere discontinuous solutions of system (7).

Theorem 6. Let ( )0 tθ  and ( ),k j tθ  be arbitrary (generally speaking, everywhere discontinuous) 
solutions of the Cauchy additive functional equation [36]:

( ) ( ) ( ).x y x yθ + = θ + θ
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Then the general solution for functional relations (8) are the functions

( ) ( )( ) ( ) ( )( ) ( )0 , 0 ,exp ln  and exp ln ln ,k j k ja aλ = θ λ λ = θ λ ϕ λ

where functions ( ),k j tϕ  are obtained through substitutions ( ), ,k j k jp t→θ , 1y →  from functions 
( ),k jb y  that are given by the recurrence relations (12) or (13). At ( )0 t ptθ =  and ( ), ,k j k jt p tθ = , 

these solutions coincide with the functions used in Theorem 4.
Unfortunately, we do not have a sufficiently short proof of Theorem 6 at our disposal to 

present it in this paper at least concisely. This goes beyond the scope of this study and requires 
separate consideration. A separate publication will be dedicated to the proof of this theorem.

Mutually homogeneous associated functions

The functions considered in [39] correspond to the case when the fundamental associated 
homogeneous functions are complex-valued and can be represented as the sum of real and 
imaginary parts that are functionally independent of each other, and the homogeneity degree is 
a complex number. Then each of Eqs. (7) turns into a pair of linear functional relations of the 
same length, written for pairs of mutually homogeneous associated functions. Similarly, Eqs. (7) 
of the general form will also be transformed by adopting complex-valued functions and complex 
homogeneity degrees.

Apparently, it will not be possible to obtain any other classes of functions from such paired 
relations, written in the most general form, but this problem requires separate study. It also 
remains an open question whether it is possible to obtain interesting mathematical objects if trip-
lets, quadruplets, etc., of functions characterized by dense matrices of linear functional relations 
of a general form are similarly combined into a single whole [37], with the resulting equations 
then extended to an infinite block-triangular structure of associated linear functional relations. 
The particular case when the coefficient matrix is block-triangular (instead of the lower triangular 
matrix corresponding to linear functional relations (7)) and the «seed» of the chain of associated 
functions consists of several homogeneous functions with different degrees of homogeneity is 
briefly discussed later in the section “Vector-associated homogeneous functions”.

Generalized associated homogeneous functions

If we apply the approach proposed in [1, 2], then the results obtained in the previous section 
can be extended to generalized functions (linear continuous functionals defined in the corre-
sponding linear space of trial functions). This allows to correctly define generalized associated 
homogeneous functions of a general form, generalized normalized associated homogeneous func-
tions and generalized fundamental homogeneous functions.

Evidently, everywhere discontinuous (and thus nowhere integrable) associated homogeneous 
functions cannot have equivalents in the class of generalized functions. A more detailed consid-
eration of these interesting problems (in particular, the formulation and proof of Euler’s differ-
ential criterion for generalized associated homogeneous functions) is planned to be presented in 
a separate specialized paper.

Vector-associated homogeneous functions

A further development of Gelfand’s idea of associated homogeneous functions are vector-asso-
ciated functions, where the initial «seed» for a chain of functions are several Euler-homogeneous 
functions with different degrees of homogeneity.

Definition 4. A chain of functions ( ) ( )i
kf x  ( 0,1,2,k =  ; 1,2,i m=  ) is called m-associated 

(vector-associated) homogeneous functions of a general form if the following conditions are sat-
isfied for 0∀λ >  and nx R∀ ∈



 with 1,2,i m=  :

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

1
,
,

0 1

for 0,  ,

for 1,  ,

i i
i

k m
i i s s i

k k j j i k
j s

k f a f

k f a f a f
−

= =

= λ = λ

≥ λ = λ + λ∑∑

x x

x x x
(17)

with some functions that are not pre-defined:
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( ) ( ) ( ),
, and  ( 1, 2, ;  0,1, , 1;  1, 2, ;  1, 2, ),i s

i k ja a k j k i m s mλ λ = = − = =   

where ( ) ( ) ( )for 0,  0 and  for .i i ja a a i j∀λ > λ ≠ λ ≠ λ ≠
Remark 8. If each of the functions ( )ia λ  is continuous at least at one point, then ( ) ip

ia λ = λ
and ( ) ( )i

kf x  are positively homogeneous functions (see §§ 187, 188 in [3]) with different degrees 
of homogeneity ip , satisfying the condition i sp p≠  for i s≠ .

For vector-associated homogeneous functions, the equivalents of the statements given above 
hold true (for the most part). In particular, the concept of vector-associated homogeneous func-
tions can be transferred without any loss to the class of generalized functions.

Neither the formulations of these equivalents nor their proofs are given in this study, since 
their consideration goes beyond the scope of the main topic of the paper.

Regrettably, this far, we have been unable to answer the question about the general form of 
everywhere discontinuous solutions for relations (17).

Conclusion

The paper continues and summarizes the research presented earlier in [37–39], considering 
the basic concepts related to the general theory of functions of a real variable. It is assumed that 
associated homogeneous Gelfand functions can be effective for generalizing Golikov’s principle 
of similarity for trajectories in Eulerian fields to a wider class of electrostatic potentials if we focus 
on the similarity of paraxial trajectories.

The theorems formulated and proved in this paper are new original results that we obtained for 
the first time, previously not publicly available.

It is proved that it is possible to construct a detailed consistent theory of associated homoge-
neous functions of real variables determined using a chain of linear recurrent functional relations 
of a general type, and also that this approach is quite productive and deserves further development.

The proofs of individual theorems in the paper are sometimes given here in a concise form, 
since they are not as practically oriented as the formulations of the theorems themselves. It is 
assumed that in most cases complete proof can be reconstructed in all details by readers who are 
mathematics graduates, whereas the details and aspects of the proofs that require special attention 
are of interest mainly to dedicated specialists. The publication of these materials (if continued by 
the authors) will probably be presented in the relevant specialized journals.

Appendix

Definition of a new class of functions in the original article
In this section, we briefly explore the logic behind defining a new class of functions (associ-

ated homogeneous Gelfand–Shapiro functions, ordinary and generalized), described in [1, 2], 
as we understand it. Additional comments are provided for the aspects that we deem crucial for 
the discussion.

Thus, the fragments of the Appendix marked as ‘Statements’ represent a brief retelling of the 
corresponding sections of the original study [1] (with the utmost respect for this classical work), 
whereas the fragments of the Appendix marked as ‘Comments’ have been entirely constructed by 
the authors of this paper.

Statement 1A. For a linear operator ( ) ( )Af f= λx x  giving a similar transformation of function 
arguments, homogeneous Euler functions of degree p that satisfy the identity ( ) ( )pf fλ = λx x  
are eigenfunctions with eigenvalues pλ . In a typical case, along with the eigenfunction 0f  corre-
sponding to the given eigenvalue α, a linear transformation (operator) also has associated eigen-
functions 1f , 2f , ... kf , ... of various orders that satisfy the relations

0 0

1 1 0

2 2 1

1

,
,
,

,k k k

Af f
Af f f
Af f f

Af f f −

= α

= α +β

= α +β

= α +β




(1A)
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where k is the order of the function; α is the eigenvalue under consideration; β is some constant 
that, with proper normalization of the associated eigenfunctions, can be taken to equal unity (in 
the general case 0β ≠ ).

Therefore, for homogeneous Euler functions, we can try to determine the equivalent of the 
associated eigenfunctions, i.e., the attached homogeneous functions.

Comment 1A. Strictly speaking, the lower triangular matrix of linear relations with the same 
coefficients α along the main diagonal can be used with equal success to determine the associated 
eigenfunctions of linear operators. Indeed, in their physical meaning, associated eigenfunctions 
are such chains of linearly independent functions for which the result of the action of a given 
linear operator will be a linear combination composed of the function itself (with a multiplier 
equal to its eigenvalue) and the preceding functions. At the same time, for a fixed eigenvalue α, 
it is always possible to move from the lower triangular matrix of equalities

1

, , 1
0

 (where 0)
k

k k j j k k k
j

Af f f
−

−
=

= β +α β ≠∑

to binomial relations (1A) with normalized coefficients 1β =  along the diagonal 1k j− = , a 
linear combination of the preceding functions 1f , 2f , ..., 1kf −  with the corresponding weight 
coefficients is properly subtracted from each function kf  for 2k∀ ≥ . Similarly, we can always 
adopt, instead of the binomial relations (1A) (which, of course, are much easier to work with), an 
almost arbitrary lower triangular matrix, for which the condition , 1 0k k−β ≠  is the only constraint.

However, homogeneous Euler functions, i.e., eigenfunctions that do not contain a parameter 
but belong to a single-parameter family of linear similarity operators with a single-parameter set 
of eigenvalues, are a special case. In view of this, it is necessary to consider associated eigenfunc-
tions that do not contain a parameter and are characterized by single-parameter linear associated 
relations (if such functions exist).

Apparently, the transition from a single-parameter lower triangular matrix to a single-param-
eter two-diagonal one through linear replacement of functions that do not contain a parameter 
cannot be performed in this case. The two methods cease to be equivalent, and we have to deal 
with a full-fledged lower triangular coefficient matrix, which is not so convenient. The meaningful 
difference between binomial relations and relations in the form of a lower triangular matrix is not 
so fundamental that there is a real need to introduce a new term in addition to the Gelfand term, 
as done in [31].

Statement 2A. A first-order associated homogeneous function of degree p is a function f1 of real 
variables, which for any 0λ >  satisfies the equality

( ) ( ) ( ) ( )1 1 0 ,pf f h fλ = λ + λx x x (2A)

where ( )0f x  is a homogeneous function of real variables of degree p.
It is proved that a continuous function ( )h λ  must have the form

( ) ln ,ph cλ = λ λ

where 0c ≠  is an arbitrary constant.
Due to normalization of the function f1, it can be assumed that 1c =  without loss of generality.
As an example of a first-order associated homogeneous function with zero degree of homoge-

neity, consider the function ln x  that for 0λ >  satisfies the condition

ln ln lnλ = + λx x

(unity is a homogeneous function of zero degree).
Statement 3A. A generalized homogeneous function of degree p is defined as a linear con-

tinuous functional Tp given over a linear space of infinitely differentiable functions φ(x) of real 
variables of dimension n tending to zero at →∞x  faster than any power function 1/|x|k ( 0)k >  
if this functional obeys the identity
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( ) .p n
p pT T+  ϕ = λ ϕ     λ  

x x (3A)

Condition (3A) is constructed by analogy with the relations

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1

1 1

1

,

,

p n

n
n n

p
n

T f dx dx

f dx dx f dy dy

f dx dx

+∞ +∞

−∞ −∞

+∞ +∞ +∞ +∞
−

−∞ −∞ −∞ −∞

+∞ +∞

−∞ −∞

ϕ = ϕ  

 λ ϕ = λ ϕ = λ 

= λ ϕ

∫ ∫

∫ ∫ ∫ ∫

∫ ∫

x x x

yx x y

x x

 

   

 

which are satisfied when the prototype of the generalized function is a homogeneous function 
f(x) of real variables, characterized by the degree of homogeneity p.

As an example, it is proved that the n-dimensional delta function is a generalized homoge-
neous function of degree –n in the sense of definition (3A).

Similarly, by analogy with equality (2A) at ( ) lnph λ = λ λ , which must be satisfied for ordi-
nary first-order associated homogeneous functions, a generalized first-order associated function 

,1pT  defined as a linear continuous functional that obeys the identity

( ) ( ),1 ,1 ,0ln ,p n p n
p p pT T T+ +  ϕ = λ ϕ + λ λ ϕ         λ  

x x x (4A)

where ,0pT  is some generalized homogeneous function of degree p, not equal to zero.
Finally, by analogy with the relations (1A), a chain of linear continuous functionals ,p kT  

is called generalized associated functions of order k and degree p if the following identities 
are satisfied:

( ) ( ), , , 1ln .p n p n
p k p k p kT T T+ +

−

  ϕ = λ ϕ + λ λ ⋅ ϕ         λ  

x x x (5A)

Comment 2A. There is an inaccuracy in the reasoning here, since (as established, in particular, 
in [31]) there are no functionals ,p kT  with such properties even for 2k ≥ . It follows from the 
chain of equalities

( ) ( )( )
( ) ( )( )

( ) ( )

, 2 , 2 , 1

, 2 , 1

, 1 ,

, 2 , 2

ln

ln

ln ln ,

p n p n
p k p k p k

p n p n p n
p k p k

p n p n p n
p k p k

p n
p k p k

xT T T

T T

T T

T T

+ +
+ + +

+ + +
+ +

+ + +
+

+
+ +

          
ϕ = λ ϕ + λ λ ϕ =          λµ µ µ          

= λ µ ϕ +µ µ ϕ +      

+λ λ µ ϕ +µ µ ϕ      

  
ϕ = λµ ϕ  λµ  

x x

x x

x x

x x



( ) ( ) ( ), 1ln lnp n
p kT+

++ λµ λ + µ ϕ      x

that the generalized function ,p kT  must be zero.
Statement 4A. Comparing expressions (3A) and (4A), we can conclude that the derivative of a 

generalized homogeneous function pT  of degree p with respect to homogeneity degree is a gen-
eralized first-order associated homogeneous function ,1pT  of degree p.
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Indeed, differentiating equality (3A) with respect to parameter p (if such differentiation is pos-
sible) produces the following identity:

( ) ( ) ( )

( ) ( )ln ,

p n
p pp n

p

pp n p n
p

ddT dT
T

dp dp dp
dT

T
dp

+
+

+ +

λ  ϕ = λ ϕ + ϕ =         λ  

= λ ϕ + λ λ ϕ      

x x x

x x
(6A)

which coincides with equality (4A) with an accuracy up to the notations.
Similarly, it is argued (without further substantiation of this statement) that the derivative of 

a generalized associated homogeneous function of order k with respect to homogeneity degree is 
always a generalized associated homogeneous function of order 1k + .

Comment 3A. Unfortunately, this statement turns out to be incorrect for 1k ≥ , if we take 
equality (5A) as the definition of a generalized associated function ,p kT  of order k. Differentiating 
condition (5A), we obtain a generalized function , 1p kT +  on the left-hand side of the equality, and 
a three-term expression involving generalized functions , 1p kT + , ,p kT  and , 1p kT −  on the right-hand 
side, since the coefficients p n+λ  and lnp n+λ λ  also depend on the parameter p. This three-term 
expression coincides with the two-term one (5A) for order 1k +  if and only if the generalized 
function , 1p kT −  in equality (5P) is zero or if the order k is zero.

Similarly, given the validity of the assumption arising from this statement that a generalized 
associated homogeneous function ,p kT  of order k and degree p is the kth derivative of a homoge-
neous generalized function pT  with respect to the parameter p, after repeatedly differentiating the 
basic relation (3A) with respect to homogeneity degree p, more and more preceding generalized 
functions ,p jT  will appear in the corresponding functional equalities with nonzero coefficients 
as multipliers.

Statement 5A. In the future, constructing new generalized associated homogeneous functions 
of degree p and order k, the authors of [1] consistently apply differentiation with respect to the 
parameter p, as well as decomposition of the corresponding functionals into a Laurent series or 
a power series. In addition, in most cases the consideration is confined to the order 1k =  for 
which the binomial identity (6P) that arises during differentiation holds true. In the general case, 
generalized functions obtained by differentiation are considered to be associated homogeneous 
functions of the respective order by the very fact that they were obtained, without additional ver-
ification of relation (5A).

Comment 4A. Thus, defining generalized associated homogeneous functions using relations 
(5A) turns out to be a dead-end in the reasoning both for the study in [1] and for the more 
detailed study in monograph [2]. In fact, this definition is not once applied in any way after it 
has been formulated. All calculations performed by the authors of [1, 2] turn out to be immacu-
lately accurate, keeping intact the important and unique scientific results they have obtained, if 
differentiation with respect to the parameter p of generalized associated homogeneous functions 
of a lower order is used as a formal definition, and generalized associated homogeneous functions 
of zero order are considered generalized homogeneous functions ensuring that condition (3A) 
is fulfilled.
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Abstract. In the article, we have proposed to use microwave-fluctuation meters resistant to 

external intense electromagnetic noise in order to measure the low-frequency (LF) noise of 
microwave transistors working under these conditions. The transistor located on the board is 
excited by a low-noise microwave generator, the oscillation amplitude of which, being modulated 
by the LF noise of the transistor, is measured by a microwave spectrum analyzer. The proposed 
method was tested on GaN/AlGaN heterotransistors, in whose channels the electron density 
was formed by spontaneous and piezoelectric polarization. In addition to experimental testing, 
a theoretical justification for the method is presented. We obtained conditions in which the 
normalized spectra of oscillation amplitude fluctuations were similar to the normalized LF 
noise of the transistor current.
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Аннотация. Для измерения низкочастотных (НЧ) шумов СВЧ-транзисторов, работающих 

в условиях внешних интенсивных электромагнитных помех, предлагается использовать 
устойчивые к их воздействию измерители флуктуаций СВЧ-колебаний. Транзистор, 
находящийся на плате, возбуждают малошумящим СВЧ-генератором, амплитуда колебаний 
которого, модулированная НЧ-шумами транзистора, измеряется СВЧ-анализатором 
спектра. Методика опробована на гетеротранзисторах GaN/AlGaN, в каналах которых 
плотность электронов формировалась посредством спонтанной и пьезоэлектрической 
поляризации без какого-либо дополнительного легирования. Помимо экспериментального 
тестирования, представлено теоретическое обоснование предложенного метода. Получены 
условия, при которых нормированные спектры флуктуаций амплитуды колебания 
аналогичны нормированным НЧ-шумам тока транзистора.
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Introduction
Since the 1950s, low-frequency (LF) noise whose spectrum is localized in the 0 < F < 

106 Hz frequency range has served to provide insights into structural defects in semiconduc-
tor crystals and various types of devices [1–7]. In practice, LF noise limits the sensitivity 
of sensors as well as other measuring and recording instruments operating in a wide variety 
of frequency ranges. For example, the detection accuracy of Doppler radars for low-slow-
small (LSS) targets is largely limited by low-frequency noise of transistors used in microwave 
generators, mixers and amplifiers. New semiconductor materials and devices based on them 
appear as constant advances are made in semiconductor technology. There is also continued 
interest towards low-frequency noise and its origin; measuring the level of this noise remains 
a crucial problem.

