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ELECTRIC CHARGE RELAXATION IN THE POLYETHYLENE  
WITH MINERAL INCLUSIONS OF DIATOMITE

Yu.A. Gorokhovatsky, N.S. Demidova, D.E. Temnov 

Herzen State Pedagogical University of Russia, St. Petersburg, Russian Federation

The paper considers methods for increasing stability of polyethylene’s electret state by add-
ing diatomite particles to its composition. The results of analyzing the IR spectra, the involved 
materials’ temporal and temperature stability are presented. Mechanisms for improving the 
stability of the composite polyethylene’s electret state are discussed.
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РЕЛАКСАЦИЯ ЭЛЕКТРИЧЕСКОГО ЗАРЯДА 
В ПОЛИЭТИЛЕНЕ С МИНЕРАЛЬНЫМИ 

ВКЛЮЧЕНИЯМИ ДИАТОМИТА

Ю.А. Гороховатский, Н.С. Демидова, Д.Э. Темнов 

Российский государственный педагогический университет им. А.И. Герцена, 
Санкт-Петербург, Российская Федерация

В работе рассматриваются методы повышения стабильности электретного состояния 
полиэтилена путем добавления в его состав частиц диатомита. Приводятся результаты 
исследования ИК-спектров, временной и температурной стабильности исследуемых 
материалов. Обсуждаются механизмы улучшения стабильности электретного состояния 
композитного полиэтилена.
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Introduction

Polyethylene is one of the most widely 
used polymeric materials. At the moment, the 
polyethylene’s electret properties are studied to 
create the active packages. One of the ways to 
increase the electret state stability is the creation 
of the composite material [1, 2]. Studies 
performed in Ref. [3] showed that adding 
aerosil in polyethylene leads to a significant 
improvement in the electret state stability of the 
obtained composite material. Aerosil is a very 
pure amorphous non-porous silicon dioxide 
with a particle size of 5 to 40 nm. Diatomite 
is another modification of silica. Diatomite is a 
more promising material for creating composites 
based on polyethylene because of its low cost.

In the work, the electret stability of 
composite polyethylene with diatomite has 
been compared with pure polyethylene films’ 
stability using various methods.

 We used such methods as thermostimulated 
potential relaxation, isothermal potential 
relaxation, depolarization with registration of 
short-circuit currents of a pre-charged dielectric 
and IR spectroscopy. The film thickness was 
about 1 mm.

Experimental technique

Samples were made by rolling and 
subsequent pressing. The Kazan National 
Research Technological University equipment 
was used. High pressure polyethylene, the 
brand 15313-003, GOST 7699-78 was used 
for creating the composite material. Mixing 
of the starting polyethylene with the filler 
was carried out in a mixing chamber. The 
mixing chamber consisted of 2 half cylinders 
containing horizontally rotating rolls. For the 
better distribution of filler particles, the rolls 
rotated in the opposite directions and had 
different rotation speeds. The temperature in 
the mixing chamber was 420–430 K.

The films were created using the pressing 
method in accordance with GOST 12019-66. 
The mold was a frame between two polished 
plates. Lavsan film was used to prevent the 
pressed sample’s adhesion to the mold plates. 
The mold with the composite material was 
placed between the cooling plates, which, in 
turn, were placed between the heated plates. 
After the sample heating, the press plates 
were closed to create the necessary pressure 
and withstood the necessary time. After that, 
the samples were cooled by water, then the 
pressure was removed from the plates, the 
press was opened and the samples were 
removed.

Diatomite distribution was monitored using 
a Nikon Eclipse LV150 optical microscope. 
IR spectra were obtained by means of a FSM 
1202 Fourier spectrometer. When studying 
the electret state stability by the isothermal 
and thermally stimulated potential relaxation 
methods, the films were polarized in a corona 
discharge at 5 kV.

Electrically active defects’ activation energy 
was calculated using the Tikhonov regulatory 
algorithms.

Experimental results and discussion

Our study of the composite materials 
without treatment did not show a significant 
effect of diatomite on their electret properties. 
Earlier it had been shown that the main 
mechanism of deterioration the polyethylene’s 
electret properties was the presence of water 
molecules in it [4 – 7]. Diatomite, being a 
natural mineral, also contains water, which 
can impair the composite’s electret properties. 
To reduce the amount of physically absorbed 
water in the composite structure, before 
studying the properties, samples were annealed 
in a muffle furnace for 1 h at a temperature 
T = 400 K.

Fig. 1.  Optical images of slices of the polyethylene films including diatomite; 
a filler content (% vol.) is 2 (left), 4 (in the center) and 6 (right) 
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The addition of diatomite to polyethylene leads 
to its gray color, so that the distribution of the filler 
in the polyethylene film can be controlled optically.

Fig. 1 shows the optical images of 
polyethylene film’s slices with a diatomite 
concentration of 2, 4, and 6 % vol. Analysis of 
the filler distribution showed a uniform pattern 
of diatomite in the polyethylene film.

The optical spectroscopy method is 
highly effective in studying the physical and 
physicochemical properties of water-containing 
polymer objects [8 – 10]. Fig. 2 shows the infrared 
(IR) transmission spectra of the initial low density 
polyethylene (LDPE) and composite polyethylene 
with 6 % diatomite. Absorption bands in the 
region of 1500–1650 cm–1 are associated with the 
presence of water dissolved in the polymer. These 

spectra show the presence of water in the initial 
LDPE film and its substantial decrease with the 
addition of diatomite (see Fig. 2).

In order to study directly the electret 
state stability in the composite polyethylene, 
the films were investigated by the isothermal 
potential relaxation method at a temperature 
of 343 K. The films were polarized in a corona 
discharge at 5 kV for 360 s. The polarization 
temperature was 360 K.

Fig. 3 shows the time dependence of the 
electric potential relaxation for films of 
pure polyethylene and polyethylene with 
the different diatomite content. The graphs 
show a significant increase in the stability of 
polyethylene films when diatomite is introduced 
into their composition.

Fig. 2. IR transmission spectra of LDPE (1) and of the composite of LDPE + 6 % diatomite (2). 
The presence of water is highlighted

Fig. 3.  The time dependences of the surface potential relaxation for pure polyethylene film 
(in the inset) and composite polyethylene with the different diatomite content
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The diatomite adding into the polyethylene 
films leads to the stability increasing that 
it is obvious from the spectra obtained by 
thermostimulated potential relaxation method 
(Fig. 4). The thermally stimulated potential 
relaxation spectra were obtained both for 
the unannealed and annealed films of the 
polyethylene with 4 % diatomite; these curves 
are compared in Fig. 4. The graphs show a 
significant improvement of the composite 
polyethylene film’s electret state stability 
after annealing. Thus, nonannealed films of 
composite polyethylene with diatomite did not 
exhibit high electret stability.

The electrically active defects’ activation 
energy is one of the main characteristics of 
the relaxation process of electric charge decay 
[11]. To calculate this parameter, the study of 
pure and composite polyethylene was carried 
out by the method of thermally stimulated 
depolarization (TSD). A TSC-II setup by 
Setaram (France) was used for measurements. 
Sensitive electrometer Keithley 6517 is the 
main measuring device of the setup. The 
thermostimulated currents were measured in 
the temperature range between 290 and 380 
K at the fixed heating rate. The heating rate 
was from 5∙10–2 to 1,5∙10–1 K/s. The samples 

Fig. 4. The temperature dependences of the surface potential relaxation for the pure annealed 
polyethylene films and the composite polyethylene (unannealed and annealed) 

with the different diatomite content

Fig. 5. Thermally stimulated depolarization spectra of the pure polyethylene films and of the composite 
polyethylene ones with diatomite. The heating rates (K/s) were 5·10–2 (a), 1.0·10–1 (b) and 1.5·10–1 (c). 

For pure polyethylene films, the current value was reduced by 10 times 
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were polarized in the electric field Ep = 500 V/
mm at a polarization temperature Tp = 343 K, 
during a polarization time of 300 s. After the 
electric field exposure for 300 s, the samples 
were cooled in the applied field with a rate of 
3,3∙10–2 K/s up to 293 K. The thermostimulated 
currents’ spectra are shown in Fig. 5.

TSD data were processed using Tikhonov’s 
regularizing algorithms. Fig. 6 shows the 
reconstructed distribution functions of the 
electrically active defects. It can be seen from 
the graphs that the maxima shift towards the 
higher energy and the distribution broadens with 
increasing the diatomite concentration. Table 
shows the values of the electrically active defects’ 
activation energy for all the compositions. The 
activation energy value obtained in this work 
for electrically active defects for polyethylene 
without filler is in good agreement with the 
results of our previous studies [12].

Summary

Our study showed that the creation of com-
posite polyethylene based on diatomite could 
increase the electret stability of LDPE. The 
adding diatomite to polyethylene leads to in-
creasing the charge traps’ activation energy, 
at least up to a concentration of 6 vol%. Di-
atomite can be used for creating composite 
polyethylene to increase its electret stability in 
order to create active packages. It is important 
to continue further studies of the electret sta-
bility of polyethylene composite films with a 
higher concentration of diatomite and to study 
other fillers containing silicon dioxide.

The research was supported by the Russian 
Foundation for Basic Research (Grant No. 19-
32-90271) and the Ministry of Science and High-
er Education of the Russian Federation (Project 
No. FSZN-2020-0026).

Fig. 6.  The energy distribution functions of electrically active defects in the pure polyethylene (pe) 
and the composite one with the different diatomic (d) content (% vol.)

Tab l e
The values of the electrically active defects’ activation energy 

for pure and composite LDPE films

Diatomite
concentration, 

% vol.
Activation energy,

eV

0 1.1 ± 0.1
2 1.4 ± 0.1
4 2.2 ± 0.2
6 2.6 ± 0.3

Foo tno t e . Tikhonov’s regularizing algorithms were used.
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In this paper, the effect of the distribution profile of the doping acceptor impurity concen-
tration in the base region of the CdS/por-Si/p-Si heterostructure on the efficiency of solar en-
ergy conversion parameters has been studied. It was established that the solar energy conversion 
efficiency depended on the degree of a doping acceptor impurity depletion of the near-surface 
p-Si layer in the por-Si/p-Si heterojunction. The distribution profile of the impurity concentra-
tion in this space is formed during the growth of a porous silicon layer. This profile is controlled 
through changing the technological parameters of the process of a porous film growing: the 
current density and the duration time of the electrochemical etching. A gain in the conversion 
efficiency of solar energy was explained by an increase in the penetration depth of the electric 
field into the base region due to formation of a certain type of the impurity concentration 
distribution profile. In the final, this profile promotes the rapid carry-away of charge carriers 
generated by the light from the base region. This carry-away occurs before the carrier recom-
bination moment involving traps.
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ВЛИЯНИЕ ЛЕГИРУЮЩЕЙ ПРИМЕСИ  
НА ЭФФЕКТИВНОСТЬ ПРЕОБРАЗОВАНИЯ СОЛНЕЧНОЙ 

ЭНЕРГИИ ГЕТЕРОСТРУКТУРОЙ CDS/POR-SI/P-SI

В.В. Трегулов

 Рязанский государственный университет имени С.А. Есенина, 
г. Рязань, Российская Федерация

В работе исследуется влияние профиля распределения концентрации легирующей 
акцепторной примеси в базовой области гетероструктуры CdS/por-Si/p-Si на параметры, 
характеризующие эффективность преобразования солнечной энергии. Установлено, 
что указанная эффективность зависит от степени обеднения легирующей акцепторной 
примесью приповерхностного слоя дырочного кремния (p-Si), входящего в структуру 
гетероперехода por-Si/p-Si. Профиль распределения концентрации примеси в данной 
области формируется в ходе роста слоя пористого кремния. Управление характером 
профиля распределения осуществляется через изменение технологических параметров 
процесса роста пористой пленки: плотностью тока и длительностью электрохимического 
травления. Повышение эффективности преобразования солнечной энергии объясняется 
увеличением глубины проникновения электрического поля внутрь базовой области за 
счет формирования определенного вида профиля распределения концентрации примеси. 
В конечном итоге вид профиля способствует быстрому выносу из базовой области 
носителей заряда, генерируемых светом; вынос происходит до момента рекомбинации 
носителей при участии ловушек.
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Introduction

Currently quite a lot of interest is being shown 
in the study of the solar photovoltaic converter 
based on the CdS/por-Si/p-Si heterostructure 
[1, 2]. The CdS film plays the role of an optical 
window and significantly expands the spectral 
sensitivity region of the photovoltaic converter 
[3, 4]. The por-Si layer is a buffer that reduces 
the mechanical stresses arising between the 
silicon substrate and the CdS film due to the 
difference in the lattice constants (about 7 %) 
[4, 5]. In addition, the por-Si film reduces the 
reflectivity of the front surface of the CdS/
por-Si/p-Si photovoltaic converter [4]. An 
important advantage of the CdS/por-Si/p-Si 
heterostructure is the absence of the need to 
form a p – n junction by diffusion in p-Si. This 
will reduce the complexity of the manufacturing 
process of the photovoltaic cells and its cost, 
which is important in mass production. Thus 
the CdS/por-Si/p-Si heterostructure is relevant 
for use in solar energy.

 In this regard the urgent task is to develop 
solutions aimed at increasing the efficiency of 
the CdS/por-Si/p-Si heterostructure as a solar 
energy converter.

One way to solve this problem is to increase 
the collection efficiency of charge carriers 
generated by light in the absorbing region of 
the photovoltaic converter. It is well known 
that the separation of photogenerated charge 
carriers occurs under the influence of an 
electric field concentrated in the space charge 
region (SCR) of the photovoltaic converter 
barrier layer (in our case, a heterojunction). 
Due to the strong electric field the carriers are 
removed from the SCR before they have time 
to recombine through the participation of traps 
[6]. Thus, to increase the efficiency of carrier 
separation, it is advisable to create conditions 
for expanding the region located inside the 
absorbing layer in which the strongest electric 
field is concentrated. For this purpose, it is 
desirable to set up a concentration gradient 
of the dopant in the surface region of the 
absorbing layer of the photovoltaic converter 
[6, 7]. According to Ref. [6] these methods 

lead to an increase in the efficiency of solar 
energy conversion due to an increase in open 
circuit voltage and short circuit current. 

The experimental samples studied in this 
work are similar to the CdS/por-Si/p-Si 
heterostructure investigated in Ref. [8] where 
it was shown the largest contribution to the 
photocurrent to make by charge carriers 
absorbed in p-Si. In addition, the SCR of the 
studied heterostructure was almost completely 
concentrated in the surface region of the p-Si 
heterojunction of the por-Si/p-Si. Thus, the base 
region of the CdS/por-Si/p-Si heterostructure is 
located in the near-surface p-Si layer close to the 
por-Si/p-Si heterojunction. The charge carriers 
generated by light are separated by the electric 
field of the por-Si/p-Si heterojunction [8].

The high-frequency capacitance – voltage 
(C – V) characteristics of por-Si/p-Si structures 
were studied, and in this case the por-Si film 
was formed by anodic electrochemical etching 
at various values of the etching duration tet and 
the anode current density Jet [9, 10]. It was 
found that with an increase in Jet and tet in 
silicon, a depleted dopant region was formed 
near the por-Si/Si heterojunction.

In this paper, the influence of the distribution 
profile of the acceptor dopant concentration on 
the solar energy conversion efficiency for the 
absorbing p-Si layer of the CdS/por-Si/p-Si 
heterostructure has been investigated. 

In order to control this distribution 
profile, a por-Si film of the samples under 
investigation was formed at different values 
of the etching duration tet and the anode 
current density Jet.

The technology of manufacturing 
experimental samples

For the preparation of experimental CdS/
por-Si/p-Si samples the p-type single-crystal 
silicon wafers with a specific resistance of 1 
Ohm·cm doped with boron and a surface ori-
entation of (100) were used. The concentra-
tion of the doping acceptor impurity in the 
silicon wafers was 1.5·1016 cm–3. The por-Si 
film was made by the technique of anodic 
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electrochemical etching in the galvanostatic 
mode. An electrolyte consisting of HF and 
C2H5OH in a ratio of 1:1 was used. Several 
samples were made with different values of Jet 
and tet (See Table). The time tet values for the 
samples were chosen so that the por-Si film 
thickness at different Jet values was approx-
imately the same. After the por-Si film was 
grown, the surface of the samples was etched 
in an aqueous HF solution (10 %) for 10 min. 
The por-Si film thickness for all samples was 
2.2 ± 0.3 μm. 

A CdS film was formed on the surface of a 
por-Si layer by the method of chemical bath 
deposition (from aqueous solutions). A CdCl2 
solution with a concentration of 0.44 M was 
used as a source of cadmium ions. A N2H4CS 
(thiourea) solution with a concentration of 
0.22M was used as a source of sulfur ions. 
A concentrated aqueous NH4OH (ammonia) 
solution was used as a complexing agent. 
At first, an ammonia solution was added to 
the CdCl2 one until the precipitate com-
pletely dissolved, then the same volume of 
an aqueous thiourea solution was added to 
the resulting solution. The temperature of 
the solution was brought to 90° C, substrates 
with a por-Si film were immersed in it, and 
a CdS film was grown for 20 min. The CdS 
layer on the back side of p-Si was completely 
etched with a 30% HCl solution. Samples 
were washed with distilled water and dried 
in the oven. For all samples, the CdS film 
thickness was 1.8 ± 0.2 μm.

For electrical measurements, ohmic con-
tacts were formed on opposite surfaces of the 
sample to the p-Si substrate and the CdS film 
by soldering indium.

The used investigation technique 

In order to study the distribution profile 
of the dopant concentration in the base 
region of the structure given above, the 
C – V characteristics were measured at a 
frequency of 1 MHz at a reverse bias. The 
reverse bias corresponds to the application of 
a positive value of the constant bias voltage 
U to the contact on the CdS surface and 
negative U to the contact on the p-Si. The 
measurements of the samples were carried 
out using an E7-20 digital immitance meter 
(MNIPI, Belarus) at a temperature of 300 K. 
It is known that the high-frequency C – V 
characteristic C(U) measured at reverse bias 
reflects the dependence of the capacitance 
barrier component on the applied voltage 
and allows one to determine the impurity 
concentration in the base region of the 
studied semiconductor structure:
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where q is the electron charge, ε is the dielec-
tric constant of the semiconductor material of 
the base region of the studied heterostructure 
(silicon), ε0 is the vacuum dielectric constant,  
S is the sample area [7].

The value of the x coordinate is calculated 
by the formula [7]:

0

( )
Sx

C U
εε

= . (2)

The combined use of formulas (1) and (2) 
allows us to calculate the distribution profile of 
the concentration of the dopant Nb(x) in the 

Tab l e
Information on the experimental samples

No. Jet,
mA/cm2

tet,
min

Uoc,
mV

Jsc,
mA/cm2

FF,
arb.unit.

η,
%

Nt,
cm –3

1 10 12 365 12.1 0.6 3.4 4.2·1013

2 18 10 487 16.5 0.7 5.7 9.7·1013

3 30 7 475 14.2 0.7 4.6 2.0·1014

4 45 5 270 9.6 0.6 1.6 2.3·1014

Symbo l s : Jet is the anode current density, tet is the etching duration, 
Uoc is the open circuit voltage, Jsc is the short-circuit current density, 
FF is the filling factor of the current-voltage characteristic, η is the efficiency, 
Nt  is the concentration of traps.
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base region of the investigated semiconductor 
structure. 

The calculation of the distribution profile 
of the electric field in the SCR of the studied 
samples was carried out as follows [7]:

( ) ( ) ( )
0

b
qE x N x x W
εε

= − ⋅ − , (3)

where W is the width of the SCR.
The main characteristics of solar 

photovoltaic converters with heterojunctions 
are significantly affected by surface states, and 
also traps with energy levels located in the 
bulk of the base region [6]. In order to obtain 
information about traps, we studied the C – V 
hysteresis measured at a frequency of 1 MHz in 
the region of reverse biases.

Despite the fact that at high frequencies 
the charge in traps with deep energy levels 
does not have time to follow the measuring 
signal, it affects the value of W and the value 
of the high-frequency capacitance [11]. To 
evaluate the influence of traps, one can 
compare the C – V characteristic, measured 
with the forward bias of a constant bias 
voltage from 0 to a certain limiting value Um 
(Cin(U)), and measured with a reverse scan 
from Um to 0 (Cout(U)). In the absence of 
traps, the Cin(U) and Cout(U) curves should 
coincide completely. In the presence of traps 
a hysteresis phenomenon is observed – the 
Cin(U), and Cout(U) curves differ [12]. Thus, 
by analyzing the width of the hysteresis 
band formed by the Cin(U) and Cout(U) 
curves, we can obtain information about 
traps in the SCR.

The value of the barrier capacitance is determined 
by the ratio of the charge increment in the SCR to 
the magnitude of the voltage change [7]:

dQC
dU

= . (4)

Hence, the charge Q concentrated in the 
SCR, when the constant bias voltage changes 
from U1 to U2, can be expressed as follows:

( )
2

1

U

U

Q C U dU= ∫ . (5)

On the other hand, the charge Q is 
determined by the volume concentrations of 
the dopant Nb and of the traps Nt, as well as 
the SCR thickness W:

( )b tQ q N N WS= + . (6)

Given the hysteresis of the C – V curves  and 
using Eqs. (5) and (6), for the concentration of 
traps we can write the following expression:

( ) ( )
0

1 mU

t in outN C U C U dU
qWS

= −∫ , (7)

where Um is the limiting value of the constant 
bias voltage to which the constant bias voltage 
U is scanned.

To evaluate the efficiency of solar en-
ergy conversion by CdS/por-Si/p-Si samples, 
we measured the open circuit voltage Uoc, 
short-circuit current density Jsc, filling factor 
of the current – voltage characteristic FF and 
efficiency η under illumination under AM1.5. 

Fig. 1. Capacitance – voltage characteristics of samples No. 1 (□), No. 2 (◊), No. 3 (○), No. 4 (Δ), 
measured at a frequency of 1 MHz with reverse bias; S is the sample area
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Experimental results

Capacitance – voltage characteristics of the 
samples under study, measured in the region 
of reverse biases, are shown in Fig. 1 in the 
form of the dependence (C/S)–2 = f(U). For 
sample No. 1, the graph in Fig. 1 is close to a 
straight line. For samples No. 2 – No. 4, the 
dependence (C/S)–2 = f(U) noticeably deviates 
from the linear one, which indicates the 
presence of an impurity concentration gradient 
in the base region (see Fig. 1). 

The profiles of the distribution dopant 
concentration Nb(x) in the surface layer of 
the base region of the samples under study, 
calculated by Eqs. (1) and (2), are shown in 
Fig. 2. For sample No.1, the Nb value varies 
slightly with the x coordinate and is close to the 
acceptor impurity concentration (1.5·1016 cm–3) 

in silicon wafers used as a substrate for the 
manufacture of the samples. For sample No. 2, 
the value Nb increases linearly with increasing 
x to a value close to 1.5·1016 cm–3. Samples 
No. 3 and No. 4 are characterized by a more 
complex dependence Nb(x). Thus, for samples 
No. 2 – No. 4 an acceptor impurity is depleted 
in the surface layer of the base region directly 
adjacent to the por-Si/p-Si heterojunction. 
With an increase in x the value of Nb tends to a 
value close to 1.5·1016 cm–3.

The electric field distribution profile 
E(x) for the studied samples calculated by 
Eq. (3) is presented in Fig. 3. Sample No. 1 
exhibits a linear dependence E(x) with a sharp 
heterojunction. The maximum value of E for 
samples No. 1 – No. 3 practically coincides. 
The region width bounded by the dependence 

Fig. 3. The distribution profiles of the electric field in the base region of ​​samples 
No. 1 (□), No. 2 (◊), No. 3 (○), No. 4 (Δ)

Fig. 2. Distribution profiles of the concentration of acceptor impurities in the base region of samples 
No. 1 (□), No. 2 (◊), No. 3 (○), No. 4 (Δ)
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E(x) is maximum value for sample No. 2. 
In order to estimate the traps concentration 

Nt the C – V characteristics of the samples 
were measured at direct Cin(U) and reverse 
Cout(U) scans of a constant bias voltage U in 
the range 0 – 4 V. For all the samples studied 
the behavior of the Cin(U) and Cout(U) is almost 
identical. The curves Cin(U) and Cout(U) for 
sample No. 2 are shown in Fig. 4. The Cin(U) 
and Cout(U) curves noticeably differ in the range 
of U values from 0 to 2 V; for U > 2 V this 
difference practically disappears (see Fig. 4). 
This behavior of the curves in Fig. 4 can be 
explained by a more noticeable effect on the 
barrier capacitance of traps localized at the 
por-Si/p-Si heterojunction (surface states) as 
compared to traps located in the bulk of the 
base region of the samples.

The values of Uoc, Jsc, FF and η, character-
izing the efficiency of solar energy conversion 
of the studied samples, are presented in Table. 
The highest efficiency of solar energy conver-
sion is characterized by sample No. 2; sample 
No. 3 is close to it; sample No. 4 has the lowest 
conversion efficiency compared to samples No. 
1 – No. 3 (see Table).

Discussion of the experimental results

The efficiency of a solar photovoltaic con-
verter with a heterojunction is significantly af-
fected by surface states and traps located in the 
volume of the absorbing region [6]. However, 
it is impossible to draw an unambiguous con-
clusion about the effect of the concentration 
Nt on the solar energy conversion efficiency 
of experimental samples from the Table. So, 
sample No. 4 has significantly lower values 

of Uoc, Jsc, and η compared to sample No. 3. 
Moreover, for these samples the value of Nt 
changes slightly. Sample No. 2, characterized 
by the highest conversion efficiency η, has an 
Nt value close to samples No. 3 and No. 4. At 
the same time sample No. 1 which occupies 
an intermediate place between samples No. 3 
and No. 4 in terms of conversion efficiency η, 
is characterized by the lowest Nt value of all 
the samples studied. Moreover, the Nt value of 
sample No. 1, is significantly less than for the 
remaining samples. Thus, the value of Nt does 
not have a decisive influence on the parameters 
characterizing the conversion efficiency of the 
studied samples.

An analysis of the hysteresis for the C – V 
characteristics (see Fig. 4) shows that the ca-
pacitance decreases upon reverse sweep U. In 
Ref. [11] the decrease in the SCR capacitance 
was explained by the emptying of the traps of 
minority charge carriers. This situation can be 
illustrated by zone diagrams in Fig. 5. 

The SCR of a width W is almost completely 
concentrated in the surface p-Si layer near the por-
Si/p-Si heterojunction. At this heterojunction, 
surface states characterized by energy levels of Ess 
are localized, and traps with energy levels of Et 
can also be contained in the bulk of the p-Si base 
region (see Fig. 5). It was shown [8], that the 
of current flow mechanisms in the studied CdS/
por-Si/p-Si heterostructure are determined by the 
traps with activation energies occupying a wide 
range of values. For the purpose of simplification, 
only one volumetric energy level Et is shown 
in Fig. 5. At U = 0 V (see Fig. 5,a), the band 
bending in the p-Si region is determined by the 
value of the diffusion potential Vbi. In this case 

Fig. 4. Capacitance – voltage characteristics of sample No. 2 for a forward sweep 
of a constant bias voltage (solid line) and reverse (dashed line)
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the energy levels of the Et and Ess traps located 
within the SCR of the por-Si/p-Si heterojunction 
are filled with charge carriers if they are below the 
Fermi level EF and emptied if they are above EF. 

In the reverse bias (see Fig. 5,b), the band 
bending in the SCR increases by the value of 
the applied voltage U, the energy levels of the 
traps below EF are filling with carriers. Upon 
subsequent change in the scanning direction U 
to 0 V the bending of the zones decreases, and 
a transition to the conditions shown in Fig. 5,a 
takes place. This is accompanied by the depletion 
of the energy levels of the Et and Ess traps. 
Moreover, the dominant contribution to the 
relaxation process is made by the energy levels of 
minority carrier traps in the p-Si layer. 

The most probable cause of the observed 
differences in the efficiency parameters of the 
studied samples (see Table) may be the difference 
in the character of the dependence E(x) in 
the SCR of the base region of the por-Si/p-Si 
heterojunction (see Fig. 3). In turn, the form 
of the dependence E(x) is determined by the 
distribution dopant concentration profile Nb(x) 
(see Fig. 2). Referring to Figs. 2 and 3, depletion 
of the p-Si surface region by an acceptor impurity 
for samples No. 2 and No. 3 leads to a noticeable 
extension of the E(x) curves towards an increase 
in x as compared to that of sample No. 1, for 
which the Nb value  weakly depends on x within 
the SCR. Moreover, the efficiencies of samples 
No. 2 and 3 are significantly higher as compared 
to that of sample No. 1. The near-surface layer of 
the p-Si region of sample No. 4 is more depleted 
in acceptor impurity than those of samples No. 1 
– No. 3 (see Fig. 2). As a result, the electric field 
inside the SCR is noticeably lower for sample No. 
4 than those for the remaining samples (see Fig. 
3). Sample No. 4 exhibits the lowest conversion 
efficiency of solar energy as compared to those 
for the rest of the studied samples.

Thus, an increase in the conversion efficiency 

of solar energy of the studied samples can be 
explained by an increase in the penetration depth 
of a strong electric field into the base region. 
The charge carriers generated by the light inside 
this region are carried away by the electric field 
before they have time to recombine through the 
participation of traps. Thus, the depletion of the 
doping impurity in the near-surface p-Si layer 
which is in the immediate vicinity of the por-
Si/p-Si heterojunction, is an aid to the expansion 
of the region in which the strongest electric field 
is concentrated. At the same time an increase in 
the depletion of the base region with an alloying 
impurity observed for sample No. 4 leads to a 
decrease in the electric field strength (see Fig. 3) 
and a decrease in the efficiency of solar energy 
conversion (see Table).

The depletion of the p-Si surface region 
occurs during the formation of a por-Si film. 
One of the causes of depletion may be the partial 
etching of impurity atoms from the surface 
of silicon crystallites during the formation 
of a porous layer [13]. Another cause of the 
depletion may be a partial compensation of the 
main dopant by defects, including those having 
deep energy levels localized on the surface of 
silicon crystallites [9, 13].

Numerous studies have shown that por-Si 
films formed on single-crystal silicon substrates 
are complexly structured [14 –16]. The por-Si 
film is formed by silicon crystallites separated 
by pores. The average crystallite diameter 
increases as it moves from the outer surface of 
the por-Si film to the single-crystal substrate 
[16]. Thus, a clearly defined boundary 
between the porous film and the single crystal 
substrate may be absent. As a result, the por-
Si/p-Si heterojunctions of the samples studied 
in this work can be located inside the largest 
silicon crystallites in the lower region of 
the por-Si film. The states localized on the 
crystallite surface can contribute to partial 

Fig. 5. The band diagram of the CdS/por-Si/p-Si heterostructure at U = 0 V (a) 
and for some value of reverse bias U (b); see explanations in the text
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compensation of the acceptor dopant in the 
surface layer of the base region of the samples 
under study.

Summary

The relationship between the distribution 
profile of the dopant acceptor impurity 
in the base region of the CdS/por-Si/p-Si 
heterostructure and the solar energy conversion 
efficiency parameters has been established. 
It was shown that the conversion efficiency 
depends on the degree of depletion of the p-Si 
surface layer doping with an acceptor impurity 
located in the immediate vicinity of the por-
Si/p-Si heterojunction. The formation of this 
depletion region occurs as a result of a por-Si 
film growing. By changing the main parameters 
of the por-Si growth process (tet and Jet) one can 

control the impurity distribution profile and 
the efficiency of solar energy conversion. Thus, 
in order to increase its efficiency, one of the 
directions of optimizing the technology of the 
solar photovoltaic converter based on the CdS/
por-Si/p-Si heterostructure is the selection of tet 
and Jet parameters for por-Si film growing. An 
important advantage is a forming of the depleted 
region not requiring a separate technological 
operation. The concentration distribution 
profile is formed in the process of growing the 
por-Si layer. In production conditions this will 
reduce the cost of manufacturing a photovoltaic 
converter. 

The obtained data can be useful in the 
development of solar photovoltaic converters 
and optical sensors based on the CdS/por-Si/
p-Si heterostructure.
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The results of testing several RANS turbulence models in solving a problem of free air 
convection temporal development near the surface of a suddenly heated infinite vertical plate 
have been presented in the paper. The solution results with the use of the different models were 
compared with the literature data obtained by direct numerical simulation. Numerical solutions 
were carried out using the four models, two of them based on the isotropic turbulent viscosity 
concept and the rest ones involved solving the transport equations of the Reynolds stress tensor 
components. The flow and heat transfer characteristics for different stages of boundary layer 
development, from laminar to turbulent, were analyzed. Based on a comparison with the liter-
ature data on direct numerical simulation, conclusions about the predictive capabilities of the 
RANS models considered were drawn.
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ОЦЕНКА ВОЗМОЖНОСТЕЙ RANS-МОДЕЛЕЙ 
ТУРБУЛЕНТНОСТИ ПО РЕЗУЛЬТАТАМ РАСЧЕТОВ 

СВОБОДНОЙ КОНВЕКЦИИ, РАЗВИВАЮЩЕЙСЯ ВБЛИЗИ 
ВНЕЗАПНО НАГРЕТОЙ ВЕРТИКАЛЬНОЙ ПЛАСТИНЫ

А.М. Левченя, С.Н. Трунова, Е.В. Колесник 
 Санкт-Петербургский политехнический университет Петра Великого, 

Санкт-Петербург, Российская Федерация

В работе представлены результаты тестирования нескольких RANS-моделей 
турбулентности на примере решения задачи развития во времени свободной 
конвекции воздуха у поверхности внезапно нагретой безграничной вертикальной 
пластины. Результаты решения с использованием различных моделей сопоставлены с 
литературными данными, полученными методом прямого численного моделирования. 
Численные решения получены с применением четырех моделей, две из которых 
основаны на концепции изотропной турбулентной вязкости, а остальные предполагают 
решение уравнений переноса компонент тензора рейнольдсовых напряжений. Получены 
характеристики течения и теплообмена на разных стадиях развития пограничного слоя 
– от ламинарного режима до турбулентного. На основе сопоставления полученных 
результатов с данными прямого численного моделирования сделаны выводы о 
предсказательных возможностях рассмотренных RANS-моделей турбулентности.
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Introduction
Free-convection flow near the surface of 

a vertical heated plate has long been the fo-
cus of attention because correctly predicting 
heat transfer in boundary layers is important 
for many practical applications. The Time-
Developing approach considering the tempo-
ral evolution of the flow is an efficient com-
putational method for analysis of developing 
boundary layers.

The approach basically consists in describ-
ing the temporal evolution of a boundary layer 
instead of the spatial evolution (the Spatial ap-
proach), which is usually observed in practice. 
Thus, time serves as a sort of coordinate axis 
along which the flow evolves. In contrast with 
other methods simulating flow evolution along 
the longitudinal (spatial) axis, this approach 
allows to significantly reduce the size of the 
computational domain and consequently the 
total computation time.

The Time-Developing approach is very 
popular for simulations of dynamic turbulent 
boundary layers on plates in axial flow [1, 2]. 
In particular, Ref. [1] discussed a laminar-tur-
bulent transition in a boundary layer at high 

turbulence. For this purpose, Time-Developing 
Direct Numerical Simulation (TDDNS) was 
used to solve a model problem of a bound-
ary layer evolving on an infinite plate in iso�-
tropic turbulent fluid of zero mean velocity, 
with the plate suddenly set in motion in its 
plane. The method was used in [3] to solve 
problems of free convection for the first time, 
while [4] presented promising and detailed 
computational results based on this method.

Although only DNS methods can yield the 
most complete data on the laminar-turbulent 
transition, whether semi-empirical RANS 
turbulence models can provide a satisfactory 
description of the transition is still open to 
question [5]. Furthermore, it is undoubtedly 
interesting to assess the efficiency of different 
turbulence models for simulations of the flow 
in fully developed turbulent free-convection 
boundary layers, both for the models based 
on isotropic turbulent viscosity [6] and for 
Reynolds stress models [7].

Notably, the choice of suitable turbulence 
models is especially critical for simulation 
of complex free-convection flows, including 
free-convection layers perturbed by different 

Fig. 1. Schematic for problem statement of turbulent free-convection boundary layer 
developing along an infinite heated vertical plate: a corresponds to the plate (shaded) 

with the surrounding ambient (cube); b to velocity (1) and temperature (2) distributions 
of the ambient air depending on the distance from the plate
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kinds of obstacles. For example, [8] reports on 
RANS simulations (using the SST k-ω model) 
for flow around a cylinder of finite height 
mounted on a vertical heated plate, while a re-
cent paper [9] presents simulations and experi-
ments the same configuration.

The goal of this study consisted in assessing 
the performance of several RANS turbulence 
models by comparing the numerical solutions 
that we obtained with the test (reference) data 
from literature [4] for a model problem on 
the time evolution of  free convection along 
an infinite vertical plate. We used the ANSYS 
Fluent 18.2 package for the computations.

TDDNS method as a source of test data

We consider a model problem of free con-
vection developing along an infinite suddenly 
heated vertical plate. The flow diagram is 
shown in Fig. 1. The parameters of the prob-
lem in this section (described identically to [4]) 
correspond to the conditions of earlier well-
known experiments [10] on a free-convection 
layer developing along a vertical plate (along 
the spatial coordinate). The parameters are 
given in Table.

The mathematical model taken for describ-
ing turbulent free convection of incompress-
ible Newtonian fluid with constant physical 
properties is based on a system of unsteady 3D 
Navier–Stokes equations complemented with 
an energy balance equation, taking into ac-
count buoyancy effects in the gravity field in 
the Boussinesq approximation:

( )

0;

,

1, 2,3;

.

j

j

iji i
j T a i

j i j

j
p p j

j j

u
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u u pu T T g
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t x x
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∂ ∂ ∂

(1)

Here ui are the components of the veloc-
ity vector V  in Cartesian coordinates (x ≡ x1, 
y ≡ x2); p (Pa) is the pressure, T (K) is the 
temperature, ρ (kg/m3) is the density and cp 
(J/(kg⋅K)) is the heat capacity of the air.

