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The paper considers methods for increasing stability of polyethylene’s electret state by add-
ing diatomite particles to its composition. The results of analyzing the IR spectra, the involved
materials’ temporal and temperature stability are presented. Mechanisms for improving the
stability of the composite polyethylene’s electret state are discussed.
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Introduction

Polyethylene is one of the most widely
used polymeric materials. At the moment, the
polyethylene’s electret properties are studied to
create the active packages. One of the ways to
increase the electret state stability is the creation
of the composite material [1, 2]. Studies
performed in Ref. [3] showed that adding
aerosil in polyethylene leads to a significant
improvement in the electret state stability of the
obtained composite material. Aerosil is a very
pure amorphous non-porous silicon dioxide
with a particle size of 5 to 40 nm. Diatomite
is another modification of silica. Diatomite is a
more promising material for creating composites
based on polyethylene because of its low cost.

In the work, the electret stability of
composite polyethylene with diatomite has
been compared with pure polyethylene films’
stability using various methods.

We used such methods as thermostimulated
potential relaxation, isothermal potential
relaxation, depolarization with registration of
short-circuit currents of a pre-charged dielectric
and IR spectroscopy. The film thickness was
about 1 mm.

Experimental technique

Samples were made by rolling and
subsequent pressing. The Kazan National
Research Technological University equipment
was used. High pressure polyethylene, the
brand 15313-003, GOST 7699-78 was used
for creating the composite material. Mixing
of the starting polyethylene with the filler
was carried out in a mixing chamber. The
mixing chamber consisted of 2 half cylinders
containing horizontally rotating rolls. For the
better distribution of filler particles, the rolls
rotated in the opposite directions and had
different rotation speeds. The temperature in
the mixing chamber was 420—430 K.

The films were created using the pressing
method in accordance with GOST 12019-66.
The mold was a frame between two polished
plates. Lavsan film was used to prevent the
pressed sample’s adhesion to the mold plates.
The mold with the composite material was
placed between the cooling plates, which, in
turn, were placed between the heated plates.
After the sample heating, the press plates
were closed to create the necessary pressure
and withstood the necessary time. After that,
the samples were cooled by water, then the
pressure was removed from the plates, the
press was opened and the samples were
removed.

Diatomite distribution was monitored using
a Nikon Eclipse LV150 optical microscope.
IR spectra were obtained by means of a FSM
1202 Fourier spectrometer. When studying
the electret state stability by the isothermal
and thermally stimulated potential relaxation
methods, the films were polarized in a corona
discharge at 5 kV.

Electrically active defects’ activation energy
was calculated using the Tikhonov regulatory
algorithms.

Experimental results and discussion

Our study of the composite materials
without treatment did not show a significant
effect of diatomite on their electret properties.
Earlier it had been shown that the main
mechanism of deterioration the polyethylene’s
electret properties was the presence of water
molecules in it [4 — 7]. Diatomite, being a
natural mineral, also contains water, which
can impair the composite’s electret properties.
To reduce the amount of physically absorbed
water in the composite structure, before
studying the properties, samples were annealed
in a muffle furnace for 1 h at a temperature
T =400 K.

Fig. 1. Optical images of slices of the polyethylene films including diatomite;
a filler content (% vol.) is 2 (left), 4 (in the center) and 6 (right)
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Fig. 2. IR transmission spectra of LDPE () and of the composite of LDPE + 6 % diatomite (2).
The presence of water is highlighted

The addition of diatomite to polyethylene leads
to its gray color, so that the distribution of the filler
in the polyethylene film can be controlled optically.

Fig. 1 shows the optical images of
polyethylene film’s slices with a diatomite
concentration of 2, 4, and 6 % vol. Analysis of
the filler distribution showed a uniform pattern
of diatomite in the polyethylene film.

The optical spectroscopy method is
highly effective in studying the physical and
physicochemical properties of water-containing
polymer objects [8 — 10]. Fig. 2 shows the infrared
(IR) transmission spectra of the initial low density
polyethylene (LDPE) and composite polyethylene
with 6 % diatomite. Absorption bands in the
region of 1500—1650 cm™' are associated with the
presence of water dissolved in the polymer. These

spectra show the presence of water in the initial
LDPE film and its substantial decrease with the
addition of diatomite (see Fig. 2).

In order to study directly the electret
state stability in the composite polyethylene,
the films were investigated by the isothermal
potential relaxation method at a temperature
of 343 K. The films were polarized in a corona
discharge at 5 kV for 360 s. The polarization
temperature was 360 K.