However, measurement and analysis of this noise, especially in operating facilities, are greatly 
hindered by numerous intense electromagnetic interference generated externally in the LF range 
by various technical and industrial devices. The experience accumulated indicates that the tech-
niques that previously proved successful for shielding and reduction of interference [8] can no 
longer combat the problem, so it is increasingly difficult to use LF instrumentation without 
additional measures. Practical evidence suggests that highly sensitive microwave instrumentation 
is better protected from LF interference. Due to operational need, we previously tested whether 
such devices were capable of measuring LF noise in microwave transistors. These experiments 
were successful.

The goal of this study is to practically test the technique for measuring LF noise in microwave 
transistors and provide a theoretical justification for this technique.

Problem statement and solution

One particular case when it is necessary to measure LF noise in transistors is the design of 
ultra-low-noise microwave devices such as amplifiers. This type of noise is measured when the 
transistor operates in DC mode, switching from one set of key parameters (drain voltage Ud, drain 
current Id, gate voltage Ug) to another. The measurement results are then summarized to predict 
the inevitable fluctuations in the amplitude and phase of microwave oscillations of a self-excited 
generator or amplifier incorporated into such a transistor.

We propose the reverse approach, i.e., we consider a prototype microwave amplifier installed 
on the given transistor, feed a low-noise microwave oscillation to its input, and then measure the 
energy spectrum of amplitude fluctuations for this oscillation, generated by transistor noise. In 
many cases, this sequence of operations allows to extract a sufficient amount of data for practical 
purposes. However, it is also useful to obtain additional information, establishing the relationship 
of amplitude fluctuations with the mean (direct) current noise

This allows to conduct dynamic rather than static measurements of noise, where the transis-
tor parameters Ud, Ug, Id vary nonlinearly along with microwave oscillations. We simultaneously 
obtain information about LF noise of the transistor (averaged over the oscillation period) both in 
microwave and DC mode.

The practical implementation of this procedure was as follows: a transistor mounted on a 
microwave PCB (printed circuit board) was connected to low-noise gate-bias and drain-bias 
sources. A bandpass filter was located on the board in the drain circuit, tuned to a carrier fre-
quency of 3 GHz = f = 2π/ω >> F; here F is the high-frequency cutoff, exceeding the carrier 
frequency f by orders of magnitude.
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The simplified transfer characteristic of the 
transistor ( )

d
d g U const

I U
=

, measured at constant 
voltage Ud, is shown in Fig. 1 by a solid line. 
The LF noise sources in the transistor modu-
late the drain current, so the transfer charac-
teristic fluctuates deviating from its mean level 
(this is schematically shown by the dashed line 
in Fig. 1). A DC bias voltage Ug = Ut, equal to 
the threshold value of Ut, is applied to the gate. 
A highly stable (carrier) microwave oscillation 
Ugmcosωt is applied to the gate along with the 
DC bias voltage; its amplitude Ugm< Ud is suf-
ficiently large, and the transistor operates in 
saturation. This nonlinear mode is typical for 
self-excited generators and microwave power 
amplifiers. The shape of the drain current dif-
fers significantly from the sine wave applied 
to the gate. Instead, a periodic train of uni-
polar pulses is generated (see Fig. 1), simi-
lar to a trapezoid or rectangular pulse with a 
rounded peak.

This sequence can be expanded into a trig-
onometric Fourier series:

0
1 2

0 1 2 3

3( ) cos cos cos

cos cos 2 cos3 ...,

...
2d dm

dm dm dm dm

I tt I

I I t I t

c c t t

I t

c c=

+ ω +
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ω

 + ω + ω + ω + =

ω


+ +

 

=
(1)

where Idm is the amplitude of the pulse, Idm0 is the DC component of the current; Idm1, Idmj are the 
amplitudes of the carrier frequency and the jth harmonics of the current, respectively; cj are the 
series coefficients.

LF fluctuations of the transfer characteristic in turn induce fluctuations in the current pulse 
amplitude, expressed as

( ) ( ) (1 ( )),dm dm dm dmI t I I t I t= + ∆ = +α (2)

where dmI  is the average сurrent amplitude; ΔIdm(t) are the low-frequency amplitude fluctuations; 
α(t) are the relative amplitude fluctuations, ( ) ( ) /dm dmt I t Iα = ∆ .

Since the frequency of LF noise F is several orders of magnitude lower than the carrier fre-
quency f (F << f), fluctuations are very slow compared to the oscillation period.

Substituting expression (2) into Eq. (1), we obtain the following series:

( ) 0 1 2 3( ) 1 ( ) cos cos 2 cos3 ... .d dm dm dm dmI t t I I t I t I t = +α + ω + ω + ω +  (3)

As the bandpass filter located in the drain circuit eliminates all microwave harmonics except 
the first-order and the zeroth-order one, only the fluctuations of the DC component of the cur-
rent and the carrier remain. As a result, we obtain the following expression:

0 1( ) (1 ( )) cos .d dm dmI t t I I t = +α + ω  (4)

Both currents on the right-hand side of the equality fluctuate by the same law. Let us measure 
the carrier current fluctuations.

To avoid complicating the formulas, let us consider the case when, instead of noise α(t) with 
continuous spectrum, only one of its spectral components, αΔF(t), located at frequency F in a 

Fig. 1. Generation of amplitude-modulated 
drain current pulse train in nonlinear mode: 
time dependences of voltage Ut and Id, transfer 

characteristic (cyan curve) of the transistor 
at constant Ud as well as other key parameters 

of the process are shown



St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2024. Vol. 17. No. 2

64

narrow band ΔF << F, influences the oscillations. The narrowband noise component can be 
replaced by an oscillation with a slowly varying amplitude b(t) and phase [9], i.e.,

[ ]( ) : ( ) ( ) cos ( ) ,Ft t b t t t∆θ α = Ω + θ

where 2 FΩ = π .
If we ignore the phase fluctuations, which do not play a significant role in the considered 

example, we obtain:

[ ] [ ]

[ ]

0 1

0 1

( ) 1 ( ) cos 1 ( )cos cos

( ) ( )1 ( ) cos cos cos( ) cos( ) .
2 2

dm dm dm

dm dm

I t I b t t I b t t t

b t b tI b t t I t t t

= + Ω + + Ω ω =

 = + Ω + ω + ω+Ω + ω−Ω  

Noise is typically measured in units of power. The amplitude of narrowband DC fluctuations 
is equal to

0 0( ) ( ) ,dm dmI t b t I∆ =

which means that its power (with an accuracy up to the resistance) follows the expression

2 2
0 0( ) / 2;dmP F b I=

and the electric power 2
0 0dmP I= .

The ratio of these powers is expressed by the formula	

2
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P F I b
P I

∆
= = (5)

The microwave oscillation consists of a carrier oscillation and two modulation sidebands with 
the amplitudes 1 / 2dmbI . The carrier power is equal to 2

1 1 / 2dmP I= , and the power of the two 
sidebands is

2 2 2 2 2 2
1 1 1( ) .

8 8 4
dm dm dm

s
I b I b I bP F = + =

The power ratio
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turns out to be the same as for the currents (see Eq. (5)):
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Thus, the power of the relative fluctuations in the amplitude of the two sidebands of the 
carrier frequency.

Moving from narrowband fluctuation to continuous spectrum, we obtain:

2 2
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2 2
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S F S F S F
I I

= = δ (6)
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where 2
0 ( )iS F , 2

1( )iS F  are the power spectral densities (PSDs) of LF noise from direct current 
and sidebands of the carrier frequency, respectively.

We replace these two equal spectral densities by a single quantity 2 ( )iS Fδ ; this is the spectral 
density of relative intensity noise (RIN), normalized by the rms current, measured in Hz–1. Non-
normalized noise spectral density 2

0 ( )iS F  is also often considered in practice, measured in A2/Hz.
Notably, the normalized PSDs of amplitude noise in amplifiers are generally measured in 

decibels relative to the power of the carrier frequency in 1-Hz bandwidth, where the measure-
ment unit is dBn/Hz. For example, the relative amplitude fluctuations measured with a carrier 
frequency offset F equal to

1 –12 4( ) 2 10  ,HziS F −δ = ⋅

which, in measurement units adopted in microwave technology, equals

14 .10 lg(2 10 ) 3 140 137 / dBc Hz−⋅ = − = −

Turning to the measurement procedure, we should note that instead of the microwave current 
of the amplifier appearing in the equations above, it is the output microwave voltage with fluctu-
ating amplitude that is applied to the input of the microwave spectrum analyzer:

[ ]( ) 1 ( ) cos ,U t t U t= + υ ω

where 1dm eU I R= ⋅  is the mean amplitude of the microwave voltage, and

1

1

( )( ) dm
e

dm

I tt R
I

∆
υ = (7)

are the relative fluctuations in the amplitude of the microwave voltage of the amplifier.
Re in these expressions is the equivalent resistance of the bandpass filter located in the drain 

circuit, Re = ρQ; it is typically equal to the wave resistance of the microwave circuit on the board, 
Re = 50 ohms. Such equalities Re = ρQ = 50 ohms are obtained by selecting the Q factor, the 
wave resistance ρ of the filter and the coupling parameters at the carrier frequency.

Agreement between theory and practice should be observed in noise measurements. In theory, 
the amplitude of the carrier current exceeds the amplitudes of other harmonics; this condition 
must be also satisfied in practice. The shape of the current pulse influencing the distribution of 
the amplitudes of Fourier harmonics does not fundamentally change if the following inequality 
is satisfied:

1 1 .d gm dm dm eU U U I R− > = (8)

Otherwise, rather than flow from the source to the drain at times when the oscillation ampli-
tudes at the gate and drain are in opposite phase, the current flows in a more complex pattern. 
This can significantly change the ratio between the amplitudes of harmonics, cause misalignment 
of circuits and distort the measurement results.

Measurements of HFET characteristics and results

The technique described above was used to study LF noise in GaN/AlGaN-based hetero-
structure field-effect transistors (HFETs), with the density of two-dimensional electron gas in the 
channel formed by spontaneous and piezoelectric polarization [10] without any additional dop-
ing. These are high-power transistors assembled on a silicon carbide substrate by molecular beam 
epitaxy (MBE) technology. They operate at frequencies f ≤ 6 GHz, have a gate length of 0.5 µm, 
and a source-drain gap of 4.8 µm. According to the manufacturer’s specifications, the transistor 
operating at a frequency f = 3 GHz amplifies the power Pin = 100 MW of the input microwave 
signal by 25 times with an efficiency coefficient Eff = 65% at a drain voltage Ud = 28 V. The 
measurement circuit for the transistor noise is shown in Fig. 2. Three transistor models were 
examined, yielding similar measurement results.
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The signal from a low-noise SMW200A generator is applied to the microwave input of the tran-
sistor considered; the oscillation amplified by the transistor is applied to an R&S FSWP26 noise 
analyzer equipped with an attenuator to prevent overload. Rigol DP811a and R&S HMP2030 
power supplies were used to power the drain and gate of the transistor, each supplemented with 
filters suppressing their intrinsic LF noise and electrical interference. An HMP2030 display was 
used to monitor voltages and currents in the gate and drain circuits. Voltage monitoring in the 
drain circuit was carried out with an external Agilent U3401A voltmeter, which was disconnected 
from the circuit during noise measurements.

The power of the SMW200A low-noise microwave generator used did not exceed 63 MW, 
which is equivalent to an amplitude Ugm = 2.5 V at a load resistance R = 50 ohms. The transistor’s 
transconductance, which was initially very high, reaching 0.5 A/V and rapidly transitioning to satu-
ration, provided the drain current with a shape similar to that shown in Fig. 1 at such an amplitude.

The gate bias Ug was equal to the threshold value UT. Since UT changes when the drain voltage 
is adjusted, it was determined by varying the gate voltage Ug so that the drain current IdT at the 
nominal value Ud = 28 V was about three orders of magnitude less than the highest permissible 
current of the transistor. The value Ug = UT = –3.14 V was obtained at IdT = 1 mA. The value 
Ug – UT = 0 was maintained constant during noise measurements at any level of Ud, which was 
limited only by the dissipated power of the transistor P = 1.5 W at high excitation amplitudes of 
Ugm (this is shown in the legends to the figure).

Fig. 2. Measurement circuit

a)	 b)

Fig. 3. Measured frequency dependences for relative fluctuations in transistor 
drain current at 1 V (a) and 2 V (b) amplitudes of Ugm excitation. 

Black curve corresponds to the instrumentation’s intrinsic noise PSD (Sapp)
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Fig. 3 shows the experimental dependences for drain-current RIN spectral density in transistor 
1525 excited by microwave oscillations with amplitudes Ugm equal to 1 and 2 V. The sharpened 
peaks on the spectra are caused by parasitic interference. The bold black curve corresponds to 
the instrumentation’s intrinsic noise PSD. These noises were determined in accordance with the 
manual by analyzer (see Fig. 2), bypassing the transistor. However, the input oscillation noise 
is reduced in nonlinear mode of the transistor due to saturation of the transfer characteristic 
(see Fig. 1). We did not take this phenomenon into account, so the instrumentation noise was 
somewhat overestimated in our experiments.

It can be seen from Fig. 3 that part of the measured spectra lies below the noise level of the 
instrumentation. Such distortions appear because condition (8) is not satisfied. The dependences 
with the distortions removed are shown in Fig. 4. Analyzing the data, we can conclude that a 
twofold increase in the amplitude Ugm of the exciting oscillation at constant Ud leads to an approx-
imately three-fold increase in the drain current and, accordingly, to increased power dissipated by 
the transistor. To prevent transistor overloading in Ugm = 2 V mode, the maximum drain voltage 
was limited to Ud = 20 V.

Results and discussion

Let us analyze the experimental data presented in the previous section. The normalized PSDs 
of transistor current noise measured in the voltage ranges 8 V ≤ Ud ≤ 15 V and current ranges 
15.5 mA ≤ Id ≤ 65.4 mA (Fig. 4) overlap, varying as 1/F with frequency tuning (a small rise in 
the high-frequency region is caused by instrumentation noise added to the curves from below). 
The noise PSDs at a frequency F = 1 kHz, measured at the amplitudes of exciting vibrations Ugm 
= 1 and 2 V and calculated taking into account the instrumentation noise (see Fig. 4, a and b), 
amounted to 77.5·10–14 and 10·2.0–14 Hz–1, respectively. Thus, the noise level in the second case 
is almost four times lower than the level obtained in the first case. The overlapping of normalized 
noise PSDs measured at different currents implies that they are generated by the same source 
of noise.

The results obtained are consistent with the data published by other authors (see [11–13]) for 
microwave high-electron-mobility transistors (HEMTs).

However, at elevated drain voltages, when Ud > 15 V, the noise begins to increase at the ana-
lyzed frequencies F < 1 kHz, reaching progressively higher levels the higher the value of Ud. The 
shape of its elevated spectra is characteristic for generation-recombination noise [1–4], gradually 
tending back towards the 1/F-type dependence with decreasing frequency, but at a higher level. 
A source of LF noise of a different physical nature prevails in this frequency range.

Let us first discuss the possible nature of primary (1/F) noise, starting with the simpler case 
when microwave oscillation is not applied to the gate.

a)	 b)

Fig. 4. Dependences similar to those in Fig. 3, with distortions removed
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The drain current does not appear at a bias voltage Ug – UT ≤ 0, the height of the gate gap 
through which electrons drift from the source to the drain is zero, which means that the resistance 
R of the gate region of the channel can be considered infinitely large. As the voltage increases, the 
gap opens slightly at Ug – UT > 0, its height increases, the resistance R decreases, and the current 
flowing through the channel increases. If the resistance

( ) ( ) (1 ( ))R t R R t R r t= + ∆ = +

fluctuates, its fluctuations ΔR(t), generated by the processes also occurring in the transistor in the 
absence of current, modulate the drain current. These fluctuations can be generated by random 
interactions of electrons in the gate region of the channel with donor traps [13], whose energy 
levels are below the Fermi level, mainly in the GaN layer under the channel. Relative resistance 
fluctuations ( ) ( ) /r t R t R= ∆  do not depend on current, so the RIN spectral densities 2 ( )iS Fδ  
also do not depend on current: they overlap each other (see Fig. 4).

In our case, when microwave oscillation with an amplitude Ugm is superimposed on the DC 
bias voltageUg – UT = 0, the height of the gate gap corresponds to its height averaged over the 
oscillation period. Then the higher the Ugm value, the greater the gap height and the lower the 1/F 
noise level. This is exactly the behavior exhibited by 1/F-noise shown in Fig. 4: the noise PSD in 
Fig. 4,a is almost four times lower than in Fig. 4,b. Noise reduction with an increase in potential 
difference Ug – UT > 0 is typical for HEMTs [12, 13].

Now consider the source of generation-recombination noise (GRN) appearing at frequencies 
F ≤ 1 kHz at elevated drain voltages Ud > 15 V. If the GRN source is localized in any small 
region of a semiconductor device, then its RIN spectral density is proportional to the rms current 
flowing through this region. At the same time, the PSD normalized by the rms current does not 
depend on the current. A localized source of 1/F noise behaves similarly: as evident from Fig. 
4, its spectral densities, measured at different currents, overlap each other. However, the GRN 
under consideration behaves differently. It can be seen from Fig. 4,a that GRN starts to appear 
at currents Id > 15.3 mA and their RIN increases with increasing Ud.

Understanding the physical nature of this noise source is a separate complex problem beyond 
the scope of this study.