The components of the viscous stress ten-
sor τ and the heat flux density vector q due 
to molecular thermal conductivity are found, 
respectively, using Fourier’s law and Newton’s 
law of viscosity:

( ) , 1, 2,3,j j jq T x == −λ ∂ ∂ (2)

, , 1, 2,3.ji
ij

j i

i j
uu

x x
 

= 
 

∂∂τ = µ +
∂ ∂

(3)

The space shaped as a rectangular paral-
lelepiped adjacent to the plate acts as the com-
putational domain in TDDNS computations 
(Fig. 1,a). The outer boundary parallel to the 
wall is assumed to be permeable, with constant 
pressure p and temperature Ta given. Periodic 

Tab l e
Problem parameters

Parameter Notation Unit Value
Plate temperature Tw K 333.15

Ambient temperature Ta K 289.15
Ambient density ρ kg/m3 1.135

Ambient viscosity μ Pa·s 1.906·10–5 
Ambient thermal conductivity λ W/(m·K) 0.0274

Heat capacity at constant pressure cр J/(kg⋅K) 1006
Coefficient of thermal expansion β 1/K 3,458·10–3 

Prandtl number Pr – 0.71

Note s . 1. Physical properties of the air were assumed to be constant, computed at the 
average temperature Tf = (Tw + Ta)/2.
2. Coefficient β was computed at the temperature T = Ta. 
3. Prandtl number Pr = cрμ/λ. 



St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (2) 2020

24

conditions are imposed in homogeneous coor-
dinates (vertical (x) and transverse (z)). After 
the flow fields are computed, they averaged 
along the homogeneous coordinates (along the 
x and z axes) at the next time step, so that 
the unsteady problem can be considered sta-
tistically one-dimensional, where the averaged 
parameters of the flow change only along the y 
axis (Fig. 1, b).

The notion of integral thickness of the ve-
locity boundary layer is introduced to construct 
the dimensionless parameters characterizing 
the given flow at different instants in time. This 
quantity can be found by the following formula 
(integration with respect to y is performed over 
the entire ambient):

0

.
m

u dy
U

∞

δ = ∫ (4)

Dimensionless temperature is also introduced: 

( ) ( ).a w aT T T Tθ = − − (5)

The thickness of the temperature boundary 
layer δT is defined as the coordinate y, where 
θ = 0.01.

The Grashof number, the Nusselt num-
ber, and the dimensionless friction constructed 
based on the boundary layer thickness are de-
fined as follows:

3 2Gr ,g Tδ = β∆ δ ν (6)

Nu ( ) ,wq Tδ = δ λ∆ (7)

( ).w g Tτ = τ ρ β∆ δ (8)

where ∆Т = Тw − Тa is the temperature differ-
ence between the plate and the ambient. 

Detailed data on the TDDNS model are 
given in [4] for the skin friction coefficient and 
the Nusselt number depending on the Grashof 
number, along with data on the mean velocity 
and temperature profiles and turbulence char-
acteristics at different Grδ; these data are used 
for comparison in our study.

Problem statement based on 
the RANS approach

The given time-developing flow is simulated 
based on Reynolds-averaged Navier–Stokes 
equations (RANS), initially introducing 
averaging along homogenous coordinates (x 
and z). As a result, we obtain unsteady one-
dimensional equations with respect to the 

mean axial component of velocity u and the 
mean temperature T:

( ) ( )

( )

,

,

,

.

xy t xy
T a

p y t y

u T T g
t y

Tc q q
t y

∂ τ + τ∂
ρ = −ρβ −
∂ ∂

∂ ∂
ρ = +

∂ ∂

(9)

In this case, the transverse velocity v is taken 
to equal zero.

Considering the resulting unsteady one-di-
mensional problem, we can see that only two 
components of the turbulent stress tensor and 
the heat flux vector remain; these are τt,xy and 
qt,y, reflecting turbulent transfer along a normal 
to the wall:

, ,t xy u v′ ′τ = −ρ (10)

, ,t y pq c v T′ ′= −ρ (11)

(the prime denotes the fluctuating components, 
the overbar denotes averaging in homogenous 
coordinates).

System of equations (9) is open in order 
to find a method for computing the turbulent 
components of the stress tensor (10) and the 
heat flux density vector (11). To this end, we 
used semi-empirical turbulence models (de-
scribed below).

Notably, we obtained the solutions below us-
ing the ANSYS Fluent general-purpose code, 
where one-dimensional problems are solved as 
two-dimensional by introducing conditions for 
translation homogeneity. The no-slip condition 
and constant temperature Tw are imposed on the 
wall. The outer boundary parallel to the wall is 
assumed to be permeable with constant pressure 
and temperature given. Periodic conditions are 
imposed for the homogeneous coordinate x. It 
is assumed that the air has the temperature Ta 
at the initial time and is generally stationary. At 
the same time, there is initial turbulence in the 
region, characterized by the following parame-
ters: turbulence intensity I = 0.1%, turbulent to 
molecular viscosity ratio νt/ν = 0.1.

Turbulence models

Let us describe the general (three-dimen-
sional) formulation of the turbulence models 
available in the ANSYS Fluent code that we 
used for our computations. These are two mod-
els based on the Boussinesq hypothesis (SST k-ω 
and RNG k-ε), and two Reynolds stress models 
(DRSM Stress-omega and DRSM StressBSL).
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According to the Boussinesq hypothesis, the 
components of the turbulent stress tensor and 
the turbulent heat flux with averaged flow pa-
rameters are related as: 

, ,2
3

ji
t ij t ij

j i

uu k
x x

 
 
 

∂∂τ = µ + + δ
∂ ∂

(12)

, ,2
3

ji
t ij t ij

j i

uu k
x x

 
 
 

∂∂τ = µ + + δ
∂ ∂

(13)

where k = 1/2u′iu′i is the turbulent kinetic en-
ergy, μt is the turbulent viscosity, λt is the tur-
bulent thermal conductivity;

.Prt p t tcλ = µ (14)

Expression (14) is based on the hypothesis 
that the processes of turbulent transfer of mo-
mentum and heat are similar, introducing the 
turbulent Prandtl number Prt whose value is 
taken to be constant in the computations. The 
system is closed by the semi-empirical turbu-
lence model to find the turbulent viscosity μt. 
The results below were obtained using the SST 
k-ω and RNG k-ε models described in [11, 12].

In case of differential Reynolds stress mod-
els, the following differential equation is solved 
for each of the six independent components of 
the Reynolds stress tensor:
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where Dm
ij, D

t
ij are the terms reflecting molecular 

and turbulent diffusive transfer, respectively; Pij 
is the generation term; φij is the term responsi-
ble for redistribution of energy between tensor 
components, εij is the dissipation term.

The equations for the terms related to mo-
lecular diffusion Dm

ij and generation Pij are writ-
ten as follows (no closure relations are neces-
sary in this case):
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As other terms of Eq. (15), Dt
ij, φij, εij, con-

tain higher-order moments, they are computed 
using closures relating these terms and the av-
eraged flow parameters.

Let us describe the specific form of the re-
lations for the two models used in this study:

Stress-omega (referred to as DRSM SO, 
i.e., Differential Reynolds Stress Model 
Stress-Omega),

StressBSL (referred to as DRSM BSL, 
i.e., Differential Reynolds Stress Model 
Stress-BSL).

These models differ by certain closure rela-
tions and constant values.

Similar to molecular diffusion, we introduce 
the coefficient of turbulent diffusion propor-
tional to turbulent viscosity for the term re-
flecting turbulent transfer:

.i jt t
ij

k k k

u u
D

x x
 ′ ′µ

=   σ 

∂∂
∂ ∂

(18)

According to the DRSM SO model, the co-
efficient σk = 2. 

The coefficient σk un the DRSM BSL model 
is defined by the relation

1 ,1 1 ,2(1 ) .k k kF Fσ = σ + − σ (19)

where σk,1 = 2.0, σk,2 = 1.0, and function F1 is 
defined using the formulas:

( )4
1 1tanh ,F = Φ (20)
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= ρ  ω ∂ ∂ 
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(22)

where y is the distance to the wall.
The term responsible for redistribution of 

energy between tensor components has the fol-
lowing form:

*
1
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0 0

2 3

ˆ 1 3

ˆ ˆ1 3 1 3 ,

ij RSM i j ij
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 −α − δ − 
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(23)
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The coefficient β*
RSM is defined as follows for 

the DRSM SO model:
* * * *, 0.09,RSM fββ = β β = (26)

* 2

2

1, 0
,1 640 , 0

1 400

k

k
k

k
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(27)
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x x
∂ ∂ω

χ =
ω ∂ ∂

(28)

The coefficient β*
RSM = β* for the DRSM 

BSL model.
The rest of the constants are given using the 

following formulas (identical for both models):

2 2
0 0

2
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11 11
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+ −
α = β =

−
γ =

(29)

where C1 = 1.80, C2 = 0.52.	 (30)
The dissipation term is calculated by intro-

ducing an additional scalar variable, the spe-
cific dissipation ω:

*2 3 .ij ij RSM kε = δ ρβ ω (31)

The value of the constant β*
RSM is found in 

the same manner as for the term φij (see Eqs. 
(26)–(28)).

The turbulent kinetic energy is calculated as 
follows:

1 2 .i ik u u′ ′= (32)

Turbulent viscosity is calculated by the fol-
lowing formula:

* *, 1.t
kρ

µ = α α =
ω

(33)

We need to define specific dissipation ω to 
close the system. For this purpose, the differen-
tial transport equation for ω is solved together 
with the equations for the components of the 
Reynolds stress tensor (15). According to the 
DRSM SO model, this equation is written as

,

k
k

k k

u

G Y S

t x

x xω ω ω ω

ω ω
ρ +ρ =

 
= Γ + − + 

 

∂ ∂
∂ ∂

∂ ∂ω
∂ ∂

(34)

Γω = μ + μt/σω, σω = 2. (35)

The terms Gω, Yω, Sω are found in accor-
dance with the k-ω turbulence model [13].

According to the DRSM BSL model, an 
additional (cross-diffusion) term is added to 
Eq. (34) with respect to ω:

( )1
,2

12 1 ,
j j

kD F
x xω

ω

∂ ∂ω
= − ρ

ωσ ∂ ∂ (36)

where the values of the function F1 are calcu-
lated by Eqs. (20)–(22). 

The remaining terms are calculated in ac-
cordance with the BSL k-ω turbulence model.

The gradient hypothesis (13), (14) is used to 
calculate the turbulent heat flux components 
required to close the averaged energy equation; 
the turbulent Prandtl number is taken equal 
to 0.85.

Computational aspects

The computational domain is a rectangle on 
the xy plane. Its outer boundary is located 0.5 
m away from the plate. The computational grid 
contained 200 cells along the y axis and 5 cells 
along the homogenous coordinate x. The grid 
was refined towards the plate surface to provide 
values less than unity for the dimensionless 
distance y+ from the center of the first near-wall 
cell to the wall for the entire computational 
time. The time step dt was taken equal to 0.005 
s. To analyze the influence of the time step on 
the computational results, we also performed 
computations where the time step was twice 
as short.

The computations were run in the ANSYS 
Fluent 18.2 package. We used the non-iterative 
fractional step method to advance in time. 

At the stage of preliminary computations, 
we analyzed the influence of numerical factors 
on the quality of the solutions obtained. Fig. 
2,a shows the time dependence of y+ for all 
turbulence models. Evidently, y+ takes values 
less than unity throughout the computations. 
Fig. 2,b shows the time dependences for the 
boundary layer thickness δ (calculated as 
integral thickness using Eq. (4)) for the SST 
k-ω model, obtained with different time steps. 
The differences are apparently insignificant.

Computational results and discussion

Influence of turbulence model on the growth 
in boundary layer thickness. Fig. 3 shows the 
time dependences of integral thickness of the 
velocity boundary layer, as well as the relation-
ships between temperature and velocity layer 
thicknesses; these dependencies were obtained 
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using the given turbulence models. Fig. 3,a 
shows three pronounced phases in the evolu-
tion of the boundary layer: at first its thickness 
grows conforming to unsteady laminar layer 
patterns (until approximately 2 s in time), then 
we observe a short period with pseudo-pro-
cesses of laminar-turbulent transition, and af-
ter that the boundary layer follows the turbu-
lent flow regime (dependence of thickness δ on 
time is close to linear).

Comparing the results obtained using differ-
ent models, we can conclude that all models 
yield similar predictions for the phase of laminar 
boundary layer (as expected), while the transi-
tion point and the peculiarities in the growth of 
the boundary layer in the region with developed 
turbulence depend on the model applied.

The DRSM SO model yields the fastest thick-
ness growth of the turbulent velocity boundary 
layer, while the SST k-ω model yields the slowest 
growth. Apparently, the transition to turbulence 
(a point of characteristic change of dependences 
in Fig. 3) occurs simultaneously for all models 
except the RNG k-ε model, where this transition 
occurs much earlier. This model also differs by 
the behavior of the ratio between the temperature 
layer thickness and integral velocity layer thick-
ness: while this variable reaches a nearly constant 
value at t > 3 s in computations by other models, 
it decreases over time in this model.

Comparison with the data of direct numerical 
simulation. We compared the obtained 
computational results with the TDDNS results 
given in [4].

Fig. 2. Time dependences of dimensionless distance y+ (a) and boundary layer thickness (b). 
Comparison of computational results obtained with different models (a) and influence of time step (b).

SST k-ω (curve 1 and Fig. 2,b), RNG k-ε (curve 2), DRSM SO (3) and DRSM BSL (4) 
models were used; time steps dt = 0.0050 (5) and 0.0025 s (6) were taken

Fig. 3. Time dependences of integral thickness of velocity boundary layer (a) 
and ratios between temperature layer thickness and integral velocity layer thickness (b).

Results are given for different models: SST k-ω (1), RNG k-ε (2), DRSM SO (3), DRSM BSL (4)
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Fig. 4 shows the dependences for the 
Nusselt number and the dimensionless friction 
on the Grashof number constructed with re-
spect to the integral thickness of the boundary 
layer (see Eqs. (6)–(8)), as well as the TDDNS 
results. We should note that the obtained de-
pendences differ insignificantly and are in good 
agreement with the TDDNS data for the stages 
of laminar and fully turbulent flow. However, 
pronounced differences appear in the behavior 
of the curves at the stage of transition to tur-
bulence: direct numerical simulation predicts 
a local maximum for the dependence of Nuδ 
on Grδ, while RANS simulations indicate that 
Nuδ changes monotonically. Moreover, all the 
curves lie below the TDDNS points (a differ-
ence up to 50%). At the same time, all the 

dependences obtained with different models 
generally exhibit the same behavior in all cases, 
except for the earlier turbulence transition pre-
dicted by the RNG k-ε model (as mentioned 
above).

Analyzing the distributions of dimensionless 
friction over time, we found that the DRSM SO 
model yields the best agreement with the direct 
numerical simulation data, while the SST k-ω 
model predicts slightly overestimated values for 
developed turbulence.

Fig. 5 shows a comparison of the TDDNS 
data with the profiles of dimensionless velocity 
and temperature at Grδ = 5.94⋅106 (corresponds 
to the stage of developed turbulent flow). The 
results indicate that the velocity profiles obtained 
in all computations are in fairly good agreement 

Fig. 4. Comparison of computed dependences of Nusselt number (a) and dimensionless friction (b) 
on Grashof number (lines) with TDDNS data (symbols); 

Nuδ and Grδ were constructed based on boundary layer thickness.
The curves are numbered the same as in Fig. 3 

Fig. 5. Comparison of computed profiles of normalized velocity (a) 
and temperature (b) (lines) with TDDNS data (symbols); Grδ = 5.94⋅106. 

The curves are numbered the same as in Figs. 3 and 4
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with the TDDNS data. There is some diver-
gence with TDDNS only in the outer region of 
the boundary layer, where velocity decreases: the 
RNG k-ε yields underestimated results, while all 
the other models produce overestimated ones 
but these discrepancies do not exceed 5%. As for 
the temperature distribution, DRSM BSL and 
RNG k-ε produced the best agreement with the 
TDDNS data. Two other models yield significant 
differences in the outer region of the boundary 
layer: the SST k-ω model yields a 15–20% over-
estimation of temperature, and the DRSM SO 
model a 20–25% underestimation.

Fig. 6 shows a comparison of the predicted dis-
tributions of stress tensor components along the 
y coordinate with the direct numerical simulation 
results for the computations performed using the 
Reynolds stress models (DRSM SO and DRSM 
BSL). The fluctuation intensity of the axial ve-
locity component computed using both DRSM 
models appears to be significantly underestimated 
in the inner region of the boundary layer. The 
computed distributions of the remaining tensor 
components are in good agreement with the 
TDDNS data, with the DRSM SO model yield-
ing the best agreement.

Conclusion

We tested two semi-empirical RANS tur-
bulence models based on Boussinesq’s hypoth-
esis and two Reynolds stress models for the 
problem of free convection developing near a 
suddenly heated vertical plate. The results ob-
tained by Time-Developing Direct Numerical 
Simulation were used as test data [4].

Analyzing the results of the computations 
carried out with different models, we found 
that the rate with which the thickness of the 
boundary layer grows at the stage of lami-
nar-turbulent transition and in the developed 
turbulent layer phase largely depends on the 
model used. The DRSM SO model predicts the 
fastest growth in the thickness of the velocity 
turbulent boundary layer, while the SST k-ω 
model predicts the slowest growth rate.

The predictions for the dependences of the 
Nusselt number and the normalized friction on 
the Grashof number constructed based on the 
characteristic thickness of the growing layer are 
in good agreement with the TDDNS data for 
the stages of laminar and fully turbulent flow; 
the results obtained with different models dif-
fer insignificantly in this case. The DRSM SO 

Fig. 6. Comparison of computed fluctuation intensity profiles for axial (a) and transverse (b) 
velocity components, and turbulent shear stress profile (c) (lines) with TDDNS data (symbols). 

Results are given for different models: DRSM SO (1), DRSM BSL (2)
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model yields a slightly better agreement  with 
the TDDNS data for dimensionless friction.

The normalized velocity profiles computed 
for the turbulent layer phase are in a good 
agreement with the TDDNS data for all models 
considered. Analysis of the temperature profiles 
revealed that DRSM BSL and RNG k-ε are in 
best agreement with the test data. The DRSM 
SO and SST k-ω models give significant differ-
ences in the outer region of the boundary layer 
(around 20 %).

The DRSM models give fairly accurate 
predictions for the profiles of turbulent shear 
stress and fluctuation intensity of the transverse 

velocity component but the fluctuation intensity 
predicted for the axial velocity component 
turns out to be significantly underestimated in 
the inner region of the boundary layer.

The computations and analysis of the results 
allow to conclude that the DRSM SO model 
is capable of providing the best agreement with 
the test data [4] , obtained using the TDDNS 
method out of all the RANS turbulence models 
under consideration.

The study was sponsored by Russian Science 
Foundation Grant no. 18-19-00082.
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Применяется алгебра неограниченных операторов дифференцирования t, действую�-
щая над кольцом дифференцируемых функций. Аналитическое представление дробной 
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операторов дифференцирования совпадают с классическими решениями. Расширение 
t+2 – непрерывный спектр преобразования Фурье, позволяет получить точные решения 
трех предельных задач для области любой размерности d > 1.
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Introduction

The classic theory of thermal stability of 
wall structures developed by Seliverstov [1] uses 
the methods of Fourier series theory and, in a 
certain sense, originates from these methods. 
This is hardly accidental, as the author of the 
study was an expert in Fourier series theory. The 
methods of trigonometric series are sufficient 
if the boundary temperature distributions 
of external sources belong to Lp (p > 1) on 
a set of times t. Fourier series converge 
almost everywhere on such a set. However, 
the above condition is redundant for applied 
problems. While the temperature distribution 
of the sources is typically continuous at best, 
according to Titchmarsh [2], it was impossible 
to prove similar statements for convergence of 
Fourier series almost everywhere [2, pp. 420–
421]. The methods for expanding Fourier series 
are inconvenient for mixed boundary problems, 
especially if the external heat source depends 
on parameter t (time).

This study focuses on the methods for 
solving boundary problems for the Fourier 
equation in the form of equalities containing 
functions of differential operators, comparing 
the distributions obtained with the known exact 
solutions.

The significance of our study is in offering 
potential solutions for solving problems related 
to thermal stability of construction barriers.

Key approaches to obtaining the solutions

We have formulated and proved the follow-
ing statements.

1. The solutions for the second and third 
boundary problems for the Fourier equa-
tion are obtained by solving the first bound-
ary problem inverting the differentiation 
operator.

2. Support measures for the distribution of 
the primitive x(t,s), δx and the primitive deriv-
ative y:=–∂x/∂s, δy satisfy the inequality δy/δx ≥ 
1 in the first-kind boundary problem.

3. Increasing the dimension of the domain 
does not increase the support measures of the 
distribution.

Statement 3 implies that the thermal re-
sistance of a half-space does not exceed the 
thermal resistance of a half-plane. In turn, the 
thermal resistance of a half-plane does not ex-
ceed the thermal resistance of a half-line.

As an auxiliary technique, we use the follow-
ing representation of the Taylor series (shift) 
for functions f(t), analytic on half-line t > 0, f 
∈ С∞(0,∞):\

( ) ( ) ( )exp ,tf t s s f t+ = ∂

and its inversion

( ) ( ) ( )exp ,tf t s f t s= − ∂ +

containing integer powers of the differential 
operator ∂t.

Simple expressions for measures of the 
supports δ

x,y
Using the operator norms of fractional 

powers of the operator ∂t allows to obtain simple 
expressions for measures of the supports δx,y.

Preliminary considerations. Fractional 
differentiation is related to the solution of the 
Cauchy problem for an ordinary differential 
equation of arbitrary positive integer (natural) 
order s > 0.

Let

( ) ( ) ( ) ( ) ( ) ( )1 1
1, .s loct x R y x R∈ ⊂ ∈ ⊆D C J L

then the Cauchy problem 

( ), 0 0,
0(1) 1, : /

s r
t t

t

x y x
r s d dt
∂ = ∂ =

= − ∂ =
(1)

has the following solution [3]:

( ) ( ) ( ) ( ) ,
!1

1

0

1∫ −−
−

=
t

s dyt
s

tx τττ (2)

or, in symbolic form,

( ) ( ).s
tx t y t−= ∂ (2a)

Given non-integer s, Eq. (2) can be 
extended:

( ) ( ) ( ) ( )

( ) ( )

1

0

1 ,

: 1 !, 0.

t
ss

t y t t y d
s

s s s

−−∂ = −
Γ

Γ = − >

∫ τ τ τ
(2b)

If s = σ + iρ, σ > 0, Eq. (2b) takes the form

� � � �
�� �

�

� �� � �� �� � ��
�

� �� �

�

�

t
i

t

y t
i

t t

i

� �

�

� �

� � �

�

1

1

0

�

cos ln

sin ln tt y d�� �� �� � �� � �.

Let s=1/2. Then, by virtue of expression 
(2b), we obtain Abel’s formula:
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( ) ( )

( )

1/2

0

2

0

1

2 .

t

t

t

y
y t d

t

y t z dz

− τ
∂ = τ =

π − τ

= −
π

∫

∫
(2c)

The formula obtained (2c) can be used to 
calculate the derivatives of the powers of t, for 
instance,

1/2 1/2

3
1/2 1/2

1 2 / , 1 1 / ,

4 2, ,
3

t t

t t

t t

t tt t

−

−

∂ = π ∂ = π

∂ = ∂ =
π π

furthermore, for any n > 0:

( )
( )

( ) ( )
( )

1/2 1/2

1/2 1/2

1
,

3 / 2

1 / 2 1
.

3 / 2

n n
t

n n
t

n
t t

n

n n
t t

n

− +

−

Γ +
∂ =

Γ +

+ Γ +
∂ =

Γ +

Clearly, the kernel of the operator ∂t
-s, 

N(∂t
–s), contains only one element, у = 0, for 

any 0 < s < 1.
Commutation. By definition, the following 

expression holds true:

� � � � �� �
�

�
� �

�
� �� �

�

�
� �

�

�

t

t

t
t

y t d
dt

y t
d

y
t

y t
d

y

1 2

0

0

1

0 1

0

/

�
�

�
�

� �
�

�
�

tt
y tt t�

� � � � �� ��1 2/
,

or

( ) ( ) ( )1/2 1/2 0
.t t t t

y
y t

t
− −∂ ∂ − ∂ ∂ =

π
(3)

If у(0) = 0, then the operator ∂t com-
mutes with its negative fractional power, 
e.g., –1/2:

( ) ( )1/2 1/2 0,t t t t y t− −∂ ∂ − ∂ ∂ = (3a)

or, in symmetric form, 

1/2 1 1/2 1/2 1/2, .t t t t t t t t
− − − −∂ = ∂ ∂ ∂ ∂ = ∂ ∂ ∂

It follows then that the operator ∂t and its 
fractional powers are self-similar in case of 
commutation.

If 

( ) ( )0 0 00, 0,y t t y t t t± = ∀ > >−

in the Cauchy problem (1) is a primitive period, 
and a periodic solution is sought, so that

( ) ( )0 0, 0,x t t x t t± − = ∀ >

the periodic condition can be replaced by the 
homogeneous condition [3]: 

( ) 0,  0(1) 1,r
t x r s∂ −∞ = = −

and then the solution to the periodic Cauchy 
problem takes the form

( ) ( ) ( ) ( )

( ) ( )

1

1

0

1

1 .

t
ss

t

s

x t t y d
s

y t d
s

−−

−∞

∞
−

∂ = − τ τ τ =
Γ

= ω −ω ω
Γ

∫

∫
Let s =1/2, and then the previous formula 

takes the form

( )1/2 2

0

2 .t x y t z dz
∞

−∂ = −
π ∫ (2d)

Thus, the commutator in the periodic 
boundary problem equals zero, and the 
fractional power of the operator ∂t is permutable 
with its inverse power.

Relations (2)–(2d) are known as the 
Abel–Liouville identities [13]. Applications 
to different mechanics problems are presented 
in Caputo’s study (unfortunately, the original 
text was unavailable to us but it is cited in 
many later studies, for example, in [5–17] and 
references therein).

Extension 1. For any s > 0, inversion of the 
fractional differential operator has the form

� �
�� �

�� �� �t
s s

t

x
s

y t z dz
s

1

1

1

0
�

/

for a non-periodic problem and

� �
�� �

�� ��
�

�t
s sx

s
y t z dz1

1

1

0
�

/

for a periodic one. 
Indeed, if

( ) ( )1 0, 0,y t y t t± − = ∀ >
then the Cauchy condition for all derivatives 
takes the Lyapunov form:
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( ) 0.s
t x∂ −∞ =

Extension 2. Let us consider an equation 
depending on the parameter λ: 

( ) ( ) ( ).t x t y t∂ − λ =

Evidently, the kernel N(∂t–λ) of the opera-
tor ∂t–λ consists of the exponents x(t)=exp(λt). 
Therefore, the solution to the equation is

( ) ( )1 , .tx y z z−= ∂ − λ + ∈ ∂ − λlN
The equation 

( ) ( ) ( )n
t x t y t∂ − λ =

has the solution

( ) ( ) ( ) ( )
( ) ( )( )

,

;

n
t

n
t

x t y t z

z

−= ∂ − λ +

∈ ∂ − λN

evidently,

( ) ( ) ( )2 ... .n
t t tλ λ λ∂ − ⊂ ∂ − ⊂ ⊂ ∂ −N N N

Integral representation of the solution to the 
homogeneous Cauchy problem has the form

( ) ( ) ( ) ( )( ) ( )1

0

1 exp .
1 !

t
nx t t t y d

n
−= − τ λ − τ τ τ

− ∫

Here the kernel consists of functions

( ) ( ) ( ) ( )1 exp ,n
n tP t t z t− λ = ⊂ ∂ − λN

where Ps(t) is a polynomial of degree s. 
Let us continue solving the homogenous 

Cauchy problem for fractional values of n:

( ) ( ) ( )

( ) ( ) ( )( ) ( )1

0

1 exp .

n
å

t
n

x t y t

t t y d
n

−

−

= ∂ − λ =

= − τ λ − τ τ τ
Γ ∫

Let n=1/2; then

x t y t

t
t

y d

z

t� � � � �� � � � �

�
�� �� �

�
� � �

� � �

�

�

�

�

� �

�
� �

�
�

�

1 2

0

2

1

2

/

exp

exp yy t z dz
t

�� �� 2

0

.

It is sufficient for integrals to converge that 
the following condition hold true for the real 
part of the number λ: Reλ < 0.

Similarly, the periodic solution takes the form

x t y t

z y t z dz

t� � � � �� � � � �

� � � �� �

�

�

�

�

�
�

1 2

2 2

0

2

/

exp .

Extension 3. Given arbitrary n > 0, the 
inversion equations for the fractional powers of 
the operator take the form:

x t
n

z y t z dzn n
tn

� � �
�� � � � �� ��

1

1

1 1

0
�

exp ,
/ /�

for a non-periodic problem and

( ) ( ) ( ) ( )1/ 1/

0

1 exp ,
1

n nx t z y t z dz
n

∞

= λ −
Γ + ∫

for a periodic problem, while Reλ < 0. 
This extension is thoroughly explored in 

monograph [13] but the authors but apparently 
did not use the trivial substitution √t = z. This 
substitution is convenient because it allows to 
represent the fractional differential operator as 
a probability integral. Indeed, the integrand in 
Eq. (2d) can be expanded in a Taylor series:

( ) ( ) ( )2 2exp ,tx t z z x t− = − ∂

then the left-hand side of Eq. (2d) is obtained 
immediately.

Nash’s and Kuiper’s studies (discussed in 
Gromov’s monograph [18]) formulated the 
so-called h-principle: differential operators R 
connecting partial derivatives are regarded as 
algebraic relations for partial derivatives.

The h-principle is substantiated in [18], 
accompanied by a list of publications up to 1990. 
Sobolev spaces of functions with (generalized) 
derivatives of fractional order were considered 
by Slobodetskii in a series of studies [19, 20], 
developing Bakelman’s earlier ideas [21] on the 
geometric theory of equations. 

Analysis of Fourier boundary problems 
for half-line s > 0

First boundary problem. Let us consider 
the first boundary problem in an unbounded 
domain t > 0, s > 0:

( ) ( )
2

02 , ,0 .x x x t x t
t s

∂ ∂
= =

∂ ∂
(4)

We find a formal solution to this boundary 
problem by separation of variables.
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Let

( ) ( ) ( )0, exp ,x t s s x t= − α (5)

While the parameter α > 0, which guaran-
tees a decrease in x(t,s), uniform with respect 
to t. In this case, substituting equality (5) in the 
equation of problem (4) leads to the condition

( ) ( ) ( )2
0exp 0,ts x t− α ∂ − α =

from which it follows that α = ∂1/2
t, and, by 

virtue of equality (5), the solution of boundary 
problem (4) has the form

( ) ( ) ( )1/2
0, exp .tx t s s x t= − ∂ (6)

Verification of solution (6). Step 1. The 
classical solution for boundary problem (4) has 
the following form:

( ) ( )
2

2
0 2

2

2, exp .
4s

t

sx t s x t z dz
z

∞  
= − − π  

∫ (7)

Let us expand the function 
2

0 24
sx t
z

 
− 

 
 into 

a Taylor series in powers of 
2

24
s
z

:

( )
2 2

0 02 2exp .
4 4

ts sx t x t
z z

   ∂
− = −   

   

Solution (7) then takes the form [4]:

( ) ( )( )
2

2
02

2

2, exp .
4

t

s
t

sx t s z dz x t
z

∞  ∂
= − − 

 
∫π

(7a)

However, it is known from the course on 
analysis of infinitely small quantities, devel-
oped by de la Vallée Poussin [3], that

( ) ( )2 2

0

2 exp / exp 2 .u u du
∞

− − α = − α
π ∫

Therefore, if the lower limit in the integral in 
(7a) equals zero, then Eq. (7a) coincides with 
Eq. (6). Thus, Eq. (7a) takes the following form:

( ) ( ) ( )

( )

1/2
0

2 2
2

02
0

, exp

2 exp .
4

t

s
t

t

x t s s x t

sz dz x t
z

= − ∂ −

 ∂
− − − ⋅ π  

∫
(7b)

Consequently, given that 
s

t2
1<< ,

 
Eqs. 

(7b) and (6) yield close results.

Step 2. If x0(t) is a periodic time function, i.e.,

x0(t±t0) = x0(t),

where t0 < 0 is a primitive period, then, instead 
of solutions (7), (7a) and (7b), we obtain a 
solution in the form

( ) ( )
2

2
0 2

0

2, exp ,
4
sx t s x t z dz
z

∞  
= − − π  

∫ (7c)

and solutions (7c) and (6) are then identical. 
To confirm this, it is sufficient to expand the 
integrand in solution (7c) in a Taylor series:

( ) ( )

( ) ( )

2
2

02
0

1/2
0

2, exp
4

exp ,

t

t

sx t s z dz x t
z

s x t

∞  ∂
= − − ⋅ = π  

= − ∂

∫

which proves the identity.
Thus, Eq. (6) and its corollaries hold true 

for a boundary value x(t,0) = x0(t), periodic 
with respect to the parameter t, i.e., for the 
solution of the quasi-steady boundary problem 
of thermal conductivity.

The second boundary problem. Eq. (6) 

implies that the derivative ( )
s
xsty
∂
∂

−=,  is 
calculated as follows:

( ) ( ) ( )1/2 1/2
0, exp .t ty t s s x t= ∂ − ∂ (8)

Let s=0. By virtue of expression (8),

( ) ( ) ( )
( ) ( )

1/2
0 0

1/2
0 0

,0 : ,

,
t

t

y t y t x t

x t y t−

= = ∂

= ∂

and by virtue of solution (6), the solution to the 
second boundary problem takes the form

( ) ( ) ( ).exp, 0
2/12/1 tysstx tt

−∂∂−= (9)

The third boundary problem. The given 
problem is formulated as follows for the 
Fourier equation:

( )0
0

0,e
s

x x x
s =

∂  +β − = ∂ 
(10)

where xe is the potential of an external source, 
β is the transfer coefficient. 

Equality (10) then takes the form

( ) ( )0 ,t ex t x∂ +β = β

which implies that
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( ) ( ) ( )
( ) ( ) ( ) ( )( )

1
0

11/2

,

, exp .

t e

t t e

x t x

x t s s x

−

−

= ∂ +β β

= − ∂ ∂ +β β
(11)

So, if the boundary parameters y0, xe, β are 
periodic time functions, then solutions (9) 
and (11) coincide with the classical solutions.

Measure of distribution supports 
for half-line s > 0

We define the support supp(x(t,s)) of the 
distribution x(t,s) as a set of values of the 
coordinate s on which the distribution x(t,s) 
is concentrated. If the distribution x(t,s) has 
continuous density, we can define the support 
as the thickness of the x-layer with respect to 
the density limit, x0(t):

( ) ( )
0 0

1: , .x t x t s ds
x

∞

δ = ∫

By virtue of solution (6), the thickness of 
the x-layer is expressed as

( ) ( )
( )

1/2
0

0

.t
x

x t
t

x t

−∂
=δ

If the distribution x0(t) is periodic, the given 
thickness follows the expression 

( )
( ) ( )2

0
00

2 .x t x t z dz
x t

∞

δ = −
π ∫

Similarly, the thickness of y-layer is 
expressed as

( ) ( ) ( ) ( )
( )

( )

( )

0
1/2

0 00

0

.
2

0

1: ,

,
2

y
t

x t
t y t s ds

y t x t

x t

x t z dz

∞

∞

δ = = =
∂

π
=

−

∫

∫
where the dot denotes the derivative with 
respect to the entire argument t – z2. 

Lemma 1. The ratio between the layer 
thicknesses (form parameter), expressed by the 
formula

( ) ( )

2
0

1/2 1/2
0 0

122
20

0
0

/

,
2

y x
t t

x
x x

x t d x t z dz
dt

−

−
∞

= =
∂ ⋅∂

  
 = −    

∫

δ δ

π

has a value of at least unity for any bounded 
distribution x0(t).

P roo f . Indeed, the above expression can 
be written as

( )
1 2

0
21

0

/ 1.
2 2

t
y x

t

x
x

−

−

π ∂ π
δ δ = ≥ >

∂
Here we use the Cauchy inequality to 

estimate the integrals.
To illustrate that the lemma proved holds 

true, let us provide an example which allows 
to calculate the support lengths directly. The 
distribution x(t,s) for a straight line (ray) s>0 
takes the form

( ) ,
2

erfc, 





=

t
sstx

where 

( ) ( ) ( )0,0 : 1 0, 0.x t x t x s− = =

Then we obtain the following equations:

( )

( ) ( )

2

0

1, : exp ,
4

1,0 : ,

x sy t s
s tt

y t y t
t

 ∂
= − = − ∂ π  

= =
π

2 ,

,
/ / 2.

x

y

y x

t

t

δ =
π

δ = π

δ δ = π

The lemma is proved.
Lemma 2. Let

( ) ( ) ( ) ( )
0

: exp , 0 exp ,m m

x

f x at dt f at dt
∞ ∞

= − = −∫ ∫
where a, m are positive constants, and

( ) ( ) ( ) ( )' : exp , 0 1.mf x x ax f− = ϕ = − − =

Then the ratio between the support lengths 
of function f(x) and its derivative f’’(x) = ϕ(x) 
(δϕ and δf , respectively) has a value no less 
than unity:

( )( )
( )

2
1 /1/ 1.
2 /f

m
m mφ

Γ
= δ δ = ≥

Γ
H :

Proo f . Indeed, the following equations hold 
true:
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( )

( )

( )

( )

( )

0

0

0
2

0

0

exp
,

exp ,

exp ,

exp
,

exp

m

f
m

m

m

m

t at dt

at dt

at dt

at dt

t at dt

∞

∞

∞

ϕ

∞

∞

−
δ =

−

δ = −

 
− 

 =
−

∫

∫

∫

∫

∫
H

and it remains to rewrite the integrals in Euler 
form.

The Lemma is proved.
The results of Lemma 2 can be rewritten 

differently, if we use a duplication formula for 
the function Γ(z) [2, 3]:

( )
( )2/ 1

1 /
.

2 1 / 1 / 2m

m
m m−

Γπ
=

Γ +
H

Let m = 1, then H = 1; if m = 2, then H = 
π/2. It is easy to use the asymptotic form of the 
Γ-function to prove that ∞→

∞→m
H .

Thus, the measure (length) of the distribu-
tion support for decreasing integer distributions 
of the order m > 1, the measure (length) of the 
distribution support does not exceed the mea-
sure of the distribution support derivative.

The quantity δy/δx in problems of thermal 
conductivity of wall structures is the ratio 
of absolute to effective thermal resistance of 
one-dimensional heat conducting medium (of 
the half-line s > 0)[22].

Fourier boundary problems

 for half-plane s > 0, |u| < ∞ 
Let

D(x) = (t,s,u: t>0,s>0,|u|< ∞),

where u is the second coordinate.
The Fourier equation 

x
t
x

us
2
,∇=

∂
∂

and the first-kind boundary condition 

( ) ( )utxutx ,,0, 0=

are satisfied.

We define the transformation

( ) ( )
^ ^

,, , ,  x x t sx t s u =

that is integral with respect to the argument u as

x t s x t s v i v dv
^

, : , , exp ,� � � � � � �
��

�

� �

where the circumflex ^ denotes the Fourier 
transform of the function x(t,s,u) with respect 
to the argument u.

The Fourier transform of the function 
x(t,s,u) satisfies the partial differential 
equation:

.2

^
2^

2

s
xx

t ∂
∂

=





 +
∂
∂ ω (12)

Eq. (11) can be obtained from Eq. (4) by 
replacing the operator ∂t with the operator

∂t,ω=∂t+ω2,

where ω is the spectral number.
The first-kind boundary condition is 

formulated as

( ) ( )
^ ^

0,0 .x t x t= (13)

Then, similar to solution (6), we obtain:

( ) ( ) ( )0

^ ^
1/2
,, exp .tx t s s x tω= − ∂ (6a)

Next, the solution to the second boundary 
problem has the form

( ) ( ) ( )

( )

^ ^
1/2 1/2
, , 0

^
^

0

0

, exp ,

: .

t t

s

x t s s y t

xy t
s

−

=

= − ∂ ∂

 ∂ = −
∂ 

 

ω ω

(9a)

Finally, the solution to the third boundary 
problem follows the expression

( ) ( )
^

1/2
,

1^ ^

,

, exp

.

t

t e

x t s s

x

ω

−

ω

= − ∂ ×

    × ∂ +β β    
    

(11a)

As a result, Eqs. (6а), (9а) and (11а) co�-
incide with the exact solutions of the pe-
riodic boundary problems and are obtained 
from the solutions to one-dimensional prob-
lems by replacing the operator ∂t with the 
operator ∂t,ω.
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Generalization of analysis. The Fourier equa-
tion with respect to the coordinates s, u1, …, ud–1 
for the case d > 1 has the following form:

2 21

2 2
1

,
d

i i

x x x
t s u

−

=

∂ ∂ ∂
= +

∂ ∂ ∂∑
Applying (d – 1)-fold Fourier transform, 

the equation is written as
^

2 1^
2 2 2

2
1

, : .
d

i
i

xx
t s

−

=

∂ ∂ +Ω = Ω = ω ∂ ∂ 
∑

The solution to the first boundary problem 
in traditional notation has the form

( ) ( )
^ ^

1/2
, 0, exp ,tx t s s xΩ= − ∂ (6b)

where we introduce the following notation for 
(d – 1)-fold Fourier transform 

( )
( )

( )

^

0 1 1 1

1 1 0 1 1
0 0

1

1

1, ,...
2

... ,0, ,...

exp .

d d

d d

d

i i
i

x t

dv dv x t v v

i v

− −

∞ ∞

− −

−

=

ω ω = ×
π

× ×

 × ω 
 

∫ ∫

∑
The inverse Fourier transform should be 

represented as

( )

( )

^

0 1 1 1 1 0
0 0

1

1 1
1

,0, ,... ...

, ,... exp .

d d

d

d i i
i

x t u u d d x

t i u

∞ ∞

− −

−

−
=

= ω ω ×

 × ω ω − ω 
 

∫ ∫

∑

If x0(t,0,u1,…, ud–1) is a periodic function of 
the argument t, then Eq. (6b) coincides with 
the exact solution to the first Fourier boundary 
problem. Eqs. (9a) and (11a) also hold true if 
the subscript ω is replaced with Ω.

Let us return to the thermal conductivity 
problem mentioned at the end of the section 
“Measure of distribution supports for half-line 
s > 0”. It can be proved that if the dimen-
sion of an infinite domain occupied by scalar 

heat-conducting medium increases, its thermal 
resistance does not increase with an increase in 
the dimension of the domain d > 1.

Indeed, for any value d > 1,

2

1 1
.

s
ss

t i t t
i d

−
−−

≤ ≤ −

∂ + ω ≤ ∂ ≤ ∂∑

Conclusion

Using the algebra of unbounded 
differentiation operators and reviewing the 
results of the analysis carried out, we have 
drawn the following conclusions. 

1. The unbounded operator of fractional 
differentiation over a ring of continuous 
functions can be inverted (known as the Abel–
Liouville formula). The inverse operator is 
bounded on functions from the set L1(0,t), 
where t ≤ ∞. The solutions for the second and 
third Fourier boundary problems are obtained 
by inverting the differentiation operator of the 
first boundary problem. 

2. The operator ∂t in a quasi-steady 
(periodic) boundary problem commutes with 
any fractional inverse power. There are no 
operator powers in aperiodic commutation 
problems.

3. In case of decreasing integer distributions 
of order m > 1, the support measure (length) 
of the distribution x(t,s) does not exceed the 
support measure corresponding to the derivative 
of the distribution y(t,s)=∂x/∂s. In other words, 
the thickness of the heat flux boundary layer 
(decreasing distribution of order m > 1) should 
be no less than the thickness of the temperature 
boundary layer.

4. Increasing the dimension of the domain 
D(x) of the sought-for function x(t,s) does not 
increase the measures of the supports supp(x) 
and supp(y), where y = ||∇x||  (||∇x|| is the Euclidian 
norm of the scalar function x(t,s)). The support 
measure (length) of the distribution x(t,s) does 
not exceed the support measure corresponding 
to the derivative of the distribution for any 
decreasing integer distributions of order m > 1. 
Therefore, the thermal resistance of the domain 
D(x) does not increase along with increasing 
dimension: the heat flux vector y gains an 
additional component (additional degree of 
freedom).
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ЦЕПОЧКИ ФУНДАМЕНТАЛЬНЫХ  
ВЗАИМНО-ОДНОРОДНЫХ ФУНКЦИЙ С ОБЩИМ 

ВЕЩЕСТВЕННЫМ СОБСТВЕННЫМ ЧИСЛОМ

А.С. Бердников1, К.В. Соловьев2,1, Н.К. Краснова2

1Институт аналитического приборостроения Российской академии наук,    Санкт-Петербург, Российская Федерация;
2 Санкт-Петербургский политехнический университет Петра Великого,    Санкт-Петербург, Российская Федерация

Данная работа продолжает изучение свойств взаимно-однородных функций 
(ВОФ), которые являются обобщением функций, однородных по Эйлеру; ВОФ могут 
использоваться при синтезе электрических и магнитных полей электронно- и ионно-
оптических систем со специальными свойствами. Рассматривается цепочка функций, 
соответствующая кратным вещественным собственным значениям матрицы базовых 
функциональных уравнений для ВОФ. Выведены функциональные соотношения, 
характеризующие такие функции, а также общие формулы для функций, являющихся 
решениями полученных функциональных соотношений. Показано, что полученный 
класс функций представляет собой уточнение присоединенных однородных функций 
Гельфанда. Исследованы типичные дифференциальные и интегральные свойства 
полученного класса функций, а для дифференцируемых функций доказано обобщение 
теоремы Эйлера (критерий Эйлера).

Ключевые слова: функциональное уравнение, однородная функция, присоединенная 
однородная функция, взаимно-однородные функции
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Introduction

This paper continues a series of studies [1–
4] considering the properties of homogeneous 
harmonic functions and their applications for 
synthesis of electric and magnetic fields for electron 
and ion-optical systems with special properties [5–
8]. Carrying on where [9] left off, our work heavily 
relies on the results presented therein.

A function f(x1, x2, …, xn) is called Euler-
homogeneous with the degree of homogeneity 
equal to p if the identity 

f(λx1, λx2, …, λxn) = λp f(x1, x2, … , xn). (1)

holds true for any real values of λ. 
The main properties and theorems on 

Euler-homogeneous functions are described 
in monograph [10]. In particular, any 
homogeneous function of degree p can be 
represented as

f(x1, x2, …, xn) = 

= x1
p h(x2/x1, x3/x1, …, xn/x1),

(2)

where h(t2, t3, …, tn) is a certain function of 
(n – 1) variables, while any function taking the 
form (2) is homogeneous with the degree p. 

The function f(x1, x2, …, xn) is called positive-
ly homogeneous in Euler terms with the degree 
p if identity (1) holds true for any positive real 
values of λ, while the identity is not guaranteed 
to hold for negative real values of λ (for example, 
function f(x) ≠ x). Imposing a constraint that λ > 
0, in particular, allows to safely operate random 
real degrees of homogeneity in Eq. (1): addi-
tional steps need to be taken for a random real 
degree p to determine the power function λp at 
negative values of λ to satisfy the condition

λ1
pλ2

p = (λ1λ2)
p.

Positively homogeneous function f(x1, x2, …, 
xn) of degree p can be represented in the form:

if x1 > 0 f(x1, x2,…, xn) =

= x1
p h(x2/x1, x3/x1, …, xn/x1);

(3)

if x1 < 0 f(x1, x2, …, xn) = 

= (–x1)
p g(x2/x1, x3/x1, …, xn/x1),

(4)

where h(t2, t3, …, tn) and g(t2, t3, …, tn) are func-
tions of (n – 1) variables independent of each 
other (in general). 

Eqs. (3) and (4) are obtained from relation 
(1) by substituting into it the values λ = +1/x1 
for x1 > 0 and –1/x1 for x1 < 0, if the functions 
h(t2, t3, …, tn) and g(t2, t3, …, tn) are defined as 
follows:

h(t2, t3, …, tn) = f(+1, t2, t3, …, tn),  

g(t2, t3, …, tn) = f(–1, –t2, –t3, …, –tn).
If x1 = 0, the function f(0, x2, x3, …, xn) is 

positively Euler-homogeneous of degree p with 
less variables, so parametrization of the form 
(3), (4) can be applied to it. A recursive pro-
cess of constructing complete parametrization 
for a positively homogeneous function f(x1, x2, 
…, xn) stops when a set of variables x1, x2, …, 
xn is exhausted.

Consider the functions taking the form

if x1 > 0:  fp,k(x1, x2,…, xn) =

= (1/k!) x1
p (q ln x1)

k ×

× h(x2/x1, x3/x1, …, xn/x1),

(5)

if x1 < 0:  fp,k(x1, x2,…, xn) =

= (1/k!) (–x1)
p (q ln (–x1))

k ×

× g(x2/x1, x3/x1, …, xn/x1),

(6)

where p, q are real constants; k is an integer 
index (k = 0, 1, 2, …); h(t2, t3, …, tn), g(t2, t3, 
…, tn) are certain functions of (n – 1) variables; 
the values of the variable x1 satisfy the condi-
tion x1 ≠ 0. 

Given the functional relations

fi(λx1, λx2, …, λxn) = 

= ∑aij(λ) fj(x1, x2, …, xn),
(7)

where i, j = 1, 2, …, k, and the functions aij(λ) 
are unknown in advance, then, in a particular 
case when all eigenvalues of the matrix ||aij(λ)|| 
are real numbers p equal to each other (see [9]), 
functions taking the form (5), (6) may qualify 
as possible solutions to functional equations of 
the form (7).
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Using direct substitution, we can confirm 
that for ∀λ > 0, functions (5), (6) satisfy the 
functional relations

( )
( ) ( )

, 1 2

, 1 2
0,

, , ,

, , , ,
p k n

k j p j n
j k

f x x x

a f x x x−
=

λ λ λ =

= λ∑




(8)

where aj(λ) = (1/j!) λp (q ln λ) j. 
The objectives of this study are, firstly, de-

veloping general formulae for the functions sat-
isfying functional equations (8) provided that 
functions aj(λ) take the form

aj(λ) = (1/j!) λp(q ln λ) j,
and, secondly, proving certain important 
theorems on the obtained class of real functions 
of multiple variables.

Relationship of functions (5) with associated 
homogeneous Gel’fand functions

Functions (5) and (6) satisfying function-
al relations (8) are a refinement of associated 
homogeneous Gel’fand functions as defined in 
[11, 12]. However, these studies falsely assume 
that the system of functional relations (8) is a 
bidiagonal matrix with functions a(λ) for the 
main diagonal and b(λ) for the auxiliary one, 
unknown in advance. Unfortunately, while this 
insignificant mistake in the formal definition 
did not affect the other fundamental results ob-
tained in [11, 12], was further uncritically dis-
seminated in subsequent publications by other 
authors [13–20]. We could only find mentions 
of this inaccuracy in [21, 22] but even in these 
instances the authors omitted the factor 1/k! 
in the respective formulae from consideration. 
This shortcoming is absent in earlier formu-
lae presented in [23]. Moreover, no analysis of 
the general solution was performed in [21–23] 
for the obtained functional equations after ver-
ifying the required functional relations for the 
given functions (i.e., after obtaining a particu-
lar solution).

It is easy to prove at least for differentiable 
functions1 that a bidiagonal system of functional 
equations (8) can have nondegenerate solutions 
different from the null equation only when a(λ) 
= λp and b(λ) = λp(q ln λ). At the same time, 
these solutions (if they exist) must have a form 
of linear combinations with constant factors 
composed of functions (7) [21]. Unfortunately, 

1 For this conclusion, it is actually sufficient to impose that 
each of the functions a(λ) and b(λ) is continuous in at least 
one point of λ > 0. Rigorous proof of this statement is not 
complicated but lies beyond the scope of our study.

even when k = 3, functions (7) do not satisfy 
the system of bidiagonal relations (8), and we 
can prove that these functional relations have 
essentially no solutions for k ≥ 3 [21].

One of the goals of this work is to reintroduce 
mathematical rigor to associated homogeneous 
Gel’fand functions, as well as to study some in-
teresting properties of the obtained functions.

We should stress that we consider a rather 
narrow subclass of functions that is the closest 
to associated homogeneous Gel’fand functions. 
The general solution for functional equations 
(8) with the functions aj(λ) unknown in ad-
vance is far more extensive, and we are in fact 
planning another publication on this subject.

General formulae

So as not to confuse the constructions we 
consider with the associated homogeneous 
functions in terms of Gel’fand definitions [11, 
12], let us add the following definition.

Definition. A semi-infinite chain of functions 
fp,k(x1, x2, …, xn), where k = 0, 1, 2, …, and the 
functions fp,k(x1, x2, …, xn) satisfy the functional 
relations

fp,k(λx1, λx2,…, λxn) =

= Σj=0,k (1/(k–j)!) λp (q ln λ)k–j ×

× fp,j(x1, x2,…, xn),

(9)

for all λ > 0 is called fundamental associated 
homogeneous functions of degree p and order k. 

Changing the order of summation, relations 
(9) can be written in an equivalent form as

fp,k(λx1, λx2,…, λxn) =

= Σj=0,k (1/j!) λp (q ln λ)j ×

× fp,k–j(x1, x2,…, xn).
Parameter q is responsible for normalization 

of the fundamental associated homogeneous 
functions and does not affect the rest of their 
properties. After substituting

fp,j(x1, x2, …, xn) = 

= qj Fp,j(x1, x2, …, xn),
the parameter q is reduced in functional relations (9), 
and functions Fp,j(x1, x2, …, xn) take the meaning of 
normalized fundamental associated homogeneous 
functions corresponding to the choice q = 1. 

We need to find the general formulae for 
the functions satisfying functional relations (9), 
similar to formulae (3) and (4). The solution is 
provided by the following theorem. 
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Theorem 1. Chain of fundamental associated 
homogeneous functions fp,k(x1, x2, …, xn) of degree 
p and order k, obeying functional relations (9) for 
all ∀λ > 0, has the following one-to-one repre-
sentation for x1 ≠ 0:

if x1 > 0  fp,k(x1, x2,…, xn) =

= Σj=0,k (1/(k–j)!) x1
p (q ln x1)

k–j ×

× hj(x2/x1, x3/x1, …, xn/x1);

(10)

if x1 < 0  fp,k(x1, x2,…, xn) =

= Σj=0,k (1/(k–j)!) (–x1)
p (q ln (–x1))

k–j ×

× gj(x2/x1, x3/x1, …, xn/x1),

(11)

where gj(t2, t3, …, tn), hj(t2, t3, …, tn) are re-
al functions of (n – 1) variables, which have 
a one-to-one correspondence with functions 
fp,k(x1, x2, …, xn). 

The reverse is also true: a chain of functions 
given by Eqs. (10) and (11) obeys functional 
relations (9) for x1 ≠ 0 with randomly chosen 
functions gj(t2, t3, …, tn) and hj(t2, t3, …, tn).

When x1 = 0 and x2 ≠ 0, parametrization 
for fundamental associated homogeneous 
functions fp,k(0, x2, x3, …, xn) of degree p and 
order k is constructed similar to Eqs. (10), (11). 
Complete parametrization for functions fp,k(x1, 
x2, …, xn) is repeated recursively until the set of 
variables x1, x2, …, xn is exhausted.

P roo f .  Let us confine ourselves to 
considering only the case when x1 > 0, since the 
case when x1 < 0 is derived from it by substituting 
x1 = –x1, with relations (9) remaining unchanged.

When k = 0, relations (9) transform into 
homogeneity relation (1), while the function 
fp,0(x1, x2, …, xn) turns out to be a positively 
homogeneous function of degree p which is 
defined at x1 > 0. Consequently, Eq. (10) holds 
true with k = 0, as it coincides with Eq. (3) for 
positively homogeneous functions, while the 
function h0(t2, t3, …, tn) is mapped one-to-one 
using the obtained function fp,0(x1, x2,…, xn).

Let us employ tmathematical induction. 
Suppose Eqs. (10) are proved for all values 

of k satisfying the inequality 0 ≤ k < m. Let us 
write the function fp,m(x1, x2, …, xn) for x1 > 0 as 

fp,m(x1, x2,…, xn) = x1
p 

H(x1, x2,…, xn) +

+ Σj=0,m–1 (1/(m–j)!) x1
p (q ln x1)

m–j ×

× hj(x2/x1, x3/x1, …, xn/x1),

(12)

where the functions hj(t2, t3, …, tn) for j = 0, 1, 
m–1 have been already defined at the previous 
steps of the p r oo f .  It is required to find the 
form that the function H(x1, x2, …, xn), which 
has a meaning at x1 > 0, should take for the 
identity 

fp,m(λx1, λx2,…, λxn) –

– λp fp,m(x1, x2,…, xn) –

– Σk=0,m–1 (1/(m–k)!) λp (q ln λ)m–k ×

× fp,k(x1, x2, …, xn) = 0.

(13)

to hold true for ∀λ > 0.
After simplifying expression (13) given that 

the functions fp,k(x1, x2, …, xn) can be replaced 
by relations (10) for 0 ≤ k < m, we obtain the 
condition:

if ∀λ > 0, x1 > 0 

H(λx1, λx2, …, λxn) = H(x1, x2, …, xn).
Consequently, the function H(x1, x2, …, xn) 

must be a positively homogeneous function of 
zero degree, defined for x1 > 0. This condition 
is necessary and sufficient to fulfil equality 
(13), because all algebraic transformations 
simplifying expression (13) are reversible. 

According to Eq. (3), when x1 > 0, the 
function H(x1, x2, …, xn) can be represented as

H(x1, x2, …, xn) =

= hm(x2/x1, x3/x1, …, xn/x1),
where hm(t2, t3, …, tn) is a certain new function 
of (n – 1) variables. 

Next, if we substitute the values x1 = 1 into 
equality (12), we obtain the condition

fp,m (1, x2, …, xn) = hm(x2, x3, …, xn),
which implies a one-to-one correspondence 
between the functions fp,m and hm.

Thus, with x1 > 0, Eq. (10) holds true for 
k = m as well. 

Theorem 1 is proved. 
The chain of associated homogeneous functions 

can be also represented in parameterized form by 
other means. For example, a method for construct-
ing the most generalized type of parametrization 
can be formulated as the following theorem.

Theorem 2. Suppose ωp(x1, x2, …, xn) is a 
positively homogeneous function of degree p, 
ψq(x1, x2, …, xn) is a positively homogeneous 
function of degree q ≠ 0, and ψ2(x1, x2, …, xn), 
ψ3(x1, x2, …, xn), …, ψn(x1, x2, …, xn) are posi-
tively homogeneous functions of zero degree. 
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Let these functions be defined at any point 
of the domain Ω. Additionally, suppose that the 
function ωp does not become zero in the domain 
Ω, the function ψq is strictly positive, the functions 
ψ2, ψ3, …, ψn are functionally independent.

Then the fundamental associated homoge-
neous functions fp,k(x1, x2, …, xn), which obey 
the functional relations (9) for ∀λ > 0, can be 
mapped one-to-one as follows in the domain Ω:

fp,k(x) =
= Σj=0,k (1/(k–j)!) ωp(x) (ln ψq(x))k–j ×

× hj(ψ2(x), ψ3(x), …, ψn(x)),
(14)

where x = (x1, x2,…, xn), and hj(t2, t3, …, tn) are 
certain real functions of (n – 1) variables. 

P roo f .  When k = 0, the function fp,0(x1, x2, 
…, xn) is a positively homogeneous function of 
degree p, while the function 

fp,0(x1, x2, …, xn)/ωp(x1, x2, …, xn)
is a well-defined positively homogeneous func-
tion of zero degree. It can be represented as 
h0(ψ2, ψ3, …, ψn), as it is functionally dependent 
on the functionally independent functions ψ2, 
ψ3, …, ψn. Indeed, if we can find such a posi-
tively homogeneous function ψ(x1, x2, …, xn) of 
zero degree, which forms a functionally inde-
pendent set with the functions

ψ2(x1, x2, …, xn), 

ψ3(x1, x2, …, xn), …, ψn(x1, x2, …, xn),
then the free variables x1, x2, …, xn can be ex-
pressed in terms of functionally independent 
positively homogeneous functions ψ, ψ2, …, ψn 
of zero degree. Then any function of the vari-
ables x1, x2, …, xn would be a positively homo-
geneous functions of zero degree. This cannot 
be true, so the corresponding function h0(ψ2, ψ3, 
…, ψn) must exist, and thus, Eq. (14) is fulfilled 
for k = 0. Further proof by induction repeats 
the proof of Theorem 1 practically verbatim.

Theorem 2 is proved.
Using Eqs. (14), the entire space Rn is di-

vided into non-intersecting conic2 domains Ωs, 
for each of which the selected functions ωp(x1, 
x2, …, xn) and ψq(x1, x2, …, xn) do not become 
zero3, and the functions 

ψ2(x1, x2, …, xn), 

2 The domain Ω is called a hypercone, if it follows from the 
condition x ϵ Ω that the condition λx ϵ Ω is also satisfied for 
any points λx at random values λ > 0.
3 If the function ψq is negative in the given domain, it is 
replaced by –ψq.

ψ3(x1, x2, …, xn), …, ψn(x1, x2, …, xn)

form a functionally independent set of posi-
tively homogeneous functions of zero degree. 
Generally speaking, we construct parametriza-
tion (14) for each of the domains Ωs using a 
separate set of functions hj(t2, t3, …, tn) unrelated 
to the functions hj(t2, t3, …, tn) used for other 
domains. The boundaries between the conic do-
mains are conic surfaces of smaller dimensions, 
along which the given functions fp,k(x1, x2, …, 
xn) act as fundamental associated homogeneous 
functions of smaller dimensions, with parame-
trization constructed by a similar algorithm.

Importantly, parametrization of fun-
damental associated homogeneous func-
tions fp,k(x1, x2, …, xn) is partitioned into several 
independent branches as a result; moreover, 
such a partition depends on the selected aux-
iliary functions ωp(x1, x2, …, xn) and ψq(x1, x2, 
…, xn), and, to a lesser degree, on the functions

ψ2(x1,x2,…,xn), 

ψ2(x1, x2, …, xn), …, ψn(x1, x2, …, xn),
and does not reflect the inner structure of the 
chain of functions parameterized.

Partitioning the space Rn into several inde-
pendent branches can be avoided as the follow-
ing theorem implies.

Theorem 3. A chain of fundamental associ-
ated homogeneous functions fp,k(x1, x2, …, xn), 
which adheres to functional relations (9) for all 
∀λ > 0 can be mapped one-to-one as follows:

fp,k(x) = Σj=0,k (1/(k–j)!) rp (q ln r)k–j ×

× hj(x1/r, x2/r, …, xn/r),
(15)

where x = (x1, x2,…, xn), 
22

2
2
1 nxxxr +++= 

and hj(t1, t2, …, tn) are arbitrary real functions 
given on the surface of a unit hypersphere

t1
2 + t2

2 + … + tn
2 = 1,

with a one-to-one correspondence to the functions 
fp,k(x1, x2, …, xn). 

Proo f .  If k = 0, we can establish that Eq. 
(15) holds true for a positively homogeneous 
function fp,0(x1, x2, …, xn) after substituting λ 
= 1/r into homogeneity relation (1) and using 
the function h0(t1, t2, …, tn) = fp,0(t1, t2, …, tn) 
(recall that each of the functions hj(t1, t2, …, 
tn) is defined only for the surface of a unit 
hypersphere t1

2 + t2
2 + … + tn

2 = 1). Further 
proof by induction repeats the proof of Theorem 
1 practically verbatim.
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Theorem 3 is proved.
Relations (9) imply that the linear 

combination with constant coefficients 
comprised from several chains of fundamental 
associated homogeneous functions of degree 
p and order k is also a chain of fundamental 
associated homogeneous functions of degree p 
and order k. Besides, if fp,k(x1, x2, …, xn) is a 
chain of fundamental associated homogeneous 
functions of degree p and order k, then a new 
chain of functions

gp,k(x1, x2, …, xn) = fp,k-1(x1, x2, …, xn)
with an index shift, supplemented by a leading 
zero gp,0(x1, x2, …, xn) = 0, is also a chain of 
fundamental associated homogeneous functions 
of degree p and order k. 

Eqs. (10), (11) (as well as (14) or (15)) 
illustrate the validity of Gel’fand’s hypothesis 
that any chains of associated homogeneous 
functions of degree p and order k are obtained 
from the main chains with a nonzero first 
term by shifting the index k and subsequent 
summation. At the same time, all elements of 
the main chain of functions are reconstructed 
one-to-one by to its first term according to 
a certain rule; the accurate formulation of 
this rule reflects the researcher’s preferences 
and, generally speaking, can be different 
for the same initial function. In case of the 
theorems proved above, the respective chains 
of fundamental associated homogeneous 
functions have the form

a) for Eqs. (10), (11):

if x1 > 0  f (j)
p,k (x) =

= (x1
p / k!) (q ln x1)

k ×

× hj(x2/x1, x3/x1, …, xn/x1);

if x1 < 0:  f (j)
p,k (x) =

= ((–x1)
 p /k!) (q ln (–x1))

k ×

× gj(x2/x1, x3/x1, …, xn/x1);
b) for Eq. (14):

f (j)
p,k(x) = ωp(x) /k! (ln ψq(x))k ×

× hj(ψ2(x), ψ3(x), …, ψn(x));
c) for Eq. (15):

f (j)
p,k(x) =

= (rp / k!) (q ln r)k hj(x1/r, x2/r, …, xn/r).

Remark. As follows from Eqs. (14), the 
fundamental associated homogeneous functions 
are actually linear combinations of chains of 
functions taking the form 

(1/k!) Rp(x1, x2, …, xn) ×

× (ln Sq(x1, x2, …, xn))
k,

where Rp(x1, x2, …, xn) are random positively 
homogeneous functions of degree p, and Sq(x1, 
x2, …, xn) are fixed positively homogeneous 
functions of degree q, for which we also shift 
the index k and supplement the shifted chains 
with leading zeros. 

The situation will not change and no new 
functions can be obtained if we demand that 
the functions Sq(x1, x2, …, xn) are random 
positively homogeneous functions of degree 
q. 

In particular, this approach allows to 
formulate the fundamental associated 
homogeneous functions more elegantly without 
using artificially derived variables x1. Changing 
the selected function Sq(x1, x2, …, xn) makes the 
current main chains secondary, and, vice versa, 
the chains that were previously secondary the 
main ones. Because of this, the definition of 
the main chains of fundamental associated 
homogeneous functions is fairly arbitrary 
and depends on the selected parametrization 
of fundamental associated homogeneous 
functions.

Differentiation and integration of 
associated homogeneous functions 

If an Euler-homogeneous function 
f(x1, x2, …, xn) of degree p is differentiable, 
then its derivatives with respect to the variables 
x1, x2,…, xn are homogeneous functions of de-
gree (p – 1) [10]. A similar statement is valid 
for the associated homogeneous functions. Let 
us formulate and prove the following theorem.

Theorem 4 (on differentiation). If 
fp,k(x1, x2, …, xn) is a chain of fundamental as-
sociated homogeneous functions of degree p and 
order k, and the functions fp,k(x1, x2, …, xn) are 
differentiable, then their first partial derivatives 
∂fp,k/∂xi with respect to the variables x1, x2, …, xn 
form chains of fundamental associated homoge-
neous functions of degree (p – 1) and order k.

Proo f .  The statement of the theorem fol-
lows from a term-by-term differentiation of the 
right and the left-hand sides of Eq. (9) with 
respect to the variable xi.

Theorem 4 is proved.
A similar statement is valid for integration.
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Theorem 5 (on integration). If fp,k(x1, x2, …, xn) 
is a chain of fundamental associated homoge-
neous functions of degree p and order k, then 
integrals represented as

( )

( )
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(if they exist) form a chain of fundamental 
associated homogeneous functions of degree (p + 
1) and order k. 

Significantly, the initial point of integration 
is zero.

P roo f .  The proof follows from term-
by-term differentiation with respect to the 
variable t in the interval t ∈ [0, xi] of relation 
(8) after substituting xi → t in it in view of the 
equality
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Theorem 5 is proved.
It is also possible to consider the integrals
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where the functions gk(x1, x2, …, xi–1, xi+1, 
…, xn) are such that the obtained functions 
fp,k(x1, x2, …, xn) form a chain of fundamental 
associated homogeneous functions of degree 
(p + 1) and order k. We can prove that such 
functions gk do indeed exist and can be expressed 
in terms of the functions fp,k(x1, x2, …, xn) 
with a one-to-one correspondence up to the 
additive elements in the form of fundamental 
associated homogeneous functions of degree 
(p + 1) and order k depending on the variables 
x1, x2, …, xi–1, xi+1, …, xn. The proof of this 
statement is given in the following section.

Theorem 6 (on fractional differentiation). 
If fp,k(x1, x2, …, xn) is a chain of fundamental 
associated homogeneous functions of degree p 
and order k, then their fractional derivatives 
Fp,k(x1, x2, …, xn) of order α∈(0, 1) (Riemann–
Liouville integrals of order α [24–26]), ex-
pressed as
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form a chain of fundamental associated 
homogeneous functions of degree (p – α) and 
order k (if such integrals exist, in particular, if 
m – α > 0). 

Significantly, the initial point of integration 
is zero.

P roo f .  The proof follows from term-by-
term application of the linear convolution 
operator L[f] to relation (8): 
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where we should also take into account the 
equality
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As a result, we obtain a chain of fundamental 
associated homogeneous functions of degree 
(m + p – α) and order k, which, after m-fold 
differentiation with respect to the variable xi, 
becomes a chain of fundamental associated 
homogeneous functions of degree (p – α) and 
order k. 

Theorem 6 is proved.
Theorem 7 (on convolution with a generalized 

Abel kernel). If fp,k(x1, x2, …, xn) is a chain of 
fundamental associated homogeneous functions of 
degree p and order k, then provided that there the 
corresponding integrals exist, their convolution 
with the generalized Abel kernel expressed as
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where ∀µi > 0, forms a chain of fundamental as-
sociated homogeneous functions of degree p + µ1 
+ … + µn and order k. The result for partial 
convolution with respect to the variables x1, x2, 
…, xm is a chain of fundamental associated ho-
mogeneous functions of degree p + µ1 + … + µm 
and order k. 

Significantly, the initial point of integration 
is zero.

P roo f .  The proof follows from term-by-
term application of convolution with the Abel 
kernel to relation (8) in view of the equality

( ) ( )
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∫ ∫
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 

Theorem 7 is proved. 

Euler’s criterion

Let us recall Euler’s theorem on 
homogeneous functions [10]:

Euler’s theorem (Euler’s criterion for 
homogeneous functions). If the function 
f(x1, x2,…, xn) is continuously differentiable in 
any point of space Rn, then for it to be Euler-
homogeneous of degree p, it is necessary and 
sufficient that in any point of space Rn the 
following condition is satisfied

x1 ∂f/∂x1 + x2 ∂f/∂x2 + … +

+ xn ∂f/∂xn = pf.
(16)

Relation (13) is obtained through 
differentiation of identical equation

f(λx1, λx2, …, λxn) = λp f(x1, x2, …, xn)
for a homogeneous function of degree p with re-
spect to parameter λ in point λ = 1, therefore, its 
necessity is obvious. However, it is highly non-
trivial that condition (16) is not only necessary 
but sufficient for the function f(x1, x2,…, xn) dif-
ferentiable everywhere to be Euler-homogeneous 
of degree p. The proof of this theorem can be 
found, for example, in monograph [10].

Euler’s criterion (16) works for continuously 
differentiable positively homogeneous functions 
of degree p as well. The only difference is that 
in this case the function f(x1, x2,…, xn) can have 

no derivative at point x1 = x2 = … = xn = 0 
and, consequently, condition (16) is violated 
at this point.

Theorem 8 (generalization of Euler’s 
criterion). For the functions fp,k(x1, x2 ,…, xn) 
continuously differentiable everywhere to form 
a chain of fundamental associated homogeneous 
functions of degree p and order k, it is necessary 
and sufficient that the following equations are 
fulfilled at all points of space Rn, possibly except 
for point x1 = x2 = … = xn = 0: 

x1 ∂fp,k/∂x1 + x2 ∂fp,k/∂x2 + … +

+ xn ∂fp,k/∂xn = p fp,k + q fp,k–1.
(17)

P roo f .  The necessity of relation (17) 
follows from differentiation of relation (9) 
as a composite function of λ at point λ = 1 
(continuous differentiability is required here so 
that we could safely differentiate relation (9) as 
a composite function). The remaining task is to 
prove the sufficiency of relation (17). 

When k = 0, the sufficiency of criterion (17) 
follows from Euler’s theorem on homogeneous 
functions. Next, we apply the method of 
mathematical induction.

Suppose the statement is proved for all values 
of the index k in the interval 0 ≤ k ≤ m – 1. 
Consider the function

Φm(λ) = fp,m(λx1, λx2, …, λxn)/λ
p – 

– Σk=0,m fp,m–k(x1, x2, …, xn) (q ln λ)k/k!,
with summation carried out with respect to the 
index 1 ≤ k ≤ m. 

This expression coincides with identity (9), 
whose right and left-hand sides were divided by 
λp, up to the substitution of the summation in-
dex. The derivative of the function Φm(λ) with 
respect to the parameter λ is transformed to

dΦm(λ)/dλ = (1/λp+1) [λx1 ∂fp,m(λx)/∂x1 + 

+ λx2 ∂fp,m(λx)/∂x2 + … +

+ λxn ∂fp,m(λx)/∂xn – 

– pfp,m(λx) – qfp,m–1(λx) +

+ q fp,m–1(λx) – q Σk=1,m fp,m–k(x) λp × 

× (q ln λ)k–1/(k – 1)!] = 0,
because relation (17) for the func-
tion fp,m(x1, x2, …, xn) is fulfilled, including 
at point (λx1, λx2, …, λxn), and the function 
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fp,m–1(x1, x2, …, xn) satisfies condition (9) by in-
ductive assumption. Therefore, Φm(λ) = const 
and, in particular, Φm(λ) = Φm(1). 

However, as it is easy to verify, the con-
dition Φm(λ) = Φm(1) means that relation (9) 
is fulfilled for the functions fp,m(x1, x2, …, xn). 
Consequently, if condition (17) is satisfied for 
∀k ≥ 0 at all points of space Rn, except possibly 
the origin of coordinates, then relation (9) is 
satisfied for ∀k ≥  0. 

Theorem 8 is proved. 
Note. To provide the condition Φm(λ) = Φm(1) 

= const, the derivative Φ’m(λ) must exist and be-
come zero at any point of the segment connect-
ing the points (λx1, λx2, …, λxn) and (x1, x2, …, 
xn). If equality (14) is violated for at least one in-
termediate point, or at least the derivative Φ’m(λ) 
exhibits discontinuities at one intermediate point, 
then the function Φm(λ) can be decomposed in-
to piecewise constant steps. This is exactly why 
violation of continuous differentiability of the 
function at zero provides only positive Euler ho-
mogeneity for the function f(x1, x2,…, xn), and not 
the general Euler homogeneity.

Theorem 9 (on integrating fundamental as-
sociated homogeneous functions). If fp,k(x1, x2, 
…, xn) is a chain of fundamental associated ho-
mogeneous functions of degree p and order k, 
then there exist such functions gk(x2, x3, …, xn) 
for which the functions 

( )
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form a chain of fundamental associated 
homogeneous functions of degree p + 1 and order k. 

Naturally, any coordinate xi can be used 
instead of the coordinate x1.

P r oo f .  According to Theorem 6, it is 
necessary and sufficient that relations (17) are 
fulfilled for the functions Fp,k(x1, x2, …, xn). This 
leads to the equation
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The variable x1 is absent in the obtained 
equations. Moreover, the function gk–1(x2, x3, 
…, xn) is already known. The remaining task is 
to find the solution to the equation

x2 ∂gk/∂x2 + x3 ∂gk/∂x3 + … +

+ xn ∂gk/∂xn – (p + 1)gk 

= Gk(x2, x3, …, xn),

(18)

where the function Gk(x2, x3, …,xn) is already 
known at the kth step of integration:
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It is convenient to use the following 
substitution to find this solution

gk(x2, x3, …, xn) =

= x2
p+1 hk(x2, x3/x2, x4/x2, …, xn/x2).
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Then Eq. (18) takes the form

x2
p+2∂hk(x2, t3, t4, …, tn)/∂x2 = 

= Gk(x2, t3x2, t4x2, …, tnx2).
A particular solution of this equation is 

found by transferring the multiplier x2
p+2 into 

the right-hand side and integrating the result 
with respect to the variable x2 with ‘frozen’ 
variables t3, t4, …, tn. Furthermore, we need to 
add the general solution of homogeneous Eq. 
(18) with a zero right-hand side to the obtained 
particular solution of the inhomogeneous equa-
tion, that is, an Euler-homogeneous function 
of degree (p + 1) depending on the variables 
x2, x3, …, xn. 