Conclusion

The considered microwave technique allows to measure the low-frequency noise of transistors 
under conditions of intense electromagnetic interference, where it was virtually impossible to use 
low-frequency instrumentation. Unfortunately, the technique is inapplicable for precision-based 
physical studies, for example, analysis of the influence of various technological operations on the 
noise levels in devices. However, the method can be useful for cases where the intensity of the 
LF noise of the transistor is higher than the noise level of the instrumentation. Such situations 
are possible, for example, in studies into the influence of long-term external factors, such as 
temperature, radiation, vibration on the device, as their gradual accumulation leads over time to 
degradation of the device characteristics. Degradation is always accompanied by the accumulation 
of various atomic defects; the process leads to an increase rather than a decrease in transistor 
noise, whose level begins to exceed the noise level of the instrumentation.
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Аннотация. Настоящая работа является продолжением исследований свойств 
низкопороговой автоэлектронной эмиссии из тонких (10 – 6 нм) пленок металлов Mo и 
Zr, сформированных на плоских подложках Si. Теперь изучались изменения морфологии 
пленок, вызываемые термополевым активированием и отбором эмиссионного тока. 
Основным экспериментальным методом была электронная микроскопия. Выдвинута 
гипотеза, что механизм указанных воздействий можно описать как твердотельный 
деветтинг (агломерация) покрытия, подвергнутого ионной бомбардировке. Для ее 
проверки средствами пакета SRIM проведено численное моделирование воздействия 
ионов на структуру Mo-пленка – Si-подложка, а также поставлен эксперимент с 
использованием ионного имплантера HVEE-500.
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Introduction
Many types of nanostructured materials and films are capable of emitting electrons at room 

temperature in moderate electric fields (several V/µm or less) [1–3]. This is unsurprising in car-
bon nanotubes, nanowalls, fibers and other similar structures capable of providing significant local 
geometric amplification of the applied field at the tips and edges. However, structures relatively 
smooth surfaces that do not contain morphological elements with a high geometric aspect ratio 
were also found to be capable of low-threshold cold emission [4–11]. In particular, we previously 
found that this property may be inherent in thin metal films, namely, molybdenum and zirconium 
films with the thickness ranging from 6 to 10 nm deposited on the surface of naturally oxidized 
silicon. The results of the experiments shedding light on the problem were presented in [12, 13]. 
In particular, it was reported that the threshold current of 100 nA/s can be extracted in samples 
of such films at the flat top of a cylindrical anode 6 mm in diameter (located 0.5–0.6 mm away 
from the sample) for macroscopic electric fields as low as of 1.8–6.4 V/µm. It was also observed 
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that the structure of the coating had to be partially transformed from initially solid to that con-
taining nanoislands to stabilize the emission current. Thermal field (TF) treatment consisting of 
electroforming at elevated temperature was performed for this purpose.

This work focuses on the mechanism behind the transformation of the structure of emissive 
coatings due to TF treatment and/or prolonged extraction of emission current.

There is much interest in this phenomenon because of the potential applications of metal 
island films, for instance, in plasmonics and in thermoelectric converters.

Experimental procedure

The studies were performed for the same 
metal film samples as in our earlier works [12, 
13]. Magnetron sputtering was used to deposit 
molybdenum and zirconium films whose thick-
ness ranged from 8 to 10 nm on naturally oxi-
dized plates of KDB–10 grade monocrystalline 
silicon with p-type conductivity. A Mantis HEX 
system (Mantis Deposition, Thame, UK) was 
used for deposition; sputtering of the targets was 
carried out in argon atmosphere at a pressure 
of 5·10–3 mbar at a rate of about 0.1–1.0 Å/s, 
the temperature of the substrates was 100–150 
°C. The thickness of the deposited coatings was 
determined by a quartz balance.

Before the experiments to determine the 
capability for emission started, the samples were 
baked in vacuum for several hours for surface 
degassing. After that, the samples were subjected 
to electroforming or TF treatment at tempera-
tures up to 600 °C. The emission characteristics 
were measured at room temperature and residual 
pressure of the order of 10–9 mbar.

An HVEE 500 kV ion implanter was used 
in the experiment to simulate the effects of ion 
irradiation on the coating structure. The sample 
was irradiated with 10 keV fluorine ions at room 
temperature and/or at 500 °C.

In all cases, data on the structure of the 
films were obtained using scanning electron 
microscopes (SEM) manufactured by Tescan, 
Czech Republic (Mira, Lyra and Solaris mod-
els). The resulting images were processed using 
the Gwyddion program to eliminate technical 
defects and increase contrast.

Experimental results and discussion

Microscopic images of the surface. Microscopic 
images of Mo and Zr films with an average thick-
ness of 8 or 10 nm were obtained using the SEM 
method. Analysis of the films indicates that the 
coatings were solid prior to the emission experi-

ments and consisted of grains with characteristic lateral dimensions of the order of tens of nano-
meters. One of these images (also presented in previous publications [12, 13]) is given below. 
The surface of the coatings from which the highest emission currents were extracted was consid-
erably transformed after the emission experiments: regions with a modified (damaged) structure 
appeared, evidently acting as the centers of low-threshold cold electron emission. Different sam-
ples exhibited markedly different transformations.

Fig. 1. Surface SEM images for 
10 nm thick Mo film samples (a–d) 

and 8 nm thick Zr film samples (e–h) 
after emission experiments

(scale bars correspond to different resolutions)
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Fig. 1, a–d shows surface images of the Mo film with the effective thickness of 10 nm yield-
ing the best emission properties: the threshold macroscopic field strength (for a current of 100 
nA) was 1.8 V/µm with the extracted stabilized current of the order of tens of µA for tens of 
hours [13]. Evidently, the main type of defects were circular, crater-like holes ranging in size from 
fractions to tens of µm, sometimes merging with each other. Comprehensive analysis of high-res-
olution SEM images (see Fig. 1, c,d) as well as data from X-ray microanalysis and atomic force 
microscopy confirmed that the amount of molybdenum inside the craters is reduced tenfold and 
the metal in these regions is preserved only as separate nanoscale-size islands. The craters are 
surrounded by elevated rims to which the coating material migrates. Notably, the redistribution 
of the material did not affect the substrate; its exposed regions remained flat.

The described reconstruction behavior of the metal coating (Fig. 1, a–d) was achieved for a 
Mo film sample yielding the best stable emission properties, which is why it was subjected to the 
longest emission tests with the highest extracted current. Somewhat different types of damage 
were accumulated in other samples under TF treatment, electroforming and current extraction.

As an example, Fig. 1, e–h shows SEM images for 8 nm thick Zr film, obtained after emission 
testing. The overview images (see Fig. 1, e, f) show an extensive network of coating regions con-
taining line defects. Their fine structure can be seen in the images with the highest magnification 
(see Fig. 1, g, h). The same as in the case above, the process of morphological transformation of 
the film apparently began with the formation of submicron-sized holes (see Fig. 1,h). However, 
a slightly different picture was subsequently observed for the material from the vacated regions 
of the surface, composing relatively large (up to 100 nm) circular islands (see Fig. 1, g) rather 
than rims.

Noteworthy structures were also detected on the surfaces of several samples of metal films 
whose emission properties rapidly degraded during testing. Fig. 2, a–c shows SEM images of the 
regions of the 8 nm thick Mo film, Fig. 2, d–f those of the regions of the Zr film with the same 
thickness. The structures shown in the overview images a, b, d and e consist of several (4–6) 
relatively wide branches emanating from a common center. As evident from the SEM images, a 
fraction of the film material moved from the inside of each branch to the surrounding rim. The 
large-scale images in Fig. 2, c, f show a network of light lines, probably also corresponding to the 
line defects on the surface.

Fig. 2. Branched structures found in SEM images of Mo (a–c) and Zr (d–e) coatings (8 nm thick)
Images shown in panels c and f represent the same regions 
of the coatings as in b and d, but at a higher magnification
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Thus, we can confirm that regions with modified morphology appeared in the initially solid 
thin-film samples due to the influence of factors associated with the activation of emission ability. 
Agglomeration of the films occurred in this case: the amount of coating material in some regions 
of the surface was significantly reduced due to its lateral transfer to other regions. In some cases, 
the film structure clearly started to contain islands in some regions (see Fig. 1 d, g, h), which may 
explain the ability to low-threshold cold electron emission observed in such samples [4, 9, 10].

Mechanism of film agglomeration. The SEM images obtained (see Figs. 1 and 2) combined with 
the findings from earlier studies using AFM and X-ray microanalysis [12, 13] indicate that the 
damage in the coatings occurred during emission experiments with metal films largely due to acti-
vated material transfer along the surface rather than due to its evaporation or atomization, which 
could be expected upon rapid local energy release, for example, during electrical breakdown.

The transformation of solid thin metal films into island ones due to lateral transfer of the mate-
rial is known as solid-state dewetting (the term agglomeration is also used in Russian-language 
literature) [14–16]. When metal is deposited on a dielectric substrate (poorly wetting it), a solid 
coating can form at initial low temperatures due to low surface mobility of atoms. Such a coating 
is transformed into an island coating during subsequent thermal annealing, with temperatures 
significantly below the melting point of the metal generally required for this purpose. The cause 
of the dewetting phenomenon is the thermodynamic instability of films whose thicknesses range 
from units to tens of nanometers. This instability is due to the peculiarities of interatomic forces, 
specifically, the repulsive (short-range) and attractive (long-range) van der Waals forces [17]; or, 
in another formulation, the forces of diffusion and surface tension.

The general picture (see, for example, [14–18]) is that the dewetting process of a solid coating 
begins with the appearance of small holes (craters) whose number and size gradually increase. The 
coating material transferred from the hole forms elevated rims surrounding them. Next, the holes 
begin to come into contact, and the final coating structure is formed as a result of redistribution 
of the material in the rims. It can be different and depends on the parameters of the interaction of 
the atoms in the coating material with each other and with the substrate as well as on the anneal-
ing conditions. The formation of both large discrete particles, similar to those shown in Fig. 1,g, 
and branched (also called web-like) structures [15, 18]), similar to those shown in Fig. 1, e, f and 
Fig. 2, b, d, was previously described in the literature.

Thus, there is every reason to interpret the appearance of most types of defects in metal films 
subjected to TF treatment and emission experiments as dewetting occuring under the influence 
of factors related to extraction of the emission current. In particular, this interpretation allows 
to explain the correlation of the emission ability observed earlier (in experiments with car-
bon films [9, 10]) with the presence of a natural oxide layer on silicon substrates: the adhesion 
of coatings to silicon dioxide is typically lower than their adhesion to pure silicon surface, which 
can facilitate the transformation of the film structure during activation of their emission ability.

Estimation of dewetting conditions. Thus, an island film is the thermodynamically stable mor-
phological shape for metal coatings up to several tens of nanometers thick deposited on dielec-
tric substrates, since its free energy is lower than the free energy of a solid coating [14–16]. 
However, solid coatings are transformed into island coatings only at elevated temperatures, since 
this requires lateral atomic transfer with sufficiently high activation energies. The temperature at 
which dewetting can be observed depends on the material and thickness of the coating, as well as 
on the characteristics of the substrate.

Consider gold coatings whose quantitative patterns of dewetting are the best understood. For 
instance, the activation energy of dewetting was determined in [16] for gold coatings of different 
thicknesses on silicon nitride substrates. Its values were 1.04 eV for 15 nm thick films and 1.42 eV 
for 22 nm thick films. The observations were carried out in the temperature range from 300 to 
600 °C, which is significantly below the melting point of gold (1064 °C).

The TF treatment aimed at activation of the emission ability of films in our experiments was 
also carried out at temperatures up to 600 °C. However, we considered metals with much higher 
melting points (their tabular values are 2623 °C for molybdenum and 1852 °C for zirconium).

Notably, there are scarce data in the literature on dewetting in molybdenum or zirconium 
films. A significant study [18] observed the process of agglomeration in a 20 nm thick Mo coating 
deposited on a sapphire substrate. The dewetting of this coating occurred within tens or hundreds 
of minutes, which approximately corresponds to the duration of the TF treatment in our studies. 
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However, the samples in [18] were heated to a temperature of 940 °C, significantly higher than the 
values that we used. This observation is in good agreement with the fact that Mo films exhibited 
no morphological transformations outside the «projection» of the anode in the region where the 
only factor influencing the film was the elevated temperature, while the influence of the electric 
field and the factors associated with extraction of emission current was excluded (this is discussed 
in our earlier paper [13]). The specific local influence of these factors might have been the reason 
for the observed local transformation of the film structure and activation of their emission ability.

It was found [19–23] that the dewetting process can be stimulated not only by heating the 
sample, but also by optical, electronic or ion irradiation (induced by local heating). Estimates of 
the expected effectiveness of such local contributors are given below for experimental conditions 
described in [12, 13].

Let us evaluate the temperature of local Joule heat released from the flow of emission cur-
rent through the emission centers. TF treatment of the samples in [12, 13] was carried out with 
the extracted emission current I = 100 nA = 10–7 А. Suppose that as current flows through the 
emission center, each electron transfers energy of the order ΔE = 1 eV to heat (this assumption is 
substantiated in [24]). The power of such a heat source is P = I·ΔE/e = 10–7 W = 100 NW. An 
initial estimate of the temperature drop ΔT produced by this source can be obtained by solving 
the simple problem on the propagation of a stationary heat flow from a local surface source of 
size d into a thick silicon wafer (with the thermal conductivity κ = 148 W/(m·K)). The result of 
the solution is

.
2

PT
d

∆ ≈
πκ

(1)

If we select the typical size of the observed craters d = 1 µm as the size of the heat release 
region, we obtain a negligible value for estimating the temperature increment: ΔT ≈ 10–4 K. 
Apparently, the local temperature increment remains insignificant, amounting to ΔT ≈ 0.01 K, 
even for the smallest possible size of the heat release region d = 10 nm (the order of size of indi-
vidual nanostructures detectable in microscopic images in Fig. 1, d and h).

However, the above evaluation ignores the specifics of nanoscale heat transfer processes, where 
the contribution from the interface between the media to the total thermal resistance of structures 
turns out to be predominant [25]. If at least one of the contacting media is not a metal and heat is 
transferred mainly by phonons, each interface is characterized by the so-called Kapitza resistance 
RK [26]. This parameter relates the interfacial temperature drop to the heat flux q: ΔT = RK·q. In 
effect, it turns out [25, 27, 28] that the value of the Kapitza resistance for most practically inter-
esting cases lies in a relatively narrow range:

RK = (0.6 – 3.0)·10–8 m2·K/W.
The maximum estimate of ΔT is obtained taking the value of RK at the right endpoint of the 

given range and setting the smallest size of the heat release region: d = 10 nm.
Estimating the heat flux across the boundary as q = P/d2, we obtain that

ΔT = RK·P/d 2 ≈ 30 K.
This value still seems insufficient for explaining the observed transformations in the morphol-

ogy of the coatings.
The above estimates indicate that local heating of the sample surface induced by the flow of 

emission current cannot activate the film dewetting process to a sufficient extent.
Let us consider the scenario when the activating factor was the bombardment of the coating 

regions adjacent to the emission center with ions formed by ionization of residual gas by the emit-
ted electron current. Fig. 3 shows a schematic representation of the experimental device used for 
TF treatment of samples and measurement of emission current–voltage characteristics.

Let us again set the value of the emission current I = 100 nA. The concentration of neutral mol-
ecules in the field gap, n, can be estimated based on the residual gas pressure of 10–8 Torr (it may 
be higher than in other parts of the experimental device), which corresponds to n ≈ 3.6·1014 m–3. 
Generally speaking, the ionization cross section of gas molecules by electron impact depends on 
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the type of gas and on the electron energy of the electrons, varying as they move in the field gap 
(see Fig. 3). We choose the value of the cross section σ = 10–20 m2 as an averaged estimate. The 
width of the field gap in the experiments was h = 0.6 mm. In view of this, the ion current Ii can 
be written as

Ii = I·nσh ≈ 2·10–15 A.
Next, we estimate the ion beam fluence D for time t = 1000 s, corresponding in order of mag-

nitude to the typical duration of the TF treatment procedure. We assume that the ion current is 
distributed over an area S = 1 µm2 = 10–12 m2 (this is the area of a typical crater in microscopic 
images, see Fig. 1, c, d and h). We obtain:

18 2 14 210 m 10 cm .iI tD
eS

− −= ≈ = (2)

This value can be compared with the literature data on ion beam fluences sufficient for initiat-
ing dewetting in metal films. For example, a transformation (caused by ion irradiation) of a solid 
gold film deposited on monocrystalline silicon was observed in [23]; the solid film was transformed 
into a coating consisting of discrete islands with the lateral size of the order of tens of microm-
eters. This transformation required irradiation with a fluence in the range (4.0–9.5)·1013 cm–2, 
which is comparable to estimate (2).

Notably, however, there are several significant differences in the conditions of the compared 
experiments. The sample considered in [23] was a 1.5 nm thick gold film, while our experiments 
were carried out with more refractory metals and with coatings of greater thickness. These two 
differences would be expected to increase the activation energy of atomic migration on the sur-
face. On the other hand, PF4

+, BF2
+ and Ta4+ ions with sufficiently high energy (0.65 keV/u) were 

used in [23], typically penetrating deep into the samples. This can weaken the activating effect of 
radiation on surface migration. The nature of the coating materials seems to be the most signifi-
cant among these factors; unfortunately, we were unable to uncover any data on the effect of ion 
irradiation on dewetting of molybdenum and zirconium films in the literature. For this reason, 
we decided to conduct an additional experiment to directly observe the effect of ion irradiation 
on one of the film samples whose properties were studied in this paper and earlier in [12, 13].

Effects of ion irradiation: experiment and simulation

Experimental The effect of ion irradiation on the morphology of a Mo film was studied based 
on the experiment with a sample of 10 nm thick Mo coating on a KDB-10 grade silicon plate. 

Fig. 3. Schematic of field gap of experimental device
The region colored in pink is where the energy of the emitted electron current (blue lines) reaches 

the maximum ionization cross section of residual gas and where the largest number of ions (+) 
bombarding the sample surface are produced (the direction of bombardment is shown by arrows)
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The peripheral part of the film was used for irradiation and microscopic studies, laying outside 
the region to which the electric field was applied during the earlier emission testing and therefore 
not contributing to the emission current.

At the first stage of the experiment, two sections of the sample were exposed to ion irradia-
tion with a fluence (dose) of 1012 and 1013 cm–2 at room temperature. Fluorine ions whose mass 
is close to atomic masses of atmospheric gases were used. The ion energy was equal to 10 keV, 
i.e., the minimum value technically achievable for implantation system used. After morphological 
control of the irradiated and non-irradiated parts of the coating, the sample was reloaded into the 
implanter and irradiated with the same ions for a second time, but at a dose of 1014 cm–2 and at 
a temperature of 500 °C.

Fig. 4 shows images of the sample surface before and after irradiation with doses of 1013 and 
1014 cm–2. The brightest points in the images correspond to defects produced due to prolonged 
irradiation of the surface by a stopped scanning electron beam.

Even though the maximum fluence was equal to the calculated value (from Eq. (2)), no signs 
of coating dewetting could be detected in the SEM images. The only transformation observed is 
in the structure of the grains whose boundaries are practically absent in Fig. 4,c, obtained after 

irradiation with the highest ion fluence, which can be interpreted as a sign of amorphization of 
the coating.