Theorem 9 is proved. 
As a result, we managed to not only prove 

that the required function gk(x2, x3, …, xn) exists 
but also to define its explicit quadratic form. 
The final solution is the sum of a particular 
case of the chain of functions gk(x2, x3, …, xn) 
expressed recursively in quadratic form in terms 
of the functions fp,k(ak, x2, x3, …, xn), and a ran-
dom chain of fundamental associated homoge-
neous functions of degree (p + 1) and order k 
of the variables x2, x3, …, xn, which can be given 
explicitly using Eqs. (10), (11), (14) or (15).

Problem. Suppose for all points of space Rn, 
except possibly the point x1 = x2 = … = xn = 0, 
that the continuous differentiable functions 
gk(x1, x2, …, xn) satisfy the equalities

x1 ∂gk/∂x1 + x2 ∂gk/∂x2 + … + 

+ xn ∂gk/∂xn = pk gk + qk gk–1,
(19)

where pk, qk are the given constants, and the 
functions gk(x1, x2, …, xn) with negative subscripts 
are taken to equal zero. What can we say about 
the form of the functions gk(x1, x2, …, xn)?

If ∀k, pk = p = const, and qk = q = const, 
Euler’s criterion (17) provides an answer im-
mediately: the functions gk(x1, x2, …, xn) are 
fundamental associated homogeneous func-
tions fp,k(x1, x2, …, xn) of degree p and order k. 
In the general case, additional calculations are 
required. After substituting

gk(x1, x2, …, xn) = 

= hk(ln x1, x2/x1, x3/x1, …, xn/x1),
the chain of conditions (19) is reduced to a 
system of ordinary linear differential equations 
with constant factors and a bidiagonal matrix 
of factors, where t = ln x1 is a free variable, and 

the variables t2 = x2/x1, t3 = x3/x1, …, tn = xn/x1 
are ‘frozen’.

After solving the obtained system of differ-
ential equations and making the reverse tran-
sition to the variables x1, x2, …, xn, we obtain 
the general form of the functions gk(x1, x2, …, 
xn). At the same time, it should be borne in 
mind that the free constants obtained after in-
tegrating a system of ordinary linear differential 
equations with constant factors are in fact ran-
dom functions depending on temporary ‘fro-
zen’ variables t2 = x2/x1, t3 = x3/x1, …, tn = xn/x1. 
Depending on what the constants pk are equal 
to and how many of them turn out to be equal 
to each other, the structure of the solution can 
be quite complicated.

In a particular case, let us take a chain of 
relations (19), where all values of pk equal the 
same number p, while ∀qk ≠ 0. Then, according 
to condition (17), the functions gk(x1, x2, …, xn), 
scaled up by ck times, turn out to be fundamen-
tal associated homogeneous functions fp,k(x1, x2, 
…, xn) described by the general equations (10) 
and (11) (or (14), or (15)), if the relations ckqk/
ck–1 = q are fulfilled (where the value of the 
parameter q ≠ 0 is chosen arbitrarily). In other 
words, scaling factors ck should be chosen in 
accordance with the recursive rule ck = qck–1/
qk, where c0 = 1, and the results coincide with a 
certain chain of fundamental associated homo-
geneous functions fp,k(x1, x2, …, xn) of degree p 
and order k up to the multipliers.

Differentiation with respect to 
degree of homogeneity

An interesting technique allowing to generate 
new fundamental associated homogeneous 
functions is considered in [11, 12]. Specifically, 
suppose fp(x1, x2, …, xn) is a one-parameter 
family of Euler-homogeneous functions with 
the degree of homogeneity equal to p, where p 
is a continuously changing parameter.

Repeatedly differentiating the homogeneity 
relation 

fp(λx1, λx2, …, λxn) = λp fp(x1, x2, …, xn)
with respect to the parameter p, we obtain that 
the functions

fp,k(x1, x2, …, xn ) = (1/k!) ∂kfp(x1, x2, …, xn )/∂pk

satisfy functional relations (9), i.e., are a 
particular case of fundamental associated 
homogeneous functions. 

The homogeneous function fp(x1, x2, …, xn) 
can be represented using Eqs. (3) and (4):
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if x1 > 0, fp(x1, x2, …, xn) =

= x1
p hp(x2/x1, x3/x1, …, xn/x1);

(20)

if x1 < 0, fp(x1, x2, …, xn) = 

= (–x1)
p gp(x2/x1, x3/x1, …, xn/x1),

(21)

where hp(t2, t3, …, tn), gp(t2, t3, …, tn) are func-
tions of (n – 1) variables independent of each 
other.

These functions are mapped one-to-one 
with respect to the given function fp(x1, x2, …, 
xn) according to the formulae

hp(t2, t3, …, tn) = fp(+1, t2, t3, …, tn),

gp(t2, t3, …, tn) = fp(–1, –t2, –t3, …, –tn),
and depend on the continuous parameter p as well. 

Repeatedly differentiating expressions 
(20), (21) with respect to the parameter p, 
we obtain the universal formulae (10), (11) 
for fundamental associated homogeneous 
functions, if the new functions hj(x1, x2, …, xn ) 
and gj(x1, x2, …, xn ) are defined as

hj(t2, t3, …, tn) = (1/j!) ∂jhp(t2, t3, …, tn)/∂pj,

gj(t2, t3, …, tn) = (1/j!) ∂jgp(t2, t3, …, tn)/∂pj.
Eqs. (15) are obtained similarly by 

differentiating the function fp(x1, x2, …, xn) with 
respect to the parameter p. The function is 
written as

fp(x1, x2,…, xn) = rp hp(x1/r, x2/r, …, xn/r),

where 2 2 2
1 2 ,nr x x x= + + +  and hp(t1, t2, …, tn) 

is a real function given on the surface of a unit 
hypersphere 

t1
2 + t2

2 +…+ tn
2 = 1

and related to the function fp(x1, x2, …, xn) by 

hp(t1, t2, …, tn) = fp(t1, t2, …, tn), 
where t1

2 + t2
2 +…+ tn

2 = 1.
It follows from the obtained formulae that the 

process of differentiating the Euler-homogeneous 
functions with the degree of homogeneity equal 
to p with respect to the continuously changing 
parameter p does not generally lead to a loss 
of possible chains of fundamental associated 
homogeneous functions. 

Importantly, if the functions fp(x1, x2, …, 
xn) are harmonic (or fulfil some other linear 
differential equation in partial derivatives with 
constant coefficients), then all the fundamental 

associated homogeneous functions obtained 
by differentiating the initial function fp(x1, x2, 
…, xn) with respect to the parameter p are also 
harmonic.

Conclusion

Analyzing mutually homogeneous functions 
which correspond to a matrix of functional 
equations with identical real eigenvalues, 
we obtained a refined class of associated 
homogeneous Gel’fand functions [11, 12]. The 
definitions and theorems formulated in the 
study allow to correctly describe this important 
class of functions and consider its properties in 
detail. In particular, Theorem 2 on fundamental 
associated homogeneous functions allows to 
safely consider the following generalizations

fp,k(x1, x2, …, xn) = 

= (1/k!) Rp(x1, x2, …, xn) ×

× (ln Sq(x1, x2, …, xn))
k

and argue that such functions identically coincide 
with the given class of functions, while fully 
preserving their properties without producing 
any fundamentally new mathematical objects.

The mathematical constructions we have 
discussed may prove useful not only for theoretical 
studies but also for practical applications. 
The property of Euler homogeneity for scalar 
potentials of electric and magnetic fields [5–8] 
allows to synthesize efficient electron and ion-
optical systems, presented, for example, in a 
series of works by Khursheed [27–43].

We hope that the obtained functional 
constructions generalizing the relation of Euler 
homogeneity can make it possible to transfer 
the principle of trajectory similarity, introduced 
by Golikov [5–8], to wider classes of electric 
and magnetic fields.

The calculations in this paper were carried out 
using the Wolfram Mathematica software [44].
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This work continues our studies in properties of mutually homogeneous functions (MHFs), 
being a generalization of Euler homogeneous functions, which can be used in the synthesis of 
electric and magnetic fields of electron and ion-optical systems with special properties. MHFs 
corresponding to multiple pairs of complex conjugate eigenvalues of the matrix of basic func-
tional equations have been considered in addition to MHF chains corresponding to multiple 
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ОБЩИЕ ФОРМУЛЫ ДЛЯ ЦЕПОЧЕК ФУНДАМЕНТАЛЬНЫХ 
ВЗАИМНО-ОДНОРОДНЫХ ФУНКЦИЙ С ОБЩЕЙ ПАРОЙ 
КОМПЛЕКСНО-СОПРЯЖЕННЫХ СОБСТВЕННЫХ ЧИСЕЛ
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Данная работа продолжает изучение свойств взаимно-однородных функций (ВОФ), 
которые являются обобщением однородных по Эйлеру функций и могут использоваться 
при синтезе электрических и магнитных полей для электронно- и ионно-оптических 
систем со специальными свойствами. В дополнение к цепочкам ВОФ, соответствующим 
кратным вещественным собственным значениям матрицы базовых функциональных 
уравнений, рассматриваются ВОФ, соответствующие кратным парам комплексно-
сопряженных собственных значений матрицы базовых функциональных уравнений. 
Выведены функциональные соотношения, характеризующие такие функции, получены 
общие формулы для ВОФ с комплексно-сопряженными кратными собственными 
значениями. 

Ключевые слова: функциональное уравнение, однородная функция, присоединенная 
однородная функция, взаимно-однородные функции
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Introduction

This paper continues a series of works [1–4] 
on the properties of homogeneous harmonic 
functions and their applications in synthesis of 
electric and magnetic fields for electron and 
ion-optical systems with special properties 
[5–8]. A system of fundamental mutually ho-
mogeneous functions constructed in this paper 
can be used to transfer the principle of trajec-
tory similarity, introduced by Golikov, to new 
classes of electric and magnetic fields, and thus 
serve as a basis for synthesis of various elec-
tron and ion-optical systems, presented, for 
example, in Khursheed’s studies [9–25].

The paper is a direct extension of [26, 27] and 
heavily relies on the results presented therein.

Consider the following functions

f(c)
p,k(x) = x1

p((q ln x1)
k/k!) ×

× h(x2/x1, x3/x1, …, xn/x1) cos(ω ln x1),
(1)

f(s)
p,k (x) = x1

p((q ln x1)
k/k!) ×

× h(x2/x1, x3/x1, …, xn/x1) sin(ω ln x1),
(2)

where x = (x1, x2, …, xn); p, q, ω are real con-
stants; k is an integer index (k = 0, 1, 2, …); 
h(t2, t3, …, tn) is a certain function of (n – 1) 
variables; values of the variable x1 satisfy the 
condition x1 > 0. 

In fact, functions (1), (2) are the real and 
the imaginary part for the chains of fundamen-
tal mutually homogeneous functions with a 
common real eigenvalue from [27] when the 
degree of homogeneity p (multiple real eigen-
value of the matrix of mutually homogeneous 
functional equations) is replaced by a complex 
number p + iω. Since, generally speaking, the 
generator h(t2, t3, …, tn) must also be considered 
in this case as a complex-valued function

h(t2, t3, …, tn) + ig(t2, t3, …, tn),
from a formal standpoint, Eqs. (1), (2) should 
be written as

f(c)
p,k(x) = x1

p((q ln x1)
k/k!) ×

× h(x2/x1, x3/x1, …, xn/x1) cos(ω ln x1) –

– x1
p((q ln x1)

k/k!) ×

× g(x2/x1, x3/x1, …, xn/x1) sin(ω ln x1);

f(s)
p,k (x) = x1

p((q ln x1)
k/k!) ×

h(x2/x1, x3/x1, …, xn/x1) sin(ω ln x1) +

+ x1
p((q ln x1)

k/k!) ×

× g(x2/x1, x3/x1, …, xn/x1) cos(ω ln x1),

where expressions (1), (2) are a particular case 
corresponding to the choice g(t2, t3, …, tn) = 0. 

By virtue of this, the properties of the 
chains of fundamental mutually homogeneous 
functions with a common pair of complex 
conjugate eigenvalues closely resemble the 
properties of the chains of fundamental mutually 
homogeneous functions with a common real 
eigenvalue, considered in [27].

Given the functional relations

fi(λx) = ∑aij(λ) fj(x), (3)

where i, j = 1, 2, …, k, and functions aij(λ) 
are unknown in advance, in a particular case, 
when all eigenvalues of the matrix ||aij(λ)|| are 
pairs of complex conjugate values p ± iω equal 
to each other, functions of the form (1), (2) 
can be regarded as the solutions to functional 
relations (3) [26].

Using direct substitution, we can confirm that 
functions (1), (2) satisfy the functional relations

f(c)
p,k(λx) = Σj=0,k ak–j(λ) f(c)

p,j(x) –

– Σj=0,k bk–j(λ) f(s)
p,j(x);

(4)

f(s)
p,k(λx) = Σj=0,k bk–j(λ) f(c)

p,j(x) +

+ Σj=0,k ak–j(λ) f(s)
p,j(x),

(5)

where the functions aj(λ) and bj(λ) are defined as

aj(λ) = (1/j)! λp(q ln λ)j cos(ω ln λ), (6)
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bj(λ) = (1/j)! λp(q ln λ)j sin(ω ln λ). (7)

Introducing nondegenerate linear combina-
tions of functions f(c)p,k(x) and f(s)p,k(x), which 
can be written as

g(c)
p,k(x) = αk f

(c)
p,k(x) – βk f

(s)
p,k(x);

g(s)
p,k(x) = γk f

(c)
p,k(x) + δk f

(s)
p,k(x);

αk
2 + βk

2 ≠ 0, γk
2 + δk

2 ≠ 0, 

αk δk + βk γk ≠ 0,
the new functions g(c)

p,k(x) and g(s)
p,k(x) can be 

simplified to the following form  

g(c)
p,k(x) = Ck x1

p((q ln x1)
k/k!) ×

× h(x2/x1, x3/x1, …, xn/x1) cos(ω ln x1+ φk);

g(s)
p,k(x) = Sk x1

p((q ln x1)
k/k!) ×

× h(x2/x1, x3/x1, …, xn/x1) sin(ω ln x1+ ψk);

2 2 2 2,  ;k k k kk kC Sα +β + δ= = γ

φ = arctg(βk/αk), ψk = arctg(γk/ δk),

Ck ≠ 0, Sk ≠ 0, φk ≠ ψk ± π/2.

It follows from conditions (4), (5) that 
functions g(c)

p,k(x) and g(s)
p,k(x) satisfy the 

functional relations

g(c)
p,k(λx) = Σj=0,k ckj(λ) g(c)

p,k(x) +

+ Σj=0,k dkj(λ) g(s)
p,k(x);

g(s)
p,k(λx) = Σj=0,k ekj(λ) g(c)

p,k(x) +

+ Σj=0,k skj(λ) g(s)
p,k(x),

where the functions ck,j(λ), dk,j(λ), ek,j(λ) and 
sk,j(λ) are defined as

( ) ( )
( ) ( )

( )( )

( ) ( )
( ) ( )
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When a linear transformation satisfies the 
conditions

at ∀k φk = ψk = φ, Ck = Sk = C,
the new functions g(c)

p,k(x) and g(s)
p,k(x) 

satisfy functional relations (4), (5) with 
functions (6), (7).

The objectives of this paper consist in, firstly, 
developing general formulae for the functions 
f(c)p,k(x) and f(s)p,k(x) which satisfy functional 
equations (4), (5) with functions (6), (7), and, 
secondly, proving certain important theorems 
on the obtained class of mutually homogeneous 
functions.

Auxiliary formulae for positively 
Euler-homogeneous functions

The function f(x) is called positively Euler-
homogeneous with a degree of homogeneity 
equal to p [28], if the condition

f(λx) = λp f(x) (8)

holds for every ∀λ > 0. 
Universal formulae can be obtained for 

positively homogeneous functions which 
allow to represent them in a generalized form 
convenient for practical applications. The 
following expressions are typical examples, 
which will be useful later on.

If we substitute the values

λ = +1/x1 and –1/x1

in condition (8), then after permutation of the 
right and the left-hand sides of the obtained 
equality, we obtain the following formula:

if x1 > 0,

f(x) = x1
p h(x2/x1, x3/x1, …, xn/x1); (9)

if x1 < 0,

f(x) = (–x1)
p g(x2/x1, x3/x1, …, xn/x1), (10)
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where h(t2, t3, …, tn) and g(t2, t3, …, tn) are 
arbitrary functions of (n – 1) variables, which, 
generally speaking, do not depend on each other 
and are related as follows to the function f(x):

h(t2, t3, …, tn) = f(+1, t2, t3, …, tn),

g(t2, t3, …, tn) = f(–1, –t2, –t3, …, –tn).
The case x1 = 0 is not described by Eqs. (9), 

(10). However, the function f(0, x2, x3, …, xn) 
is positively homogeneous as well, but depends 
on a smaller number of independent variables. 
Therefore, there is actually an entire hierarchy 
of equations of the form (9), (10) corresponding 
to a successively reduced list of independent 
variables xk+1, xk+2, …, xn.

2. If we substitute values λ = 1/r in 

condition (8), where 
2 2 2
1 2 ,nr x x x= + + +  

we obtain the formula

f(x) = rp s(x1/r, x2/r, …, xn/r), (11)

where s(t1, t2, …, tn) is an arbitrary function of n 
variables, given on a unit hypersphere 

t1
2 + t2

2 + … + tn
2 = 1,

which is related as follows to the function f(x):

s(t1, t2, …, tn) = f(t1, t2, …, tn).
3. The domain Ω contains a fixed positively 

homogeneous function ψp(x) of degree p which 
does not become zero in this domain, as well as 
fixed positively homogeneous functions ψ2(x), 
ψ3(x), …, ψn(x) of zero degree which are func-
tionally independent, all of them having no 
singular points. We obtain in this domain Ω a 
formula

f(x) = ψp(x) χ(ψ2 (x), 

ψ3(x), …, ψn(x)),
(12)

where χ(t2, t3, …, tn) is an arbitrary function of 
(n – 1) variables.

As a result, Eqs. (9)–(11) turn out to be 
particular cases of Eq. (12).

Indeed, function ψ(x) = f(x)/ψp(x) is well de-
fined in domain Ω and, as it is easy to prove, is a 
positively homogeneous function of zero degree. 

The function ψ(x) cannot be functionally 
independent of functions

ψ2(x), ψ3(x), …, ψn (x),
otherwise the variables x1, x2, …, xn could be 
expressed in terms of functions

ψ(x), ψ2(x), …, ψn(x),

which are positively homogeneous of zero 
degree, and then any function of variables x1, 
x2, …, xn would be a positively homogeneous 
function of zero degree, which is meaningless.

Therefore, this function can be represented as

ψ(x) = χ(ψ2(x), ψ3(x), …, ψn(x)).
After this, expression (12) is obtained for the 

function f(x).
On the other hand, if the function f(x) has the 

form (12), it is positively Euler-homogeneous 
with the degree of homogeneity equal to p.

Note. Given a fixed choice of positive 
homogeneous functions

ψp(x) and ψ2(x), ψ3(x), …, ψn(x),
the entire space Rn is partitioned into 
non-intersecting conic1 domains Ωs, where 
the function ψp(x) does not become zero, the 
functions

ψ2(x), ψ3(x), …, ψn(x)
form an independent set of functions, and the 
given functions have no singular points.

Generally, while constructing parametriza-
tion (12), a specific function χs(t2, t3, …, tn) is used 
for each of the domains Ωs, which is completely 
unrelated to the functions χs(t2, t3, …, tn) used 
for other domains. Moreover, the boundaries 
between the domains Ωs are conic surfaces of a 
lesser dimension, with the function f(x) again 
behaving as a homogeneous function of degree 
p depending on a smaller number of variables 
along these surfaces. A separate method of 
parametrization depending on a smaller num-
ber of independent variables and using a new 
set of fixed functions has to be constructed for 
these boundaries. As a result, parametrization 
of positive homogeneous functions is parti-
tioned into several independent branches, such 
a partition depends on the selected auxiliary 
functions

ψp(x), ψ2(x), ψ3(x), …, ψn(x)
and does not reflect the internal structure 
of positively homogeneous functions 
parameterized using them.

A direct check shows that the functions given 
by Eqs. (9)–(12) indeed satisfy the homogeneity 
relation (8) for any selected functions involved 
in parametrization. 

1 The term ‘conic’ means that when point (x1, x2, …, xn) be-
longs to a certain geometric object, then all points of the form 
(λx1, λx2, …, λxn) corresponding to arbitrary values of λ > 0 
also belong to this object.
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General equations for fundamental 
mutually homogeneous functions

Definition. A semi-infinite chain of pairs of 
functions f(c)p,k (x) and f(s)p,k (x), where the index k 
= 0, 1, 2, …, and the functions themselves satisfy 
the functional relations

f(c)
p,k(λx) =

= Σj=0,k λ
p((q ln λ)k–j/(k – j)!) ×

× f(c)
p,j(x) cos(ω ln λ) –

– Σj=0,k λ
p((q ln λ) k–j/(k – j)!) ×

× f(s)
p,j(x) sin(ω ln λ);

(13)

f(s)
p,k(λx) =

= Σj=0,k λ
p((q ln λ)k–j/(k – j)!) ×

× f(c)
p,j(x) sin(ω ln λ) +

+ Σj=0,k λ
p((q ln λ) k–j/( k– j)!) ×

× f(s)
p,j(x) cos(ω ln λ)

(14)

for any λ > 0, is called fundamental associated 
homogeneous functions of degree p and order k 
with the correlation factor ω. 

Conditions (13), (14) can be written in 
equivalent form by changing the order of 
summation:

f(c)
p,k(λx) =

= Σj=0,k λ
p((q ln λ)j/j!) ×

 × f(c)
p,k–j(x) cos(ω ln λ) – 

– Σj=0,k λ
p((q ln λ)j/j!) ×

× f(s)
p,k–j (x) sin(ω ln λ);

(15)

f(s)
p,k(λx) =

= Σj=0,k λ
p((q ln λ)j/j!) ×

× f(c)
p,k–j (x) sin(ω ln λ) + 

+ Σj=0,k λ
p((q ln λ) j/j!) ×

×f(s)
p,k–j (x) cos(ω ln λ).

(16)

When ω = 0, relations (13), (14) for functions 
f(c)p,k (x) and f(s)p,k (x) are decoupled and become 
independent of each other. In this case, a chain 
of functions f(c)p,k(x) and a chain of functions 
f(s)p,k(x) turn out to be chains of fundamental 
associated homogeneous functions of degree p 

and order k, independent of each other, which 
were considered in detail in paper [27].

The parameter q is responsible for normaliz-
ing fundamental mutually homogeneous func-
tions and does not affect the rest of their prop-
erties. After substituting

f(c)
p,k (x) = qj F(c)

p,j(x),

f(s)
p,k (x) = qj F(s)

p,j(x),
the parameter q vanishes from functional 
relations (13), (14), and functions F(c)

p,j(x) 
and F(s)

p,j(x) take the meaning of normalized 
fundamental mutually homogeneous functions, 
corresponding to the choice q = 1. 

We obtain for fundamental mutually homo-
geneous functions of zero degree the functional 
relations

f(c)
p,0(λx) = λp f(c)

p,0(x) cos(ω ln λ) –

– λp f(s)
p,0(x) sin(ω ln λ);

(17)

f(s)
p,0(λx) = λp f(c)

p,0(x) sin(ω ln λ) +

+ λp f(s)
p,0(x) cos(ω ln λ).

(18)

Lemma 1. Fundamental mutually homoge-
neous functions f(c)p,0 (x) and f(s)p,0 (x) of zero de-
gree, satisfying functional relations (17) and (18) 
for ∀λ > 0, can be represented for x1 > 0 as

f(c)
p,0(λx) = λp f(c)

p,0(x) cos(ω ln λ) –

– λp f(s)
p,0(x) sin(ω ln λ); f(c)

p,0(x) =

= x1
p h(c)(x2/x1, x3/x1, …, xn/x1) ×

× cos(ω ln x1) – 

– x1
p h(s)(x2/x1, x3/x1, …, xn/x1) ×

× sin(ω ln x1);

(19)

f(s)
p,0(x) =

= x1
p h(c)(x2/x1, x3/x1, …, xn/x1) ×

× sin(ω ln x1) + 

+ x1
p h(s)(x2/x1, x3/x1, …, xn/x1) ×

× cos(ω ln x1),

(20)

where the functions h(c)(t2, t3, …, tn) and h(s)(t2, 
t3, …, tn) are arbitrary real functions of (n – 1) 
variables which have a one-to-one correspon-
dence with functions f(c)p,0 (x) and f(s)p,0 (x), and 
represented for x1 < 0 as
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f(c)
p,0(x) = (–x1)

p ×

× g(c)(x2/x1, x3/x1, …, xn/x1) ×

× cos(ω ln (–x1)) –

– (–x1)
p g(s)(x2/x1, x3/x1, …, xn/x1) ×

× sin(ω ln (–x1));

(21)

f(s)
p,0(x) = (–x1)

p ×

×g(c)(x2/x1, x3/x1, …, xn/x1) ×

× sin(ω ln (–x1)) +

+ (–x1)
p g(s)(x2/x1, x3/x1, …, xn/x1) ×

× cos(ω ln (–x1)),

(22)

where g(c)(t2, t3, …, tn) and g(s)(t2, t3, …, tn) are 
arbitrary real functions of (n – 1) variables 
which have a one-to-one correspondence with 
functions f(c)p,0(x) and f(s)p,0(x), and are selected 
independently of functions h(c)(t2, t3, …, tn) and 
h(s)(t2, t3, …, tn) used for x1 > 0.

P roo f .  Let us substitute the value λ = 1/
x1 in relations (17) and (18), assuming that x1 
> 0. As a result, we obtain the following linear 
equations for the functions f(c)p,0 (x) and f(s)p,0 (x):

x1
p f(c)

p,0(1, x2/x1, x3/x1, …, xn/x1) =

= f(c)
p,0(x) cos(ω ln x1) +

+ f(s)
p,0(x) sin(ω ln λ);

x1
p f(s)

p,0(1, x2/x1, x3/x1, …, xn/x1) =

 = f(c)
p,0(x) sin(ω ln x1) +

 + f(s)
p,0(x) cos(ω ln λ).

Let us add the notations:

h(c)(t2, t3, …, tn) = f(c)
p,0(1,t2, t3, …, tn),

h(s)(t2, t3, …, tn) = f(s)
p,0(1, t2, t3, …, tn).

Eqs. (19), (20) are obtained after that from 
the resulting system of linear equations.

Respectively, if x1 < 0, after substituting λ 
= –1/x1 in Eqs. (17) and (18), we obtain Eqs. 
(21), (22), where the functions g(c)(t2, t3, … , tn) 
and g(s)(t2, t3, …, tn), generally independent of 
the functions h(c)(t2, t3, …, tn) and h(s)(t2, t3, …, tn) 
used in Eqs. (19), (20), are given by the relations

g(c)(t2, t3, …, tn) = f(c)
p,0(–1, –t2, t3, …, –tn),

g(s)(t2, t3, …, tn) = f(s)
p,0(–1, –t2, …, –tn).

Lemma 1 is proved.
If x1 = 0 and x2 ≠ 0, the problem of parame-

trization of functions f(c)p,0(x) and f(s)p,0(x) obeying 
the functional relations (17) and (18) but depend-
ing on a smaller number of independent variables 
is solved using the formulae similar to Eqs. (19), 
(20), (21), (22). The process is repeated until the 
list of variables x1, x2, …, xn is exhausted.

Lemma 2. Fundamental mutually homoge-
neous functions f(c)p,0 (x) and f(s)p,0(x) of zero de-
gree, which satisfy functional relations (17) and 
(18) for ∀λ > 0, can be represented as

f(c)
p,0(x) = rp ×

× h(c)(x1/r, x2/r, …, xn/r) cos(ω ln r) –

– rp h(s)(x1/r, x2/r, …, 

xn/r) sin(ω ln r);

(23)

f(s)
p,0(x) = rp ×

× h(c)(x1/r, x2/r, …, xn/r) sin(ω ln r) +

+ rp h(s)(x1/r, x2/r, …, 

xn/r) cos(ω ln r),

(24)

where 2 2
1 ,nr x x= + +  while h(c)(t1, t2, …, tn) 

and h(s)(t1, t2, …, tn) are arbitrary real functions 
of n variables given on a unit hypersphere

t1
2 + t2

2 + … + tn
2 = 1,

which are have a one-to-one correspondence 
with the functions f(c)p,0(x) and f(s)p,0(x).

P roo f .  The reasoning is similar to the 
proof of Lemma 1, except for the multiplier λ 
> 0 chosen as λ = 1/r. The functions

h(c)(t1, t2, …, tn) and h(s)(t1, t2, …, tn),
given on a unit hypersphere

t1
2 + t2

2 + … + tn
2 = 1,

are defined as

h(c)(t1, t2, …, tn) = f(c)
p,0(t1, t2, …, tn),

h(s)(t1, t2, …, tn) = f(s)
p,0(t1, t2, …, tn).

Lemma 2 is proved.
Lemma 3. Suppose Sp(x) is a positively ho-

mogeneous function of degree p, Sω(x) is a pos-
itively homogeneous function of degree ω ≠ 0, 
while ψ2(x), ψ3(x), …, ψn(x) are positively homo-
geneous functions of zero degree. 
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Let us assume that these functions have no 
singular points in the domain Ω, the function Sp 
does not become zero, the function Sω is strictly 
greater than zero, the functions ψ2, ψ3, …, ψn are 
functionally independent. 

Then fundamental mutually homogeneous 
functions f(c)p,0(x) and f(s)p,0(x) of zero order which 
satisfy functional relations (17) and (18) for ∀λ > 
0 can be represented in domain Ω as

f(c)
p,0(x) = Sp(x) ×

× h(c)(ψ2(x), ψ3(x), …, ψn(x)) ×

× cos(ω ln Sω(x)) – Sp(x) ×

× h(s)( ψ2(x), ψ3(x), …, ψn(x)) ×

× sin(ω ln Sω(x));

(25)

f(s)
p,0(x) = Sp(x) ×

× h(c)( ψ2(x), ψ3(x), …, ψn(x)) ×

× sin(ω ln Sω(x)) + Sp(x) ×

h(s)( ψ2(x), ψ3(x), …, ψn(x)) ×

× cos(ω ln Sω(x)),

(26)

where h(c)(t2, t3, …,tn) and h(s)(t2, t3, …, tn) are ar-
bitrary real functions of (n – 1) variables which 
are have a one-to-one correspondence with the 
functions f(c)p,0(x) and f(s)p,0(x). 

P roo f .  The functions 

g(c)(x) = f(c)
p,0(x)/Sp(x), 

g(s)(x) = f(s)
p,0(x)/Sp(x)

are fundamental mutually homogeneous 
functions of zero order and zero degree 
satisfying the relations 

g(c)(λx) = g(c)(x) cos(ω ln λ) –

g(s)(x) sin(ω ln λ),

g(s)(λx) = g(c)(x) sin(ω ln λ) +

+ g(s)(x) cos(ω ln λ).
Let us substitute the value λ = Sω(x)1/ω in 

this relation, which is well defined in the given 
domain and satisfies the condition λ > 0. 

The functions

g(c)(x1/Sω(x)1/ω, x2/Sω(x)1/ω,…, xn/Sω(x)1/ω),

g(s)(x1/Sω(x)1/ω, x2/Sω(x)1/ω,…, xn/Sω(x)1/ω)

are Euler-homogeneous of zero degree, 
therefore they can be written as

h(c)(ψ2(x), ψ3(x), …,ψn(x))
and, respectively, 

h(s)(ψ2(x), ψ3(x), …, ψn(x))
(see Eq. (12)). 

After this, using relations

h(c)(ψ2(x), ψ3(x), …, ψn(x)) = 

= g(c)(x) cos(ln Sω(x)) +

+ g(s) (x) sin(ln Sω(x));

h(s)(ψ2(x), ψ3(x), …, ψn(x)) =

 = g(c) (x) sin(ln Sω(x)) +

+ g(s) (x) cos(ln Sω(x)),
we can express the functions g(c) (x) and g(s) (x).

As a result, we obtain Eqs. (25), (26) for the 
functions f(c)p,0(x) and f(s)p,0(x). 

Lemma 3 is proved.
Lemma 4. Fundamental mutually homoge-

neous functions f(c)p,0(x) and f(s)p,0(x) of zero or-
der, satisfying functional relations (17) and (18) 
for ∀λ > 0, can be represented in the form

f(c)
p,0(x) = Rp(x) cos(ln |Φω(x)|); (27)

f(s)
p,0(x) = Rp(x) sin(ln |Φω(x)|), (28)

where Rp(x) is an arbitrary positively homoge-
neous function of degree p, while Φω(x) is an ar-
bitrary positively homogeneous function of degree 
ω, which are have a one-to-one correspondence 
with the functions f(c)p,0(x) and f(s)p,0(x).

P roo f .  Let us use Lemma 3, where Ω = 
Rn and the following positively homogeneous 
functions are chosen:

Sp(x) = rp, Sω(x)=rω,

ψ2(x) = x2/r, ψ3(x) = x3/r, …,

( ) 2 2 2
1 2 , / ,  nn n xx r x xrψ + + += =x 

which satisfy the conditions of the lemma in 
the entire space Rn, except for the origin of 
coordinates.

The functions h(c)(ψ2, ψ3, …, ψn) and 
h(s)(t2, t3, …, tn), included in Eqs. (25), (26), 
can be represented as
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h(c)(ψ2, ψ3, …, ψn) = 

= H(ψ2, ψ3, …, ψn) cos(G(ψ2, ψ3, …,ψn));

h(s)(ψ2, ψ3, …, ψn) =

= H(ψ2, ψ3, …, ψn) sin(G(ψ2, ψ3, …, ψn)),
where H(ψ2, ψ3, …, ψn) and G(ψ2, ψ3, …, ψn) are 
arbitrary functions of (n – 1) variables.

According to Eq. (12), an arbitrary positively 
homogeneous function Rp(x) of degree p can be 
represented as

Rp(x) = Sp(x) ×

× H(ψ2(x), ψ3(x), …, ψn(x)),
while an arbitrary positively homoge-
neous function Φω(x) of degree ω can be 
represented as

Φω(x) = ±Sω(x) ×

× exp(G(ψ2(x), ψ3(x), …, ψn(x))),
where G(x) = ln(|Φω(x)|/Sω(x)) is a positively 
homogeneous function of zero degree, and the 
sign is chosen in accordance with the signs of 
the functions Φω(x). Here, we should take into 
account that the positively homogeneous func-
tion Φω(x) preserves the same sign at all points 
of the form λx. 

Eqs. (25), (26) take the form (27), (28) after 
the given substitutions. 

Lemma 4 is proved.
Theorem. A chain of fundamental mutually 

homogeneous functions f(c)p,k(x) and f(s)p,k(x), 
obeying functional relations (13) and (14) for ∀λ 
> 0, at all points where the function Sq(x) is not 
equal to zero, can be expressed in the form

f(c)
p,k(x) = Σj=0,k ((ln |Sq(x)|)k–j/(k–j)!) ×

× Rp
(j)(x) cos(ln Q(j)

ω(x));
(29)

f(s)
p,k(x) = Σj=0,k ((ln |Sq(x)|)k–j/(k–j)!) ×

× Rp
(j)(x) sin(ln Q(j)

ω(x)),
(30)

where Rp
(j)(x) are arbitrary homogeneous func-

tions of degree p; Qω
(j)(x) are arbitrary homoge-

neous functions of degree ω ≠ 0 taking positive 
values; Sq(x) is a fixed homogeneous function, 
nonzero at any point, of degree q ≠ 0. 

There is a one-to-one correspondence between 
the functions f(c)p,k(x), f(s)p,k(x) and the functions 
Rp

(j)(x), Qω
(j)(x), provided that the function Sq(x) 

is fixed. 

P roo f .  If k = 0, the validity of Eqs. (29), 
(30) is established by Lemma 4 and Eqs. (27), 
(28). Employing the method of induction, we 
assume the following: let conditions (29), (30) 
hold true, when k = 0, 1, ..., m – 1. Let us 
substitute

f(c)
p,m(x) = gc(x) + Σk=1,m((ln |Sq(x)|)k/k!) ×

× Rp
(m–k)(x) cos(ln Q(m–k)

ω(x));

f(s)
p,m(x) = gs(x) + Σk=1,m ((ln |Sq(x)|)k/k!) ×

×Rp
(m–k)(x) sin(ln Q(m–k)

ω(x)),
where gc(x) and gs(x) are arbitrary functions for 
the time being, while the functions Rp

(j)( x) and 
Qω

(j)( x) are obtained in the previous steps of 
the proof.

Let us substitute these expressions together 
with Eqs. (29), (30) for k = 0, 1, ..., m – 1 in 
Eqs. (13), (14) for k = m, which can be now 
written as

0 = f(c)
p,m(λx) – λp cos(ω ln λ) (f(c)

p,m(x) +

+ Σk=1,m((q ln λ)k/k!) f(c)
p,m–k(x)) +

+ λp sin(ω ln λ) (f(s)
p,m(x) +

+ Σk=1,m((q ln λ)k/k!) f(s)
p,m–k(x));

0 = f(s)
p,m(λx) – λp sin(ω ln λ) (f(c)

p,m(x) +

+ Σk=1,m ((q ln λ)k/k!) f(c)
p,m–k(x)) –

– λp cos(ω ln λ) (f(s)
p,m(x) +

+ Σk=1,m ((q ln λ)k/k!) f(s)
p,m–k(x)).

We need to find such functions gc(x) 
and gs(x), for which these equations hold. 
After rather cumbersome simplification, the 
equations are converted to the following form:

gc(λ x) = gc(x) λp cos(ω ln λ) – 

– gs(x) λp sin(ω ln λ);

gs(λ x) = gc(x) λp sin(ω ln λ) +

+ gs(x) λp cos(ω ln λ).
According to Lemma 4, there are such 

functions Rp
(m)(x) and Qω

(m)(x) satisfying the 
conditions of the theorem, that the following 
equalities hold true:

gc(x) = Rp
(m)(x) cos(ln Qω

(m)(x));
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gs(x) = Rp
(m)(x) sin(ln Qω

(m)(x)).

Respectively, Eq. (21) also holds true for k = m, 
which means for any k =0, 1, 2, … as well.

The theorem is proved.
Note. A set of points for which Sq(x) = 0 com-

prises a conic surface of a smaller dimension, 
along which the functions f(c)p,k(x) and f(s)p,k(x) are 
again fundamental mutually homogeneous 
functions but of a smaller number of indepen-
dent variables. Therefore, parametrization of 
the form (29), (30) is again applicable for the 
boundaries separating the conic domains Sq(x) 
≠ 0, but with different functions Sq and with a 
smaller number of variables involved, etc. 

Corollary 1. A chain of fundamental associ-
ated homogeneous functions f(c)p,k(x) and f(s)p,k(x), 
which obeys functional relations (13) and (14) 
for ∀λ > 0, can be expressed as follows, if x1 > 0:

f(c)
p,k(x) = Σj=0,k x1

p((q ln x1)
k–j/(k–j)!) ×

× h(c)
j(x2/x1, x3/x1, …, xn/x1) cos(ω ln x1) –

– Σj=0,k x1
p((q ln x1)

k–j/(k–j)!) ×

× h(s)
j(x2/x1, x3/x1, …, xn/x1) sin(ω ln x1);

(31)

f(s)
p,k(x) = Σj=0,k x1

p((q ln x1)
k–j/(k–j)!) ×

× h(c)
j(x2/x1, x3/x1, …, xn/x1) sin(ω ln x1) + 
+ Σj=0,k x1

p((q ln x1)
k–j/(k–j)!) ×

× h(s)
j(x2/x1, x3/x1, …, xn/x1) cos(ω ln x1),

(32)

where hj
(c)(t2, t3, …, tn) and hj

(s)(t2, t3, …, tn) are 
arbitrary real functions of (n – 1) variables, 
which are have a one-to-one correspondence with 
the functions f(c)p,k(x) and f(s)p,k(x). 

By substituting x1 → –x1 in Eqs. (31), (32) we 
obtain the formulae for the case x1 < 0:

f(c)
p,k(x) = Σj=0,k (–x1)

p((q ln(–x1))
k–j/(k–j)!) ×

× g(c)
j(x2/x1, x3/x1, …, xn/x1) cos(ω ln(–x1)) –

– Σj=0,k (–x1)
p((q ln(–x1))

k–j/(k–j)!) ×

× g(s)
j(x2/x1, x3/x1, …, xn/x1) sin(ω ln(–x1));

(33)

f(s)
p,k(x) = Σj=0,k (–x1)

p((q ln(–x1))
k–j/(k–j)!) ×

× g(c)
j(x2/x1, x3/x1, …, xn/x1) sin(ω ln(–x1)) +

 
+ Σj=0,k (–x1)

p((q ln(–x1))
k–j/(k–j)!) ×

× g(s)
j(x2/x1, x3/x1, …, xn/x1) cos(ω ln(–x1)),

(34)

where gj
(c)(t2, t3, …, tn) and gj

(s)(t2, t3, …, tn) are 
arbitrary real functions of (n – 1) variables, 
with a one-to-one correspondence with the func-
tions f(c)p,k(x) and f(s)p,k(x), while the functions 
gj

(c)(t2, t3, …, tn) and gj
(s)(t2, t3, …, tn) are selected 

independently of the functions hj
(c)(t2, t3, …, tn) 

and hj
(s)(t2, t3, …, tn), used in the case x1 > 0. 

P roo f .  Let us confine ourselves to proving 
Corollary 1 for the condition x1 > 0, as the case 
x1 < 0 is obtained from calculations for the case 
x1 > 0 after substituting x1 = –x1, with which re-
lations (29), (30) preserve their form. We apply 
the proved theorem with the function Sq(x) = 
x1

q, where the functions Rp
(j)(x) and Qω

(j)(x) are 
represented in the domain x1 > 0 in accordance 
with Eqs. (9) in the following form:

Rp
(j)(x) = x1

p Hj(x2/x1, x3/x1, …, xn/x1),

Qω
(j)(x) = x1

ω Gj(x2/x1, x3/x1, …, xn/x1).
After substitution and transforming Eqs. 

(29), (30) for the new functions

hj
(c)(t2, t3, …, tn) = 

= Hj(t2, t3, …, tn) cos(ln Gj(t2, t3, …, tn));

hj
(s)(t2, t3, …, tn) =

= Hj(t2, t3, …, tn) sin(ln Gj(t2, t3, …, tn)),
we obtain Eqs. (31), (32). 

Because the functions

Hj(t2, t3, …, tn) and Gj(t2, t3, …, tn)
are arbitrary, then the functions 

hj
(c)(t2, t3, …, tn), hj

(s)(t2, t3, …, tn)
are arbitrary as well. 

This proves Corollary 1.
Note to Corollary 1. When x1 = 0 and x2 ≠ 0, 

the problem of parametrization of functions f(c)

p,k(x) and f(s)p,k(x), which obey functional rela-
tions (13) and (14) but depend on a smaller 
number of independent variables, is solved using 
formulae similar to Eqs. (31), (32), (33), (34). 
The process is repeated recursively, until the list 
of nonzero variables x1, x2, …, xn is exhausted.

Corollary 2. A chain of fundamental associ-
ated homogeneous functions f(c)p,k(x) and f(s)p,k(x), 
which obeys functional relations (13) and (14) 
for ∀λ > 0, can be represented as

f(c)
p,k(x) = Σj=0,k r

p((q ln r)k–j/(k–j)!) ×

× h(c)
j(x1/r, x2/r, …, xn/r)cos(ω ln r) –

(35)
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– Σj=0,k r
p((q ln r)k–j/(k–j)!) ×

× h(s)
j(x1/r, x2/r, …, xn/r)sin(ω ln r);

(35)

f(s)
p,k(x) = Σj=0,k r

p((q ln r)k–j/(k–j)!) ×

× h(c)
j(x1/r, x2/r, …, xn/r)sin(ω ln r) +

+ Σj=0,k r
p((q ln r)k–j/(k–j)!) ×

× h(s)
j(x1/r, x2/r, …, xn/r)cos(ω ln r),

(36)

where 2 2 2
1 2 ,nx x xr += += x   and 

hj
(c)(t1, t2, …, tn) and hj

(s)(t1, t2, …, tn)

are arbitrary real functions given on the surface 
of a unit hypersphere

t1
2 + t2

2 + …+ tn
2 = 1

and which have a one-to-one correspondence 
with functions f(c)p,k(x) and f(s)p,k(x). 

P roo f .  We use the same procedure as for 
proving Corollary 2, where Sq(x) = rq, and Eqs. 
(11) are applied for functions Rp

(j)(x) and Qω
(j)(x).

Corollary 2 is proved.
Corollary 3. Suppose ψp(x) is a positively ho-

mogeneous function of degree p, ψq(x) is a pos-
itively homogeneous function of degree q ≠ 0, 
ψω(x) is a positively homogeneous function of de-
gree ω ≠ 0, а ψ2(x), ψ3(x), …, ψn(x) is a positively 
homogeneous function of zero degree. 

Assume these functions have no singular points 
or discontinuities in the domain Ω, the function 
ψp does not become zero, the functions ψq and ψω 
are strictly positive2, the functions ψ2, ψ3, …, ψn 
are functionally independent.

Then fundamental mutually homogeneous 
functions f(c)p,k(x) and f(s)p,k(x), which obey func-
tional relations (13) and (14) for ∀λ > 0, can be 
mapped one-to-one in the domain Ω as

f(c)
p,k(x) = Σj=0,k ψp(x) (ln ψq(x))k–j/(k–j)! ×

× cos(ln ψω(x)) h(c)
j(ψ2(x), ψ3(x), …, ψn(x)) –

– Σj=0,k ψp(x) (ln ψq(x))k–j/(k–j)! ×

× sin(ln ψω(x)) h(s)
j(ψ2(x), ψ3(x), …, ψn(x));

(37)

f(s)
p,k(x) = Σj=0,k ψp(x) (ln ψq(x))k–j/(k–j)! ×

× sin(ln ψω(x)) h(c)
j(ψ2(x), ψ3(x), …, ψn(x)) +

 
+ Σj=0,k ψp(x) (ln ψq(x))k–j/(k–j)! ×

× cos(ln ψω(x)) h(s)
j(ψ2(x), ψ3(x), …, ψn(x)),

(38)

2 Absolute values are used for negative functions.

where hj
(c)(t2, t3,…, tn) and hj

(s)(t2, t3, …, tn) are 
arbitrary real functions of (n – 1) variables, with 
a one-to-one correspondence with the functions 
f(c)p,k(x) and f(s)p,k(x). 

P roo f .  The same scheme is used for the 
proof as in Corollary 1, where Sq(x) = ψq(x), 
and Eqs. (12) are applied for the functions Rp

(j)

(x) and Qω
(j)(x).

Corollary 3 is proved.
Note to Corollary 3. Using Eqs. (37), (38), 

the entire space Rn is partitioned into non-in-
tersecting conic domains Ωs, where the func-
tions ψp(x), ψq(x) and ψω(x), selected in a fixed 
manner, do not become zero, the functions

ψ2(x), ψ3(x), …, ψn(x)
form a functionally independent set of func-
tions, and the given functions have no singular 
points or discontinuities. Generally speaking, 
constructing parametrization (37), (38), we use 
for each of the domains Ωs a specific set of 
functions 

hj
(c)(t2, t3, …, tn) and hj

(s)(t2, t3, …, tn),
which is completely unrelated to the 

functions

hj
(c)(t2, t3, …, tn) and hj

(s)(t2, t3, …, tn),
used for other domains.

As a result, parametrization of fundamental 
associated homogeneous functions f(c)p,k(x) and 
f(s)p,k(x) is partitioned into several independent 
branches, and such a partition depends on the 
selected auxiliary functions ψp(x), ψq(x) and 
ψω(x), and, to a lesser degree, on the functions

ψ2(x), ψ3(x), …, ψn(x),
and due to this does not reflect the internal 
structure of the chain of functions parameterized.

A linear combination of functions with 
constant factors comprised from several 
chains of fundamental mutually homogeneous 
functions of degree p is a chain of fundamental 
mutually homogeneous functions of degree p 
as well. Besides, if f(c)p,k(x) and f(s)p,k(x) are a 
chain of fundamental mutually homogeneous 
functions of degree p, then the new chain of 
functions

g(c)
p,k(x) = f(c)

p,k-1(x) and g(s)
p,k(x) = f(s)

p,k-1(x),
obtained by shifting the index k → k – 1 and 
supplemented by leading zeros g(c)

p,0(x) = 0 and 
g(s)

p,0(x) = 0, is also a chain of fundamental 
mutually homogeneous functions of degree p. 

The resulting Eqs. (29)–(38) illustrate the 
validity of Gel’fand’s hypothesis that chains 
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of general form are obtained from the main 
chains with a nonzero first term using a linear 
combination with constant factors comprised 
of main and derived chains, which in turn 
result from the main chains by shifting the 
index k and supplementing the chain with 
leading zeros. At the same time, unlike 
composite chains, all terms of the main chain 
of functions are reconstructed with a one-
to-one correspondence by its first element in 
accordance with a certain rule.

The accurate formulation of this rule reflects 
the researcher’s subjective preferences and can 
widely vary. Generally speaking, the main 
chain is a fairly vague notion, as selecting a 
different method for function parametrization 
makes previously main chains composite, and 
conversely, some previously composite chains 
become main ones.

As follows from Eq. (21), fundamental 
associated homogeneous functions are in fact 
linear combinations with constant factors 
generated by the main chains of functions 
expressed as

(1/k!) (ln |Sq(x)|)k Rp(x) cos(ln |Sω(x)|),

(1/k!) (ln |Sq(x)|)k Rp(x) sin(ln |Sω(x)|),
where Rp(x) are arbitrary positively homoge-
neous functions of degree p, Sω(x) are arbitrary 
positively homogeneous functions of degree 
ω, and Sq(x) are fixed positively homogeneous 
functions of degree q. The situation does not 
change and we can obtain no new functions, if 
we allow for functions Sq(x) to be arbitrary pos-
itively homogeneous functions of degree q (al-
though distinguishing main chains from com-
posite ones becomes exceptionally challenging 
with this approach).

Preliminary conclusions

Analyzing mutually homogeneous functions 
which correspond to a matrix of functional 
equations with identical real eigenvalues, 
we obtained a class of functions which are a 
generalization of associated homogeneous 
Gel’fand functions [29, 30]. The definitions 
and theorems formulated in the study allow 
to define this important class of functions 

well and consider its properties in detail. 
In particular, the theorem on fundamental 
mutually homogeneous functions allows to 
safely introduce the functions of the form

f(c)
p,k(x) = (1/k!) ×

× (ln Sq(x))k Rp(x) cos(ln Φω(x));

f(s)
p,k(x) = (1/k!) × 

× (ln Sq(x))k Rp(x) sin(ln Φω(x)),
as well as their linear combinations with 
constants factors (possibly, with a preliminary 
shift of index k and supplement of the function 
chain with leading zeros), 

where Rp(x) is a positively Euler-
homogeneous function of degree p; Sq(x) is a 
positively Euler-homogeneous function of de-
gree q, taking positive values; Φω(x) is a posi-
tively Euler-homogeneous function of degree 
ω, taking positive values. 

These functions identically coincide with 
the given class of fundamental mutually 
homogeneous functions, while fully 
retaining their properties without producing 
fundamentally new mathematical objects.

We intend to continue the analysis of 
differential and integral properties of chains of 
fundamental mutually homogeneous functions 
as a new functional class of real variable 
functions in subsequent publications.

The calculations in this paper were carried out 
using the Wolfram Mathematica software [31].
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DEVICES FOR STEERING PARTICLE BEAMS  
IN THE ACCELERATORS BASED ON CRYSTALS CURVED  

BY SCRATCHING THE GROOVES ON THE SURFACE
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Yu.A. Chesnokov, A.A. Yanovich
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An interesting method of bending silicon crystal plates by scratching the grooves on the sur-
face mechanically has been presented in the paper. This method appears to have considerable 
promise for both the U70 accelerator at the Institute for High Energy Physics and the devices at 
the Large Hadron Collider (LHC). Using the method mentioned above, specific devices were 
made: a crystalline undulator for 3 GeV positrons, short crystalline deflectors for extraction of 
70 GeV proton beam from the U70 accelerator, and multistrip crystals for collimating the 6500 
GeV proton beam into the LHC.
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ПРИБОРЫ ДЛЯ УПРАВЛЕНИЯ ПУЧКАМИ ЧАСТИЦ  
В УСКОРИТЕЛЯХ НА ОСНОВЕ КРИСТАЛЛОВ, ИЗОГНУТЫХ 

ПУТЕМ НАНЕСЕНИЯ КАНАВОК НА ПОВЕРХНОСТЬ

В.А. Маишеев, Ю.Е. Сандомирский, М.Ю. Чесноков,  
Ю.А. Чесноков, А.А. Янович

Институт физики высоких энергий имени А.А. Логунова   НИЦ «Курчатовский институт»,   г. Протвино Московской области, Российская Федерация

В статье описан интересный метод изгиба кристаллических пластин кремния 
с помощью нанесения механическим путем канавок на их поверхности. Метод 
перспективен для применения как в ускорителе У70 Института физики высоких 
энергий, так и в устройствах Большого адронного коллайдера (БАК). С использованием 
указанного метода созданы конкретные устройства: кристаллический ондулятор для 
пучка позитронов с энергией 3 ГэВ, короткие кристаллические дефлекторы для вывода 
пучка протонов с энергией 70 ГэВ из ускорителя У70, многополосковые кристаллы для 
коллимации пучка протонов в БАК при энергии 6500 ГэВ.

Ключевые слова: Большой адронный коллайдер, коллимация пучков, кристаллический 
ондулятор, многополосковые кристаллы
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Introduction

The idea to use channeling in bent crystals to 
steer particle beams, first proposed by Tsyganov 
(Joint Institute for Nuclear Research, Dubna, 
Moscow Oblast) [1], was advanced and tested 
in many experiments (see [1–3] and references 
therein). The idea found the widest practical 
application at the U70 accelerator at the Institute 
for High Energy Physics (Protvino, Moscow 
Oblast), where crystals are used in regular 
sessions for extracting and steering the beams. 
Problems related to the physics of particle beam 
channeling were considered in [4, 5].

Our study introduces a method for bending 
crystals for subsequent use in accelerators. 
Notably, the efficiency of particle deflection by 
a bent crystal (for example, see book [4]) is 
described by the ratio of the critical angle of 
channeling θc to beam divergence j, decreasing 
exponentially with crystal length L: 

Eff ~ (θc / j)exp (–L / Ld),
where the characteristic parameter Ld called the 
dechanneling length increases linearly along 
with the particle energy; it amounts to 5 cm 
in silicon crystals for 100 GeV energy protons.

The critical angle of channeling (the 
Lindhard angle) is rather small: 

θc ≈ (1/E)1/2 = 0.020–0.002 mrad
for protons with the energies E ranging from 
100 to 10 000 GeV, respectively. 

Because the angle is small, this beam steering 
method is not versatile but can be quite useful 
in some cases, especially for extraction of 
circulating beams and their splitting in particle 
channels where crystals act as miniature magnets. 

The sizes of crystal plates (along the beam) 
range from 0.1 mm to 10 cm depending on the 
degree of bending and the type of problems solved. 
A commonly used bending method consists in 
applying the bending moment generated by a 
metal holder to the crystal [4, p. 85]. A method 
involving mechanical scratching of grooves on 
the surface of crystals was used in several cases 
for small bending angles.

Basic principles of the groove 
scratching method

The Twyman effect, known in optics [6], is 
a phenomenon when small mechanical damage 
to the surface from microgrinding produces 
stresses causing the surface structure to bend, 
in some cases substantially. It is important that 
these deformations are smooth for channeling 
high energy particles. Experiments on particle 
deflection with crystals conducted at IHEP [4] 
revealed interesting phenomena in the end face 
of crystal, when the trajectories of channeled 
particles escaping the crystal are generated 
specifically depending on the microscratches 
present on the surface (i.e., the trajectories are 
sensitive to microscratches).

The explanation for the effect is that protons 
near, for instance, scratches are channeled in 
deformed layers of the crystal and move around 
these scratches. Reconstruction of deflection 
angles of the particles indicates that deformation 
of the crystal planes penetrates to substantial 
depths, up to a few hundred microns (Fig. 1). This 
effect was successfully applied to solving several 
acceleration problems for silicon crystals bent by 
periodic microgrooves scratched mechanically on 
the surface (using a diamond blade).

Example applications of the 
method in accelerators 

A method for creating a crystalline 
undulator, i.e., a periodically bent crystal, 
by mechanically scratching grooves on the 
faces of the crystal was first considered in 

Fig. 1. Effect of deformation of crystal planes 
from microscratching of crystal surface: 

groove G, crystal surface CS, 
deformed crystal planes DCPs
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[7]. An X-ray diffractometer was used to 
establish that the deformation amplitude of 
40 Å was reached in 10 periods with a 0.5 
mm step, which is sufficient for generation 
of hard photons. The first experiment with 
such an undulator was carried out at the U70 
accelerator with a 10 GeV positron beam [8]. 
Fig. 2 shows a scheme of the undulator with 
grooves developed at the IHEP.

The period d of bilateral groove scratching 
has to be no less than the thickness h of the 
crystal plate for the sinusoidal deformations 
to penetrate deep into the entire bulk of the 
crystal according to the Saint-Venant’s prin-
ciple, known from elasticity theory [9]. If the 
grooves are scratched with a small period, so 
that d << h, then the stresses become uniform 
at a depth approximately equal to d, producing 
a smooth bend in the crystal (Fig. 3,а).

The thickness of the layer with efficient 
channeling equals h – d. This method of 
crystal bending was first applied using a 70 
GeV beam splitting station at the U70 ac-
celerator [10]. The bending angle of a crys-
tal 16 mm long and 0.5 thick amounted to 
10 mrad. The experience with proton beams 

with an intensity of 1012 particle/(cm2·s–1), 
accumulated since 2009, indicates that the 
crystal preserves its bending and channeling 
properties, splitting the beam with the same 
efficiency. Fig. 3,b shows a fragment of the 
crystal after irradiation with protons (dose of 
5·1019 particles).

Notably, the method of bending the crys-
tal by scratching grooves on the surface is also 
applicable for production of crystal strips with 
a small bending angle (around 50 μrad), opti�-
mal for TeV energies. Such crystals were tested 
with a 400 GeV proton beam at the Super 
Proton Synchrotron (SPS) at the European 
Organization for Nuclear Research (CERN, 
Switzerland) via particle deflection by multiple 
volume reflection [11].

Fig. 4,b shows a photograph of the silicon 
crystal plate with periodic grooves serving as 
a deflector, prepared by the IHEP team for 
the experiment. Fig. 4,a shows a schematic 
for the deflector’s operation during multiple 
volume reflection of particles. Deep grooves 
with a rough surface were made by a triangu-
lar cutter with diamond grit, providing suffi-
cient curve bending of the strips produced on 

Fig. 2. Schematic representation of crystalline undulator:
grooves are denoted as Gs, d is the groove period, h is the thickness of the crystal plate, e+ is the positron beam. 

The sinusoid corresponds to the bent crystal planes in the bulk of the crystal

Fig. 3. Schematic representation of bent silicon crystal plate: 
smooth bending obtained by periodic scratching of grooves on the surface (a); 

plate fragment in the region of interaction with proton beam p (b)

a)	 b)
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the polished face of a thick silicon plate. The 
beam in the experiment described in [11] was 
deflected at an angle of 50 μrad and agreed 
with the calculated value with an efficiency 
of about 90%.

Bending of separate strips and their mutual 
orientation was studied with the Kurchatov 
Synchrotron Radiation Source (Kurchatov 
Institute, Moscow) using a parallel X-ray beam 
[12]. Analysis of the results showed that this 
structure, i.e., a series of bent strips formed be-
tween large grooves on a thick plate, is aligned 
perfectly, fitting for collimation of 50 TeV pro-
ton beams at the Large Hadron Collider (LHC, 

CERN) and even the Future Circular Collider 
(FCC, CERN), using multiple volume reflec-
tion of particles. The parameters of the crystal 
device can be easily adapted to this energy by 
varying the size of the grooves and the distance 
between them. 

Fig. 4,с shows the calculated deflection 
angles of beam particles at 6.5 TeV depend-
ing on the orientation of the crystal plate in 
a form of two-dimensional density marked 
with dots. The calculations were performed 
using our SCRAPER software and the Monte 
Carlo method [14]. Evidently, the particles at 
the edges of the beam (on the right and left) 

Fig. 5. General view of silicon crystals with periodically (a) and aperiodically (b) arranged grooves 
The insets show distributions of the bending angle along the length of the crystals

a)	 b)

Fig. 4. Thick bent silicon multistrip crystal with periodic grooves scratched on the surface:
operation sequence for multiple volume reflection (a); photograph of crystal (b); computational results 

for efficient 6.5 TeV proton deflection by multiple volume reflection in bent strips (c): 
Monte Carlo simulation and SCRAPER code were used. Fig. 4,а shows bent crystal planes (1); 

triangular grooves (2); tracks of particles deflected due to channeling (3) 
and multiply reflected by bent planes (4); the oval in Fig. 4,c marks the reflection region

a)	 c)

b)
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are not deflected as they do not fall within the 
range of the strip bending angles. Almost the 
entire beam in the reflection region marked in 
the figure shifts down by an angle of 15 μrad 
corresponding to multiple reflection on five 
crystal strips. According to our estimations, 
the calculated efficiency of beam deflection 
amounts to 92%.

Novel approaches introduced at the 
U70 accelerator using the proposed 

method of crystal bending

Optimized beam extraction from the 
accelerator. Beam extraction by short silicon 
crystals has been used at the U70 accelerator 
since 1998 [13]. The new bending method 
is aimed at increasing the efficiency of 
extraction by reducing the length of the 
crystals while preserving the required bending 
angle, since the surface grooves increase the 
crystal curvature. Moreover, if the grooves 
are arranged aperiodically, a bend with 
decreasing curvature can be achieved. This 
also suppresses particle dechanneling along 
the length of the crystal, which in turn 
reduces particle losses [14].

We prepared several samples of crystals bent 
by scratching grooves on the surface, includ-
ing those with aperiodic scratching (Fig. 5). 
We conducted an optical test of the bend using 
a laser device (the technique is described in 
[4]). The insets in the figure show distributions 
of the bending angle along the length of the 

crystals. Apparently, periodic grooves produce 
uniform bending, while aperiodic grooves result 
in a decreasing curvature. Fig. 5,а also shows 
that identical crystals are stacked to increase 
the transverse size of the crystal beam deflec-
tor, thus additionally improving its efficiency.

Fig. 6 shows a schematic layout for beam 
extraction with the improved crystals, illus-
trating how the beam extraction efficiency can 
be improved by reducing the share of dechan-
neled particles. The inset in Fig. 6 shows dis-
tributions of particles deflected by the crystals 
with constant (curve 1) and decreasing (curve 
2) curvature calculated by the Monte Carlo 
method and our SCRAPER software [14]. It 
is apparent that decreasing curvature results 
in reducing the share of dechanneled parti-
cles by several times. Experiments aimed at 
improving the crystal extraction at U70 are 
planned as soon as the accelerator equipment 
is upgraded. The SCD19 crystal station uses a 
crystal 5 mm long with a bending angle of 2 
mrad. The prepared crystals (see Fig. 5) allow 
to reduce their length down to 3 mm, which 
will increase the extraction efficiency from 70 
up to 85%.

Testing the crystal undulator with a 3 GeV 
positron beam. The energy of photons gener-
ated by the undulator is proportional to the 
squared Lorentz factor of a γ particle and in-
versely proportional to the undulator period 
L. The period of a simple electromagnetic 
undulator reaches several centimeters. Thus, 

 Fig. 6. Schematic layout for beam extraction by crystal (C): peak of channelled particles efficiently 
extracted (I); fraction of dechanneled particles (II); losses at the septum S (III); 

H, B denote halo and beam, respectively.
The inset shows distributions of particles deflected by the crystals with constant (curve 1) 

and dropping (curve 2) curvature; computed using Monte Carlo method with our SCRAPER software [14]
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photons with the energies of several keV reach 
approximately 1 GeV in the beam of the elec-
tron accelerator. Consequently, crystal undula-
tors with submillimeter periods are the subject 
of intense scrutiny because of the potential they 
hold for increasing photon energies.

The first data on radiation produced with 
a crystalline undulator were obtained for a 10 
GeV positron beam at IHEP [8]. However, the 
majority of electron accelerators where crys-
talline undulators can be used operate at ener-
gies below 6 GeV. We prepared novel samples 
of crystal undulators (Fig. 7,а) optimized for 
positrons at lower energies achievable by the 
electron accelerators currently available. The 
first tests are planned to take place at IHEP’s 
Crystal setup at the energy of 3 GeV. Given the 
achieved parameters, specifically, a period of 
0.4 mm, an amplitude of 50 Å, and the num-
ber of periods equal to 9, we plan to obtain a 
photon peak at approximately 0.23 MeV with 
the undulator. Fig. 7,b shows the calculated 
photon spectrum obtained using the software 
described in [15]. This software implements an 
algorithm for simulating undulator radiation in 
the crystal taking into account rather strong ra-
diation during positron channeling, proposed 

in [16]. The undulator peak around 0.23 MeV 
is shown in detail in the inset to Fig. 7,b. The 
background radiation up to 20 MeV is due to 
channeling.

 Conclusion

The paper presents an interesting method 
for bending silicon crystal plates by mechanical 
scratching of grooves on the surface. This 
method has already been applied for a number 
of problems related to steering particle beams 
but we also propose vital improvements 
for potential applications in new problems 
described in the study. The method was used 
to construct novel devices: a crystal undulator 
for 3 GeV positrons, short crystal deflectors 
for extraction of 70 GeV proton beams at the 
U70 accelerator, and multistrip crystals for 
collimation of 6500 GeV proton beams at the 
LHC. The latter show promise for solving the 
global problem of beam collimation at future 
multi-TeV colliders.

The paper is sponsored by the Russian 
Foundation for Basic Research (grant No. 
20-02-00045).
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AN ELECTRICALLY POWERED ION ACCELERATOR 
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A number of characteristics of ionic and ion-plasma accelerators laboratory samples de-
signed for electrically powered spacecraft propulsion have experimentally been studied. A 
large-sized vacuum chamber (2.4 m3, 103 Pa) made at the Military Space Academy named 
after A.F. Mozhaysky provided the necessary physical and technological processes, methods 
and means of measurement, parameters and operation modes of the ionic accelerators with 
contact ionization. The samples’ design features, physical processes and operating parameters 
were theoretically analyzed, including the use of computer simulation. The implemented and 
tested measuring methods, technologies and ion-physical laboratory samples’ characteristics 
were found to correspond to the tasks of developing the promising electrically powered space-
craft propulsion.
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ЭЛЕКТРОСТАТИЧЕСКИЙ ИОННЫЙ УСКОРИТЕЛЬ 
С КОНТАКТНОЙ ИОНИЗАЦИЕЙ ДЛЯ ПЕРСПЕКТИВНЫХ 

ЭЛЕКТРИЧЕСКИХ РАКЕТНЫХ ДВИГАТЕЛЕЙ

О.Ю. Цыбин1, С.Б. Макаров1, Д.Б. Дюбо1, Ю.В. Кулешов2, 
П.С. Гончаров2, В.В. Мартынов 2, Н.А. Шуневич2
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Выполнены экспериментальные измерения ряда характеристик лабораторных 
образцов ионных и ионно-плазменных ускорителей, предназначенных для 
электрических ракетных двигателей космических аппаратов. Крупногабаритная 
вакуумная камера (2,4 м3, 103 Па), созданная в Военно-космической академии им. 
А.Ф. Можайского, обеспечивала необходимые физико-технологические процессы, 
методы и средства измерений, параметры и режимы работы ионных ускорителей с 
контактной ионизацией. Особенности конструкции образцов, а также физические 
процессы с набором их рабочих параметров были проанализированы теоретически, в 
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том числе методом компьютерного моделирования. Установлено, что реализованные 
и тестируемые методы измерений, технологии и ионно-физические характеристики 
лабораторных образцов соответствуют задачам разработки перспективных 
электрических ракетных двигателей.
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Introduction

Accelerated ion fluxes in vacuum are 
widely used in physical research, medicine, 
technologies for producing microchips and 
various materials, as well as in electric propulsion 
spacecraft [1–13]. There is a general call for 
systematized review of the physical problems 
related to electric propulsion systems (EPS) 
[2–6, 14–17]. It is difficult to improve the 
existing devices or develop new ones given the 
lack of comprehensive theory. A crucial task is 
to construct a new generation of EPS featuring 
alternative types of propellants, effective 
design and operation solutions, high reliability, 
extended service life, relative simplicity, and 
low cost.

Standard EPS are electromechanical vacuum 
systems where electromagnetic energy is 
converted to mechanical energy of propulsion. 
Momentum is generated using the following 
operating cycle: the propellant is transformed 
into an ionized gas/vapor phase, ions are 
accelerated in an electric field with subsequent 
neutralization of the charge of accelerated 
particles and free expansion of the neutralized 
beam into space. The main condition for 
generating the desired thrust is increasing 
the momentum of the mass accelerated in 
the beam, which means consuming greater 
amounts of propellant. 

Reducing the consumption of propellant in 
EPS is based on obtaining high-velocity beams 
(50–100 km/s). The efficiency of EPS is 50% 
and higher, while the efficiency of chemical 
propulsion units does not exceed 35%. The mass 
of propellant on board a spacecraft amounts to 
5–15% of the initial mass of the spacecraft in 
case of an EPS and 70% and higher in case of a 
chemical propulsion unit. The great advantages 
of the EPS are their large number of controlled 
firing cycles (106+ times) and long service lives 
(10,000+ hours). 

Modern EPS are largely represented by 
electrostatic thrusters, including ion thrusters 
with perforated electrodes (grids) and Hall-
effect plasma thrusters. The latter group 
includes stationary plasma thrusters, thrusters 
with anode layer, end Hall thrusters, and multi-
stage Hall thrusters [1–17]. 

Grid ion thrusters are characterized by the 
highest efficiency (60–80% and more), high 
specific impulse (2,000–10,000 s; determined 
as the ratio between the exhaust velocity of the 
beam ejected into space and the acceleration 
of gravity (about 9.8 m/s2)) with the voltage 
difference in grids up to and exceeding 10 kV. 
Such thrusters consume propellant efficiently 
and have a long service life (up to 10–12 years 
of operation in space). 

Hall thrusters have a simpler design and 
require fewer power sources compared with 
grid ion thrusters. Hall thrusters use a magnetic 
field to generate electron drift motion in the 
direction E

→
×B

→
 (transverse to the magnetic 

and electric vectors). Such motion of charged 
particles in vacuum can be attributed to the Wien 
filter (known since the end of the 19th century) 
with electron drift motion in vacuum in crossed 
fields rather than to the Hall effect (the classical 
Hall effect consists in voltage difference across a 
semiconductor placed in a magnetic field). The 
principles of the Wien filter were applied for 
the first time by Thompson in mass-analyzers 
in the early 20th century. Stationary plasma 
thrusters are typically referred to as Morozov’s 
stationary plasma thrusters in Russian literature 
and practice, since it was Morozov who that 
a spatially-distributed electrostatic field could 
be obtained in plasma, which underlies the 
operation of such thrusters [2, 3]. 

However, the term Hall thrusters became 
widely accepted internationally. These units 
provide the most practically significant and 
reliable operating parameters, generate slightly 
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lower impulse but a higher thrust (compared 
with grid ion thrusters) at the same power. 
The typical parameters of Hall thrusters 
(manufactured by Experimental Design 
Bureau Fakel, Kaliningrad, Russia) in different 
configurations range within the power/thrust 
ratios of 13–19 W/mN at a power consumption 
of 200–2500 kW. Their specific impulse 
amounts to 1600–2500 s. The basic parameters 
of Russian-made thrusters are compared in 
Table 1 below.

Meteor, Kosmos-1066, Kanopus-V, BKA 
and several other spacecraft are equipped with 
SPT-50 Hall thrusters operating with xenon 
propellant. 

The following can be added for comparison: 
the thrust to power ratio in such devices as 
solar sails, laser or photon propulsion systems 
is 3.33–6.67 μN/kW for forward or reflected 
radiation, respectively.

According to the fundamental laws of 
physics, propulsion can be achieved in a device 
emitting an electromagnetic field (EMF). 
As the EMF is emitted, the thrust force 
exerts mechanical pressure on the antenna, 
which was predicted by Maxwell in 1873 and 
experimentally proved by Lebedev in 1899. It 
was also confirmed theoretically based on the 
Maxwell equations within the framework of 
classical electrodynamics for processes at the 
edge of a conductor. 

The maximum pressure of an electromagnetic 
field on the antenna is as follows:

|FEMF| ≈ 2W/Vg,
where W is the power of radiation freely 
expanding in space; Vg is the group velocity of a 
wave (close to the speed of light); the coefficient 
2 appears because the incident wave is reflected 
and emitted in the opposite direction.

To achieve noticeable accelerations with a 
force of approximately 1 N, significant wave 
power is required (approximately 150 MW). 

An ion source is usually considered the most 
complex and critical element in the design of 
EPS [2, 3, 11–13, 16, 18]. The method and the 
characteristics of propellant ionization largely 
govern the required mechanical parameters. 
An ionizer should provide fuller ionization of 
the propellant so that the number of neutral 
particles entering the accelerating gap does not 
exceed 10–20% of the total number of particles 
exiting the ionizer. As a rule, the charges and 
masses of all ions should be the same, and 
the number of impurities should be minimal. 
Homogeneous processes should be maintained 
in the volume ionization chamber. Besides, the 
energy consumed by the ionizer and its mass 
should be minimal. The current density at the 
exit of the ionizer should correspond to the 
preset modes of the ion accelerator and the 
thruster as a whole.

Volume ionization by electrons is the 
main ionization method in stationary plasma 
thrusters and grid ion thrusters. The design 
of a volume ionizer should satisfy a certain 
set of requirements. In particular, in case of 
gas of propellant particles with the ionization 
cross-section σ and concentration n, the size 
L of the ionization chamber should exceed the 
ionization length λ of an electron track in gas 
(λ = 1/σn), i.e., L > λ.

Along with these conditions, the device 
should have a long service life (about 10,000 h), 
during which fail-safe controlled switching and 
stable ionization should be ensured. In addition 
to ionization by electrons, methods of volume 
ionization in stationary plasma thrusters, grid 
ion thrusters, and prototype models of thrusters 
include discharge, plasma, laser, high-frequency 
ionization, etc. [2, 3, 14–16]. 

The high density of thrust in local surface 
areas is provided by field ionization with a 
strong local electric field near the cusps, e.g., 
with propellant in the form of liquid metal: 
mercury, magnesium, indium, cesium, zinc, 

Tab l e  1
Basic operating parameters of Hall thrusters

Parameter Unit Value
SPT-50 SPT-70 SPT-PPS

Thrust mN 14.3 40 80
Specific impulse s 860 1450 1600

Efficiency % 26 44 48
Power W 220 650 1350
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gallium, etc., as well as electrospray capillary 
ionization where propellant particles are 
immersed in a colloidal solution. Using field 
ionizers with a multi-cusp surface in an ion 
thruster can generate a thrust of about10 mN at 
a power consumption of about 300 W. Colloid 
thrusters provide an impulse of 2500 s and a 
thrust of 100 μN with a thrust to power ratio of 
about 40 mN/kW. The volume of the ionization 
chamber in a colloid thruster is 0.3 dm3, and 
its efficiency may reach 50%. However, due 
to high concentration of energy damaging 
microscopic areas of the surface, these thrusters 
cannot compete with volume electron ionizers, 
especially in terms of durability.