Coating dewetting at such a fluence value occurred in the experiments with films of more fusible 
gold [23], even in the case of irradiation at room temperature. On the other hand, the studies in 
[23] also found that the smoothing of the surface of the gold film at relatively small irradiation doses 
precedes the period when the film starts to break into islands. This suggests that coating dewetting 
could also be achieved with a further increase in the dose in our experiment with the implanter.

A significant difference (for the dewetting process) between the ion bombardment accom-
panying the extraction of the emission current and that in the experiment with the implanter is 
possibly in the lower average ion energy in the first case, which should lead to a difference in the 
penetration depth of these ions into the sample.

The maximum ion energy in the emission experiments was determined by the magnitude of 
the voltage applied to the field gap, which did not exceed 4.5 kV. As for samples with the best 
emission ability, this voltage did not exceed 1 kV [12, 13]. The average ion energy could be even 
lower: a wide energy distribution from zero to the value corresponding to the anode potential can 
be expected for ions produced due to ionization of the residual gas by electron impact (see Fig. 3).

Numerical simulation To confirm the possible role of the voltage factor applied to the field gap, 
we carried out numerical simulation of the interaction between the ions normally incident on 8 
nm thick Mo film on silicon substrate and this structure. The standard SRIM package which is 
the most widespread for simulations of ion implantation was used. The threshold displacement 
energies were assumed to be 25 and 15 eV for molybdenum and silicon atoms, respectively. To 
reduce the statistical error, 15,000 independent cases were simulated. The simulation results are 
shown in Fig. 5.

Fig. 4. Surface SEM images for 10 nm thick Mo coating sample obtained at 23 °C before 
(D = 0) (a) and after (D > 0) single (b) and double (c) irradiation with 10 keV F+ ions 

with different fluences D, cm–2: 1013 (b); 1013 (23 °C) + 1014 (500 °C) (c)
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According to the calculation results, 10 keV ions corresponding to the conditions of the 
implanter experiment penetrate all the way through the Mo film and a significant number of 
defects are produced in the surface layer of the silicon substrate. This should adversely affect the 
coating dewetting process, contributing to mutual diffusion of the film materials, the substrate and 
the silicon dioxide layer separating them. However, in the case of 1.5 keV ions, it is only the coat-
ing that is mostly exposed to them, while the interface with the substrate is virtually unaffected. 
Therefore, the ion beam bombarding the surface of the samples during TF treatment and emis-
sion current extraction in our experiments described in [12, 13] could more effectively stimulate 
the dewetting process, transferring additional energy to the coating atoms and contributing to an 
increase in their surface mobility.

The proposed explanation should not be considered as the only possible one. For example, 
it is known that the action of the electric field itself can increase the surface mobility of atoms 
and cause agglomeration of films [15]. Studies on electron emission in current flow along thin 
metal films (see, for example, [29]) interpreted the activating effect of electroforming on coatings 
precisely as the increase in atomic mobility in a strong electric field. Another potential activating 
factor is the excitation of electrons in the atomic outer shells by direct action of the electron 
emission current; this phenomenon of film agglomeration electron irradiation was also described 
in the literature [19, 20].

Conclusion

The paper analyzes microscopic surface images of thin molybdenum and zirconium film sam-
ples, both initially solid and after their thermal field treatment consisting of applying an electric 
field and extracting an emission current under heating to a predetermined temperature (no higher 
than 600 °C). The samples subjected to this procedure exhibited (to a greater or lesser extent) 
cold electron emission in a low-intensity macroscopic electric field (on the order of several V/
µm). It was found that the best emission properties of 10 nm thick molybdenum films correlate 
with a certain type of transformation of their surface during treatment and current extraction, 
i.e., holes evolving in the film, inside which the coating metal is present as isolated nanoislands. 
Regions of a different structure appeared during treatment and current extraction in the samples 
exhibiting the worst emission parameters (in particular, in 8 nm thick molybdenum and zirconium 
films). The results of image analysis, numerical estimates, simulation and additional experiments 
indicate that the transformation of the coating structure occurred by the mechanism of solid-state 
dewetting stimulated by ion bombardment. This opens up the possibilities for developing ion-
beam technologies aimed at synthesis of effective emission or thermoelectric structures based on 
arrays of metal islands.

a)	 b)

Fig. 5. Calculated distributions of defects produced per ion over target depth (a) 
and concentrations of injected impurity (b) in Mo (8 nm)-Si structure 

during bombardment with different ions (given in the legend)
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Аннотация. В статье рассматриваются аналитические выражения для потенциалов 

электрических полей, которые соответствуют радиочастотным воронкам с квадратичным, 
кубическим и биквадратным профилями. Электроды воронок представляют собой 
последовательность диафрагм с круговой или мультипольной структурой и апертурами 
переменного размера, который изменяется вдоль канала транспортировки по заданному 
закону. Полученные выражения могут быть полезны для быстрого качественного 
моделирования радиочастотных устройств, предназначенных для транспортировки и 
фокусировки ионов.
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Introduction
The present study is a direct continuation of the analysis in [1], considering analytical expres-

sions for the potentials of electric fields in cylindrical transporting channels [2, 3] (in fact, in 
SRIG-type cylindrical radio frequency traps, first proposed in [4, 5] and studied in detail in [2, 
6–9]), and conical ion funnels [10–16]. However, when designing ion-optical devices, it is con-
venient to use RF focusing funnels whose profile is not conical (this is shown, for example, in 
[13]), as well as segmented quadrupole or multipole electrodes (see, for example, [33]).

The analytical electrical potentials considered in this paper are intended for modeling ion fun-
nels with quadratic, cubic and biquadratic profiles, and, more generally, for modeling SRIG–type 
transport systems with circular, non-circular and multipole apertures, as well as with profiles 
described by polynomials of the appropriate degree.

These analytical solutions of the three-dimensional Laplace equation are of separate interest, 
since they can be used to solve the corresponding problems of mathematical physics.
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RF traps with a cylindrical transport channel

Traps with circular electrodes. In the simplest case, RF traps and SRIG-type ( Stacked Ring 
Ion Guides) transport channels are a sequence of circular apertures with RF voltages applied to 
them (in particular, sequences of pulses) with a phase shift π between adjacent apertures [2–10]. 
Assuming that the condition of quasi-static electric field is satisfied, the high-frequency potential 
of this field can be expressed as a function of time setting the law for voltage variation at the 
electrodes, which is multiplied by the potential of the electrostatic field corresponding to DC 
voltages at the electrodes.

The assumption about the quasi-static nature of a high-frequency electric field is valid when 
the time of the characteristic change in electrical voltages at the electrodes significantly exceeds 
the time of propagation of electromagnetic perturbation within the device. Typical sizes of elec-
trode configurations used in the designs of ion-optical systems are no more than a few tens of 
centimeters (as a rule, much smaller). Taking into account the equality of the speed of light and 
the speed of propagation of an electromagnetic perturbation, this assumption is obviously satisfied 
for the frequencies of electrical voltages commonly used in ion-optical devices (from hundreds of 
kilohertz to several megahertz, rarely several gigahertz).

Under such conditions, the electromagnetic perturbation propagates almost instantly, and 
the high-frequency electric potential, which varies in time and space, can indeed be represented 
as a product of a function of time and electrostatic potential depending on spatial coordinates. 
A time-dependent multiplier describes a temporal change in electrical voltages, and a coordi-
nate-dependent potential corresponds to constant voltages at the electrodes, which change syn-
chronously and proportionally over time.

Thus, an electric field is created within the framework of the model under consideration, 
which changes synchronously and proportionally at each point in space. Although such a step is, 
in fact, a disregard for electrodynamic effects, i.e., the accompanying electromagnetic wave, it is 
quite acceptable if the frequency of voltages applied to the electrodes is not too high (in the sense 
indicated above).

In a typical case, the signs and amplitudes of the voltages applied to individual apertures of a 
cylindrical trap or a cylindrical transport channel alternate according to the rule

, , , , , ,  ...R R R R R RU U U U U U+ − + − + − (1)

Due to the symmetry of the geometric shape of the electrodes and the antisymmetry of the 
voltages applied to the electrodes, the plane along which the electric potential is identically zero 
is located in the middle between adjacent electrodes. This makes it possible to add fictitious 
zero-voltage apertures without distorting the electric field and thus consider periodic sequences of 
voltages that alternate according to another rule:

, 0, , 0, , 0, , 0, , 0, , ...R R R R R RU U U U U U+ − + − + − (2)

If the electrode configuration and the analytical expression for the electric potential with volt-
ages (2) applied to the apertures are shifted by one step along the z axis, a solution is obtained for 
the voltages at the apertures organized by the rule

0, , 0, , 0, , 0, , 0, , 0, ...R R R R RU U U U U+ − + − + (3)

Fig. 1 shows a SRIG-type cylindrical RF trap with circular apertures.

Fig. 1. Structure of periodic ring electrodes of a cylindrical RF trap 
or a cylindrical SRIG-type transport channel
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It is known [2] that the electrostatic potential of a system of electrodes with the periodic 
voltages applied to them corresponding to sequence (1) is described with good accuracy by the 
following expression away from the edges of the electrodes, in the vicinity of the axis of the 
transport channel:

( ) ( ) ( ) ( )0
0

, cos ,RUU z r z I r
I R

= λ +ϕ λ
λ (4)

where z, r are the axial and radial coordinates ( 2 2r x y= + ); UR are the static potentials applied 
to the apertures; I0 is the modified zero-order Bessel function [17–19]; λ is a parameter of the 
geometric scale, Lλ = π  (L is the distance between adjacent apertures); R is the radius of circular 
apertures; φ is the parameter determining the shift of the aperture sequence relative to the origin.

Equipotential lines and a three-dimensional graph of the electric potential given by Eq. (4) in 
normalized coordinates (z, r) are shown in Fig. 2.

Potential (4) includes the sum of two linearly independent potentials with constant coefficients:

( ) ( ) ( ) ( )0
0

, cos ,R
C

UU z r z I r
I R

= λ λ
λ (5)

( ) ( ) ( ) ( )0
0

, sin ,R
S

UU z r z I r
I R

= λ λ
λ (6)

Potential (5) behaves as ( )0 cosU zλ  on the axis of symmetry r = 0, and potential (6) behaves 
as ( )0 sinU zλ , where U0 is the amplitude of spatial oscillations of the corresponding electrostatic 
potential on the axis of the system, ( )0 0RU U I R= λ . Electrostatic potentials (5), (6) prove to 
be useful auxiliary tools for constructing analytical models of the electric field for more complex 
electrode configurations.

Functions (5) can be used to describe the electrostatic field of a periodic sequence of circular 
apertures with the voltages corresponding to periodic sequence (2), and functions (6) can be used 
to describe apertures with the voltages corresponding to periodic sequence (3). To achieve this, 
however, it is necessary to use a geometric scale ( )2Lλ = π .

Indeed, the voltage chains (2) and (3) are obtained from voltage chain (1) by inserting addi-
tional zero-voltage apertures between the initial apertures (as noted earlier, this operation does 
not distort the electric field for a sequence of geometrically identical electrodes with antisymmet-
ric periodic voltages of form (1)). The distance between adjacent apertures becomes equal to L/2 
on the initial scale of distances, so the geometric scale λ should be recalculated.

a)	 b)

Fig. 2. Field lines for static electric potential (5) in (r,z) plane
in normalized coordinates for SRIG-type RF trap: 

a corresponds to equipotential lines on the plane, b to the three-dimensional graph
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A practical example of using potentials (5), (6) in combination with circuits for supply-
ing electrical voltages (2) and (3) are analytical electric fields used for modeling ion-optical 
devices [8, 9, 21–32].

Traps with quadrupole segmentation of electrodes. Segmented quadrupole apertures can be used 
instead of circular apertures (Fig. 3). Namely, circular apertures are divided into four segments, 
and then electric voltages are applied to the resulting electrodes in such a way that opposite-po-
larity electric voltages appear at adjacent electrodes. Such a device is the first stage of a two-stage 
transport channel, considered, in particular, in [33], using numerical simulation rather than ana-
lytical models of the electric potential.

A good approximation for the electrode configuration shown in Fig. 3, in the axial region 
sufficiently away from the edges of the circular electrodes, is expressed as electrostatic potentials 
taking the form

( ) ( )
( )

( ) ( ) ( )
2 2

22
2

, , cos ,
q

q R
C

U x yU x y z z I r
I R r

−
= λ λ

λ
(7)

( ) ( )
( )

( ) ( ) ( )
2 2

22
2

, , sin ,
q

q R
S

U x yU x y z z I r
I R r

−
= λ λ

λ
(8)

where 2 2r x y= +  (as before); ( )q
RU±  are the electrical voltages with alternating signs, applied 

to individual multipole segments of a thin quadrupole-segmented aperture; I2 is the modified 
second-order Bessel function [17–19].

The estimate ( ) 2
2 ~ 8I r r  is valid for the function I2 with r ≈ 0. Because the limit of the 

expression ( ) 2
2I r rλ  is finite for r → 0, potential (7) behaves as follows near the symmetry axis 

r = 0:

( ) ( ) ( ) ( )2 2
0~ cos ,q q

CU U x y z− λ

and potential (8) behaves as

( ) ( ) ( ) ( )2 2
0~ sin ,q q

SU U x y z− λ

where U0
(q) is the spatial oscillation amplitude of the corresponding quadrupole field component 

near the system axis,

( ) ( ) ( )2
0 28 .q q

RU U I R= λ λ

Good approximations of the electric field in the axial region for the electrode configuration, 
rotated relative to the axis of symmetry by 45, are analytical functions of the form

Fig. 3. Structure of periodic segmented quadrupole electrodes of cylindrical RF trap
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( ) ( )
( )

( ) ( ) ( )22
2

, , cos ,
r

r R
C

U xyU x y z z I r
I R r

= λ λ
λ

(9)

( ) ( )
( )

( ) ( ) ( )22
2

, , sin .
r

r R
S

U xyU x y z z I r
I R r

= λ λ
λ

(10)

Potential (9) behaves as ( ) ( )0~ cosrU xy zλ  near the symmetry axis r = 0, and potential (10) 
behaves as ( ) ( )0~ sinrU xy zλ .

Analytical solutions (7)–(10) can be combined to obtain an analytical solution for a segmented 
quadrupole trap with alternating orientations of adjacent electrodes (Fig. 4).

We use voltage sequence (2) for circular apertures with traditional quadrupole segmentation 
(see Fig. 3). The electrostatic potential of such a system is described with good accuracy by 
analytical expression (7), using the geometric scale ( )2Lλ = π . The electrostatic potential for a 
sequence of voltages (3) and circular apertures with rotated quadrupole segmentation is described 
with good accuracy by analytical expression (8) with the geometric scale ( )2Lλ = π . Now let 
us combine these two solutions to obtain an analytical expression of the electric potential for the 
configuration of the circular apertures in Fig. 4.

The shape of circular electrodes in the corresponding section is of no particular consequence 
for zero potentials in a first approximation. The circular segmented quadrupole electrodes for even 
voltage positions (2) generating electrostatic potential (7) within the volume of the trap can be 
replaced with rotated segmented quadrupole electrodes. Similarly, the rotated circular segmented 
quadrupole electrodes for odd voltage positions (3) generating electrostatic potential (7) within 
the volume of the trap can be replaced with conventional segmented quadrupole electrodes. In 
accordance with the principle of superposition of electric fields, summation of voltages for a fixed 
geometric structure of electrodes involves summation of the corresponding electric fields. This 
yields additional analytical solutions describing the electrostatic field for a trap with rotated seg-
mented quadrupole electrodes (see Fig. 4):

( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,a q r
C SU x y z U x y z U x y z= ± ± (11)

( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,b r q
C SU x y z U x y z U x y z= ± ± (12)

where the functions ( ) ( ) ( ) ( ), , ,q q r r
C S C SU U U U  are defined by expressions (7)–(10), and the geometric 

scale parameter is selected in accordance with equality ( )2Lλ = π .
Note. The given scheme for combining two analytical solutions can be used with different 

electrical voltages, different radii of circular apertures, different electrode segmentation schemes 
(see the next section) and even with different shapes of non-circular apertures for even and odd 
positions. However, such exotic solutions are of theoretical rather than practical interest.

Fig. 4. Structure of periodic segmented quadrupole electrodes of cylindrical RF trap 
with quasi-octupole placement symmetry of even and odd electrodes
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Traps with multipole segmentation of electrodes. In general, a multipole of arbitrary order n can 
be used instead of quadrupole segmentation of circular electrodes. For this purpose, circular aper-
tures are divided into 2n identical segments, and then electric voltages are applied to the resulting 
electrodes in such a way that electric voltages of opposite polarity appear at adjacent electrodes. A 
good approximation in the axial region sufficiently away from the edges of the circular electrodes 
(depending on the rotation of segmented multipole electrodes relative to the symmetry axis) is 
expressed as electrostatic potentials taking the form

( ) ( ) ( ) ( )( ) ( ) ( ), , , cos Arg , cos ,q n n nR
C n

n

UU x y z r n x y z I r r
I R

= λ λ
λ (13)

( ) ( ) ( ) ( )( ) ( ) ( ), , , cos Arg , sin ,q n n nR
S n

n

UU x y z r n x y z I r r
I R

= λ λ
λ (14)

( ) ( ) ( ) ( )( ) ( ) ( ), , , sin Arg , cos ,r n n nR
C n

n

UU x y z r n x y z I r r
I R

= λ λ
λ (15)

( ) ( ) ( ) ( )( ) ( ) ( ), , , sin Arg , sin ,r n n nR
S n

n

UU x y z r n x y z I r r
I R

= λ λ
λ (16)

where ( )Arg ,x y  is the argument of the complex number x + iy; Lλ = π  is the parameter of the 
geometric scale; In is the modified Bessel function of nth order [17–19], n is the order of multi-
pole segmentation of circular apertures of a cylindrical trap.