Evidently, existing EPS use a wide variety 
of ionization methods, including ionization 
and accelerated motion of charged particles 
obtained from compressed gases (nitrogen, 
argon, xenon, krypton, etc.), liquid metals, as 
well as colloidal solutions of organic substances. 
It is believed that such volatile solids as iodine, 
teflon, etc., may have good prospects. Despite 
a large number of studies, many propellant 
materials have only been tested in laboratory 
setups. The EPS used in spacecraft mainly 
operate with xenon because it has several 
advantages: chemical inertness, sufficiently 
high atomic mass and ionization cross-section, 
acceptable ionization energy. However, due 
to its high cost and limited resources, it is 
expedient to replace xenon with an alternative 
propellant. Consequently, a novel design of an 
EPS has to be developed for such propellant. 

In this regard, surface, or contact ionization 
distributed over the surface of a solid seems quite 
interesting [17–23]. Contact sources equipped 
with a surface ionizer where cesium vapor 
passed through a porous tungsten membrane 
were tested in electrostatic ion thrusters [2–6]. 
However, for reasons that are now clear, the 
experiments met only with limited success and 
were not continued.

Currently, with further advances made in 
the theory and technology of porous materials, 
a new stage in surface ionization studies 
appears to be more justified. The probability 
of electron tunneling and surface ionization 
in a porous material can be increased due 
to new materials and technologies, unsteady 
processes, increased energy of neutral particles 
and electrons in the material, and surface 
heterogeneity [12, 13, 16–23]. 

Extensive experimental studies should be 
conducted in ground laboratories to develop 
novel designs. Surface ionization combined 

with implementing and monitoring a range of 
ion-plasma processes should play a major role. 

Ground tests of spacecraft prototypes 
equipped with EPS are carried out in vacuum 
chambers with a large volume characterized by 
a high pumping speed. They include a VU-M 
chamber with a vacuum volume of 2.4 m3 
and a pressure of 1·10–3 Pa, designed at the 
Military Space Academy named after A.F. 
Mozhaysky [24, 25]. 

The chamber was used in a series of studies 
conducted by the team comprising staff 
members from the Military Space Academy 
named after A.F. Mozhaysky and Peter the 
Great St. Petersburg Polytechnic University. 
Parameters were measured, and theoretical 
analysis (including computer simulation) was 
carried out for physical processes, as well as for 
operating parameters of laboratory prototypes 
of ionic and ion-plasma accelerators for 
electric propulsion systems used in spacecraft. 
The vacuum chamber provides the necessary 
processes, measurement methods and tools, 
operating parameters and modes of ion 
accelerators.

This paper describes the prototypes, the 
main methods for testing them, the stages and 
characteristics of the analysis, and results of 
experimental and theoretical studies.

Experimental methods and equipment

Characteristics of experimental prototypes. 
The required parameters of the prototypes to 
be tested were obtained by computer simulation 
(primarily using the Computer Simulation 
Technology (CST) package) [26–30]. This 
approach allowed to obtain the size and 
shape of the electrodes as well as the current-
voltage characteristics of the charged particle 
flux in the injector circuit and distributions of 
particle velocity and electric field with respect 
to the coordinates in the accelerator volume. 
Additionally, new physical and technological 
solutions were introduced, and an ion-
mechanical algorithm was used to determine 
the thrust in different sections of the accelerator 
with varying operating modes [31–35]. The 
following parameters of the experimental 
prototypes were measured:

electric voltage of ion acceleration, 
ion drift current in the accelerator, 
ionization coefficient of the vapor-gas flow 

injected, 
neutralization coefficient of the accelerated 

ion flux, 
beam pressure force.
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Based on the obtained values, we determined 
the main performance characteristics of the ion 
thruster developed. 

Fig. 1 shows a typical block diagram for 
the experimental prototype in the form of 
a single-stage linear DC accelerator and an 
electrical circuit of the measurements. The 
ionized gas flow of the propellant is injected 
into accelerating gap 4 via ionizer 1, where drift 
current 5 of accelerated ions is generated. Due 
to the Coulomb force, ions are attracted to the 
charges induced on grids I and II. This generates 
ion acceleration and thrust. The accelerated ions 
are neutralized in neutralizer 7; these particles 
no longer generate thrust after that and expand 

into vacuum as beam 8. The power of source 10 
is transferred to the ion flux in gap 4 and is then 
carried away in the form of a kinetic energy flux 
by a beam of neutral particles.

Fig. 2 shows a simplified schematic 
representation of the experimental prototype 
with ion trajectories in the accelerating gap, 
obtained using CST.

Fig. 3 shows a photograph of a simple 
two-electrode experimental prototype 
(corresponding to the scheme in Fig. 2) tested. 

The tested device is based on surface or 
contact ionization in the module injecting 
the ion flux into the acceleration section. 
Ionization with positively or negatively charged 

Fig. 1. Block diagram for experimental prototype 
and electric circuit for measurements (cation generation):

gas flow of propellant 1; ionizer 2; electrodes 3, 6 generating the electric field; 
accelerating gap 4 and ion drift current 5 in the gap; neutralizer 7; 
beam 8 of neutral particles; beam impulse meter 9; EMF source 10

Fig. 2. Schematic representation of two-electrode prototype with ion trajectories 
in accelerating gap, obtained using the CST package

(the black line marks the boundary of the computational domain):
electrode 1 with ionizer distributing gas, ion-plasma flow 2, 

electrode 3 generating an electric field; the color scale reflects the energy spectrum of the plasma
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particles generated occurs due to electron 
tunneling from a neutral particle to the surface 
or in the opposite direction. The experimental 
prototype used a structured microporous 
ionizer distributing gas with a flat electrically 
conductive surface (1 in Fig. 3), manufactured 
in accordance with the description given in 
[23]. Aside from efficient generation of ion flux 
and plasma, such a spatially developed surface 
made it possible to focus the ion flux in the 
electrostatic field of the accelerator. Electrodes 
1 and 3 (Fig. 3) were made of copper. The 
diameter of the gas-distributing ionizer was 25 
mm, the gap between the electrodes was varied 
in the range of 2–20 mm.

The measured parameters of the experimental 
prototype were compared with the results of 
computer simulation as well as with the known 
values typical for the best modern devices. 

Experimental vacuum chamber. The 
experimental prototypes of electrostatic ion 
accelerators were tested in a large VU-M vacuum 
chamber, maintaining the necessary parameters 
of processes and operating modes, equipment 
and technologies were provided [22, 23]. 

The parameters of ion and ion-plasma 
processes, including the following quantities, 
were measured in the tests: 

voltage at the gaps between the electrodes in 
the acceleration module;

Fig. 3. Photograph of experimental prototype tested (see Fig. 2): 
electrode 1 with ionizer, ion-plasma flow 2, electrode 3 generating the electric field

Fig. 4. Photograph of main VU-M vacuum chamber (1) with instrument module (2)
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electric currents in the circuits of the 
accelerator electrode;

mass flow rate of propellant in the gas 
distributor channel;

characteristics of the radiation in the visible 
range;

mechanical thrust generated by the beam of 
particles.

The measurements were performed with 
continuous and pulsed high-voltage power 
supply. The measured parameters of the 
experimental prototype were compared with 
both theoretical and standard parameters of 
existing and newly proposed ion thrusters.

The experimental prototype was placed in 
the instrument module connected to the main 
VU-M vacuum chamber with a volume of 2.4 
m3 through a gate valve (a photograph of the 
chamber with the instrument module is shown 
in Fig. 4).

The instrument module was a cylindrical 
metal structure with a vacuum volume of 
approximately 0.03 m3. The gate valve was 
installed between the flange and the cylindrical 
body. Such a technical solution made it possible 
to quickly change experimental prototypes in 
case of depressurization and subsequent rapid 

bypass pumping of the instrument module. 
Vacuum pressure was maintained in the main 
vacuum chamber. The instrument module 
had two transparent windows to record visible 
radiation, as well as an end flange for mounting 
the tested prototype, high-voltage leads, 
and a choke to supply propellant gases. The 
mechanical impulse of the beam was measured 
using a ballistic pendulum installed in the 
instrument module.

Fig. 5 shows a scheme of the VU-M vacuum 
chamber. The required vacuum pressure 
was maintained during the tests in the main 
chamber as well as in the instrument module 
upon propellant gas supply. 

The vacuum pumping system and control 
equipment of the VU-M vacuum chamber 
included the following components:

two NVBM-5 oil-vapor booster pumps;
NVDM-400 oil-vapor diffusion pump;
TMN-500 turbomolecular pump;
piping system with shutoff valves and gates;
vacuum gauge heads; 
backing-vacuum system, including 

mechanical pumps, a piping system with shutoff 
valves and gates, and vacuum gauge heads;

measuring equipment.

Fig. 5. Scheme of VU-M vacuum chamber:
PMT-2 thermocouple gauge heads 1, 5, 15, 18, 21, 25, 27, 29, 40, 42, 44; 

PMI-2 ionization gauge heads 2, 6, 17, 20, 23, 34; lead-in wires 3, 30; leak valves 7, 33; 
valves 4, 8–11, 16, 19, 22, 24, 26, 32, 35, 39, 41, 43; NVBM-5 high-vacuum oil-vapor booster pumps 12; 
TMN-500 high-vacuum turbomolecular pump 13; NVDM-400 high-vacuum oil-vapor diffusion pump 14; 

VN-6G backing-vacuum pumps 28 with oil seal; instrument module 31; VK-M vacuum chamber 35; 
VN-461M backing-vacuum pump 36 with oil seal; VN-6Gm backing-vacuum pump 37 with oil seal; 

VN-7 backing-vacuum pump with oil seal 38
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The operation of the VU-M vacuum 
chamber is characterized by the following 
parameter values:

residual gas pressure (without propellant gas 
supply) no higher than 10–3 Pa;

pressure upon propellant gas supply no 
higher than 10–2 Pa; 

pumping time (from atmospheric pressure 
to residual gas pressure below 1∙10–3 Pa) no 
more than 4 h.

The total capacity of the high-vacuum 
pumps comprising the VU-M chamber was 
approximately 18 m3/s at a pressure of 10–1 Pa, 
meeting the condition for free passage of ions 
in the accelerating gaps between the electrodes 
at an operating pressure upon gas supply. 

The mass flow rate of the gas supplied was 
measured and controlled using an RS-3A 
rotameter. The mass flow rates for different 
propellant gases used during the experiments 
(compressed air, helium, argon, etc.) were 
varied in the range of 0.5–15 mg/s. The upper 
limit for air was 0.06 m3/h, the measurement 
error did not exceed ±4.0% of that value.

The rotameter was calibrated by atmospheric 
air. The mass flow rates of propellant gases were 
found by recalculation by the following formula:

.
. ,a gr

wm a gr
wm

Q Q=
ρ
ρ

(1)

where Qa.gr, m
3/h, is the air flow rate during 

calibration; ρa.gr, kg/m3, is the air density during 
calibration; ρwm, kg/m3, is the density of the 
propellant gas fed into the vacuum chamber.

The mass flow rate of propellant ρ at the 
inlet to the gas distributor was determined 
based on the following relation:

. . .wm wm wm a gr a gr wmm m Q Q
⋅ ⋅

= = =ρ ρ ρ (2)

Mass flow rate of the propellant and ion current 
in the injector circuit in the accelerating 
gap were measured simultaneously during 
the experiments, which made it possible 
to determine the ionization coefficient for 
propellant atoms in the gas flow using the 
following equation:

Ki (ṁ, I) = [(eṁ/μI) – 1]–1, (3)

where ṁ, mg/s, is the mass flow rate; I, A, is 
the ion current; µ, mg, is the ion mass; e, C, is 
the electron charge.

The ionization coefficient depends on the 
geometric and physical parameters of the 
experimental prototypes. 

The approximate estimate of mechanical 
thrust is based on formally accounting for the 
mechanical impulse of the beam:

( ) 2 ,d
T

dm UF z d v I
dt q

µ
= = = 

where Ud, V, is the voltage; q, C, is the ion 
charge; v, m/s, is the ion velocity at the exit 
from the gap, d, mm, is the gap width.

Since the expression does not account 
for elastic interactions of ions with neutrals, 
resonant charge exchange, radiation losses, and 
ion scattering in the acceleration module, it 
was used only for initial rough estimation. 

The supply power of the stationary 
accelerator is converted to the power of ion drift 
motion in the gap, heat and radiation losses. 
The mechanical properties of the stationary ion 
thruster on the test bench correspond to the 
idle mode (in terms of power consumption) 
when the kinetic energy of the device amounts 
to zero.

Results and discussion

When DC voltage in the range of 0–5 kV 
was supplied to the ion accelerator at zero 
propellant flow, no discharge phenomena 
(breakdowns) were observed, and the measured 
currents in the acceleration module circuits 
were close to zero. 

With voltage switching and propellant 
gas supply, the ion accelerator was brought 
into operation almost with zero lag. The 
measured current in the injector circuit 
reached its maximum of approximately 1 A, 
and the value depended on the gas type, the 
voltage (up to 5 kV), and the velocity of the 
gas flow supplied. The switching threshold 
(the average value of electric intensity in the 
accelerating gap) was approximately 250–
500 V/cm for different propellant gases. The 
focused flow was observed to glow brightly, 
which is typically due to charge and energy 
relaxation of the ion flux. The glow was 
uniformly distributed over the surface of the 
microporous injector and remained stable 
during continuous testing. In particular, 
visible radiation from the accelerating gap 
of the experimental prototype (Fig. 3) was 
obtained with dry atmospheric air supplied, 
accompanied by generation of negative ions. 
Similar results were obtained for different 
propellants and positive ions. 

Figs. 6 and 7 present typical experimental 
characteristics and their extrapolating curves 
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for ion current in the injector circuit depending 
on the DC voltage supplied at different mass 
flow rates of the propellant, and for ionization 
coefficient depending on the mass flow rate of 
the propellant mass. Data were obtained for 
two distances between the electrodes d and 
two thicknesses h of the microporous plate. To 
provide a comparison with experimental data, 
Fig. 6 shows curve 5, which is a theoretical 
dependence obtained with CST for the 
conditions corresponding to the experimental 
dependence 4. Extrapolating power-law 
dependences are summarized in Table 2.

According to the form of the extrapolating 
power-law dependences, the theoretical 
current-voltage characteristic 5 given in 
Fig. 6 for the computer model (see Fig. 2) 
corresponds to the kinetic ion model described 
by the Child–Langmuir law (three-halves-
power law). However, the experimental curves 
obtained in a wide range of modes exhibited 
considerable differences and peculiarities in 
terms of the current increase. This indicates 
the influence of ion-plasma phenomena, 
including strong radiation effects, collisions, 
neutralization, and resonant charge exchange. 

Fig. 6. Typical experimental current-voltage characteristics (points) 
of negative ion flux in injector circuit and their extrapolating curves (lines) 

for different propellants and mass flow rates ṁ:
air (1), ṁ = 8 mg/s; SF6 gas, ṁ = 3, 6 and 9 mg/s, respectively (2–4).

The curves are given for d = 16 mm, h = 4 mm (1–4); 5 is the theoretical curve obtained 
using the CST package for the conditions corresponding to dependence 4. 

Extrapolating power-law relationships are summarized in Table 2. 

Fig. 7. Typical relationships between ionization coefficient and mass flow rate of propellant 
(see Eq. (3)) for two values of supplied voltage U, kV: 2.5 (1) and 3.0 (2);

The propellant is the SF6  gas, d = 12 mm, h = 3 mm
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Furthermore, the processes were of a 
general quasi-stationary nature and were not 
accompanied by any uncontrolled discharge 
phenomena. Typical relationships between 
the ionization coefficient and the propellant 
mass flow rate (Fig. 7), calculated on the basis 
of the experimental curves according to Eq. 
(3), correspond to an approximately linear 
increase of plasma generation effects in a wide 
range of parameters.

Conclusion

It has been established in the experiments 
that proper methods and means of 
measurement, values of process parameters, 
and operating conditions at a mass flow rate 
of different propellant gases (air, helium, 
argon, etc., in cation and anion generation 

modes) within the range of 0.5–15 mg/s were 
ensured in the vacuum chamber. 

Measurements and analysis of the 
characteristics of the experimental models 
of ion accelerators have also revealed that 
the calculated and experimental ion-physical 
characteristics of the tested prototypes 
correspond to the current tasks. The given 
prototypes have the following properties: 

enhanced surface ionization;
ion and plasma ion bipolar modes;
uniform distribution of radiation and 

temperature over the developed surface of 
the injector;

ion injection with almost zero lag.
It has also been established that it is possible 

to use different propellant alternatives other 
than xenon.

We have found that the ion-physical 
characteristics of the laboratory prototypes 
with contact ionization implemented 
and tested can meet the requirements for 
developing promising electric propulsion 
units.

We assume that the developed unit with a 
novel physical and technological design and 
the given characteristics will be of interest 
for developing new promising equipment. In 
general, the experimental setup, its measuring 
and technological capabilities, as well as the 
designs of prototypes lay the foundations for 
further in-depth research and development of 
electric propulsion units.
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IMAGING PROPERTIES OF COMPUTER-GENERATED 
HOLOGRAMS: THE PHASE DISTRIBUTION EFFECT 

IN THE OBJECTS’ SPACE

 S.N. Koreshev, D.S. Smorodinov, M.A. Frolova, S.O. Starovoitov

St. Petersburg National Research University of Information Technologies,    Mechanics and Optics, St. Petersburg, Russian Federation

In the paper, the influence of phase distribution over the objects’ space on resolution and 
depth of field of computer-generated holograms has been investigated. The study was carried 
out through mathematical simulation of real physical processes of synthesis and reconstruction 
of binary transparent holograms. The possibility of a significant increase (up to several times) 
in the resolution and depth of field of the reconstructed image because of using phase-shift 
masks was found. Moreover, this increase was achieved due to representation of the object wave 
in hologram synthesis as a superposition of object waves emanating light from two identical 
objects located at different, strictly fixed distances from the hologram synthesis plane.
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ВЛИЯНИЕ РАСПРЕДЕЛЕНИЯ ФАЗЫ В ПРОСТРАНСТВЕ 
ОБЪЕКТОВ НА ИЗОБРАЖАЮЩИЕ СВОЙСТВА 

СИНТЕЗИРОВАННЫХ ГОЛОГРАММ

С.Н. Корешев, Д.С. Смородинов, М.А. Фролова, С.О. Старовойтов

 Санкт-Петербургский национальный исследовательский университет   информационных технологий, механики и оптики,    Санкт-Петербург, Российская Федерация

В работе изучено влияние распределения фазы в пространстве предметов на 
разрешающую способность и глубину резкости синтезированных голограмм. 
Исследование проведено методом математического моделирования реальных 
физических процессов синтеза и восстановления голограмм бинарных транспарантов. 
Установлена возможность существенного (в нескольких раз) увеличения разрешения и 
глубины резкости восстановленного изображения благодаря использованию при синтезе 
голограммы фазовых масок и представлению объектной волны в виде суперпозиции 
объектных волн, исходящих от двух одинаковых объектов, расположенных на различных, 
строго фиксированных расстояниях от плоскости синтеза голограммы.

Ключевые слова: синтезированная голограмма, бинаризация, пороговая обработка, 
глубина резкости, фазовая маска
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Introduction
Holography is widely used in electronics, 

microtechnology and other spheres. In 
addition to well-known holographic methods 
of protection against counterfeiting of goods, 
holographic diffraction gratings, complex 
wave front shapers, sights, three-dimensional 
projection, and other holographic technologies 
can be applied in photolithography.

The advances of holography in projection 
photolithography is primarily due to the 
possibility of simultaneous aberration-free 
reconstruction of large-sized real images, 
including images of binary two-dimensional 
transparencies, namely, photomasks [1 – 3]. 
The application of holograms in projection 
photolithography makes it possible to avoid the 
usage of sophisticated optical systems, complex 
in design due to strict requirements for quality 
of the images formed using a photolithographic 
lens. In particular, the current tendency of size 
reduction of electronic devices leads to gradual 
increase in resolution of optical systems. This 
is usually achieved by reducing the operating 
wavelength, which in turn leads to a reduction in 
the size of the aberration-free area of an image.

Particularly noteworthy is the possibility 
of using images of photolithographic objects 
of computer-generated Fresnel holograms as 
projectors, which are a set of discrete pixel-
cells with different phase and intensity values 
and can be easily calculated using modern 
computers and displayed on physical media. 
The methods of hologram synthesis for extreme 
ultraviolet, as well specific requirements for 
synthesis scheme parameters that would allow 
to reconstruct a high-quality image were 
presented earlier [4–6].

Imaging properties of the computer-
generated holograms in some cases differ from 
the properties of analog holograms and have 
their own characteristics. These features are well 
studied and exist primarily due to the discrete 
structure of the hologram and image [7–11].

This paper presents our findings of the 
phase distribution effect in the objects’ space 
during synthesis of the Fresnel holograms on 
its resolution and depth of field of the image 
formed using these holograms. Real physical 

processes of synthesis and reconstruction of 
reflection holograms have been mathematically 
simulated. 

The discrete object-transparency is usually 
presented as a set of coherent point sources 
with each source emanating light uniformly in 
all directions. In this case, the ratio between 
the values of the amplitude at two selected 
points on the hologram registration plane is 
determined by the ratio of the areas of the 
spheres on which the points are located (Fig. 
1). Thus, if the amplitude located at a point 
on the normal and restored from the source 
to the hologram plane is taken as a unit, it 
becomes possible to determine the amplitude 
at any point on the plane.

Furthermore, since all the point sources 
making up the object are coherent, the phase 
shift from the source to the point on the holo-
gram also depends solely on the radius of the 
sphere Rl and the wavelength λ:

0
2 ,l

l
Rπ

ϕ = +ϕ
λ

(1)

where φ0 is the initial value of the light source 
phase.

The final value of the amplitude at each 
point on the hologram plane is defined as the 
vector sum of the amplitudes from all points 
of the object, taking into account distances 
between the point of the object and the 

Fig. 1. Distribution of amplitude from a point 
source (s) emanating light over the hologram 

registration plane (a straight line);
Rl, Rh are the spherical radii of light rays; 

Sl, Sh are the spherical areas
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point on the hologram. At the same time, 
the structure of the hologram and the image 
formed are significantly influenced by initial 
phase distributions during hologram synthesis 
in the object space.

The phase distribution effect in the object’s 
space on the resolution of computer-

generated Fresnel holograms-projectors

The phenomenon of the overlap between 
diffraction maxima from closely spaced elements 
of the object which leads to resolution lowering is 
called proximity effect. To correct it, it is proposed 
to apply a method like the one used in traditional 
projection photolithography: the installation of 
phase-shifting masks in the object space, which 
makes phase difference between wave fronts 
that form images of neighboring elements of the 
object structure equal π [12]. Since the synthesis 
of holograms is performed in virtual space, this 
could be achieved through the correction of the 
mathematical model of the photomask, i. e., the 
introduction of the necessary phase modulation 
in its transmission function.

Let us find out the applicability limits of 
the proximity effect compensation method, i.e. 
conditions under which the elements of the 
structure of the photomask can be considered 
neighboring, so that the method under 
consideration would have a positive effect on 
the quality of the reconstructed image. This 
could be done either by diffraction integral 
calculation, or experimentally, for example, by 
using mathematical simulation. It was carried 
out in a software package for synthesis and 
digital reconstruction of Fresnel holograms [4]. 
The research included a series of numerical 
experiments of synthesis and digital reconstruction 
of the phase-relief reflective Fresnel hologram 
of a flat object: two slits located closely in a 
non-transparent screen. It was assumed that the 
effectiveness of the method for correcting the 
proximity effect should depend on the distance 
between the slits.

The parameters for the hologram 
synthesis scheme were selected based on the 
requirements described in Refs. [5, 6]. Thus, 
laser wavelength λ was 13.5 nm; the pixel size 
of the object and the hologram dd was 20 × 20 
nm2. The characteristic size of the minimum 
element of objects’ structure was 80 nm. The 
pixel size of the object was chosen to satisfy the 
requirements of the Rayleigh criterion [5]. The 
angle of the parallel reference beam incidence 
was chosen equal to 14.7 ° in all experiments, 
and the distance between the plane of the 

object and the plane of hologram registration 
was Rh = 20345 nm.

The influence of proximity effect on image 
quality for different distances between the 
structural elements of the object was studied 
by synthesizing and digitally reconstructing the 
holograms of two slits of 4 × 40 pixels, i.e., 
80 × 800 nm each. The resulting numerically 
reconstructed images are shown in Fig. 2. 
According to the Rayleigh criterion, two point-
sources (in this experiment, narrow slits could 
be considered as point sources) are completely 
resolved if the diffraction maximum of one 
of them is superimposed on the diffraction 
minimum of the other. Therefore, experiments 
should be carried out only for those distances 
between slits that are smaller than Rayleigh 
resolution criterion for coherent radiation, 
which is equal to 57 nm for the slits under study.

Thus, the distances between the slits in the 
experiments ranged from 1 to 2 pixels, i.e. from 
20 to 40 nm. Two holograms were synthesized 
for each of the indicated distances between the 
slits – one for the case when all the radiation 
incident on the object was in phase, the other 
for the case when the beams incident on slits 
were out of phase. Thus, four holograms were 
synthesized, and the corresponding images 
were numerically reconstructed.

To assess the quality of the reconstructed 
images, we used a method based on comparing 
the number of threshold processing levels, which 

Fig. 2. Reconstructed images obtained with 
in-phase (a) and out-of-phase (b) radiation for two 
distances (nm) between segments: 20 (1) and 40 (2)

a)	 b)
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imitates photoresist response to actinic radiation 
exposure. Since the pixels of reconstructed 
images are encoded using 8 bits, the total 
number of possible threshold processing levels 
(intensity gradations) is 256, from 0 (black) 
to 255 (white), in accordance with so called 
“gray scale” [13]. So, the greater the number 
of threshold processing levels (gradations) at 
which the intensity distribution on the image is 
identical to intensity distribution on the object, 
the higher the quality of reconstructed image. 
The eligibility of using this criterion is explained 
by the threshold properties of photoresists. 
The larger the number of acceptable threshold 
levels for the reconstructed image, the larger 
the range of exposure doses is permissible in 
the photolithographic process.

Images reconstructed using holograms 
recorded with all incident radiation being in 
phase, corresponded to the original objects 
in the interval of zero gradations of threshold 
processing at a distance between slits of 20 
nm and 12 gradations at 40 nm. With waves 
incident on slits being out of phase, the image 
corresponded to the original object in the range 
of 14 gradations with a distance between slits of 
20 nm and 17 gradations at 40 nm. Thus, in the 
case of the smallest possible distance between 
the slits (20 nm), the use of phase masks 
makes the slits resolvable, while if the distance 
between the slits is 40 nm, its quality is almost 
the same regardless of using the phase masks. 

Thus, numerical experiments have shown that 
the application of the phase correction method 
for the proximity effect allows one to successfully 
resolve structural elements of the object that are 
at the minimum possible (equal to the size of the 
object’s pixel) distance between them.

The phase distribution effect in the object’s 
space on the depth of field of the computer-

generated Fresnel holograms 

The image is considered to be sharp within the 
limits of such a displacement of the observation 
plane, at which the diameter of a point object 
image represented as a geometric point does not 
exceed the Airy disc diameter. The expression 
that allows the depth of field of the optical 
system to be determined in accordance with this 
criterion is presented as [14]:

2 ,
2
ënb
A

= ± (2)

where А is the system numerical aperture, 
λ is the wavelength of the laser used, n is a 
refractive index of а medium, equals 1 for air.

Thus, the numerical aperture of the radiation 
diffracted on the smallest element of the object 
structure, a pixel with the size at, is described 
as follows:

sin ,
t

A n
a
λα= = (3)

where α is the aperture angle of the diffracted 
radiation.

From Eqs. (2) and (3), the only parameters 
affecting the depth of field are the operating 
wavelength λ and the size of one pixel at. 
Currently, various methods are known to 
further increase the depth of field of images. 
In particular, there are methods based on 
phase-shift masks [15], modifications of optical 
devices [16], special digital processing of images 
at the stage of their registration [17]. 

However, not all these methods are suitable 
for photolithography. The best results in this 
case can be obtained by the method based on 
representation of an object wave during the 
hologram synthesis as a superposition of several 
object waves generated by the same object, a 
photomask, located at different distances from 
the hologram [18].

In this case, the increase in the depth of field 
of the reconstructed image is due to the fact 
that the hologram restores not one, but several 
images with a small offset, not exceeding the 
depth of field. Since the objects used are flat, 
the sequence of such images will be perceived as 
a single image with an increased depth-of-field.

Practical implementation of the hologram 
synthesis mentioned above requires 
representation of the object beam as a 
superposition of two or more object waves 
generated by the same objects. Such an operation 
would require a very precise installation of 
objects during the physical registration of the 
hologram, inversely to holograms synthesized 
in virtual space. The distance between flat 
objects leads to a certain phase difference 
between the object waves, which obviously 
affects the recorded hologram structure, the 
final intensity distribution in the reconstructed 
image and, accordingly, and the depth of field. 
In this case, the reconstructed image has the 
best quality when the object beams are fully 
in-phase.

If the object and the reconstructed image 
are in-phase, as proposed above, then the 
reconstructed images has a constant phase 
difference in each plane of the image space. If 
the wavelength is considered as a constant, then 
the only factor affecting the phase difference 
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between the object waves is the distance 
between the planes of the objects.

These data are almost completely consistent 
with the results of phase distribution in the 
reconstructed image [18]. It should be noted 
that for small distance values Δ between 
objects, the main factor affecting phase 
distribution in the hologram synthesis plane 
is the point position on the hologram relative 
to its axis. At the same time, as the Δ value 
increases, the influence of the point position 
gradually decreases and the distance between 
light sources becomes the main factor affecting 
the phase difference.

Another equally significant factor is 
discretization. Theoretically, the value of the 
complex amplitude calculated at a particular 
point is actually set for the entire pixel due 
to the limited size of discrete cells of the 
hologram plane, calculated with Eq. (3). This 
leads to uncertainty and, as a consequence, to 
an increase in difference between the recorded 
values of the phase and the complex amplitude 
and the real value, as it shifts from the center of 
the pixel to its boundaries. Note that an offset 
of one spatial period leads to a phase shift of the 
reconstructed image of 2π [11]. A sharp change 
in the phase and amplitude values occurs at the 
boundaries of adjacent pixels.

The relationship of distance between the 
object planes and the quality of the reconstructed 
image was demonstrated experimentally 
with the above mentioned software package. 
Experimental evaluation included the synthesis 
of half-tone Fresnel holograms of the test 
object called “corners”. The object is shown 
in Fig. 3,a.

The test object was characterized by cross-
lines of 1 × 7 pixels. Two corners closest 
to the cross were made up of 1 pixel-thick 
segments, the distance between them equaled 
1 pixel. This was followed by a gap of 2 pixels 

in width, and a third corner with 2 pixels in 
width. The width of the fourth corner was 3 
pixels. The total size of the object was 23 × 
23 pixels.

The synthesis parameters were chosen 
in accordance with the conditions defined 
in [11] and generally coincided with the 
parameters used in the previous experiment. 
That is, the size of the minimum element 
of the object was 80 × 80 nm, the pixel size 
of the object planes and holograms dd was 
20 × 20 nm, and the wavelength λ was 13.5 
nm. Under such conditions, the angle of 
incidence of the reference beam α was 14.67°, 
and the distance between the hologram and 
the plane of the nearest object was at least 
20345 nm. Since the structure of the object 
is rather complex, Rh value was doubled to 
40690 nm. The distance was increased two 
times to avoid overlapping of restored orders 
of diffraction. This step is needed to address 
the problem of interference which starts to 
influence the quality of the image when high 
resolution is applied [5]. The depth of field 
of the reconstructed image at the parameters 
specified above were b = ±237 nm, according 
to Eq. (3). 

The second plane of the object was placed 
a little farther from the hologram at some 
distance Δ relative to the first, with this distance 
changing during the experiment.

 The reconstructed image quality estimate 
was carried out using the method based on 
comparing the number of threshold processing 
levels described above. The only difference 
was that due to the high resolution on the 
reconstructed image, it was considered identical 
to the object not only when their intensity 
distributions were the same, but also when the 
difference between their intensity distributions 
did not exceed 15 %.

Fig. 4 shows dependence between the 
allowable levels of threshold image processing 
obtained in the plane of the best installation at 
a distance Rh related to the maximum number 
of gradations achieved with the above described 
hologram synthesis and reconstruction, and 
the distance Δ between the planes of two 
objects. 

As long as the Δ value remains sufficiently 
small (within several wavelengths), the image 
quality as a whole is not strongly dependent on 
Δ. The exceptions are the individual maxima 
corresponding to the object images with higher 
quality, characteristic of the distances, at which 
the registered object waves are in phase in the 

Fig. 3. The original image of the test object (a) 
and the image reconstructed using 
a synthesized hologram: before (b) 
and after (c) threshold processing

a)	 b)	 c)
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synthesis process. Thus, the minima on the 
chart correspond to the distances at which the 
object waves are out of phase.

As Δ increases, the values of the minima 
approach zero: the influence of the aperture 
can no longer compensate for the violation of 
in-phase. As a result, restoration of a high-
quality image using such holograms becomes 
almost impossible. At the same time, the in-
phase recording of object waves in absence of 
the aperture influence can significantly improve 
the image quality. The “phase uncertainty in 
hologram synthesis” described above leads to 

abrupt transitions between adjacent minimum 
and maximum due to abrupt changes in phase 
values.

At large distances Δ, close to b, the 
influence of the hologram aperture 
practically disappears: the image quality is, 
on the average, noticeably lower, except 
for individual maxima arising from the in-
phase recording due to the influence of 
discretization.

The distance between the adjacent maxima 
corresponds to the working wavelength λ; thus, 
checking a series of values when shifting within 

Fig. 4. Graph of the quality of the image of the test object obtained in the plane of the best installation 
vs the distance Δ between the planes of the objects during the synthesis

Fig. 5. Graphs of the quality of the test object’s image reconstructed vs. defocus δ for different Δ values, nm: 
Δ = 0, i.e., without installing the second plane (1), Δ = 4 (2), 21 (3), 194 (4), 199 (5);

Δ is the distance between the planes of the objects during the synthesis
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the wavelength, allows to accurately determine 
the position of the maximum.

To directly estimate the depth of field of 
the reconstructed images using holograms 
synthesized at given Δ values, a series of images 
was reconstructed at distances δ different 
from the distance Rh by values from –1000 to 
+1000 nm with a step of 50 nm. The results 
of the study of image quality in gradations, 
normalized by their maximum number, are 
shown in Fig. 5.

Thus, it was established that the addition 
of a second object plane, provided that the 
phase of the object waves coincides, made it 
possible to increase not only the depth of field, 
but also the overall image quality (maximum 
number of gradations). The best quality of 
the reconstructed images was achieved by 
installing the second plane of the object at 
distances close to the b value of the limiting 
depth of field, in this case the depth of field of 
the image increases by 2 times.

Summary

In this paper, the influence of phase 
distribution in the object’s space on the quality 
of the images reconstructed from computer-
generated Fresnel holograms has been studied. 
The main features of image formation were 
considered and the factors affecting their 
resolution and depth of field were identified. 
It was established that modifications of the 
structure of the digital hologram, inaccessible 
to holograms recorded by traditional methods, 
could significantly improve the image quality. 
In particular, the use of phase correction of the 
proximity effect allows to resolve features being 
as close as one pixel to each other. Installation 
of the second object plane in addition to the 
original one made it possible to increase the 
depth of field up to 1.5 – 2.0 times depending 
on the distance between planes.

The results obtained can be used for 
recording and reconstruction of holograms in 
real physical space. 
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В статье предложена идеология расчета параметров элементов и анализа 
выходной мощности в волоконно-оптических интерферометрических схемах с 
мультиплексированием чувствительных элементов по времени (TDM). Метод расчета 
параметров элементов позволяет обеспечивать равенство оптической мощности от 
всех мультиплексированных чувствительных элементов, а также оценивать влияние 
отклонения параметров оптической схемы от расчетных. На примере двух оптических 
схем показана реализация такой идеологии расчета, последовательность получения 
математических выражений и примеры расчетных результатов. Описанный метод расчета 
предлагается применять при проектировании интерферометрических измерителей с 
мультиплексированием волоконно-оптических чувствительных элементов.
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Introduction

Major advances are currently made in de-
veloping fiber-optic interferometric sensors and 
introducing them to measure different physical 
quantities [1]. Multiplexing a large number of 
fiber-optic sensitive elements (SE) in a sin-
gle fiber-optic cable allows to create efficient 
quasi-distributed interferometric measuring 
systems, including long-distance ones. These 
technologies hold potential, for example, for 
constructing towed hydrophone arrays for seis-
mic surveys of mineral resources in the shelf [2, 
3], as well as many other similar systems.

There are several approaches to multiplexing 
in fiber-optic interferometric measuring devices 
separating signals from different SE: time-divi-
sion multiplexing (TDM), frequency-division 
multiplexing (FDM), wavelength-division mul-
tiplexing (WDM), code-division multiplexing 
(CDM) or polarization-division multiplexing 
(PDM) [4]. The TDM technology, providing 
the maximum number of multiplexed elements 
using a single laser and photoreceiver, is the 
most widespread approach [5]. A TDM/WDM 
combination is often proposed, even though 
the TDM remains the primary technology in 
this case, while WDM technologies are used 
for secondary multiplexing of SE arrays sepa-
rated in time, which allows reducing the num-
ber of fiber cables used [6].

An important issue related to installing fi-
ber-optic systems with TDM is selecting rea-
sonable parameters for the optical scheme el-
ements providing multiplexing, estimating and 
optimizing the key parameters values of inter-
ference signals, such as relative level of inter-
ference signals and its difference for different 
SE, signal-to-noise ratio, contrast, etc.

However, studies considering fiber-optic 
multiplexing schemes for interferometric mea-
suring devices practically never provide clear 
accounts of the procedures for calculating and 
estimating the parameters of such schemes in 
terms of methods for reasonably choosing opti-
mal beam-splitting elements. While expressions 

for such calculations are occasionally presented 
[7, 8], they are usually obtained with many 
simplifications. It is often proposed to neglect 
the losses of optical power in the elements, or 
to approximate a large number of multiplexed 
SE [8], although systems with 4, 8 and 16 ele-
ments in one fiber-optic cable are often used in 
practice [9, 10].

Most studies give estimates for phase resolu-
tion depending on the number of sensitive el-
ements N, i.e., the calculations rely on certain 
methods of auxiliary modulation and process-
ing of interference signal [8, 9].

This paper presents a procedure for energy 
calculation of the parameters of the fiber-op-
tic part, independent of the operating princi-
ples, considering two standard fiber-optic in-
terferometric schemes with SE multiplexing. 
Formulated in this manner, the procedure can 
be applied for schemes with different types of 
auxiliary signal modulation and processing. 
The proposed approaches to calculations allow 
to take into account the influence of deviations 
from parameter values of passive fiber-optic el-
ements on parameter values of interference sig-
nals formed in schemes from multiplexed SE. 

Problem statement

Time-division multiplexing implies that 
short optical pulses with high duty cycle and 
optical power Pin are fed from a laser source to 
the input of an optical scheme with an array of 
N sensitive elements. The fiber optic scheme 
contains beam-splitting elements (splitters 
or semi-transparent reflectors) and should be 
constructed so that every input pulse passes 
through different paths and different combina-
tions of SE, forming a sequence of N+1 output 
pulses with the power pn (n is the number of 
an output pulse changing from 0 to N), de-
layed in time relative to each other. Most of 
the practical schemes (including those consid-
ered below) are organized so that every subse-
quent output pulse passes through one more 
SE than the previous one. The difference in the 
delay between the output pulses relative to each 
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other is due to the difference in optical paths 
ΔL which the input pulse passes to form out-
put pulses. These differences must be identical. 
The so-called compensated interferometer (CI) 
with the optical path difference also equal to 
ΔL is used to generate interferometric signal. 
When output pulses pass through the CI, they 
are split and combined in pairs with a shift by 
one pulse. As a result, a new sequence of N+2 
pulses with the powers Prn (it is convenient to 
number them from 0 to N+1), where each ini-
tial output impulse is combined with the pre-
vious one, is generated at the CI output and is 
subsequently transmitted to the photodetector. 
Each pulse Prn is a result of interference of the 
pulses pn and pn–1. The only exceptions are the 
first and the last pulses, Pr0 and Pr(N+1), which 
are not combined with the previous and the 
subsequent pulse while passing through the CI 
due to lack thereof. Impacts on the nth fiber 
SE change the phase delay Δφn of light emis-
sion passing through this SE. For this reason, 
the interference of the pulses pn and pn–1 is re-
lated to Δφn, as the pulse pn–1 passed through 
SE from the first to the (n–1)th, and pulse pn 
passed through the SE from the first to the nth. 
Given that Prn is defined by the interference of 
two output pulses, they have the form

Prn(t) = C{P0n + Pmn∙cos[Δφn(t)]}, (1)

where P0n = pn + pn–1 is the constant compo-
nent; Pmn = 2(pnpn–1)

1/2 is the amplitude of the 
interference component. 

The argument of the interference signal  Δφn 
contains target oscillations of the phase delay 
of the nth SE, related to measured impacts, 
and can be determined during subsequent pro-
cessing. The coefficient С is related to losses 
during passage through the CI, and ideally, C 
= 1/2. Notably, CI can be located at the input 
of a fiber optic scheme as well. In this case, 
the details differ for the pulses passing through 
the scheme, but interference signals taking the 
form (1) are also generated as a result.

Comprehensive analysis of fiber-optic in-
terferometric schemes with SE multiplexing 
should consider different systems of relations 
including different types of parameters for 
the optic scheme elements, characteristics of 
other elements of the system and interrogation 
pulses. In terms of energy relations, one of the 
key problems is selecting the elements that pro-
vide optimal parameter values of interference 
signals P0n and Pmn. The set of values of P0n and 
Pmn plays an essential role in organizing correct 

signal recording, estimating the signal-to-noise 
ratio achieved, and, consequently, resolution of 
a system.

An important result of energy calculation 
from the standpoint of scheme design is find-
ing the required ratios for light beam split-
ting in the splitting elements of a fiber-optic 
scheme. Depending on the elements used in 
the scheme, these parameters include the split-
ting ratios of fiber-optic splitters or the reflec-
tion coefficients of semi-transparent reflectors.

If identical splitting elements are used, in-
evitably, the values of pn and Prn greatly depend 
on n, and the problem of choosing optimal 
splitting ratios necessitates complex analysis of 
the criteria of optimality. A more attractive op-
tion in terms of the achieved effect and, at the 
same time, a simpler one in terms of the crite-
ria of optimality entails choosing the splitting 
elements provided that all pn are equal:

p0 = p1 =… = pn = … = pN = P0. (2)

In this case, P0n = Pmn = 2P0, the contrast of 
all interference signals equals unity (if polariza-
tion matching is ensured).

The scheme constructed in this study sat-
isfies this condition specifically. At the same 
time, the normalized power level of pulses 
serves as an important indicator:

pnorm = P0/Pin; (3)

this indicator makes it convenient to compare 
the “energy efficiency” achieved in different 
schemes and at different values of N. 

Generally, if condition (2) is fulfilled, it is 
evident that the higher the value of pnorm, the less 
influence different noises and fluctuations have 
on the output signals of a measuring device.

Clearly, a special set of splitting ratios for 
splitters or reflectors has to be used to satisfy 
condition (2), but since modern technologies 
allow to produce these elements with 
virtually arbitrary parameters, this approach 
to constructing optimal schemes based on 
criterion (2) can be put into practice. However, 
it is essential for designing such schemes that 
not only the optimal splitting ratios of the 
elements are found but various additional 
aspects can be analyzed in detail, including 
the influence of other parameters of splitting 
elements, their fluctuations and other factors 
on the parameters of interference signals, all of 
which must be taken into account at the stage 
of design.
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General principles  
of the calculation procedure

Considering the calculation procedure, 
let us review different groups of parameters 
characterizing the scheme elements, which are 
used in analysis and calculations. First of all, 
these are transmittances (with respect to power) 
in fiber sections connecting the scheme elements 
including those in SE. These transmittances 
differ from unity due to optical power losses in 
the fiber-optic cable and additional conditions 
(fiber sections can be wound into a coil, contain 
connections, etc.). The transmittances defined 
initially are assumed to be given and are not 
supposed to be found in the calculations. The 
transmittances can actually be either identical 
or different for different SE but are regarded as 
known parameters.

Another type of parameters are the splitting 
ratios of optical power in splitters and semi-
transparent reflectors (typically fiber Bragg 
gratings) if the schemes use the first or the 
second type of elements as optical power 
splitters. Optimal splitting ratios should be 
selected on the calculation procedure that 
satisfies condition (2).

We should note that splitters or fiber-optic 
Bragg gratings also incur internal losses which, 
strictly speaking, should be also taken into 
account in the calculations. In general, the losses 
of splitting elements may depend on splitting 
ratios and transmission coefficients. This can be 
included in the calculations if the dependence is 
known. To represent the specific results obtained 
in a clear and simple manner, the analysis below 
includes a case when these losses have fixed 
values, and are regarded as a known parameter.

Calculating optimal splitting ratios of splitters 
or reflectors, it is of course possible and feasible 
to take into account only regular components 
of transmittances in the fiber sections known 
in advance and losses in the splitting elements. 
However, the calculation procedure as a whole 
should provide a possibility to analyze the 
influence of potential deviations of the calculated 
and initially given parameters of the elements 
from the actual ones. These phenomena can be 
caused by both regular deviations from reference 
values and by fluctuations of parameters 
during operation. The changes may occur, for 
example, due to aging, unstable temperature 
and polarization of optical emission.

The procedure for energy calculation and 
analysis of fiber optic elements of the scheme 
involves obtaining and applying two systems of 
relations:

firstly, the equations of multiplicative 
structure for calculating the values of pn taking 
into account all key parameters characterizing 
the elements of the fiber optical scheme;

secondly, recurrence relations connecting 
the selected parameters of splitting elements 
of adjacent links in the scheme and allowing 
to calculate the splitting ratios of all splitting 
elements taking into account certain conditions 
for boundary elements.

The first system of relations is formulated by 
considering a light pulse related to the nth splitting 
element passing from the input to the output.

The second system of relations requires 
considering the condition for power balance 
pn– 1 = pn= P0 and solving the balance equation 
with respect to the splitting element parameter.

Regarding the choice of schemes discuss 
further in this paper, we should note that 
different types of optical schemes with TDM 
can be divided into two types: reflective 
schemes or passage schemes.

In case of the reflective scheme, a scanning 
pulse passes through the scheme from the 
first to the nth SE, then travels in the opposite 
direction and is fed as an nth output pulse into 
the same part of the scheme (or directly to the 
same fiber-optic line) as the input pulse, but in 
the reverse direction. In this case, the scheme 
requires mirrors (the so-called Faraday mirrors 
are often used to suppress polarization fading).

In case of the passage scheme, an input 
pulse is fed from one end of the scheme and 
then, passing from the first to the nth SE, forms 
an nth output pulse at the opposite end of the 
scheme. It is typically assumed for the schemes 
considered below that the decrease of pnorm with 
the growth in N is described by ~ 1/N2 provided 
there are no losses [9].

There are different types of schemes where 
the decrease is described by 1/N, but they may 
contain multiple passes through the SE and 
aliasing of different pulses, as well as crosstalk 
[8]. The schemes with crosstalk have their own 
peculiarities, but they are not considered in this 
paper.

Analysis of the power of output pulses 
in a reflective-type scheme

Let us consider a standard scheme of the 
reflective type (Fig. 1). The scheme includes 
N coils of sensitive elements (SE) numbered 
n = 1,2, …, N, as well as (N+1) Ysplitters (Y) 
and mirrors (M) numbered n = 0, 1, 2, …, N.

It seems helpful to introduce the direct (Kd) 
and cross (Kc) gains of the splitter, the gain Ksf of 
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a fiber section with the sensitive element, gain Kf 
of a service fiber section between the splitter and 
the mirror, the reflection coefficient R (ideally, 
R = 1, however, the actual reflection coefficient 
may be less than unity) as the key parameters 
of the scheme. If the scheme contains connec-
tions, the losses in them should be taken into 
account in the fiber section gains Ksf and Kf. The 
gains Kd and Kc are rigidly bound to the splitting 
ratio D and the parameter of internal losses of 
the splitter α, as described in Appendix 1.

Considering the path of an input pulse from 
the nth mirror and back (see Fig. 1), it is easy to 
formulate multiplicative equations for pn:

∏
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−⋅=
n

q
sfqqdnnfninn KKRKKPp

1

22
)1(

2
c

2 .)( (4)

Eq. (4) implies that if the upper limit of 
the product is less than its lower limit, which 
occurs at n = 0, then the product equals unity. 
Furthermore, the case when n = N, related to 
the difference of the final link in the scheme 
from others, is different because there is no 
need to direct the optical power further for the 
last Nth SE, and it is not practical to use a 
splitter between the Nth SE and the Nth mirror. 
However, expression (4) is relevant for all n, if 
the presence of formal coefficients KcN =KfN = 1 
is taken by definition. In practice, it can be of-
ten assumed that all SE are equivalent and Ksf 
does not depend on n. Then this parameter can 
be excluded from the product in Eq. (4) and 
the multiplier (Ksf)

2n can be used.

Analyzing one link of the scheme and 
comparing the difference in the paths of the 
(n–1)th and nth pulse (see Fig. 1,b) we can 
obtain an equation corresponding to the bal-
ance pn – 1 = pn. For the given scheme (if the 
definition KcN = KfN = 1 is preserved), this 
equation has the form
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The recurrence relation for the parameters of 
the splitters is obtained by taking into account 
the connection between Kd and Kc. In view of 
the explanations in Appendix 1, we can use a 
model of splitter parameters that has the form

Kd = (1–αel)∙D/(1 + D) 

and Kс = (1 – αel)/(1 + D),
(6)

then Eq. (6) is transformed directly transforms 
to the recurrence form:

Dn–1 = An(1+ Dn), (7)

based on the assumption that the parameter of 
excess splitter losses αel does not depend on D 
and is the same for any n, introducing a constant
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Fig. 1. Reflective scheme and generation of output pulses (a), nth link of scheme (b): 
sensitive elements SEi; mirrors Mi; splitters Yi; input pulse Pin; output pulses pi

a)

b)
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It is commonly acceptable for calculations 
of practical schemes to assume the gains Ksf, Kf 
and the coefficient R to be identical for all n. 
In this case, the calculation of optimal values 
of Dn does not depend on the values of Kf and 
R, while the constant Аn does not depend on n 
and is simplified:

A = 1/[(1– αel) Ksf, (9)

(here the calculations of the optimal values of 
Dn are affected by the excess losses of the split-
ters and the SE).

If it is acceptable to neglect the excess losses 
of the splitters and the SE, it can be assumed 
that αel = 0.

To use Eq. (7), we need to define the initial 
condition for recursive calculation of optimal 
values of Dn. For this scheme, this condition is 
a direct result of the absence of a splitter with 
the number N. A different connection of the 
last SE would definitely impair the obtained 
values of p0 and Pnorm. At the same time, con-
sidering the final link which contains the last 
SE provides a condition of power balance (5), 
if KсN=KsfN =1 is substituted in the right-hand 
side. Then, taking into account Eqs. (6) for the 
(N–1)th splitter leads to a simple relation:

,1)1(
)1(

N

N
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N R

R
K

K
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which corresponds to the recurrent expression 
(7), excluding the parameters Kcn, Kfn and αel 
from Eq. (8) for determining the constant An.

Evidently, expression (10) gives DN–1 . 1 for 
small losses in the elements, when the gains 

Kf(n–1) and KsfN and the coefficients RN–1 and RN 
approach unity, which is a logical result for the 
balance of such a link with splitting close to a 
50:50 splitter, regardless of the losses in the 
splitter.

Furthermore, recurrent expression (7) can 
be used to successively obtain values for the 
rest of the splitters numbered from n = N – 2 
to n = 0, forming a set of values {D}, and then 
recalculating the values of {D} into sets of val-
ues {Kd} and {Kc} for all splitters based on Eq. 
(6) and a given αel.

Substituting sets of values {Kd} and {Kc} in 
expressions (4), we obtain the same value of p0 
because of the method by which these sets of 
values were obtained; moreover, this value of p0 
is the largest possible for any n with the given 
parameters used in the calculation.

However, an important result of the calcu-
lation is the actual value for the level of pnorm, as 
well a possibility to analyze its dependence on 
N and other parameters used in the calculation.

The calculated sets of values {D}, {Kd} {Kc} 
for the splitters are given in Appendix 2 for 
N = 8 and

αel[dB] =αsf[dB] = 0.10 dB, 

αf[dB] = 0.05 dB and R = 0.99,
where it is taken that

αsf[dB] = –10lg(Ksf), 

αf[dB] = –10lg(Kf), 

αel[dB] = –10lg(1–αel).

Fig. 2. Example of reflective-type scheme. Normalized power level of pulses 
depending on the number of sensitive elements (SE) for different values of losses αsf and αel
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These values of the splitting ratios are im-
portant for practical implementation of this 
scheme, as they have to be known in order to 
install the appropriate splitters. However, the 
examples shown in Fig. 2 for pnorm depending 
on N for the same set of parameters, as well as 
for cases when either of the parameters αsf or 
αel have different values are more important for 
analysis of energy efficiency of the scheme. 

An example of the dependences in Fig. 2 
shows the achieved levels of relative power for 
the schemes with the given parameters and 
with optimal splitting ratios chosen for the 
splitters, the exponential form of the depen-
dences pnorm(N), indicating that it is possible to 
study the influence of other parameters of the 
scheme elements on the achieved level of pnorm.

Importantly, the given systems of expres-
sions allow not only to analyze the influence of 
scheme element parameters on the achievable 
level of pnorm, but also take into account and 
study the influence of deviations of actual pa-
rameters from ideal ones for the values of pn. 
If the ratios D are given as (1– d)/d with the 
accuracy in selecting d ranging, for example, 
to 1 or 2% in production of real splitters, the 
set of optimal values {D} value set obtained by 
a recurrent procedure can then be rounded up. 
Next, we can substitute the rounded values in 
expressions (4) and, calculating p0n, estimate 
their variance and deviation from the calcula-
tions without the round-off.

Similarly, we can take into account the in-
fluence of both fixed and random deviations 
of element parameters from the initially calcu-
lated ones.

The first case concerns precision measure-
ments of the parameters of an actual set of 
splitters produced for the scheme, which are 
then used in calculations.

The second case implies that the element 
parameters may fluctuate during operation. 
Then, after the initial calculations of optimal 
sets {D} for the splitters using regular parts of 
αel, Kf, Ksf and R, the parameters containing, 
aside from the regular component, random ad-
ditions are substituted in Eq. (4) at the second 
stage of the calculations. Then the calculations 
will give a set of values of pn with random devi-
ations with respect to the estimate obtained for 
p0 in the calculations with regular parameters.

Those are important aspects of the proposed 
calculation procedure, although considering spe-
cific examples is outside the scope of this study.

Analysis of the power of output 
pulses in a passage-type scheme 

Let us consider a standard scheme of the 
passage type (Fig. 3). The scheme includes 
pairs of Y-splitters in the “upper” and the 
“lower” lines. The sequence of output pulses is 
formed by means of the nth pulse passing a part 
of the path through the “upper” line, splitting 
into the lower part through the nth couple of 
splitters and then propagating towards the out-
put through the “lower” line. We can confirm 
that both of the nth splitters must have the same 
splitting ratios within the scope of the given 
problem. The situations differ for n = 0 and 
n = N, when a pulse passes to the “lower” line 
only through the zero or only through the Nth 
splitter which have no pair.

Fig. 3. Passage-type scheme and generation of output pulses (a), 
nth link in given scheme (b); the notations are the same as in Fig. 1

a)

b)
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We also need to take into account the trans-
mittance of fiber sections: Ksfn for a fiber section 
with the nth sensitive element; Kfn for service fiber 
sections connecting the (n – 1)th and the nth split-
ters in the “lower” line; K’fn for “vertical” sections 
between a pair of the nth splitters. The difference 
in optical paths DL is formed by the difference 
in the lengths of fiber sections between adjacent 
splitters in the “upper” and in the “lower” lines 
(the fiber in the SE is typically larger than the 
service section of the “lower” line). The scheme 
could be constructed symmetrically, with the SE 
located in the “lower” line but the principles of 
operation and calculation would remain the same.

Considering the path travelled in the 
scheme by the nth pulse, it is easy to compose 
multiplicative equations to find pn. As the 
structures of the first and the last links differ 
from the structure of the central links, the 
expressions are different for n=0 and n=N:
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Equations for the power balance of adjacent 
pulses for the first and the last links also differ 
from the equation for the central links and, as 
follows from the difference in the paths of the 
(n – 1)th and the nth output pulses (Fig. 3,b), 
take the following forms for these three case

2
0 1 1 0 1 1 1

2 2
1 1 1 1

2
1 1 1 1

for  1;

for  2, ... ( 1);

for  ;

c d f d c sf f

c(n ) dn f(n ) fn d(n ) cn sf fn

c(N ) dN f(N ) f(N ) cN d(N ) sfN

K K K K K K K'
n

K K K' K K K K K'
n N

K K K' K K K K
n N

− − −

− − − −

=

=

=

= −

=

=

(12)

where n corresponds to the link covering the nth SE.
Notably, Eqs. (11) imply equal ratios for 

the nth splitter in the “upper” and the “lower” 
lines.

Based on Eq. (12), we can obtain recurrence 
relations connecting the splitter parameters. In 
view of model (6), we can obtain an equation 
for the first link (for n=0) from Eq. (12), which 
has the following form:

D1
2 + D1– A0D0= 0, (13)

where we introduce a constant

A0 = (1 – αel)
 Ksf1K’f1/Kf0. (14)

The solution to this quadratic equation (only 
one of the two roots is positive and acceptable) 
has the form

D1 = 0.5 [(4D0 A0+1)1/2 –1]. (15)

Using model (6) and Eq. (12), we obtain 
a relation for the subsequent links (except the 
last one):

Dn
2 + Dn – An[(Dn–1)

2 + Dn–1] = 0, (16)

introducing a constant

An = Ksf1 K’fn/(K’f(n–1)Kfn). (17)

The solution to this equation provides a 
recurrence relation taking the form

Dn = 0.5 {[4((Dn–1)
2 + 

+ Dn–1)An+1]1/2 –1}.
(18)

And, finally, the equation for the last link 
(n = N) follows from model (6) and Eq. (12):

(DN–1)
2 + DN–1=AN DN, (19)

introducing a constant

AN = (1 – αel)
 Kf(N–1)K’f(N–1)/KsfN. (20)

In this case, we need to determine DN, so 
the solution takes the form

DN= [(DN-1)
2 + D(N–1)]/AN. (21)

We should note that we formulated the 
expressions for the passage scheme assuming 
that N > 2. The case N = 2 has to be considered 
separately to obtain the corresponding 
expressions but because it has little practical 
value, it was not included in this study.

If we give a certain value for D0, then, based 
on Eqs. (15), (18), (21), we can derive the 
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values of Dn for all the remaining splitters, i.e., 
a complete set {D}. Clearly, if we recalculate 
the set {D} into the sets {Kd} and {Kc}, and then 
calculate pn based on Eq. (10), condition (2) is 
satisfied, and we obtain a certain value of pnorm, 
which does not depend on n. However, this 
value does depend on the initial choice of D0.

Thus, the condition for obtaining the maxi-
mum value of pnorm in this scheme is the choice 
of the optimal value of D0. A direct and sim-
ple approach to solving this problem consists in 
enumerating the values of D0 and choosing an 
optimal value Dopt of such a value of D0 for which 
pnorm reaches the greatest level. Evidently, a spe-
cific value of Dopt, as well as maximum achieved 
by pnorm, obviously depends on N and on the val-
ues of other parameters used in the calculations.

Let us provide examples of the calcula-
tions, where, as before, we assume for sim-
plicity that Kf,K’f and Ksf do not depend on 
n. Fig. 4,a shows examples of dependences of 
pnorm on D0 with αel[dB] = αsf[dB] = 0.1 dB and 
αf[dB] = α’f[dB] = 0.05 dB for the cases when 
N = 8 and N = 16. In the first case, it fol-
lows from the calculation that Dopt = 16.86, 
providing pnorm = 6.63∙10–3. In the second case, 
Dopt = 62.67, providing pnorm = 1.15∙10–3.

Calculated sets of value for {D}, {Kc} and 
{Kd} are also given in Appendix 2 for N = 8, 
which can be used for practical applications of 
the scheme with these initial data.

From the standpoint of energy analysis, this 
scheme provides a good illustration of the de-
pendences of pnorm on N (shown in Fig 4,b), ob-
tained selecting D0 =Dopt for each N. As before, 
aside from calculation of the dependences with 
the above parameters of losses, two additional 

curves are given for the cases when the param-
eter αfs and αel have different values. To com-
pare this scheme with the reflective one, Fig. 
4 shows a dependence obtained earlier for the 
main sets of parameters.

Comparing the calculation results in Figs. 2 
and 4, we can see that the levels achieved by 
pnorm with the optimal choice of the splitting ra-
tios of the splitters are almost the same for both 
schemes given equal losses in the SE, with a 
small advantage in case of the reflective scheme 
(increasing with greater values of N). This is an 
expected result because, despite the different 
configurations of the schemes, a pulse passes 
through an equal number of splitters forwards, 
the same number of branches and sections of 
SE in both of them.

Each link of the second scheme contains 
an additional connecting section but the first 
scheme includes losses due to reflection from 
the mirror (the second scheme can be improved 
slightly in terms of power by changing the ratio 
of losses in these elements).

Fig. 4,b also shows that the depen-
dence on N has an exponential behavior of 
pnorm(N) ~ N–q, and the value of q is close to 2 
if the losses decrease but increases if the losses 
increase. For the given dependences, q has val-
ues in the range of 2.5–3.3. We should note 
here that approximation yields different results 
and better accuracy if limited ranges of N are 
analyzed. For example, the values of the pa-
rameter for the curves in Figs. 2 and 4 lie be-
tween 2.4 and 2.8 in the range 4 ≤ N ≤ 16, and 
between 2.8 and 3.7 in the range 10 ≤N ≤ 32.

However, it was not our intention to carry 
out comprehensive studies of such patterns as 

Fig. 4. Example of passage-type scheme. Calculated normalized power level of pulses pnorm depending 
on splitting ratio of first splitter for two values of N (a) and on number of sensitive elements N 

for two different values of losses in SE and in splitters.
Dependence of pnorm for the reflective scheme is shown for comparison (b)

a)	 b)
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we focused instead on the procedure for correct 
calculation of this kind of dependences and the 
expressions required for this purpose. At the 
same time, correct calculation implies that the 
optimal choice of parameters is provided for 
the splitters.

Similarly to the reflective scheme, the prin-
ciple proposed for the calculations of the pas-
sage scheme allows (except for the choice of 
the optimal system of splitters and estimation 
of the pnorm value) to analyze the influence of 
various additional factors: limitations in the ac-
curacy with which the splitters can be made, 
random fluctuations of the element parame-
ters, etc. However, we should also consider the 
fact that multiplicative expressions (11) restrict 
such analysis, assuming equal parameters in the 
pairs of splitters in the “upper” and the “lower” 
lines. Eqs. (11) are simplified because of this, 
and, most importantly, we can obtain a simple 
recursive expression (18) that is easy to inter-
pret. To analyze the influence of the rounded 
splitting ratios, regular or random deviations of 
these ratios and similar factors, we need to use 
multiplicative equations of the following form:

0 0 0 1
1

1
1 1

1
1

for  0;

for  1, ...( 1);
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(22)

where the gains Kdn, Kcn of the splitters on the 
“upper” line are separate from the gains kdn, kcn 
of the splitters on the “lower” line.

Conclusion

We have proposed a procedure for calculating 
the parameters of elements in optical schemes 
with multiplexed fiber optic sensors, allowing to 
optimize the scheme in terms of achieving the 
maximum level and contrast of the generated 
interference signals, taking into account the 
optical power losses in splitting elements as 
well as in fiber sections and mirrors included in 
the fiber optic scheme.

The procedure for obtaining expressions for 
calculating the element parameters is described 
for two optical schemes.

We have given examples of the calculations 
of the element parameters in the scheme under 
consideration for N = 8 sensitive elements and 
the dependences of the normalized power level 
of an optical pulse at the output of the schemes 
on the number N for certain sets of element 
parameters.

The principles proposed for organizing the 
calculations allow not only to calculate the 
optimal splitting ratios of the scheme splitters 
and the power achieved by the output pulses 
but also to analyze the influence from varying 
the parameters of individual elements of the 
optical scheme (including random ones) on the 
characteristics of the system as a whole. 

The calculated expressions formulated for 
the given schemes illustrate how similar calcu-
lations can be organized for other configura-
tions of similar schemes. 

The methods and results presented can 
be applied in design of fiber-optic interfer-
ometers based on multiplexing of sensitive 
elements. 

Appendix 1

Parameters of Y-splitter 

A Y-splitter has three terminals and is for-
mally described by nine power gains Kij. In 
view of symmetry, which is easy to achieve in 
practice, Kij . Kji. Lets us choose numbering so 
that when light is submitted to the first termi-
nal, it is then transmitted to the second and 
the third terminals. Then, due to directivity, 
K23 . 0, and the coefficients of reflection from 
the splitter, Kii . 0, are small as well (in reality 
these coefficients correspond to attenuations 
by several tens of dB). Then two coefficients 
are significant: K12 and K13. Assuming K12 ≥ K13 
(the connection between terminals 1 and 2 is 
direct, and K12 = Kd, while terminals 1 and 3 
are cross-connected, and K13 = Kc), the key 
parameter of the splitter, its splitting ratio, is 
given by the relation D =K12/K13 (D > 1). If K23, 
Kii ≪ K13, then based on the condition imposed 
for the power balance, K12 + K13 = 1. However, 
taking into account the internal (excess) losses 
of optical power, K12 + K13 = 1 – αel for an 
actual splitter (where αel is a small parameter 
characterizing the losses). The last equality 
from the definition of D gives

K12 = Kd = (1– αel)D/(D+1);

 K13 = Kс= (1– αel)/(D+1),
introduced as expression (4).
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Giving the parameters D and αel rather than 
K12 and K13 is often clearer and more wide-
spread for real splitters (αel[dB] = 10∙lg(1– αel) is 
usually taken).

Appendix 2

Examples of calculating  
the parameters {D}, {Kc} and {Kd}  

The summary Table below presents the cal-
culation results for the splitting ratios D and 
gains Kd, Kc for the schemes described in case 

N = 8, αel = 0.977, Ksf = 0.977, Kf = 0.989, 
and R = 0.99 for the reflective scheme and 
K’f = 0.989 for the passage scheme (the given 
ratios and gains correspond to the levels 
αel[dB] = αsf[dB] = 0.1, αf[dB]=α’f[dB] = 0.05).

While the values listed in the Table are not 
particularly illustrative or interesting for the 
considered dependences of pnorm on N and other 
parameters of similar characteristics, splitters 
with the calculated set of parameters {Kc} and {Kd} 
should be chosen for practical implementations 
of the optimal scheme satisfying condition (2).
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Introduction

Studies on the properties of nuclear mat-
ter under extreme conditions, where quarks 
and gluons become deconfined, are aimed at 
solving an important problem in high energy 
physics. It is hypothesized that deconfinement 
existed in the early Universe [1]. 

Quantum chromodynamics (QCD) predicts 
for high energy densities of approximately 1 
GeV/fm3 that a phase transition occurs from 
ordinary hadronic matter, described in terms of 
color-neutral hadrons, to a new state of matter 
called the quark-gluon plasma (QGP), where 
the degrees of freedom are quarks and gluons 
leaving the confinement region about 1 fm in 
radius [2]. Matter with extremely high energy 
density can be produced in the laboratory by 
colliding heavy ions at ultrarelativistic energies.

One of the key signatures for QGP produc-
tion is jet quenching, which consists in strong 
suppression of particle yields in central colli-
sions of heavy nuclei due to energy losses of 
quarks and gluons in the medium [3, 4].

An intriguing effect observed in collisions of 
heavy nuclei is an increased yield of strange 
hadrons. Since quark-antiquark pairs ss̅ are 
mainly produced in gluon-gluon interactions 
(gg → ss̅), the probability of the process in QGP 
increases for the following reason. Restoration 
of chiral symmetry in QGP results in decreas-
ing the strange quark mass, which in turn re-
duces the energy threshold for strangeness pro-
duction, making the production of an ss̅ pair 
energetically more favorable than that of uū 
and dd̅ pairs [5]. Therefore, extracting the yields 
of vector K*(892) mesons (whose rest mass is 
equal to 0.8916 GeV/с2 ≈ 892 MeV/с2) with 
open strangeness (ds̅) is an effective method for 
studying the properties of QGP [6].

Our study presents the data on the yields of 
K* mesons, their invariant spectra depending 
on transverse momentum (pT), and the nuclear 
modification factors RAB. The observables were 
measured experimentally in collisions of copper 
and gold nuclei (denoted as Cu + Au) at √sNN = 
200 GeV at midrapidity in the transverse mo-
mentum range from 2.00 to 5.75 GeV/c using 
the PHENIX detector at the Relativistic Heavy 
Ion Collider (RHIC) at Brookhaven National 
Laboratory, USA [7–9].

Measurement procedure

Extracting K* meson yields, we used two 
procedures to generate independent sources 
of systematic uncertainties. Experimental 
data from different detectors were combined 

to cover different pT bins, providing the wid-
est range of transverse momenta possible in 
this collision system. The procedures have 
different sources of systematic uncertain-
ties; importantly, both procedures were used 
in the range of intermediate transverse mo-
menta, making it possible to check the valid-
ity of the results obtained.

K* and K* meson yields were extracted us-
ing the following subsystems of the PHENIX 
experiment: drift chamber (DC), third-layer 
pad chamber (PC3) [10] and time-of-flight 
(TOF) detector [11]. 

The transverse momenta of K and π me-
sons are measured in DC and PC. The TOF 
detector is used to reconstruct K and π me-
sons, as well as protons. K* and K* meson 
yields are reconstructed from hadronic de-
cays into K+π– and K–π+ pairs. Unlike-sign 
particles detected in one collision are com-
bined into pairs for this purpose. Only parti-
cles with transverse momenta exceeding 0.3 
GeV/c are extracted. A charged particle is 
assumed to be either a K or a π meson, and, 
depending on the given decay channel and 
the particle’s charge, it is assigned the mass 
of a charged K or π meson. Two procedures 
described below are used to reconstruct the 
invariant mass spectra of (Kπ) meson pairs, 
increasing the statistical significance of the 
experimental data in a wide range of trans-
verse momenta.

The first procedure, ToF-PC3, assumes 
that the transverse momenta of K mesons are 
measured in DC, and K mesons are recon-
structed in the TOF detector, while the trans-
verse momenta of π mesons are measured in 
DC and in PC3. This procedure allows to de-
tect and calculate the kinematic characteris-
tics of K* mesons at low pT (1.9–2.9 GeV/c).

The second procedure, PC3-PC3, as-
sumes that the transverse momenta of K and 
π mesons are measured in DC and in PC3. 
This procedure allows to extract K* meson 
yields at intermediate and high pT (2.6–6.5 
GeV/c). The drawback of the second pro-
cedure is that the combinatorial background 
is much larger compared with that for the 
first procedure, which means that K* meson 
yields cannot be extracted at transverse mo-
menta below pT = 2.0 GeV/c in Cu + Au 
interactions. 

Fig. 1 shows examples of approximated 
invariant mass distributions for (Kπ) meson 
pairs in central collisions; the results were 
obtained using both procedures. 
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Because K and π mesons produced in K* 
meson decays cannot be distinguished from 
other particles of the same kind, all tracks of 
these particles from each event satisfying the 
acceptance criteria are combined into like-sign 
or unlike-sign pairs. The components of the 
three-momentum vector p for each track are 
measured using DC:

py = p sin θ0 sin φ0,

pz= pcosθ0.
The invariant mass and transverse mo-

mentum are then calculated for a pair of 
(Kπ) mesons based on two-body decay 
kinematics.

( ) ( )

( ) ( )2 22

2 22
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K K
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m E E
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where 2 2
K K KE m= +p  and mK = 0.43667 GeV;

2 2mE = +pππ π  and mπ = 0.13957 GeV. 
The invariant mass spectrum for a pair 

of unlike-sign mesons contains both the K* 
meson signal and the combinatorial back-
ground. The latter includes two components: 
the correlated and the uncorrelated back-
ground. Event mixing is used to estimate the 

combinatorial background. Analysis is aimed 
at extracting the yields of K* mesons from 
the yields of inclusive (Kπ)± pairs. K* meson 
yields were obtained in all reconstructions 
by integrating the invariant mass distribution 
within ±100 MeV/c2 of the K* meson mass 
(892 MeV/c2) after subtracting the combina-
torial background.

The experimental data are reconstructed 
as two-dimensional distributions of K* me-
son yields as functions of invariant mass and 
transverse momentum, divided into trans-
verse momentum bins and fitted with a rel-
ativistic Breit–Wigner distribution (RBW) 
convoluted with a Gaussian plus a second-or-
der polynomial accounting for the residual 
background:

0
2 2 2 2 2

0 0

1 ,
2 ( )

MMRBW
M M M

Γ
= ⋅

π − Γ+

where M0, GeV/c2 and Γ, GeV/c2, are the mass 
and the decay width of K* mesons, respectively, 
according to the data from PDG (Particle Data 
Group); M, GeV/c2, is the experimental value 
of particle mass.

The residual background is mostly generated 
by decay of other types of mesons.

The invariant production spectrum of K* 
mesons is calculated as follows for each trans-
verse momentum bin:

Fig. 1. Invariant mass distributions of K and π meson production in central Cu + Au collisions, 
obtained by two procedures: ToF-PC3 (a) and PC3-PC3 (b) 

in pT ranges of 2.3–2.6 and 2.9–3.4 GeV/c, respectively

a)	 b)
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where pT and ∆pT, GeV/c, are the meson trans-
verse momentum and its bin width; y and ∆y 
are the rapidity and its bin width; N(∆pT) is the 
number of mesons reconstructed by the detec-
tor (meson yields); Nevents is the total number 
of events reconstructed for a given centrality 
bin; εeff(pT) is the K* meson reconstruction effi-
ciency, obtained by Monte Carlo simulation of 
decay, passage, and regeneration of mesons in 
the PHENIX detector; Br = 0.666 is the proba-
bility of meson decay in the given channel. The 
coefficient 1/2 is taken in the formula for aver-
aging the invariant K* and K* meson yields.

The nuclear modification factors of particles 
in heavy ion collisions, used to analyze the 
collective effects governing the particle spectra 
depending on transverse momentum, are 
calculated by the formula:

2
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/
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d N p dydpR
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where the numerator is the quantity charac-
terizing the invariant spectrum of meson pro-
duction in collisions of heavy copper and gold 

nuclei; d2σpp/dydpT is the invariant differential 
cross section for production of these particles 
in collisions of the given nuclei at the same 
center-of-mass energy; Ncoll is the average num-
ber of binary collisions per event in Cu + Au 
collisions; σinel

pp  is the inelastic cross section for 
proton-proton scattering (here σinel

pp  = 42.2 mb).

Measurement results and discussion 

The reconstructed invariant spectra for 
the production of K* mesons as a function of 
transverse momentum are shown in Fig. 2. The 
measurements were performed in five centrality 
bins with the transverse momenta ranging from 
2.00 to 5.75 GeV/c. The given spectra were 
approximated by the Levy function for K* 
mesons [12].

Fig. 3 shows the measured nuclear modification 
factors RAB with systematic uncertainties, 
depending on transverse momentum, obtained 
for K* mesons in Cu + Au interactions at √sNN = 
200 GeV for different centrality bins. The results 
were obtained using two procedures: ToF-PC3 
and PC3-PC3. We found that the results for the 
same transverse momenta are in good agreement.

The nuclear modification factors RAB for K* 
mesons in central Cu + Au collisions take values 
less than unity at high transverse momenta 
(RAB values for pT = 5–6 GeV/c lie in the 
range from 0.4 to 0.7). As collision centrality 
increases, there is less suppression of K* meson 
yields, and RAB values approach unity.