If r ≈ 0, the function ( )nI r  behaves as

( ) ~ 2 !,n n
nI r r n−

and if r → ∞, it behaves as

( ) ( )~ exp 2 ,nI r r rπ

In view of this, potentials (13)–(16) behave as follows at r ≈ 0 (i.e., near the axis of symmetry):

( ) ( )( ) ( ),
0~ cos Arg , cos ,q n n

CU U r n x y zλ (17)

( ) ( )( ) ( ),
0~ cos Arg , sin ,q n n

SU U r n x y zλ (18)

( ) ( )( ) ( ),
0~ sin Arg , cos ,r n n

CU U r n x y zλ (19)

( ) ( )( ) ( ),
0~ sin Arg , sin ,r n n

SU U r n x y zλ (20)

where U0 is the spatial oscillation amplitude of the corresponding multipole component of the 
electric potential near the axis of the system,

( ) ( )( )0 2 ! .n n
R nU U n I R−= λ λ

It is easy to verify that functions (13)–(16) do indeed satisfy the Laplace equation (as well as 
the asymptotic behavior of functions at r → 0 and r → ∞) by direct substitution using the pro-
gram from [38]. Eqs. (5), (6) and (7)–(10) are special cases of analytical expressions (13)–(16). 
Linear combinations with constant coefficients composed of axisymmetric potentials (5), 
(6) and multipole potentials (7)–(10) and (13)–(16) with appropriate weights can be used 
to analytically describe the electric fields of RF traps and SRIG-type transport devices with 
non-circular apertures.
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As in the case of circular segmented quadrupoleapertures discussed in the previous section, 
segmented multipole solutions can be combined and analytical solutions can be obtained for seg-
mented multipole apertures with alternating rotation angles:

( ) ( ) ( ) ( ) ( ) ( ), , ,, , , , , , ,a n q n r n
C SU x y z U x y z U x y z= ± ± (21)

( ) ( ) ( ) ( ) ( ) ( ), , ,, , , , , , .b n r n q n
C SU x y z U x y z U x y z= ± ± (22)

The functions ( ) ( ) ( ) ( ), , , ,, , ,q n q n r n r n
C S C SU U U U  in these expressions are defined by Eqs. (13)–(16), 

while ( )2Lλ = π .
Two-dimensional multipole multipliers. The expressions in Eqs. (13)–(20)

( ) ( )( ), cos Arg , ,n
nQ x y r n x y= (23)

( ) ( )( ), sin Arg , ,n
nR x y r n x y= (24)

are homogeneous harmonic polynomials satisfying the two-dimensional Laplace equation. The 
Euler homogeneity property of degree n for the functions Qn (x,y) and Rn (x,y)follows directly 
from Eqs. (23), (24):

( ) ( ) ( ) ( )for 0, ,  : , , ,  , , ,n n
n n n nx y Q x y Q x y R x y R x y∀λ > ∀ λ λ = λ λ λ = λ

and harmonicity is verified by direct substitution of expressions (23), (24) into the Laplace equation.
The sequence of two-dimensional homogeneous harmonic polynomials Qn (x,y) и Rn (x,y), 

calculated by Eqs. (23), (24) and ordered by increasing homogeneity degree (multipole order), 
has the form:

1, x, y, x2 – y2, 2xy, x3 – 3xy2, 3x2y – y3, … .
The multipliers Qn (x,y) and Rn (x,y) provide multipole symmetry with respect to the sym-

metry axis OZ for the potentials under consideration. Expressions (23), (24) obey the following 
recurrence relations:

( ) ( )0 0, 1,  , 0,Q x y R x y= = (25)

( ) ( ) ( )1 , , , ,n n nQ x y xQ x y yR x y+ = − (26)

( ) ( ) ( )1 , , , .n n nR x y yQ x y xR x y+ = + (27)

General expressions for functions defined using recurrence relations (25)–(27) are Eqs. (23), 
(24). This either follows from the uniqueness of the functions that must be calculated in accor-
dance with recurrence relations (25)–(27), or is easily proved by induction, or becomes obvious 
after writing recurrence relations (25)–(27) in complex form:

( ) ( )0 0, , 1,Q x y iR x y+ =

( ) ( ) ( ) ( ) ( )( )1 1, , , , ,n n n nQ x y iR x y x iy Q x y iR x y− −+ = + +

( ) ( ) ( ), , .n
n nQ x y iR x y x iy+ = +

The last equality means that

( ) ( )Re ,  Im ,n n
n nQ x iy R x iy= + = +

then, the trigonometric notation of complex numbers can be used to obtain formulas (23), (24).
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The polynomial nature of functions (23), (24) as well as the homogeneity of these polynomials 
(each of them is a sum of homogeneous monomials of degree n, which have the form ckx

kyn-k, 
where k = 0, 1, ..., n) automatically follow from recurrence relations (25)–(27). The fact that 
these polynomials satisfy the two-dimensional Laplace equation can be obtained without using 
the general formulas (23), (24), as the Cauchy–Riemann relations are satisfied for the functions 
Q n (x,y) and Rn(x, y), obeying recurrence relations (25)–(27):

( ) ( ) ( ) ( ), , , ,
,  .n n n nQ x y R x y Q x y R x y

x y y x
∂ ∂ ∂ ∂

= = −
∂ ∂ ∂ ∂

(28)

Property (28) is proved by induction using auxiliary equalities that follow from recurrence 
relations (25)–(27):

1 1 ,n n n n n n n n n n
n n

Q R Q R Q R Q R Q RQ x y Q y x x y
x y x x y y x y y x
+ +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− = + − − − − = − − +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

1 1 .n n n n n n n n n n
n n

Q R Q R Q R Q R Q Rx R y y R x x y
y x y y x x y x x y
+ +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = − − + + + = + + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

RF funnels with conical transport channel

Funnels with circular electrodes. The classical version of an RF ion funnel is a sequence of 
circular apertures with decreasing radii, varying by the law for the radii of the circular cone cut 
by planes located in the plane of the aperture and perpendicular to the axis of the cone (Fig. 5). 

The behavior of the axisymmetric electric potential V(z,r) is to be expected for such a geomet-
ric configuration of the electrodes on the axis of the system as the sum of potentials

( ) ( )0 0~ cos  and ~ sin ,C SV U z z V U z zλ λ
where U0 is the scaling factor for the linearly increasing spatial oscillation amplitude of the corre-
sponding electric potential on the axis of the system.

The following analytical formulas were proposed in [1] for conical RF funnels with 
circular apertures:

( ) ( ) ( ) ( ) ( )0 0 1, cos sin ,CV z r U z z I r r z I r= λ λ + λ λ   (29)

( ) ( ) ( ) ( ) ( )0 0 1, sin cos ,SV z r U z z I r r z I r= λ λ − λ λ   (30)

where Lλ = π  is the geometric scale, I1 is a modified first-order Bessel function [17–19].
If r ≈ 0, the estimate I1(r) ≈ r/2 is valid for the function I1. These analytical solutions behave 

as follows on the z axis of the system:

( ) ( )0 0~ cos ,  ~ sin .C SV U z z V U z zλ λ

Fig. 5. Structure of periodic ring electrodes of conical RF funnel
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Equipotential lines and a three-dimensional graph of the electric potential given by Eq. (29) 
in normalized coordinates (z, r) are shown in Fig. 6. Function (29) turns into function (30) when 
substituting z → z + π/2λ, so their graphs merge into each other with a shift along the OZ axis.

Solutions (29), (30) are obtained by differentiation of solutions (5), (6) with respect to the 
parameter λ after the substitution

( )0 0 ,RU U I R= λ
where U0 is the amplitude of spatial oscillations of the electrostatic potential on the axis of the 
SRIG-type RF trap.

Funnels with segmented quadrupole electrodes. Similarly, differentiating with respect to the 
parameter λ yields analytical solutions for conical segmented quadrupole funnels from Eqs. (7)–
(10) (by analogy with Fig. 3):

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

22 2
0 2 2

1 3 22
3 2

8
, , cos

4
4 sin ,

q q
C

I r
V x y z U x y z z

r

r I r I r I r
r z

r

λ
= − λ + λ

λ λ + λ − λ
+ λ 

λ 

(31)

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

22 2
0 2 2

1 3 22
3 2

8
, , sin

4
4 cos .

q q
S

I r
V x y z U x y z z

r

r I r I r I r
r z

r

λ
= − λ − λ

λ λ + λ − λ
− λ 

λ 

(32)

where I3 is a modified third-order Bessel function [17–19].
The estimate ( ) 3

3 ~ 48I r r  is valid for the function I3 with r ≈ 0.
A device such as the second stage of a two-stage transport channel was considered, in particu-

lar, in [33] but using numerical simulation, rather than analytical models of the electric potential.
If r = 0, i.e., near the symmetry axis, potential (31) behaves as follows:

( ) ( ) ( ) ( )2 2
0~ cos ,q q

CV U x y z z− λ

and potential (32) behaves as
( ) ( ) ( ) ( )2 2

0~ sin .q q
SV U x y z z− λ

a)	 b)

Fig. 6. Field lines for static electric potential (29) in (z,r) plane 
in normalized coordinates for SRIG-type RF trap:

a corresponds to equipotential lines on the plane, b to the three-dimensional graph
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Similarly, analytical solutions for the corresponding static electric potentials for the configu-
ration of segmented quadrupole circular electrodes rotated 45° relative to the symmetry axis are 
functions of the form

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 3 22
0 2 2 3 3

48
, , cos 4 sin ,r r

C

r I r I r I rI r
V x y z U xy z z r z

r r
λ λ + λ − λλ

= λ + λ  λ λ  
(33)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 3 22
0 2 2 3 3

48
, , sin 4 cos ,r r

S

r I r I r I rI r
V x y z U xy z z r z

r r
λ λ + λ − λλ

= λ − λ  λ λ  
(34)

If r = 0, i.e., near the symmetry axis, potential (14) behaves as:
( ) ( ) ( )0~ cos ,r r

CV U xyz zλ
and potential (15) behaves as

( ) ( ) ( )0~ sin .r r
SV U xyz zλ

As in the case of SRIG-type segmented quadrupole RF traps, by analogy with Fig. 4, com-
bining quadrupole potentials with different rotations of the electrodes relative to the symmetry 
axis yields analytical models of electric potentials for conical funnels with different rotations of 
composite electrodes relative to the funnel axis for even and odd apertures:

( ) ( ) ( ) ( ) ( ) ( ), , , , , , ,a q r
C SV x y z V x y z V x y z= ± ± (35)

( ) ( ) ( ) ( ) ( ) ( ), , , , , , .b r q
C SV x y z V x y z V x y z= ± ± (36)

Funnels with multipole-segmented electrodes. In general, analytical solutions for a conical RF 
trap with segmented multipole electrodes are obtained by differentiating Eqs. (13)–(16) with 
respect to the parameter λ after substitution

( )0 0 ,RU U I R= λ
where U0 is the spatial oscillation amplitude of the corresponding multipole component of the 
electrostatic potential on the axis of the RF trap:

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ),
0 0 1, , cos Arg , cos sin ,q n q n

CV x y z U r n x y z z f r r z f r= λ λ + λ λ   (37)

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ),
0 0 1, , cos Arg , sin cos ,q n q n

SV x y z U r n x y z z f r r z f r= λ λ − λ λ   (38)

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ),
0 0 1, , sin Arg , cos sin ,r n r n

CV x y z U r n x y z z f r r z f r= λ λ + λ λ   (39)

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ),
0 0 1, , sin Arg , sin cos ,r n r n

SV x y z U r n x y z z f r r z f r= λ λ − λ λ   (40)

where

( ) ( )
0

2 !
,

n
n

n

n I
f

ρ
ρ =

ρ
(41)

( ) ( ) ( )( ) ( )
1

1 1 11

2 ! 2 .
n

n n nn

nf I I nI
−

− ++
 ρ = ρ ρ + ρ − ρ ρ

(42)

Expressions (41), (42) have no singularities at zero, and the following equalities are fulfilled 
for 0ρ ≈ :

( ) ( )
2

0
11 ,

4 1
f

n
ρ ≈ + ρ

+
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( ) ( ) ( )( )
3

1
1 1 .

2 1 8 1 2
f

n n n
ρ ≈ ρ+ ρ

+ + +

By analogy with SRIG-type segmented multipole RF traps with rotated electrodes for even and 
odd apertures (see Fig. 4), it is possible to combine multipole potentials with different rotations 
of multipole configurations, allowing to obtain analytical models of electric potentials for the 
corresponding conical funnels:

( ) ( ) ( ) ( ) ( ) ( ), , ,, , , , , , ,a n q n r n
C SV x y z V x y z V x y z= ± ± (43)

( ) ( ) ( ) ( ) ( ) ( ), , ,, , , , , , .b n r n q n
C SV x y z V x y z V x y z= ± ± (44)

Radio frequency funnels with polynomial channel profile
Circular electrodes. It was found in [13] that RF funnels with circular apertures and quadratic 

profile of the transport channel (Fig. 7) can provide additional advantages compared to con-
ventional conical funnels. Analytical expressions for axisymmetric electric potentials that follow 
the dependences

( ) ( )2 2
0 0~ cos  and ~ sin ,C SW U z z W U z zλ λ

on the z axis can be obtained by differentiating expressions (29), (30) with respect to the parameter λ.

Fig. 7. Structure of periodic circular electrodes of RF funnel with quadratic profile

a)	 b)

Fig. 8. Field lines for static electric potential (45) in (z,r) plane 
in normalized coordinates for SRIG-type radio frequency trap:

a corresponds to equipotential lines on the plane, b to the three-dimensional graph
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This gives the following formulas:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2

2
0 0 1 0 2, cos 2 sin cos ,

2C
rW z r U z z I r rz z I r z I r I r


= λ λ + λ λ − λ λ + λ 


(45)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
2

2
0 0 1 0 2, sin 2 cos sin .

2S
rW z r U z z I r rz z I r z I r I r


= λ λ − λ λ − λ λ + λ 


(46)

Equipotential lines and a three-dimensional graph of the electric potential given by Eq. (45) in 
normalized coordinates (z, r) are shown in Fig. 8. As in the case of funnels with a conical profile, 
function (45) turns into function (46) upon substituting z → z + π/2λ, so their graphs merge into 
each other with a shift along the OZ axis.

Similar analytical expressions are obtained for axisymmetric electric potentials obeying the 
following dependences on the z axis:

( ) ( ) ( ) ( )3 3 4 4
0 0 0 0~ cos ,  ~ sin ,  ~ cos ,  ~ sin ,C S C SG U z z G U z z H U z z H U z zλ λ λ λ

namely,

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

3 2
0 0 1

2 3

0 2 1 3

, cos 3 sin

3 cos sin 3 ,
2 4

CG z r U z z I r rz z I r

r z rz I r I r z I r I r

= λ λ + λ λ −


− λ λ + λ − λ λ + λ 


(47)

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

3 2
0 0 1

2 3

0 2 1 3

, sin 3 cos

3 sin sin 3 ,
2 4

SG z r U z z I r rz z I r

r z rz I r I r z I r I r

= λ λ − λ λ −


− λ λ + λ + λ λ + λ 


(48)

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

4 2
0 0 1

2 2 3
0 2 1 3

4

0 2 4

, cos 4 sin

3 cos sin 3

cos 3 4 ,
8

CH z r U z z I r rz z I r

r z z I r I r r z z I r I r

r z I r I r I r

= λ λ + λ λ −
− λ λ + λ − λ λ + λ +


+ λ λ + λ + λ 



(49)

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

4 2
0 0 1

2 2 3
0 2 1 3

4

0 2 4

, sin 4 cos

3 sin cos 3

sin 3 4 .
8

SH z r U z z I r rz z I r

r z z I r I r r z z I r I r

r z I r I r I r

= λ λ − λ λ −
− λ λ + λ + λ λ + λ +


+ λ λ + λ + λ 



(50)

Segmented quadrupole and multipole electrodes. Differentiation of expressions (37)–(40) with 
respect to the parameter λ yields analytical expressions for the electric potentials of RF funnels 
with multipole segmentation (or with quadrupole segmentation at n = 2) of circular apertures, a 
nonlinear (quadratic, cubic and biquadratic) profile of the transport channel and the correspond-
ing rotation of multipole segments relative to the symmetry axis:

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

,
0

2 2
0 1 2

, cos Arg ,

cos 2 sin cos ,

q n n
CW z r U r n x y

z z f r rz z f r r z f r

= ×

 × λ λ + λ λ − λ λ 
(51)

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

,
0

2 2
0 1 2

, cos Arg ,

sin 2 cos sin ,

q n n
SW z r U r n x y

z z f r rz z f r r z f r

= ×

 × λ λ − λ λ − λ λ 
(52)
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( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

,
0

2 2
0 1 2

, sin Arg ,

cos 2 sin cos ,

r n n
CW z r U r n x y

z z f r rz z f r r z f r

= ×

 × λ λ + λ λ − λ λ 
(53)

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )

,
0

2 2
0 1 2

, sin Arg ,

sin 2 cos sin ,

r n n
SW z r U r n x y

z z f r rz z f r r z f r

= ×

 × λ λ − λ λ − λ λ 
(54)

( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,
0

3 2
0 1

2 3
2 3

, cos Arg ,

cos 3 sin

3 cos sin ,

q n n
CG z r U r n x y

z z f r z r z f r

zr z f r r f r z

= ×

× λ λ + λ λ −
− λ λ − λ λ 

(55)

( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,
0

3 2
0 1

2 3
2 3

, cos Arg ,

sin 3 cos

3 sin cos ,

q n n
SG z r U r n x y

z z f r z r z f r

zr z f r r f r z

= ×

× λ λ − λ λ −
− λ λ + λ λ 

(56)

( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,
0

3 2
0 1

2 3
2 3

, sin Arg ,

cos 3 sin

3 cos sin ,

r n n
CG z r U r n x y

z z f r z r z f r

zr z f r r f r z

= ×

× λ λ + λ λ −
− λ λ − λ λ 

(57)

( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

,
0

3 2
0 1

2 3
2 3

, sin Arg ,

sin 3 cos

3 sin cos ,

r n n
SG z r U r n x y

z z f r z r z f r

zr z f r r f r z

= ×

× λ λ − λ λ −
− λ λ + λ λ 

(58)

( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

,
0

4 3
0 1

2 2 3
2 3

4
4

, cos Arg ,

cos 4 sin

6 cos 4 sin

cos ,

q n n
CH z r U r n x y

z z f r z r z f r

z r z f r zr f r z

r f r z

= ×

× λ λ + λ λ −
− λ λ − λ λ +

+ λ λ 

(59)

( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

,
0

4 3
0 1

2 2 3
2 3

4
4

, cos Arg ,

sin 4 cos

6 sin 4 cos

sin ,

q n n
SH z r U r n x y

z z f r z r z f r

z r z f r zr f r z

r f r z

= ×

× λ λ − λ λ −
− λ λ + λ λ +

+ λ λ 

(60)

( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

,
0

4 3
0 1

2 2 3
2 3

4
4

, sin Arg ,

cos 4 sin

6 cos 4 sin

cos ,

r n n
CH z r U r n x y

z z f r z r z f r

z r z f r zr f r z

r f r z

= ×

× λ λ + λ λ −
− λ λ − λ λ +

+ λ λ 

(61)
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( ) ( ) ( )( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

,
0

4 3
0 1

2 2 3
2 3

4
4

, sin Arg ,

sin 4 cos

6 sin 4 cos

sin ,

r n n
SH z r U r n x y

z z f r z r z f r

z r z f r zr f r z

r f r z

= ×

× λ λ − λ λ −
− λ λ + λ λ +

+ λ λ 

(62)

where

( ) ( )
0

2 !
,

n
n

n

n I
f

ρ
ρ =

ρ

( ) ( ) ( )( ) ( )
1

1 1 11

2 ! 2 ,
n

n n nn

nf I I nI
−

− ++
 ρ = ρ ρ + ρ − ρ ρ

( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( )

2
2

2 2 22

1 1

2 ! 2

4 1 ,

n

n n nn

n n

n

nf I I I

I I

n n I

−

− ++

− +

ρ = ρ ρ + ρ + ρ −ρ

−ρ ρ + ρ +

+ + ρ 

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( )( ) ( )

3
3

3 3 1 1 33

2
2 2

1 1

2 ! 3 3

6 2

12 1

8 1 2 ,

n

n n n nn

n n n

n n

n

nf I I I I

n I I I

n n I I

n n n I

−

− − + ++

− +

− +

ρ = ρ ρ + ρ + ρ + ρ −ρ

− ρ ρ + ρ + ρ +

+ + ρ ρ + ρ −

− + + ρ 

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( )( ) ( ) ( )( )
( )( )( ) ( )

4
4

4 4 2 2 44

3
3 1 1 3

2
2 2

1 1

2 ! 4 6 4

8 3 3

24 1 2

32 1 2

16 1 2 3 .

n

n n n n nn

n n n n

n n n

n n

n

nf I I I I I

n I I I I

n n I I I

n n n I I

n n n n I

−

− − + ++

− − + +

− +

− +

ρ = ρ ρ + ρ + ρ + ρ + ρ −ρ

− ρ ρ + ρ + ρ + ρ +

+ + ρ ρ + ρ + ρ −

− + + ρ ρ + ρ +

+ + + + ρ 

The functions ( ) ( ) ( ) ( ) ( )0 1 2 3 4, , , ,f f f f fρ ρ ρ ρ ρ  have no singularities at zero; the following 
approximate equalities are satisfied for 0ρ ≈ :

( ) ( )
2

0
11 ,

4 1
f

n
ρ ≈ + ρ

+

( ) ( ) ( )( )
3

1
1 1 ,

2 1 8 1 2
f

n n n
ρ ≈ ρ+ ρ

+ + +

( ) ( ) ( )( )
2

2
1 1 ,

2 1 8 1 2
f

n n n
ρ ≈ + ρ

+ + +

( ) ( )( ) ( )( )( )
3

3
3 5 ,

4 1 2 16 1 2 3
f

n n n n n
ρ ≈ ρ+ ρ

+ + + + +
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( ) ( )( ) ( )( )( )
2

4
3 15 .

4 1 2 16 1 2 3
f

n n n n n
ρ ≈ + ρ

+ + + + +

It is also possible to combine multipole potentials with different rotations of multipole con-
figurations to obtain analytical models of electric potentials for the corresponding funnels with 
nonlinear profiles:

( ) ( ) ( ) ( ) ( ) ( ), , ,, , , , , , ,a n q n r n
C SW x y z W x y z W x y z= ± ±

( ) ( ) ( ) ( ) ( ) ( ), , ,, , , , , , ,b n r n q n
C SW x y z W x y z W x y z= ± ±

( ) ( ) ( ) ( ) ( ) ( ), , ,, , , , , , ,a n q n r n
C SG x y z G x y z G x y z= ± ±

( ) ( ) ( ) ( ) ( ) ( ), , ,, , , , , , ,b n r n q n
C SG x y z G x y z G x y z= ± ±

( ) ( ) ( ) ( ) ( ) ( ), , ,, , , , , , ,a n q n r n
C SH x y z H x y z H x y z= ± ±

( ) ( ) ( ) ( ) ( ) ( ), , ,, , , , , , .b n r n q n
C SH x y z H x y z H x y z= ± ±

Estimation of approximation accuracy
As we already discussed, the above analytical expressions do not accurately describe the required 

electric fields near the edges of the electrodes. It is required to obtain an estimate the distance 
from the edges of the electrodes sufficient for guaranteeing the obtained analytical expressions.

Consider, for example, the axisymmetric electric potential given by Eq. (6). In the case when 
the distance between adjacent apertures is equal to L, the radius of the aperture is equal to R, 
and the voltages at the apertures are set according to Eq. (1), leading to the analytical expression

( ) ( ) 0
0

, sin .R
S

U z rU z r I
I R L L L

π π   =    π    
(63)

The boundary condition set along the line r = R for potential (63) is a sinusoidal function 
with the amplitude UR (Fig. 9, a). However, the potential along the horizontal line r = R for real 
geometry with infinitely thin circular apertures must be exactly equal to +UR at the points

( )2 2 2 ,kz L Lk= +
must be exactly equal to -UR at the points

( )2 1 3 2 2 ,kz L Lk+ = +
and must be a smooth monotonic function at intermediate points 2 2 1k kz z z +≤ ≤ , antisymmetric 
with respect to the central point located between the reference points 2kz  and 2 1kz + . In particular, 
it is acceptable to use a piecewise linear function as a model edge distribution of the potential 
(Fig. 9,b).

The boundary condition for the electric potential, given along the horizontal line r = R, is obvi-
ously a periodic function of the z coordinate with a period of 2L and therefore can be expanded 
into a Fourier series. Due to the symmetry of the geometric configuration of the electrodes and 
the antisymmetry of the potentials applied to the electrodes, only odd sinusoidal harmonics will 
be present in the Fourier series expansion, whereas cosine harmonics are strictly equal to zero.

For example, the considered Fourier series for the piecewise linear potential distribution shown 
in Fig. 9,b takes the form

( ) 2 2 2 2

8 8 8 83 5 7sin sin sin sin ...
9 25 49

R R R RU U U Uz z z zU z
L L L Lρ

π π π π       ≈ − + − +       π π π π       
(64)

The exact analytical solution for boundary condition (64) has the form:



St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2024. Vol. 17. No. 2

110

( ) ( ) ( )

( ) ( )

*
0 02 2

0 0

0 02 2
0 0

8 8 3 3, sin sin
9 3

8 85 5 7 7sin sin
25 5 49 7

R R
S

R R

U Uz r z rU z r I I
I R L L L I R L L L

U Uz r z rI I
I R L L L I R L L L

π π π π       = − +       π π π π       

π π π π       + − +       π π π π       


(65)

The following equation holds true for the ratio of the amplitude of the third (parasitic) spatial 
harmonic to the amplitude of the first (main) spatial harmonic at a distance r from the symmetry 
axis in accordance with expression (65):

( ) ( )
( )

( )
( )

0 0

0 0

31 .
39

I r L I r L
r

I R L I R L
π π

Λ =
π π

(66)

Fig. 10 shows the dependences of Λ on the dimensionless quantity r/L for different values 
of the dimensionless geometric parameter R/L. It follows from these graphs, for example, that 
amplitude of the third harmonic for 2R L ≥  does not exceed 5% of the amplitude of the first 
harmonic if 1.75r L ≤ . (The thin horizontal line in Fig. 10 corresponds to the 5% level for the 
quantity Λ). The amplitudes of the remaining parasitic spatial harmonics will be significantly 
smaller, and their influence can be ignored.

Notably, the relationship between the oscillation amplitude U0 of the static electric potential 
on the axis of the system and the voltages UR applied to the circular apertures for the «ideal» 
solution (63) is established by

( )0 0 .RU U I R L= π

c)	 d)

a)	 b)

Fig. 9. Boundary conditions (in normalized coordinates) along the line r = R in the interval between 
two adjacent apertures for calculation of electric field in SRIG-type trap for various model cases:

a corresponds to analytical solution (9); b to infinitely thin apertures; c to apertures 
of finite thickness; d to substituting the linear approximation of the boundary value of the potential 
with an accurate analytical solution (see example 5 in paragraph 49, § 2, Chapter III in book [34])
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On the other hand, this relationship for model Fourier series (64) is established as

( ) ( )2
0 08 .RU U I R L= π π

Note. A piecewise linear function used in the intervals between reference points does not fully 
yield the required accuracy, however, it is rather acceptable for obtaining an approximate estimate 
of the sufficient distance to the edges of the electrodes. If it is necessary to take into account a 
more realistic model distribution of the potential along the horizontal line r = R, an analytical 
solution can be used for the boundary field of a parallel-plate capacitor, given in book [34] (see 
example 5 in paragraph 49, § 2, Chapter III of this monograph). This analytically accurate poten-
tial distribution along the cross section y = 0 at the edge of a parallel-plate capacitor is shown in 
Fig. 9,d; it follows that the piecewise linear function is largely acceptable as a model for estimat-
ing the contribution of the initial correction terms of the Fourier series along the horizontal line 
r = R. In particular, if the circular apertures are «thick» (Fig. 9,c), then the graphs in Fig. 9,b 
become piecewise trapezoidal within the framework of the considered piecewise linear model, and 
Fourier series (64) takes the following form:

( ) ( )
( )

( )
( )

( )
( )

( )
( )

2 2

2 2

8cos 2 8cos 3 2 3sin sin
1 9 1

8cos 5 2 8cos 7 25 7sin sin ,
25 1 49 1

R R

R R

U Uz zU z
L L

U Uz z
L L

ρ

πγ πγπ π   ≈ − +   π − γ π − γ   

πγ πγπ π   + − +   π − γ π − γ   


(67)

where γ is a dimensionless parameter calculated by the formula [ ]0,1h Lγ = ∈  (h is the thickness 
of the aperture, L is the distance between the centers of neighboring apertures (see above)).

Interestingly, within the framework of this model, the amplitude of the first spatial harmonic at 
1 4γ ≈  coincides with the amplitude of the "ideal" case (63). However, the optimal choice here 

is the case 1 3γ =  when the third parasitic spatial harmonic vanishes.
Similarly, the rigorous shape of thin apertures corresponding to analytical solutions (13)–

(16), (37)–(40) and (51)–(62) for segmented multipole transport channels differs from identical 
circular arcs with insulating gaps between them shown in Figs. 3, 4. A similar approach can be 
used to estimate how fast parasitic higher-order harmonics decay with distance away from the 
edges of segmented multipole circular apertures, so analytical formulas (13)–(16), (37)–(40) and 
(51)–(62) will be sufficient to describe the electric potential of the corresponding electric field 
with high accuracy.

As an example, consider a circular segmented quadrupole trap, for the electric field of which 
it was previously proposed to use analytical expressions (7)–(10), equivalent to each other up to 
rotation relative to the axis and displacement along the axis.

Fig. 10. Dependence of quantity Λ (see Eq. (66)) on dimensionless 
quantity r/L for different values of geometric parameter R/L:
 R/L = 1.5 (curve 1), R/L = 2.0  (2), R/L = 2.5  (3), R/L = 3.0 (4).

The horizontal line shows the level of 0.05 (5%)
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Fig. 11,a shows the shape of the electrodes of thin apertures corresponding to analytical expres-
sion (9), Fig. 11,b shows those corresponding to thin circular segmented quadrupole apertures.

Consider circles x = Rcosφ and y = Rsinφ with radii r = R in cross-sections z = zk with thin 
apertures to which electrical voltages alternating in sign (z2k = 2kL and z2k+1 = (2k+1)L) are applied.

Potential (9) is expressed along these circles by a sinusoidal function of the angular coordinate 
(Fig. 12,a). Fig. 12,b shows the model potential distribution for the circular segmented quadru-
pole aperture of radius R, where an approximate linear function is used instead of the true sinu-
soidal potential for the cross-sections of the circle corresponding to the insulating gaps. Expansion 
of this boundary condition into a Fourier series with respect to the angular coordinate

( ) [ ]Arg , ,x yϕ = ∈ −π +π
produces the expression

( ) ( )
( ) ( ) ( )

( ) ( )

( )
( ) ( ) ( )

( ) ( )

2 2

2 2

8cos 2 8cos 3 2
sin 2 sin 6

1 9 1

8cos 5 2 8cos 7 2
sin 10 sin 14 ,

25 1 49 1

R R
f

R R

U U
U

U U

πδ πδ
ϕ ≈ ϕ − ϕ +

π −δ π −δ

πδ πδ
+ ϕ − ϕ +

π −δ π −δ


(68)

where δ is the relative angular size of a single multipole segment, calculated by the formula 
[ ]2 0,1δ = β π∈ ( ( ) ( )2 Rβ ≈ π − ∆  is the absolute angular size of the given segment, Δ is the 

a)	 b)

Fig. 11. Shape of individual elements of thin aperture for quadrupole segmentation of circular 
electrodes: a corresponds to analytical solution (9); b to circular segmented aperture

a)	 b)

Fig. 12. Model angular distributions of potential in apertures under two boundary conditions: 
for analytical solution (9) (a) and for circular segmented quadrupole apertures (b)

The boundary conditions are set along the circle r = R in the plane of the thin circular 
aperture of the SRIG-type RF trap with quadrupole segmentation of electrodes
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gap between the segments, R is the radius of the circular aperture, π/2 is the angular distance 
between the centers of circular multipole segments in the case of quadrupole segmentation).

The coefficients of Fourier series (68) coincide with the coefficients of Fourier series (67). 
In view of this, despite the different physical meanings of the quantities δ and γ, if 1 4δ ≈ , 
the amplitude of the first angular spatial harmonic coincides with the amplitude of the "ideal" 
case (9). However, as in the previous case, the optimal choice is the value 1 3δ =  when the third 
parasitic angular harmonic vanishes.

The exact analytical solution corresponding to boundary condition (68) takes the form:

( ) ( ) ( )
( )
( )

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

2 2
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22 2
2

2 2
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66
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10

1010
10
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14
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25
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49
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Q x y x yUU z x y I
I R L r L

Q x y x y
I

I R L r L

Q x y x y
I

I R L r L

Q x y x y zI
I R L r L L

  πδ π +
  = −

 π − δ π  
 πδ π +
 − +
 π  
 πδ π +
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 πδ π + π − +  π   
 ,



(69)

where the multipole multipliers ( ),kQ x y  are expressed as follows in accordance with recurrence 
relations (25)–(27):

( )2 , 2 ,Q x y xy=

( ) ( )( )2 2 2 2
6 , 2 3 3 ,Q x y xy x y x y= − −

( ) ( )( )4 2 2 4 4 2 2 4
10 , 2 10 5 5 10 ,Q x y xy x x y y x x y y= − + − +

( ) ( )( )6 4 2 2 4 6 6 4 2 2 4 6
14 , 2 21 35 7 7 35 21 .Q x y xy x x y x y y x x y x y y= − + − − + −

The ratio of the amplitude of the sixth (parasitic) spatial angular harmonic to the amplitude 
of the second (main) spatial angular harmonic is expressed as follows at a distance r from the 
symmetry axis, in accordance with expression (69),

( ) ( )
( )

( )
( )6 2

6 2

cos 3 2 cos 21 .
9

r rr I I
I R L L I R L L

πδ πδπ π   Ω =    π π   
(70)

Fig. 13 shows graphs for the dependence of Ω on the dimensionless ratio r/L for different 
values of the geometric parameter R/L; the value δ = 1/5 is used in this example1. In particular, 
it follows from the graphs that the amplitude of the sixth spatial angular harmonic for 2R L ≥  
does not exceed 5% of the amplitude of the second spatial angular harmonic if 1.75r L ≤ . (As 
in Fig. 10, the thin horizontal line in Fig. 13 corresponds to the 5% level of the quantity Ω.) The 
amplitudes of the remaining parasitic spatial angular harmonics will be significantly smaller and, 
as in the previous case, their influence can be neglected.

Notably, the relationship between the oscillation amplitude U0 of the static electric potential 
on the axis of the system and the quadrupole voltages ( )r

RU±  applied to the quadrupole segments 
of thin circular apertures for the "ideal" solution (9) is established by the equality

1 Varying the parameter δ ∈ [0,1] allows to change the factor multiplying Ω from 0 at δ = 1/3 to 3 at δ = 1. This 
multiplier is 0.618 for δ = 1/5. Naturally, at δ = 1/3, when the sixth harmonic vanishes, it is necessary to evaluate 
the ratio of the tenth harmonic to the second harmonic.
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( ) ( )0 2 .r
RU U I R L= π

At the same time, this relationship for model Fourier series (68) is established by the relation

( ) ( )( ) ( ) ( )2
0 28cos 2 1 .r

RU U I R L= πγ π − γ π
The distance from the edges of the electrodes where it is acceptable to use the analytical 

expressions given in this paper for conical RF funnels and RF funnels with curved profiles is 
estimated by a similar procedure.

Importantly, the boundary condition for analysis of conical RF funnels and RF funnels with 
curved profiles should be imposed using the envelope of the inner edge of the funnel rather than 
the straight line r = R. This envelope is determined from the condition that the analytical expres-
sion at the points ( ),k kz r  is equal to the electric voltage applied to the aperture and is the same 
(up to a sign) for all apertures.

Conclusion

Analytical expressions for electrical potentials obtained in this paper can be used for ana-
lyzing ion motion in radio frequency traps and radio frequency funnels incorporating circular 
apertures (in particular, segmented multipole apertures) with polynomial profiles. For instance, 
analytical expressions can be used to quickly qualitatively investigate and optimize the behavior 
of ions in these devices using a pseudopotential model of ion motion in high-frequency electric 
fields [35–37].

Considering weighted sums of analytical expressions that correspond to circular apertures and 
segmented multipole apertures placed along the axis with the same pitch allows to model the 
behavior of ions in traps and funnels with non-segmented sections different from the circular 
shape. If these sums correspond to the cases of apertures placed along the axis with multiple pitch 
and/or multiple multipole segmentation of electrodes, then it is possible to investigate the influ-
ence of parasitic spatial angular harmonics of the electric field induced by the imperfect geometric 
shape of the electrodes on ion motion.