Fig. 2. Invariant spectra for production of K* mesons in Cu + Au collisions 
at √sNN = 200 GeV for five centrality bins, %:

0–80 (●); 0–20 (■); 20–40 (▲); 40–60 (▼); 60–80 (♦).
The statistical uncertainties of the measurements are no larger than the symbols. 

The boxes correspond to systematic uncertainties. 



125

Nuclear Physics

Fig. 4 compares the nuclear modification 
factors RAB for K* mesons, measured in 
collisions of Cu + Au nuclei, with the nuclear 
modification factors RAA, measured in collisions 
of identical nuclei (Cu + Cu) at the same 
energy of 200 GeV. Evidently, the results are 
in good agreement given a similar number of 
participants (within the uncertainties).

Fig. 5 compares the data for pT distributions 
of nuclear modification factors of K*, φ, π0, 

η, KS and ω mesons in Cu + Au collisions at 
200 GeV. Evidently, the nuclear modification 
factors RAB of K* and φ mesons equal unity 
in central collisions at intermediate pT values, 
while the nuclear modification factors RAB 
of π0, η, KS and ω mesons are suppressed in 
central collisions over the entire range of pT 
values. All light mesons exhibit the same level 
of suppression at high pT in the most central 
collisions. The nuclear modification factors 

Fig. 3. Distributions of nuclear modification factors as functions of transverse momentum 
for K* mesons in Cu + Au collisions at 

 √sNN= 200 GeV for five centrality bins, %: 0–20 (a),
 20–40 (b), 0–80 (c), 40–60 (d), 60–80 (e). 

Bars and boxes correspond to statistical and systematic uncertainties

a)	 b)	 c)

d)	 e)

Fig. 4. Comparison of nuclear modification factors RAB for K* mesons in Cu + Au collisions (circles) 
with nuclear modification factors RAA for Cu + Cu collisions (triangles) 

at the same √sNN = 200 GeV and with similar numbers of participants Npart: 80.37 (Cu + Au) 
and 85.9 (Cu + Cu) (a); 34.92 and 45.2 (b); 11.54 and 6.40 (c).
 Bars and boxes correspond to statistical and systematic uncertainties

a)	 b)	 c)
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RAB equal unity in peripheral collisions for all 
mesons considered (within uncertainties). The 
same behavior was also observed for light mesons 
in Cu + Cu collisions at √sNN = 200 GeV [12].

Conclusion

We have measured the invariant production 
spectra and nuclear modification factors of 
K* mesons in collisions of copper and gold 
(Cu + Au) nuclei at √sNN = 200 GeV, in the 
pseudorapidity range |η| < 0.35, at transverse 
momenta in the range of 2.00 < pT < 5.75 
GeV/c and for five centrality bins. All data 
for the measurements were obtained at the 
PHENIX experiment in 2012.

We have carried out comparative analysis of 
the nuclear modification factors of K* mesons 
in Cu + Cu and Cu + Au interactions at the 
same energy √sNN = 200 GeV and the nuclear 
modification factors of K*, φ, π0, η, KS and ω 

mesons in Cu + Au collisions at √sNN = 200 
GeV. We have found that K* meson yields in 
Cu + Au and Cu + Cu collisions at the same 
energy √sNN = 200 GeV have the same values 
over the entire range of transverse momenta 
given similar numbers of participants. 

Thus, suppression of mesons depends on the 
size of the nuclear overlap region but does not 
depend on the shape of the nuclei for a large 
number of participants [13–15]. 

K* and φ meson yields in central Cu + Au 
collisions are less suppressed in the range of 
intermediate pT compared to mesons consisting 
only of first-generation quarks, which points 
to excessive production of strangeness. The 
yields of K* mesons and other light mesons 
are suppressed in the range of high transverse 
momenta in central collisions of copper and 
gold, which confirms the presence of the jet 
quenching effect.
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was carried out at the RHIC. The φ-mesons’ invariant transverse momentum spectra and their 
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ИЗМЕРЕНИЕ ФАКТОРОВ ЯДЕРНОЙ МОДИФИКАЦИИ 
φ-МЕЗОНА В СТОЛКНОВЕНИЯХ ПРОТОННЫХ ПУЧКОВ 

С ЯДРАМИ АЛЮМИНИЯ ПРИ ЭНЕРГИИ 200 ГЭВ

М.М. Ларионова, Я.А. Бердников, А.Я. Бердников, 

Ю.М. Митранков, Д.О. Котов
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В работе изучено рождение φ-мезонов в релятивистских столкновениях пучков 
протонов с ядрами алюминия (p + Al, малая система) при энергии √sNN = 200 ГэВ, 
проведенных в эксперименте PHENIX на коллайдере RHIC. Измерены инвариантные 
спектры φ-мезонов по поперечному импульсу и их факторы ядерной модификации 
для четырех классов событий по центральности, %: 72  –  0  ,72–40  ,40  –  20  ,20  –  0. 
Проведено сравнение полученных результатов с аналогичными данными по рождению 
π0-мезонов. Анализ полученных экспериментальных данных привел к заключению, что 
во всех доступных диапазонах по центральности и поперечному импульсу факторы 
ядерной модификации φ-мезонов равны единице в пределах неопределенностей 
измерения. Полученный результат свидетельствует в пользу того, что в рассматриваемых 
столкновениях кварк-глюонная плазма не образуется.

Ключевые слова: кварк-глюонная плазма, эффект холодной ядерной материи, фактор 
ядерной модификации 
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Introduction
Quantum chromodynamics predicts the 

existence of a state of matter known as 
quark-gluon plasma (QGP), where quarks 
and gluons are deconfined. Ultrarelativistic 
heavy ion collisions provide an opportunity 
for studying the behavior of nuclear matter 
at temperatures and pressures sufficient for 
QGP production [1]. Exploring the proper-
ties of QGP produced in controlled condi-
tions and its evolution into hadron gas is the 
main purpose of the PHENIX experiment 
[2] at RHIC (Relativistic Heavy Ion Collider 
located at Brookhaven National Laboratory, 
USA) [3].

One method for studying the properties of 
QGP experimentally is measuring final-state 
particle yields. In particular, φ mesons have a 
range of distinctive properties, such as small 
cross section for interaction with non-strange 
hadrons and much longer lifetimes (42 fm/c) 
than those of QGP [4]. Thanks to these prop-
erties, hadron interactions have less effect on 
φ meson production at the late stages in the 
evolution of the system formed in heavy ion 
collisions; furthermore, φ meson daughter 
particles are not rescattered in the hadron 
phase.

Thus, the properties of φ mesons mainly 
depend on the conditions in the early parton 
phase, and measuring φ meson yields can be 
regarded as a clean test for the behavior of 
the matter produced in collisions of relativ-
istic nuclei.

Measuring φ meson yields can be used 
to study the so-called cold nuclear matter 
(CNM) effects in small collision systems [5]. 
Cold nuclear matter effects are understood 
as modifications of parton distributions in 
the nucleus [6], the Cronin effect [7] asso-
ciated with multiple rescattering of incoming 
partons inside the target nucleus, and other 
effects.

Analysis of CNM effects by measuring φ 
meson production in small systems can ex-
plain whether the effects observed in heavy 
ion collisions are connected with the effects 
of cold or hot nuclear matter. In particular, 

results of such studies can help understand 
the difference between nuclear modification 
factors of π0 mesons, φ mesons, and protons 
obtained in collisions of gold (Au+Au), cop-
per (Cu+Cu), copper-gold (Cu+Au) nuclei 
at √sNN = 200 GeV, as well as uranium nuclei 
(U+U) collisions at √sNN = 192 GeV [8, 9].

Measurement procedure

We used the measurement results obtained 
with the PHENIX detector at RHIC. 
Our goal consisted in reconstructing the 
production of φ mesons decaying into charged 
kaons (φ → K+K–) in collisions of proton and 
aluminum nuclei (p+Al) at √sNN = 200 GeV.

We primarily focused on obtaining invariant 
transverse momentum spectra and nuclear 
modification factors RAB for φ mesons in p+Al 
collisions.

As kaons produced in φ meson decay are 
indistinguishable from other kaons, so all 
kaon tracks from each event are combined 
into unlike-sign pairs. The components of the 
three-momentum vector p for each track were 
measured using the drift chamber. Invariant 
mass and transverse momentum are calcu-
lated for kaon pairs based on two-body decay 
kinematics.

The invariant mass spectrum for unlike-sign 
kaon pairs contains both the signal of φ me-
sons and the combinatorial background. The 
latter includes two components: correlated 
and uncorrelated background. The event-mix-
ing technique is used to estimate combina-
torial background [12]. After subtracting the 
uncorrelated background from the total spec-
trum, the correlated background is estimated 
by fitting the invariant mass distributions to 
a Breit‒Wigner distribution convoluted with 
a Gaussian (where the dispersion equals the 
experimental mass resolution of the detector) 
to describe the signal, plus a polynomial to 
describe the background.

The experimental mass resolution of 
the detector is estimated by Monte Carlo 
simulation of the spectrometer with zero 
width for φ → K+K–, where φ mesons have 
infinite lifetimes. We obtained φ meson yields 
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by integrating the invariant mass distribution 
within ±9 MeV/с2 of the φ meson mass (1.019 
GeV/с2 [13]) after subtracting the combinato-
rial background.

The invariant spectrum of φ meson produc-
tion is calculated as follows in each transverse 
momentum bin:
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where pT and ∆pT, GeV/с, are the meson 
transverse momentum and its bin width re-
spectively; y and ∆y are the rapidity and its 
bin width; N(∆pT) is the number of mesons 
reconstructed with the experimental detector 
(meson yields); Nevent is the total number of 
events reconstructed in the given centrality 
bin; εeff(pT) is the φ meson reconstruction 
efficiency obtained using Monte Carlo 
models of decay, passage and regeneration 
of mesons in the PHENIX experiment; Br is 
the probability of meson decay via the given 
channel. 

Suppression of particle yields in relativis-
tic heavy ion collisions is studied by finding 
the nuclear modification factors RAB, calcu�-
lated as a ratio of invariant particle yields 
measured in relativistic heavy ion collisions 
to the yields of the same particles measured 

in elementary collisions of protons (p+p). 
The yield for A+B collision is normalized 
to the number of inelastic nucleon-nucleon 
collisions.

Nuclear modification factors of particles 
in collisions of different nuclei are used to 
account for the collective effects governing 
the transverse momentum spectra of particle 
production, and are calculated by the formula:
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is the invariant differential cross-section for 
production of these particles in p+p collisions 
at the same center-of-mass energy; fbias is the 
Bayes factor correcting for the bias in centrality 
measurements; σinel

pp  = 42.2 mb is the cross sec-
tion for inelastic proton-proton scattering; Ncoll 
is the number of binary collisions in the given 
centrality bin.

If RAB(pT) ≈ 1, collective effects are 
probably absent in heavy ion interactions, 
and the interactions may be represented by 
superposition of individual nucleon interactions. 

Fig. 1. Invariant transverse momentum spectra of φ meson production in p+Al collisions 
at √sNN = 200 GeV in four centrality bins, %: 0–20 (1), 20–40 (2), 40–72 (3), 0–72 (4). 

The dotted curves were fitted with the Lévy function. 
Bars and boxes correspond to statistic and systematic uncertainty, respectively 
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Fig. 2. Distributions of nuclear modification factors as function of transverse momentum 
for φ meson production in p+Al collisions at √sNN  = 200 GeV in four centrality bins, %:

0–20 (a), 20–40(b), 40–72(c), 0–72(d); |y| < 0.35 

Fig. 3. Distributions of nuclear modification factors as function of transverse momentum 
for φ and π0 meson production in p+Al collisions at √sNN = 200 GeV in four centrality bins, %: 

0–20 (a), 20–40 (b), 40–72 (c), 0–72 (d); |y| < 0.35
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If RAB(pT) < 1 (> 1), particle yields are 
supressed (or, respectively, excessive), which 
may confirm the presence of collective effects 
in heavy ion interactions.

Experimental results and discussion

Fig. 1 shows invariant transverse momentum 
spectra of φ meson production in p+Al 
collisions at √sNN = 200 GeV. These spectra 
were measured in four centrality bins, %: 
0–72, 0–20, 20–40 и 40–72, with transverse 
momenta ranging from 1.0 to 4.0 GeV/с, and 
fitted with the Lévy distribution:
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where mφ, GeV/с2, is the invariant mass of the 
φ meson, k, m, n are free parameters. 

The transverse momentum spectra obtained 
were used to calculate nuclear modification 
factors of φ mesons in p+Al collisions at 
√sNN = 200 GeV.

Fig. 2 shows the distributions of nuclear 
modification factors RAB depending on 
transverse momentum, measured for φ 

mesons in p+Al interactions at √sNN = 200 
GeV in different centrality bins. Evidently, 
the nuclear modification factors RAB for 
φ mesons equal unity in all centrality bins 
over the entire range of transverse momenta 
within uncertainties.

Fig. 3 shows a comparison of nuclear 
modification factors for φ and π0 mesons in 
p+Al collisions at √sNN = 200 GeV. Apparently, 
the nuclear modification factors for φ and π0 
mesons take the same values in all centrality 
bins over the entire range of transverse momenta 
within uncertainties. This may indicate that 
CNM effects have no impact on the difference 
between the nuclear modification factors for 
φ and π0 mesons in collisions of gold, copper 
and uranium nuclei (Au+Au, Cu+Cu, Cu+Au, 
U+U) [8, 9].

Conclusion

We have measured the invariant transverse 
momentum spectra and nuclear modification 
factors for φ mesons in p+Al collisions at 
√sNN = 200 GeV.

The nuclear modification factors for φ 
mesons equal unity in all available centrality 
bins and over the entire range of transverse 
momenta within the uncertainties. The results 
obtained confirm that the collisions under 
consideration produce no quark-gluon plasma.
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The paper aims at calculation of the effective elastic properties of metals with a micro-
structure typical for hydrogen-enhanced degradation. For the purpose of this study, we use the 
Maxwell homogenization scheme and explicit expression for compliance contribution tensor 
to determine the overall Young’s moduli. The model introduces oblate spheroids to describe 
intergranular microcracks and spheres to describe pores. Within the frame of the paper, we 
consider random orientations of the microcracks, certain preferential orientation accompanied 
by random scatter with the scattering parameter and random orientations of the spheroids’ axes 
in the same plane. The dependences of the effective Young’s moduli on the porosity and aspect 
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ОПРЕДЕЛЕНИЕ ЭФФЕКТИВНОГО МОДУЛЯ ЮНГА  
СРЕДЫ С МИКРОСТРУКТУРОЙ,  

ХАРАКТЕРНОЙ ДЛЯ ВОДОРОДНОЙ ДЕГРАДАЦИИ

К.П. Фролова 
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Работа посвящена определению эффективных упругих свойств металлов с 
микроструктурой, характерной для водородной деградации. С целью определения 
эффективных модулей Юнга решается задача гомогенизации по схеме Максвелла 
в терминах тензоров вклада. Микротрещины, возникающие по границам зерен, 
моделируются сплюснутыми сфероидами, поры – сферами. Рассматривается три варианта 
ориентации осей симметрии сфероидов в материале: произвольная, преимущественная 
ориентация с параметром рассеяния, произвольная ориентация в одной плоскости. 
Исследуются зависимости эффективных модулей Юнга от пористости материала и от 
соотношения длин полуосей сфероидов.

Ключевые слова: эффективный модуль Юнга, схема гомогенизации Максвелла, водо��-
родная деградация, сфероидальная неоднородность
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Introduction
Hydrogen dissolved in metals may lead 

to degradation of mechanical properties and 
premature fracture of metal workpieces. The 
impact of hydrogen on the properties and 
character of material fracture largely depends 
on both external factors, and the features of 
the internal structure and characteristics of 
materials. This is why the phenomenon of 
hydrogen degradation, comprising an entire 
range of negative effects induced by hydrogen, 
remains an important topic in materials science 
demanding further comprehensive studies [1, 2].

Many works considered the effects of 
hydrogen on the material microstructure [3–
9]. Hydrogen is assumed to diffuse through the 
metal lattice and interact with the defects of the 
structure, such as dislocations, pores, vacancies, 
etc., thus inducing microcracks. The defects 
develop in workpieces during production, and 
are typically located along the boundaries of 
grains or inclusions in alloys (the defects are 
also found inside the grains, but to a lesser 
extent). Ultimately, if there are no significant 
internal or external stresses, hydrogen-induced 
microcracks form, propagating along the grain 
boundaries [3–5, 9] or blisters that lead to 
embrittlement of the surface [7, 9]. At the same 
time, microcracks can be observed at grain 
boundary triple junctions as well [4, 5, 8, 9]. 
Microcracks are often seen to initiate with a 
preferential orientation, which is parallel to the 
rolling direction [3, 7].

Several papers [10–12] studied hydrogen 
diffusion along the grain boundaries, finding 
the effective diffusion coefficient in a composite 
material, where one phase consisted of grain 
boundaries with a high diffusion coefficient, and 
the other phase included the actual grains with 
a low diffusion coefficient. However, hydrogen-
induced changes in the microstructure were not 
simulated in these studies. For example, [13] 
used phenomenological approaches to solve 
a related problem of hydrogen transfer and 
changes in the defects structure of the material. 
The effect of hydrogen on the material was 
accounted for within the cumulative damage 
theory. A number of papers discussed hydrogen-
induced degradation of elastic properties of 

material [9, 14, 15]; in particular, [9] dealt with 
hydrogen degradation in low carbon steels at 
different levels. The authors found that long-
term hydrogen saturation leads to a reduction 
in bulk elastic modulus. Microstructural 
analysis revealed that the reasons for this may 
lie in the deformation of larger grains, cracks, 
and blisters caused by hydrogen penetration. As 
observed in [14], prolonged hydrogen charging 
may decrease the value of Young’s modulus 
by up to 15% in a gamma titanium aluminide 
alloy. The experiments in [15] were conducted 
for three different grades of high-strength 
steel. Hydrogen charging of steels resulted 
in degradation of mechanical properties and 
changes in the microstructure in all cases.

Summarizing the above, we can remark 
that analytical models of hydrogen degradation 
generally tend to account for diffusion assumed 
to be the primary process leading to changes 
in microstructure and to degradation of 
mechanical properties. The degradation of 
elastic properties due to the actual changes 
in the microstructure has received much less 
attention.

The goal of our study consisted in determining 
the effective elastic moduli for a material whose 
microstructure is assumed to have formed as a 
result of hydrogen degradation.

For this purpose, we solve the problem of 
homogenization which allows to estimate the 
contribution of inhomogeneities to a given 
property. We consider the influence that the 
potential shape and orientation of microcracks 
in the material, as well as its porosity have on 
effective Young’s moduli.

Microstructure of the material

This paper studies the influence of coin-like 
microcracks, as well as pores on the effective 
properties of materials, assuming that the 
former accounts for intergranular cracking, and 
the latter for the impact of the pores which did 
not merge into microcracks, and the voids near 
grain boundary triple junctions. It was found in 
[16] that jagged boundaries of planar cracks or 
deviations from circular shape are unimportant 
for elastic properties of the material, so these 
inhomogeneities can be simulated as elliptical. 
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Microcracks were modelled by oblate spheroids 
and pores by spheres in our study. We consider 
three cases of inhomogeneities in the material.

In the first case, we assumed that microcracks 
have random (isotropic) distribution in the 
bulk. This pattern is characteristic for metal 
products weakly deformed during production.

In the second case, we assumed that 
microcracks have preferential orientation (for 
instance, in case of rolling and layered structure 
of material). A factor that we took into account 
was that microcracks may deviate from the 
preferential orientation in this instance.

Finally, to complete the picture, we considered 
the case when the symmetry axes of spheroid 
microcracks have random orientation in a certain 
plane. This situation is observed, for example, 
when a material is compressed and there are no 
cracks forming in the plane of loading.

Compliance tensor of spheroid microcrack

Contribution tensors are used within the 
homogenization method to describe the 
contributions of individual inhomogeneities 
into the given properties [17]. 

Taking a homogenous elastic material (ma-
trix) with the compliance tensor S0, let us con-
sider a representative volume V, containing an 
isolated inhomogeneity of volume V1 with the 
compliance tensor S1. The volume V should be, 
on the one hand, large enough to reflect the 
characteristic microstructure, and, on the other 
hand, small enough compared with the entire 
volume of the material so that the variations of 
the macroscopic fields are negligible. 

Correct choice of representative volume is 
discussed, for example, in [17]. The effective 
elastic properties of the material are estimated 
by means of a tensor accounting for the con-
tribution of inhomogeneities to compliance: 
it is a fourth-rank tensor H, which describes 
extra strain Δε generated in volume V due to 
inhomogeneity: 

��� ���
V
V

1

0
H : , (1)

where σ0 is the stress field depending on bound-
ary conditions, which would be generated in 
the volume in the absence of inhomogeneities.

The tensor accounting for the contribution 
of an ellipsoidal inhomogeneity to compliance 
can be expressed in terms of compliance 
tensors of the matrix, inhomogeneities 
characterizing the material properties, and the 
second Hill’s tensor Q reflecting the influence 
of inhomogeneity shape:

( )
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The fourth-rank tensor Q is related to the 
first Hill’s tensor P by

Q = C0 – C0 : P : C0,

where C0 is the matrix stiffness tensor. 
In turn, the fourth-rank tensor P is ex-

pressed in terms of derivatives of Green’s func-
tion G for displacements as

( )
( )( )1 1,2 3,4

,
S

V

dV
 

′ ′= ∇ − ∇  
 
∫P G x x (3)

where ( )S
(1,2)(3,4) indicates symmetry with respect 

to permutation of subscripts in the first and the 
second pair. 

Pores and microcracks are characterized by 
zero elastic moduli. Then S1 → ∞, and expression 
(2) is reduced to H = Q–1. Tensors H and Q are 
transversely isotropic for a spheroidal microcrack 
in an isotropic matrix (the symmetry axis is 
codirectional to the inhomogeneity symmetry 
axis), and can be expressed as linear combinations 
of the tensor basis elements T1, T2, …, T6 [18]:
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where θ = I – nn (I is the second-rank unit 
tensor) is the projection to the plane normal to 
the unit vector n along the symmetry axis. 

The basis introduced allows to represent 
the transversely isotropic tensor B = ∑biTi 
(summation over repeated indices from 1 to 6) 
and its inverse in one basis [17]:
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where Δ = 2(b1b6 – b3b4).
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Thus, determining the tensors Q and H for a 
pore or a microcrack is reduced to determining 
the components of tensor Q, which are calculated 
as follows in case of a spheroidal inclusion [19]:
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where μ0 and ν0 are the shear modulus and 
Poisson’s ratio of the matrix, respectively. 

Parameters f0 and f1 depend on the aspect 
ratio of spheroid semiaxes γ = a3/a (a3 is the 
axis of rotation) as follows:
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For a spheroidal inhomogeneity, γ = 1, 
g = 1, f0 = 1/3, f1 = 1/15. The compliance 
tensor of a spheroidal pore Hp is isotropic and 
takes the following form: 
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where I is the second-rank unit tensor, 
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is the fourth-rank unit tensor.
Tensors II and J can be represented as 

follows in the transversely isotropic basis [17]:
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Effective properties of metals 
with spheroidal microcracks and pores

Effective properties of heterogeneous materials 
can be determined by different methods. A 
historical review of these methods can be found, 
for example, in [20], while [17] presents analysis 
of the current situation. All analytical methods are 
approximate solutions, while the exact solution 
can be obtained only numerically for specific 
materials with a known microstructure. The best-
known analytical methods include:

non-interaction approximation, 
effective media schemes, 
differential scheme, 
effective field methods (including both 

Mori–Tanaka and Kanaun–Levin methods), 
Maxwell scheme.
These methods differ in their approaches to 

accounting for the mutual influence of multiple 
inhomogeneities, while their applicability 
is limited by material symmetry, shape and 
orientation of inclusions. The Maxwell scheme 
seems to be an optimal method to describe the 
contributions of inhomogeneities of different 
shape and orientation [21].

Let us find an effective compliance 
tensor using the Maxwell scheme in terms of 
contribution tensors: 

11
0 1 ,eff

i i
i

V
V

−−

Ω
Ω

   = + −  
   

∑S S H Q (10)

where QΩ is the second Hill’s tensor determined 
for a homogenized region Ω which contains 
isolated inhomogeneities and possesses the 
required effective properties.

In the absence of QΩ, the effective compli-
ance tensor coincides with the value determined 
neglecting the interaction of inhomogeneities.

Let us determine the total contribution of 
isolated inhomogeneities to compliance. If the 
inhomogeneities have the same shape and size 
but different orientation, then their total con-
tribution can be determined as the product of 
the averaged contribution by volume fraction 
of inhomogeneities [17]. The averaged value 
of the contribution tensor for spheroidal inclu-
sions coincides with the contribution tensor of 
a separate spheroidal pore Hp due to symmetry. 
If spheroidal microcracks and spherical pores 
are present in the material, their total contri-
bution is determined as

1

V
Vi

i
i mc mc p p� � �H H H� � , (11)
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where φmc and φp are the volume fractions of 
oblate spheroids and spheres, respectively, 
<Hmc> is the value of the averaged total tensor 
describing the contribution of microcracks to 
compliance.

It is sufficient to average the elements of the 
tensor basis to determine <Hmc>, i.e., 
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1
.mc kmc k

k
h

=
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If there is a preferential orientation m, the 
symmetry axes n of spheroidal microcracks 
tend to coincide with m with a certain devia-
tion depending on the scatter parameter λ.

Let us introduce a probability density func-
tion for the orientation distribution of spheroid 
axes of symmetry over a semisphere (0 ≤ θ ≤ π/2) 
in accordance with [22]:
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If λ = 0, the microcracks have a random 
orientation in the representative volume and 
the material is isotropic. If λ → ∞, the symme-
try axes of the microcracks are oriented strictly 
along the preferential direction and the mate-
rial is transversely isotropic with the symmetry 
axis coinciding with m. To average the elements 
of the tensor basis, let us integrate them with 
respect to the surface of a semisphere 1/2Ω  of 
unit radius:
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If the spheroid axes of symmetry n are ran-
domly oriented in a certain plane normal to m, 
the material is transversely isotropic and its axis 
of symmetry is co-directional to m. To average 
the tensor basis elements, let us integrate them 
with respect to a unit circle l1 lying in a plane 
normal to m:
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2
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�
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The averaged values of the elements of 
transversely isotropic basis are given in the 
Appendix. 

The choice of homogenized domain Ω used 
in the Maxwell scheme to account for the in-
teractions of inhomogeneities is discussed in 
detail in [22].

In case of spheroidal inhomogeneities, this 
domain is also a spheroid with the aspect ratio 
of semiaxes expressed as
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where Qijkl, Pijkl are Hill’s tensor components Q 
and P, respectively.

In general, the shape of homogenized domain 
depends on concentration, orientation and shapes 
of inhomogeneities. If the inhomogeneities have 
isotropic orientation distribution, the shape is 
spherical. Otherwise, if the material contains 
spherical pores of the same size and spheroidal 
microcracks of the same size and shape, we 
need to define the quantity
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After we find the components of the effective 
compliance tensor, Seff

ijkl, we can determine 
effective Young’s moduli. To be definite, let us 
assume that the symmetry axis of the material 
coincides with the direction e3 of the Cartesian 
basis (e1, e2, e3).

Then the effective Young’s moduli of the 
transversely isotropic material Eeff

11 = Eeff
22, E

eff
33 

can be calculated as follows:

11 22 33
1111 3333

1 1,  .eff eff eff
eff effE E E

S S
= = = (17)

Results and discussion

In this study, we found the effective elas-
tic properties of steel with shear modulus μ0 = 
80 GPa and Poisson’s ratio ν0 = 0.3. Young’s 
modulus of steel E0 follows the expression

E0 = 2 μ0(1 + ν0).

If the inhomogeneities have random 
orientation distribution, the material is 
isotropic, i.e., 

1ì ,
3

eff eff effK  = + − 
 

S II J II (18)

where Keff and μeff are the effective values of the 
coefficient of compressibility and shear modu-
lus respectively.



St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (2) 2020

142

Fig. 1, а shows the dependencies of moduli 
Keff/K0, μeff/μ0 on porosity of the material φ for 
a spherical pore (γ = 1) and a spheroidal mi-
crocrack (at γ = 0.1). Evidently, the porosity 
of the material with spherical inhomogeneities 
may theoretically reach 100% (the material 
disappears). In case of microcracks of oblate 
spheroidal shape, the elastic moduli approach 
zero at porosities less than 100% (around 26% 
at γ = 0.1). Negative values of elastic mod-
uli at high concentrations of inhomogeneities 
indicate that the problem of homogenization 
cannot be solved correctly for this material.

Thus, the acceptable porosity of the mate-
rial is defined by a relation between the as-
pect ratio of the microcrack semiaxes. To take 
this correlation into account, we can introduce 
crack density into the model

ρ = (4/3)πa3N/V

(N is the number of microcracks) [17], related 
to porosity φ as φ = ργ. 

Fig. 1, b shows the dependences of moduli 
Keff/K0 and μeff/μ0 on crack density. 

To find a possible explanation for the limited 
acceptable porosity, we studied the dependence 
of effective shear modulus μeff

12/μ
0 on porosity 

for different scatter parameters λ. We consid-
ered spheroidal microcracks with γ = 0.10 and 
0.05. The results are shown in Fig. 2.

The results indicate that given the same as-
pect ratio of spheroid semiaxes γ, the porosity 
of the material may theoretically reach 100% 
if it contains parallel oriented microcracks (λ 
→ ∞), or, if the microcracks deviate from the 
preferential orientation, the acceptable poros-
ity decreases, reaching the minimum with an 
isotropic distribution (λ = 0). As evident from 
comparing Figs. 2, a and b, spheroids with a 
high value of γ have a higher value of acceptable 

Fig. 1. Dependences of moduli Keff/K0 (solid lines) and μeff/μ0 (dashed lines) 
on porosity of material (a) and density of cracks (b).

Pores are modeled by spheres (1, 2), microcracks by spheroids 
with aspect ratio of semiaxes γ = 0.1 (3, 4)

a)	 b)

Fig. 2. Dependence of effective shear modulus μeff
12/μ

0 on porosity of material 
at aspect ratio of spheroid semiaxes γ = 0.10 (a) and γ = 0,05 (b).

Scatter parameter λ = 0 (dashed lines), λ = 10 (solid lines)  and λ→∞ (dotted lines)

a)	 b)
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porosity. Apparently, when porosity reaches a 
certain value depending on the degree of devi-
ation of spheroid microcracks from the prefer-
ential orientation, as well as on their degree of 
oblateness, multiple narrow microcracks cannot 
be regarded as isolated. Since this assumption 
is actually adopted for self-consistent schemes 
(which also include the Maxwell method), more 
accurate methods need to be found to account 
for the mutual influence of inhomogeneities.

We determined the dependences of effective 
Young’s moduli Eeff

ii/E
0 on porosity of material 

φ for three case of orientation distribution of 
inhomogeneities: 

isotropic distribution (I), 
preferential orientation with the scatter 

parameter λ (II), 
random distribution of symmetry axes of in-

homogeneities in a certain plane (III).

We assumed that the material contained two 
types of inhomogeneities: oblate spheroidal mi-
crocracks with γ = 0.1 and spherical pores. 

Total porosities φ of all inhomogeneities 
were taken in the range between 0 and 10%.

Materials with the following types of micro-
structure were considered: 

only oblate spheroids are present (φmc = φ, 
φp = 0); 

ratio of total volume of oblate spheroids 
to total volume of pores is 2 : 1 (φmc = 2φ/3, 
φp = φ/3); 

total volume of oblate spheroids equals total 
volume of pores (φmc = φ/2 = φp); 

only pores are present (φmc = 0, φp = φ). 
Fig. 3 shows the computational results tak-

ing into account the given conditions. As ex-
pected, an increase in porosity leads to a de-
crease in elastic moduli in all cases. Evidently, 

Fig. 3. Dependence of moduli Eeff
ii/E

0 on porosity of material 
for different orientation distributions of inhomogeneities

 (γ = 0.1): I (а), II (при λ = 10) (b, c) and III (d, e) (see explanations in the text). 
The following types of microstructures were considered: φmc = φ, φp = 0 (1); 

φmc = 2φ/3, φp = φ/3 (2); φmc = φ/2 = φp (3); φmc = 0, φp= φ (4) 

a)
	

b)	 c)

d)	 e)
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pores have less effect on Young’s modulus than 
microcracks at the same value of φ for an iso-
tropic distribution (Fig. 3, а). For example, if 
φ = 0.10, then the value of modulus Eeff

ii/E
0 ≈ 0.82 

at φmc = 0, φp = φ and Eeff
ii/E

0 ≈ 0.58 at φmc = φ, 
φp = 0. 

If microcracks have a preferential orienta-
tion in the material (Fig. 3, b, c), Young’s 
modulus along the material axis decreases 
more than Young’s modulus in the isotropic 
plane. Narrow cracks make a larger contribu-
tion to Eeff

33 compared to pores, and a smaller 
contribution to Eeff

11. Conversely, if the sym-
metry axes of microcracks are distributed in 
the isotropic plane (Fig. 3, d, e), Young’s 
modulus along the material axis decreases less 
than Young’s modulus in the isotropic plane. 
Narrow cracks make a larger contribution to 
Eeff

11 compared to pores, and a smaller contri-
bution to Eeff

33.
Next, we studied the dependence of effec-

tive Young’s moduli Eeff
ii/E

0 on the aspect ra-
tio of spheroid semiaxes γ. An increase in the 
parameter γ from 0 to 1 describes the change 
in the shape of the spheroid from a disk to a 
sphere. As established above, the total poros-
ity cannot be random in case of narrow mi-
crocracks, so the concentration of cracks was 
assumed to be constant and, thus, the total 
porosity varied due to varying γ.

Fig. 4. Dependences of moduli Eeff
ii/E

0 on parameter γ at different orientation distributions of 
inhomogeneities (crack density ρ = 0.1): I, II (a, b) and III (c) (see explanations in the text);

a, b correspond to the scatter parameters λ = 0 (dashed lines), λ = 10 (solid lines) and λ→∞ (dotted-dashed lines); 
c corresponds to the moduli Eeff

11/E0 (dashed lines) and Eeff
33/E0 (solid lines)

a)	 b)

с)

Fig. 5. Dependences of moduli Eeff
11/E0 

(dashed line) and Eeff
33/E0 (solid line) 

on scatter parameter; 
parameter values γ = 0.1, φ = 0.01 were taken
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It was assumed that crack density ρ = 0.1; 
in this case, if γ = 0.1, the total porosity of 
material amounts to 1%, which provides the 
best agreement with the experimental data. 

Fig. 4 shows the computational results for 
the considered cases of orientation distribution 
of inhomogeneities. Evidently (see Figs. 4, а, 
b), if λ > 0, the presence of oblate spheroids 
leads to a larger decrease in Young’s modu-
lus along the material axis and to a smaller 
decrease in the isotropic plane. For example, 
the values of the moduli are Eeff

33/E0 ≈ 0.86, 
Eeff

11/E0 ≈ 0.92 at λ = 10, γ = 0.5. If the symme-
try axes of microcracks have random orienta-
tions in a certain plane (see Fig. 4,с), Young’s 
modulus in the isotropic plane of the material 
is more sensitive to the decrease of the as-
pect ratio γ of spheroid semiaxes than Young’s 
modulus along the material axis. For example, 
we obtained Eeff

11/E0 ≈ 0.89, Eeff
33/E0 ≈ 0.92 at γ 

= 0.5. A decrease in Young’s moduli was ob-
served with an increase in γ for all orientation 
distributions of inhomogeneities, because the 
total porosity of material depends linearly on 
the parameter γ.

We considered a separate case of prefer-
ential orientation of spheroids and studied 
the dependence of effective properties of the 
material on the scatter parameter λ, taking γ 
= 0.1, φ = 0.01. Fig. 5 shows the computa-
tional results. The material is isotropic at λ 
= 0, characterized by effective Young’s mod-
ulus Eeff

ii/E
0 ≈ 0.95. As seen from Fig. 5, the 

more the symmetry axis of inhomogeneities 
deviate from the preferential orientation (with 
decreasing λ), the more significantly the ef-
fective moduli change. Different patterns are 
observed in the changes in Young’s moduli 
along the material axis and in the isotropic 
plane: Young’s modulus along the material 
axis decreases if inhomogeneities smooth out 
(λ → ∞), while Young’s modulus in the isotro-
pic plane conversely decreases with increasing 
scatter (λ → 0).

Conclusion

We have analyzed the variation in effective 
Young’s moduli of metals with microstructures 
typical for hydrogen-enhanced degradation, 
specifically, for the microstructures 
containing intergranular microcracks and 
pores. Microcracks were modeled by oblate 
spheroids, and pores were modeled by spheres. 
The homogenization problem was solved using 
the Maxwell problem in terms of contribution 
tensors. We have studied the dependences of 

effective elastic properties on porosity, degree 
of oblateness of spheroids and orientation 
distribution of inhomogeneities. We have 
established that effective Young’s moduli 
heavily depend on the aspect ratio of semiaxes 
of spheroidal microcracks and porosity of 
the material. Effective Young’s moduli along 
different directions can change to a greater or 
lesser degree depending on the orientation of 
microcracks in the material. This proves that 
it is essential to account for the structure of 
metal products (for example, layered structure 
of metal) and, consequently, the method by 
which they were produced (for example, rolling) 
when determining the characteristics of metals 
charged with hydrogen. Moreover, depending 
on orientation, microcracks can make smaller 
or greater contributions compared to pores, 
with the same concentration of microcracks 
and pores. In addition, we have found that the 
correlation between the porosity of material 
and the shape of microcracks should be taken 
into account in solving the homogenization 
problem.

Appendix

Averaged values of transversely 
isotropic basis elements

If inhomogeneities have isotropic orienta-
tion distribution, the averaged values of the 
transversely isotropic basis elements have the 
following form [16]:
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If the symmetry axes of inhomogeneities have 
a preferential orientation along the axis m with the 
scatter parameter λ, the averaged values of trans-
versely isotropic basis elements are expressed as
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If the symmetry axes of inhomogeneities 
have a random orientation along the plane nor-
mal to the axis m, the averaged values of trans-
versely isotropic basis elements are expressed as 
follows [16]:
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