The obtained analytical expressions for three-dimensional harmonic functions with polynomial 
oscillating behavior on the axis can also be useful in solving certain problems of mathematical physics.
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Аннотация. В работе исследовано влияние ростовых условий и состояния поверхности 

кремния на процессы формирования буферных слоев фосфида галлия GaP на 
подложках кремния Si (001). Предложен и развит двухстадийный метод эпитаксиального 
выращивания псевдоморфных однодоменных буферных слоев GaP на Si (001), 
обеспечивающий разделение стадий зарождения и роста слоя на подложке. В отличие 
от метода эпитаксии с повышенной миграцией, предложенная технология позволяет 
управлять профилем легирования буферных слоев GaP на Si, что важно для дальнейших 
функциональных применений. Найдены основные факторы, определяющие ориентацию 
кристаллической решетки GaP при ее зарождении на вицинальной поверхности 
подложки. Путем тщательного контроля ростового процесса на обеих стадиях методами 
просвечивающей электронной микроскопии (TEM), дифракции быстрых электронов 
на отражение (RHEED), атомно-силовой микроскопии (AFM) и высокоразрешающей 
рентгеновской дифрактометрии (HRXRD) доказано высокое структурное совершенство 
выращенных буферных слоев.
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Introduction

Integration of heterostructures based on АIIIBV semiconductor compounds on silicon allows to 
combine the advantages of highly developed silicon-integrated technology with the unique capa-
bilities of the technology for growing AIIIBV heterostructures, such as the implementation of elec-
tronic and optical interconnects by constructing a lateral energy band profile of the structure [1]. 
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A particular focus in the literature is on monolithic (epitaxial) integration of AIIIBV hetero-
structures on silicon substrates. It is assumed that directly growing AIIIBV makes it possible to 
expand the functionality of the resulting heterostructures and reduce the number of technological 
stages, compared with the purely hybrid technology (where preformed elements are transferred 
to silicon wafers).

However, high-precision epitaxial growth of AIIIBV layers on silicon surfaces is associated with 
a number of obstacles characteristic for heteroepitaxy, including the following:

defects in the crystal structure, appearing due to inelastic relaxation of misfit stresses (the mis-
match between the lattice parameters of the layer and the substrate);

symmetry mismatch between the crystal lattices of AIIIBV layer (zinc-blende structure) and 
Si substrate (diamond structure), leading to the formation of antiphase domains and antiphase 
domain boundaries between them in the epitaxial layer;

undesirable surface chemical reactions at the heterointerface;
significant difference in surface energies of silicon, epitaxial layer and heterointerface.
One of the most significant systems comprises the epitaxial layers of gallium phosphide (GaP) 

on the surface of a Si (001) silicon substrate. Even though all binary AIIIBV compounds exhibit the 
lowest mismatch of the GaP and Si crystal lattices (Δa/a amounts to only about 0.37% for these 
structures), the crystalline perfection of GaAs layers recently grown on Ge(001) substrate (Δa/a ≈ 
0.07%) or even GaAs layers grown through a metamorphic [2, 3] buffer on Si(001) (Δa/a ≈ 4%) 
often turns out to be higher than the quality of GaP layers on Si [4, 5]. The difficulties in growing 
gallium phosphide layers are due to the tendency of this material to the three-dimensional growth 
mechanism on the silicon surface and the possibility of undesirable surface chemical reactions. For 
example, phosphorus atoms can replace surface silicon atoms, disrupting the homogeneity of the 
surface [6, 7], while gallium can etch the silicon surface, leading to the formation of hollow voids [8].

Migration-enhanced epitaxy with alternate exposure of the substrate to phosphorus and gallium 
fluxes is commonly used to create epitaxial GaP layers on Si [9]. However, this technique makes 
it difficult to control the doping profile and inevitably reduces the service life of the shutters in 
the molecular beam epitaxy (MBE) system [10]. It is for these reasons that extensive research into 
alternative approaches to growing GaP buffer layers on Si is still underway [11].

The goal of this study is to develop a two-stage method of epitaxial growth of single-domain 
GaP buffer layers on a silicon substrate, which would ensure the separation of nucleation and 
growth stages of the gallium phosphide layer and include both low- and high-temperature stages, 
additionally allowing to forego the migration-enhanced epitaxy method.

For this purpose, it was necessary to establish the main factors determining the orientation of 
GaP lattice during nucleation on the vicinal surface of Si (001).

Two-stage method of epitaxial growth of GaP on Si (001)

Epitaxial heterostructures were grown on three-inch (75 mm) silicon wafers by molecular 
beam epitaxy (MBE). The heterostructures were grown on p-type vicinal Si (001) substrates with 
the electrical resistivity ranging from 0.3 to 3.0 Ohms·cm and the misorientation angle equal to 
4.0±0.5° in the <110> direction.

The Veeco GEN-III PA-MBE (plasma-assisted molecular beam epitaxy) system (Veeco, 
USA), equipped with cracker-type phosphorus and arsenic sources with needle valves was used in 
the study. The surface temperature was controlled by a thermocouple and a pyrometer calibrated 
by monitoring the surface phase transition Si (111) 7 × 7 → 1 × 1. The sources were calibrated 
by recording the molecular beam pressure (P(P2), P(Ga), P(Al)) with a Bayard–Alpert ionization 
gauge. The stoichiometric flux ratio P2/Ga (pressure ratio P(P2)/P(Ga) ≈ 6) was found by moni-
toring the accumulation of gallium droplets on the surface of the structure.

Before the silicon wafers were loaded into the MBE chamber, they were cleaned by the Shiraki 
method; a thin layer of SiOx oxide was formed on the surface of the wafer at the final stage of 
cleaning [12]. The surfaces of the Si (001) substrate and the forming epitaxial layer of gallium 
phosphide were studied in situ by reflection high-energy electron diffraction (RHEED). The sur-
face silicon oxide was removed by thermal annealing at T = 820 ± 10 °C (minimum required) for 
30 minutes. RHEED patterns exhibited one type of (2×1) reconstructed Si (001) surface.

Notably, higher annealing temperatures contributed to a (2 × 2) surface reconstruction. The 
detected phenomenon is likely associated with contamination of the silicon surface due to an 
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increase in the background pressure of group V elements [13, 14]. In order to reduce this pressure, 
relatively low temperatures were used for the sources, so that low growth rates were consequently 
obtained. The growth rate of the gallium phosphide layer was 90 nm/hour.

A uniform distribution of molecular fluxes during the growth process was achieved by azi-
muthal rotation of the substrate at 5 rpm. The phosphorus flux value P2 used for growing GaP and 
AlGaP layers exceeded the stoichiometric value by 1.33 times (pressure ratio P(V)/P(III) = 8).

An increase in the surface density and lateral size of defects representing voids with the depth 
exceeding the thickness of the formed layer was observed for a gallium phosphide layer grown 
with a stoichiometric ratio of P2/Ga fluxes. An excessive number of Ga atoms apparently accu-
mulated at the initial stages of growth at low values of the P2 flux, serving to etch the silicon sur-
face. The surface roughness increased significantly with a further increase in the ratio of P2/Ga 
fluxes, up to values exceeding the stoichiometric value by half or more, as a result of suppressed 
diffusion of group III atoms.

The technique we propose for epitaxial growth of gallium phosphide buffer layers on silicon 
substrates includes two stages: low- and high-temperature. The seed AlGaP layer and the first 
GaP layer are grown at the first stage, and the second GaP layer is grown at the second stage. 
This technology provides excellent conditions for a heterostructure to form both at the nucleation 
stage and at the growth stage of the epitaxial layer.

The main stages of the growth process and the structural model of the buffer layer are shown 
in Fig. 1.

We previously established that this technique allows to produce layers with smooth surface 
morphology [15], but studies of nucleation and growth of the crystalline structure of the layers 
went beyond the scope of the analysis. A separate low-temperature stage was considered in this 
study, with a seed AlGaP layer introduced, because a homogeneous epitaxial layer had to be 
grown over the entire surface of the substrate [16] at the initial stage. Therefore, immediately after 
the surface oxide was removed, the silicon substrate was cooled to a sufficiently low growth tem-
perature (440–460 °C), ensuring a small diffusion length of adatoms (atoms on the crystal surface) 
and a high nucleation density of GaP islands while preserving their structural quality. The sub-
strate was exposed to a P2 flux for 10 seconds immediately before the start of the growth process.

The growth process was not interrupted during transition to the high-temperature stage, and 
the substrate temperature was raised to 580 °C at a rate of 0.7 °C/s. Conversely, experiments 
indicate that if the growth process was stopped, the layer was no longer homogeneous, with voids 
appearing on its surface, which persisted and were not overgrown upon further growth of the 
gallium phosphide layer.

The temperature providing high quality of GaP (001) layers during homoepitaxy as chosen 
based on literature data [17] for the high-temperature stage. The high mobility of adatoms con-
tributed to a decrease in the density of structural defects, smoothing of the growth surface and 
consequent surface reconstruction observed from RHEED patterns. The total thickness of the 
GaP layer did not exceed 30 nm to avoid the formation of structural defects caused by inelastic 
relaxation of misfit stresses. The optimal conditions for growing gallium phosphide on silicon 

Fig. 1. Main steps of two-stage technique for growing GaP structure 
on p-Si(001) substrate (data on the left) and general structural model 

(the thickness values of low- and high-temperature GaP layers are given on the right)
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substrate were determined by synthesizing samples with different temperatures chosen for forming 
the low-temperature I–GaP layer (440 and 460 °C), different thicknesses of this layer (from 3 to 
19 nm) and the seed layer that was a solid Al0.6Ga0.4P solution (from 0 to 3 nm).

The quality of the buffer layer was preliminarily evaluated by atomic force microscopy (AFM) 
in tapping mode by comparing the roughness of the surface formed during coalescence of anti-
phase domains. The structural characteristics of buffer layers on silicon were studied by transmis-
sion electron microscopy (TEM) and high-resolution X-ray diffractometry (HRXRD) in symmet-
ric and asymmetric scattering geometries; this made it possible to establish the lattice matching 
in the plane of the layer and estimate the elastic stresses. The Panalytical X’PERT PRO MRD 
Extended X-ray diffractometer (Panalytical, the Netherlands) was used for HRXRD studies.

Growth of gallium phosphide on a silicon substrate

As known from the literature, two mutually orthogonal orientations of the crystal lattice with 
oppositely ordered sublattices of group III and V atoms can be observed under heteroepitaxy 
of AIIIBV compounds on the silicon surface, due to lower symmetry of the crystal lattice of the 
epitaxial layer compared with the substrate [9, 10]. For this reason, a crucial condition for grow-
ing single-domain GaP on Si(001) is the stabilization of the homogeneous P-terminated (2×1) 
Si(001) surface. Furthermore, it is required to find the nucleation conditions under which one 
type of chemical bond is established over the entire area of the heterointerface.

RHEED measurements allowed to not only study the state of the silicon surface but also to 
determine the preferred orientation of the nucleating GaP layer. Varying the incidence angle of 
the RHEED beam relative to the (001) crystallographic plane and, consequently, varying the 
position of the Bragg reflections and Kikuchi bands observed under azimuthal rotation of the 
viсinal substrate allowed to establish the orientation of the surface reconstructions of Si and GaP 
relative to the azimuthal misorientation of the substrate (Fig. 2).

Evidently, after thermal annealing of vicinal silicon substrate, superstructural reflections with 
double periodicity are only observed for the electron beam incident along the direction of azi-
muthal misorientation. This observation indicates that the dimer rows forming one type of (2×1) 
reconstructed Si surface are predominantly oriented perpendicular to the edges of the atomic 

a)

b)

c)

Fig. 2. Schematic for RHEED measurements in mutually orthogonal azimuthal 
orientations of Si substrate (a); resulting RHEED patterns for Si (001) (2×1) (b) 

and GaP (001) (2×4) (c) surface reconstructions
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steps and, consequently, most of the surface area of the substrate is occupied by atomic terraces 
separated by SB monoatomic steps or DB double steps. It was previously reported [10, 18–20] 
that one type of (2 × 1) reconstructed Si surface can be observed at high temperature (1000 °C) 
annealing of the vicinal Si (001) surface, which leads to the formation of a system of double 
atomic steps. We assume that an orthogonally oriented Si (1 × 2) reconstruction was not observed 
due to narrow atomic terraces on the vicinal Si surface (less than 10 nm) and low annealing tem-
perature (820 °C), insufficient for activation of surface diffusion in silicon and rearrangement of 
the system of atomic steps [21].

Analyzing the RHEED patterns for the high-temperature growth stage, we concluded that, two 
different orientations are obtained for the P-stabilized (2 × 4) reconstructed GaP (001) surface, 
depending on the temperature of the substrate selected for the low-temperature stage of GaP 
nucleation (440 or 460 °C).

The corresponding AFM images of the surface morphology and the RHEED patterns of GaP 
structures on Si with a 3 nm thick low-temperature I-GaP layer are shown in Fig. 3, a and b. In 
the case of GaP nucleation on a P-terminated silicon surface at 440 °C, the [110] direction [1/20] 
of GaP lattice turns out to be oriented perpendicular to dimer rows (parallel to the edges of the 
atomic steps in Si) forming the Si (2 × 1) superstructure [17]. Evidently, the Si (2 × 1) surface 
reconstruction corresponds to the GaP (2 × 4) surface reconstruction (Fig. 2,c).

The azimuthal orientations of RHEED patterns at which superstructural reflections are 
observed for GaP (2 × 4) are rotated by 90° in the case of GaP nucleation on Si surface at 460 °C 
(see Fig. 3,b); in this case, the Si (2 × 1) surface reconstruction corresponds to the GaP (4 × 2) 
reconstruction. Notably, rotation of the azimuthal orientation of GaP surface reconstruction 
cannot be caused by the transition from a phosphorus-stabilized to gallium-stabilized surface, 
as observed, for example, for the GaAs(001) surface [22], since both types of GaP (001) surface 
termination have identical periodicity and orientation of the (2 × 4) surface superstructure [23]. 
It is most likely that not only termination but also substitution of silicon atoms with phosphorus 
atoms becomes possible at higher temperatures of Si (001) surface. As a result, the [110] direction 
of the GaP lattice is oriented parallel to Si dimer rows (perpendicular to the edges of Si atomic 
steps), and the Ga and P sublattices turn out to be inverted relative to the first case.

It can be seen from the AFM images that the surface morphology of the samples also varies 
depending on the temperature selected at the initial growth stage. If the growth temperature of 

b)	 d)

a)	 c)

Fig. 3. Morphology and crystallographic orientation of GaP layers on vicinal Si (001) 
substrates (a–c); scheme for overgrowth of antiphase regions by dominant domain (d).

AFM surface images and corresponding RHEED patterns (collected at the final stage of layer growth) 
for growth temperatures of 460 °C (a) and 440 °C (b); AFM image for misorientation angle of 0.2 ° (c).

The red arrows indicate the directions of azimuthal misorientation of the substrate
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the I-GaP layer is 440 °C, a relatively smooth surface is observed with further high-temperature 
growth of GaP, embedded with separate regions deepened by 5–6 nm. The surface of the GaP 
layer formed on the low-temperature I-GaP layer grown at 460 °C consists of separate islands 
varying in height by about 30 nm.

The diffusion length of adatoms and the energy of the Ehrlich–Schwoebel barrier on the sur-
face of AIIIBV (001) compounds depend on the mutual orientation of step edges and the number 
of broken chemical bonds on the surface [24–26]. Therefore, the growth rate of GaP islands 
becomes higher if the [110] direction of the GaP lattice turns out to be oriented parallel to the 
edge of the atomic steps on the growth surface.

This effect was demonstrated for a structure grown on Si (001) surface with a small misori-
entation angle (about 0.2°) towards the <110> azimuth. The corresponding AFM image of the 
structure surface is shown in Fig. 3,c). Due to the anisotropy of growth rates, a prominent GaP 
domain is formed on the surface of the structure, and its islands evolve along the [110] direction 
oriented parallel to the edges of the atomic steps (see the schematic in Fig. 3,d).

As a result, atomically smooth regions are observed in the AFM images, whose surface rises 
above the antiphase regions of the layer with an orthogonally oriented GaP lattice (dark regions 
in AFM images, see Fig. 3.). Appearance of the corresponding antiphase regions in GaP can 
be associated both with the presence of atomic steps on the silicon surface with orthogonally 
oriented broken silicon bonds, and with the inhomogeneous chemical bonding at the GaP/Si 
interface. The first scenario is illustrated in Fig. 3,c: this is the case of the silicon surface with a 
small misorientation angle.

Thus, the growth experiments conducted indicate that the formation of antiphase domains is 
effectively suppressed only for a single mutual orientation of GaP lattice relative to the edges of 
silicon steps, observed under low-temperature nucleation of GaP on Si (001) surface at 440 °C. It 
was found that the proportion of the surface occupied by antiphase regions decreases with increas-
ing thickness of the low-temperature I-GaP layer. The corresponding AFM image of surface 
morphology of the GaP layer grown using the 10 nm thick I-GaP layer is shown in Fig. 4,a. The 
short diffusion length and high nucleation density at the low-temperature growth stage contribute 
to effective overgrowth of antiphase domains at the initial growth stage.

However, the height difference between the surfaces of the dominant and antiphase domains 
also increases due to the small lateral size (less than 10 nm) and the low growth rate of the anti-
phase regions. Consequently, void-like defects which not overgrown at the high-temperature stage 
may form on the surface of the GaP layer.

It was found in [27] that the presence of chemically active aluminum adatoms at the initial 
growth stage ensures uniform nucleation of the AlGaP solid solution layer and helps prevent an 
interfacial chemical reaction between Ga and Si.

We conducted a series of growth experiments, discovering that pre-growing a seed layer of 
Al0.6Ga0.4P or AlP solid solution no more than 1 nm thick at the low-temperature stage improves 
the smoothness of the surface of GaP layers. A comparative analysis for the dependence of buffer 
layer morphology on the thickness of the AlGaP seed layer is shown in Fig. 4. It is most likely 
that Al adatoms have a shorter diffusion length due to the higher chemical bond energy, which 
contributes to more homogeneous nucleation of the AlGaP layer on Si compared with GaP. 

a)	 b)	 c)

Fig. 4. AFM images for surface morphology of I-GaP layers (10 nm thick) on Si (001), 
illustrating the influence of Al0.6Ga0.4P seed layer thicknesses, nm: 0.0 (a), 1.0 (b), 3.3 (c)
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Conversely, excessively high thicknesses of the AlGaP seed layer (3 nm or more) produce a 
rougher growth surface.

The described observations show that overgrowth of antiphase regions in the GaP layer should 
be carried out at the low-temperature stage. The thickness of the low-temperature layer should 
be comparable with the lateral size of the antiphase regions. The subsequent high-temperature 
growth stage determines the structural perfection and atomic smoothness of the GaP surface.

Therefore, it is possible to almost completely suppress the formation of antiphase regions as 
well as increase the smoothness of the GaP layer surface, if an AlGaP seed layer about 1 nm 
thick is used, and the thickness at the low-temperature stage is doubled, up to 20 nm. The final 
arrangement of the structure layers as well as the AFM image of the surface are shown in Fig. 5, 
a and b, respectively.

Structural properties of thin GaP layers on Si (001)

The microscopic nature of structural defects in the GaP buffer layers on Si grown by the 
optimized two-stage technique was investigated by the TEM method. A characteristic dark-field 
TEM image with diffraction contrast for orientations of the diffraction vector g = 002 is shown 
in Fig. 5,c. A thin layer formed by a network of misfit dislocations is visible in the region of the 
heterointerface with the substrate [28]. Notably, the contrast associated with antiphase domains 
could not be reliably detected in dark-field TEM images [29].

Accordingly, the TEM data confirm that the formation of antiphase domains stops at the ini-
tial stages of buffer layer growth.

Integral information on the structural characteristics of GaP buffer layers was obtained by 
HRXRD in symmetric and asymmetric scattering geometries; this allowed to establish the lattice 
matching in the plane of the layer and to estimate the elastic stresses. The XRD ω–2θ scans, 
obtained for the GaP layer grown by the optimized two-stage technique (Fig. 6,a),exhibit well-re-
solved interference fringes pointing to the formation of an atomically smooth GaP surface and a 
sharp GaP/Si heterointerface.

The period of these fringes corresponds to a GaP layer thickness of 33 nm, which is in good 
agreement with the computational value (30 nm). The reciprocal space map obtained for the dif-
fraction intensity near the asymmetric Si (224) Bragg peak (see Fig. 6,b) indicates that the GaP 
lattice in the (001) plane exactly repeats the substrate lattice, i.e., Bragg reflections of the film and 
the substrate correspond to identical values of lateral momentum transfer Qxy.

To summarize, uniaxial anisotropic deformation along the [001] direction is observed in the 
GaP layer. In turn, the ω-rocking curves near the (004) Bragg peak (see the inset in Fig. 6,a) 
exhibit both an intense narrow coherent component with a FWHM of about 11–12″, which is 

b)

a)	 c)

Fig. 5. Experimental search for optimal conditions for single-domain 
formation of GaP buffer layer on Si(001) with atomically smooth surface:

model of resulting structure with growth factors (a); AFM image of surface morphology (b) 
(main crystallographic directions of GaP and direction of azimuthal orientation of Si are marked 

by white and red arrows, respectively); dark-field TEM image with diffraction contrast (c) 
(g = 002 is the applied diffraction vector)
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only twice the FWHM of the substrate peak, and a weak wide diffuse component (more than 
200″), which indicates a nonuniform distribution of elastic stresses. In general, the rocking curves 
indicate a high degree of lateral spatial coherence of the epitaxial layer (about 2.45 µm), suggest-
ing a high level of structural perfection.

Conclusion

In this paper, we established the influence of growth factors and the state of the silicon surface 
on the formation of GaP buffer layers on Si(001) substrates.

It was proved that single-domain GaP layers of high structural perfection can be grown epi-
taxially on the vicinal Si (001) surface with a misorientation angle and azimuth of 4.0 ± 0.5° and 
<110>, respectively, without resorting to migration-enhanced epitaxy methods or synthesis of 
homoepitaxial buffer layers of silicon.

We also clarified the effect of seed layers in solid AlGaP structures of nanometer thickness 
on the process of annihilation of antiphase domains and the density of point defects on the 
GaP surface.

A two-stage procedure was developed for epitaxial growth of GaP buffer layers on Si (001), 
providing separation of the stages of nucleation and growth of the GaP layer and consisting of 
low-temperature (440 °C) and high-temperature (580 °C) stages. Unlike the migration-enhanced 
epitaxy method, the proposed approach provides the ability to control the doping profile of GaP 
buffer layers on Si. The thin GaP buffer layers grown on silicon have a pseudomorphic single-do-
main structure and an atomically smooth surface (the RMS roughness was less than 2 nm).

We believe that our study makes as an important step towards further advances in the technol-
ogy for growing AIIIBV heterostructures on silicon, valuable for manufacturing applications.

a)	 b)

Fig. 6. Data from high-resolution X-ray diffractometry of GaP buffer layers on Si substrate:
experimental (blue) and computational (red) X-ray diffraction ω–2θ scans near specular Si (004) Bragg 
peak (a); reciprocal space map of diffraction intensity distribution near asymmetric Si (224) Bragg peak (b)

Inset: ω-rocking curve near GaP (004) reflection
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Abstract. In the paper, the experimental data on the temperature effect on the breakdown 

strength of polypropylene, polycarbonate and poly(ethylene terephthalate) films 2.0–2.5 
μm thick have been obtained over a temperature range from 293 to 363 K. When the film 
samples were heated, the breakdown electric field strength was found to decrease slightly but to 
reveal a significant scatter of values. It was shown that the experimental results on the pulsed 
electrical breakdown of the polymer films could be described basing the notion of the ionization 
mechanism of the polymer breakdown, not related to the development of an impact ionization 
of the polymer molecules.
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Аннотация. В работе исследовано влияние температуры на пробивную напряженность 

пленок полиэтилена, поликарбоната и полиэтилентерефталата толщиной 2,5  –  2,0 
мкм в температурном диапазоне 363 – 293 K. Установлено, что при нагреве образцов 
пленок пробивная напряженность электрического поля уменьшается незначительно, 
но обнаруживает существенный разброс значений. Показано, что экспериментальные 
данные по импульсному пробою полимерных пленок можно описать на основе 
представления об ионизационном механизме пробоя полимеров, не связанном с 
развитием ударной ионизации их молекул.

Ключевые слова: полимерная пленка, импульсный пробой, пробивная напряженность, 
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Introduction
Steady interest towards the dielectric strength of polymer dielectrics has persisted for many 

decades, due to the great scientific and practical implications of this characteristic for studies of 
the breakdown phenomenon. The vast majority of publications on this issue consider electrical 
breakdown in polymers exposed to DC and AC voltages. Considerably scarcer data are available on 
the picture of impulse breakdown of polymers, mainly consisting of results obtained decades ago 
[1–3]. Technical advances made in recent years allow detecting breakdown characteristics under 
nanosecond voltage pulses, recording breakdown times and voltages with high accuracy [4–9].

One of the most important factors influencing the evolution of electrical degradation and breakdown 
in polymer dielectrics is temperature. Its role under the influence of voltage pulses was studied in large 
samples of poly (methyl methacrylate) (PMMA) [2], polyethylene (PE) and polytetrafluoroethylene 
(PTFE) [3]. The effect of temperature on the breakdown strength Fbr turned out to be different for 
different polymers. Fbr decreased by more than 25% in PMMA samples under heating from 293 to 433 
K, while the value of Fbr for PE and PTFE remained virtually constant in the same temperature range.

Polymer films are a special group in the diverse range of dielectric materials. They are widely 
used in electrical engineering, for example, for manufacturing high-voltage capacitors, or for syn-
thesis of films ranging in thickness from several to tens of μm that serve as convenient samples for 
studies of electrical aging and breakdown in polymer material. However, the effect of temperature 
on the impulse strength of polymer films is yet to be fully explored.

The goal of this study is to understand the nature of the temperature effect on the characteris-
tics of impulse strength of various polymer films at room and elevated temperatures.

Experimental procedure

Industrial films made of polypropylene (PP) with the thickness of 2.0 µm, polycarbonate (PC) 
and polyethylene terephthalate (PET) with the thickness of 2.5 µm were used. The polymers used 
to synthesize these films are characterized by varying degrees of polarity, glass transition and soft-
ening temperatures as well as different morphology of the material structure.

The films were fixed in a special circular holder and placed between steel electrodes, one disc-
shaped (40 mm in diameter) and the other sphere-shaped (6 mm in diameter). The surface of the 
electrodes was polished to a specular gloss. The space between the spherical electrode and the film was 
filled with capacitor oil to prevent edge and surface discharges. A high-voltage pulse of negative polarity 
with an amplitude of 2.5 kV and rise time of about 130 ns was applied once to the given film samples.

The electrode system used provided an electric field close to homogeneous in the region of film 
breakdown. Since breakdown of films occurred at the leading edge of the pulse, it is preferable 
to use the value of the breakdown strength Fbr to evaluate their impulse strength, defining it as

Fbr = Ubr/d,
where Ubr is the voltage in the sample at the time of breakdown, d is the thickness of the film.

Ubr was measured with an ADS-2332 broadband storage oscilloscope and a high-voltage broad-
band divider with a cutoff frequency of 300 MHz, allowing to directly record the voltage varia-
tions in the sample. The time of film breakdown was detected in the waveforms by a sharp voltage 
drop and occurrence of oscillations. A typical waveform recorded at the time of breakdown at the 
leading edge of the pulse is shown in Fig. 1.

Electrical tests were carried out in the temperature range of 293–363 K. We should note 
that the chosen upper temperature limit was lower than the softening temperature of any of the 
polymers considered to prevent the spherical electrode from penetrating through the film with a 
consequent decrease in its breakdown voltage.
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Experimental results and discussion

The voltages Ubr of polymer dielectric mate-
rials, including polymer films, are characterized 
by a significant scatter, therefore, breakdown tests 
should be repeated multiple times, and their results 
should be statistically processed. At least 50 sam-
ples of each polymer film were tested for break-
down at each temperature; the values of Fbr found 
were used to calculate the empirical distribution 
function f(F) determining the breakdown proba-
bility in polymer film when the voltage U (elec-
trostatic field strength F) is reached. The values of 
the function f(F) were calculated by the formula

f(F) = n/N, (1)

where N is the number of tests performed, 
N ≥ 50; n is the number of samples experiencing breakdown when the field strength F is reached.

It was established in [10–12] that the Weibull model of failure probability is applicable for 
statistical analysis of the results obtained for electrical breakdown under both DC and pulse 
voltages applied to polymer dielectrics. For this reason, a two-parameter Weibull distribution 
was used to approximate the empirical distribution function determined by relation (1), taking 
the form

f(F) = 1 – exp[–(F/F0)
m], (2)

where m is the shape parameter, F0 is the scale parameter.
The parameters m and F0 are easily evaluated using the least squares method 

with expression (2) linearized.
Fig. 2 shows a typical form of the linearized functions f(F) for polymer films studied for break-

down at different temperatures. The correlation coefficient of the approximating lines turned out 
to be higher than 0.97 in all cases, confirming the validity of the linear approximation used. The 
values of the parameters m and F0 were calculated by the least squares method, and then used to 
calculate the first four moments μk of the distribution function [13]: 

/
0

0

exp( ) .k k m

k
F x x dx

∞

µ = −∫ (3)

This is the expected value of the Weibull distribution Fbr (at k = 1), its variance σ (at k = 2), 
skewness μ3 (at k = 3) and kurtosis μ4 (at k = 4).

Fig. 3 shows the temperature dependences for the skewness and kurtosis of the function f(F) of 
the studied polymer films. Evidently, μ3 ≠ 0 for all temperatures, and the skewness values calcu-
lated at different temperatures are close; therefore, the functions f(F) cannot be considered sym-
metric. However, the values of skewness μ3 are small and predominantly positive, which indicates 
a slight positive skewness of the function f(F).

The kurtosis μ4 of this function varies from 2.5 to 3.5 in the studied temperature range, 
and does not depend on temperature. Note that the normal distribution should have zero 
asymmetry and a kurtosis equal to 3 [13]. The values of μ3 and μ4 that we calculated are close 
to these values, however, the breakdown voltage distributions that we obtained cannot be 
considered normal.

The temperature dependences of the most probable breakdown strength and the corresponding 
variances at each temperature are shown in Fig. 4 for all three types of polymer films. The values 
of Fbr show a significant scatter for all polymers in the temperature range considered, showing a 
trend towards decrease with increasing temperature (at least for PP and PC films).

Fig. 1. Typical signal waveform at time 
instant of breakdown for 2.0 or 2.5 µm thick 

polymer film at pulse leading edge
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c)

a)	 b)

Fig. 2. Linearized Weibull distribution functions for PP (a), PET (b) 
and PC (c) films at different temperatures in the range of 293–363 K

Fig. 3. Temperature dependences for skewness (μ3, lower symbols) and kurtosis (μ4, upper symbols) 
of breakdown strength distribution in PET films (symbols 1), PP (2) and PC (3)
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Student’s t-test was applied to statistically validate the hypothesis of the decrease in Fbr in poly-
mer films under heating taking into account a small number of sample elements (determined by 
the number of temperature points for which the tests were carried out). The sample of Fbr values 
for each polymer was divided into two groups with equal number of temperature points, low-
temperature and high-temperature ones; next, Student’s t-test (with a confidence interval of 90%) 
was used to compare the corresponding average values calculated for each of these groups [14]. 
The results obtained by this technique indicate that the hypothesis formulated about the effect of 
temperature on Fbrcan be accepted only for the PC film within the given confidence interval. The 
effect of temperature on Fbr cannot be estimated as significant for PP and PET films.

Notably, neither the PP film nor the PC film changed their phase state during the heating 
process, since in the first case, the glass transition region is 253–263 K [15] and the PP film was 
in elastic state at a temperature above room temperature; on the contrary, in the second case, the 
glass transition temperature Tg ≈ 415 K and the PC film was in a glassy state, even at the highest 
temperature of 363 K (used in our study). As for the PET film, its glass transition temperature is 
Tg ≈ 343 K, i.e., Tg lies in the temperature range we considered but no noticeable change in Fbr 
was observed at this point.

Additional data obtained during electrical tests of polymers in a DC field confirm that a sharp 
decrease in their breakdown strength occurs in the glass transition temperature region [16, 17]. 
Thus, it can be assumed that unfreezing of molecular mobility in polymers does not have a notice-
able effect on impulse strength of polymer dielectric films, which is likely due to the short-term 
effect of the electric field on the polymer. Indeed, this time interval does not exceed 100 ns for 
film breakdown at the leading edge of the pulse.

c)

a)	 b)

Fig. 4. Temperature dependences of most probable breakdown strength 
for PP (a), PET (b) and PC (c) films
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It was found that the time interval for the final stage of electrical breakdown in polymer films, 
when fracture of the dielectric material occurs accompanied by the formation of a breakdown 
channel, is approximately 10–9–10–8 s; the amplitude of breakdown current density reaches values 
of about 107 A/cm2 [17, 18].

Note that the voltage oscillations in the sample, always detected in the waveforms after break-
down, can last for several hundred nanoseconds (see Fig. 1), but their occurrence is due to 
response of the measuring circuit to a short-term pulse of the breakdown current [18]. Evidently, 
finding out the reason behind such a rapid increase in current during breakdown remains one of the 
most important goals, which should allow to gain a better understanding of the picture of impulse 
breakdown in polymer dielectric films, as no consensus has been reached on this phenomenon.

Two possible physical mechanisms governing electrical breakdown in polymers are collisional 
ionization generating an electron avalanche [4, 9, 19, 20] and field-induced (tunneling) ioniza-
tion of macromolecules [6–8]. We should note that the hypothesis of collisional ionization in 
polymers has faced much criticism in the recent years (see, for example, [6–8]). The cause for 
criticism is that the mean free path of electrons in polymer dielectrics does not exceed 1–3 nm, 
while electrons cannot gain the energy of 6–7 eV necessary for ionization of polymer macromol-
ecules in a realistically achievable electric field.

On the other hand, the probability of large nanopores appearing in polymers increases with 
increasing temperature [21]. It is hypothesized in [22] that collisional ionization occurs precisely 
in such pores. The theory based on these hypotheticals [22] suggests a sharp dependence of break-
down strength on temperature, especially pronounced at temperatures above the glass transition 
temperature of the polymer. However, as mentioned above, the value of Fbr is virtually indepen-
dent of temperature in the case of impulse breakdown of polymer films.

As discussed in [6–8], the theory behind field-induced (tunneling) ionization of macromol-
ecules can be used to explain the picture of impulse breakdown in polymers. According to this 
theory, electrons and positively charged molecular ions (holes) appear as a result of field-induced 
ionization of macromolecules. The explosive increase in their concentration is due to the Debye 
screening effect, manifesting when a certain critical charge density is reached. Debye screening 
leads to a decrease in the ionization energy of macromolecules and consequently to self-acceler-
ation of the field-induced ionization process. The theory was expanded in [8], suggesting expo-
sure to voltage pulses accelerates the field-induced ionization of macromolecules at the leading 
edge of the pulse. The reason for this effect is that electrons injected from the cathode can gain 
energy sufficient to excite molecules but not to ionize them in an electric field. Excited polymer 
molecules are ionized at lower field strengths than molecules in the ground state. Therefore, the 
critical concentration of electrons and holes is achieved in less time, which is the actual reason 
for breakdown at the leading edge of the pulse. According to the explanation given in [8], a slight 
decrease in the breakdown strength of polymer films under heating is associated with an increase 
in the free electron concentration both due to an increase in injected current density and due to 
an increased probability of thermally stimulated electron emission from traps.

Conclusion

This paper reports on the experimental study of the temperature effect on the breakdown 
strength of thin polymer dielectric films of polypropylene, polycarbonate and polyethylene tere-
phthalate in the temperature range from 293 to 363 K. We found that the two-parameter Weibull 
distribution can be used for statistical processing of experimental results. The parameters of this 
distribution, determined at each temperature for each film, allow to calculate the most probable 
breakdown strength Fbr and its variance σ. It was found that the value of Fbr decreases slightly in 
polymers heated in the given range but is characterized by significant scatter that does not depend 
on temperature.

We established that the experimental data on the temperature effect on the impulse strength 
of polymers can be explained via the ionization mechanism of polymer breakdown, which is not 
associated with collisional ionization developing in the polymers.
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