Fig. 3 shows the time dependence of the
electric potential relaxation for films of
pure polyethylene and polyethylene with
the different diatomite content. The graphs
show a significant increase in the stability of
polyethylene films when diatomite is introduced
into their composition.
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Fig. 3. The time dependences of the surface potential relaxation for pure polyethylene film
(in the inset) and composite polyethylene with the different diatomite content
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The diatomite adding into the polyethylene
films leads to the stability increasing that
it is obvious from the spectra obtained by
thermostimulated potential relaxation method
(Fig. 4). The thermally stimulated potential
relaxation spectra were obtained both for
the unannealed and annealed films of the
polyethylene with 4 % diatomite; these curves
are compared in Fig. 4. The graphs show a
significant improvement of the composite
polyethylene film’s electret state stability
after annealing. Thus, nonannealed films of
composite polyethylene with diatomite did not
exhibit high electret stability.

>

The electrically active defects’ activation
energy is one of the main characteristics of
the relaxation process of electric charge decay
[11]. To calculate this parameter, the study of
pure and composite polyethylene was carried
out by the method of thermally stimulated
depolarization (TSD). A TSC-II setup by
Setaram (France) was used for measurements.
Sensitive electrometer Keithley 6517 is the
main measuring device of the setup. The
thermostimulated currents were measured in
the temperature range between 290 and 380
K at the fixed heating rate. The heating rate
was from 5:1072 to 1,5-107' K/s. The samples

(p/(Pmax
1.0 ;':’vf AR
0.8+ Vg v .. W 0% annealed
v - O 2% annealed

0.6 v A 4% annealed

| v '. v 4% unannealed
0.4- VV - O 6% annealed

1 VY Navavivivavivs
0.2 n

] ]
00 1 1 1 T 1 .

300 325 350 375 400 T,K

Fig. 4. The temperature dependences of the surface potential relaxation for the pure annealed
polyethylene films and the composite polyethylene (unannealed and annealed)
with the different diatomite content
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Fig. 5. Thermally stimulated depolarization spectra of the pure polyethylene films and of the composite
polyethylene ones with diatomite. The heating rates (K/s) were 5-1072 (a), 1.0-107" (b) and 1.5-107! (¢).
For pure polyethylene films, the current value was reduced by 10 times
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were polarized in the electric field £ = 500 V/
mm at a polarization temperature T: = 343 K,
during a polarization time of 300 s. After the
electric field exposure for 300 s, the samples
were cooled in the applied field with a rate of
3,3-102K/s up to 293 K. The thermostimulated
currents’ spectra are shown in Fig. 5.

TSD data were processed using Tikhonov’s
regularizing algorithms. Fig. 6 shows the
reconstructed distribution functions of the
electrically active defects. It can be seen from
the graphs that the maxima shift towards the
higher energy and the distribution broadens with
increasing the diatomite concentration. Table
shows the values of the electrically active defects’
activation energy for all the compositions. The
activation energy value obtained in this work
for electrically active defects for polyethylene
without filler is in good agreement with the
results of our previous studies [12].

Summary

Our study showed that the creation of com-
posite polyethylene based on diatomite could
increase the electret stability of LDPE. The
adding diatomite to polyethylene leads to in-
creasing the charge traps’ activation energy,
at least up to a concentration of 6 vol%. Di-
atomite can be used for creating composite
polyethylene to increase its electret stability in
order to create active packages. It is important
to continue further studies of the electret sta-
bility of polyethylene composite films with a
higher concentration of diatomite and to study
other fillers containing silicon dioxide.

The research was supported by the Russian
Foundation for Basic Research (Grant No. 19-
32-90271) and the Ministry of Science and High-
er Education of the Russian Federation (Project
No. FSZN-2020-0026).

Table

The values of the electrically active defects’ activation energy
for pure and composite LDPE films

Cogégﬁ?[?;ggn, Activation energy,
% vol. v
0 1.1+0.1
) 1440.1
4 22+0.2
6 2.6+0.3

Footnote. Tikhonov’s regularizing algorithms were used.
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Fig. 6. The energy distribution functions of electrically active defects in the pure polyethylene (pe)
and the composite one with the different diatomic (d) content (% vol.)
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B/IMAHUE NIETUPYIOLLEA NMPUMECHU
HA D®OEKTUBHOCTb MPEOBPA3OBAHUA COJIHEYHOM
SHEPIUU TETEPOCTPYKTYPOM CDS/POR-SI/P-S|

B.B. Tpezayno6
Psi3aHCKMIN rocylapCTBEHHBIN yHMBepcuTeT uMenun C.A. EceHuHa,
r. PssaHb, Poccuiickas ®egepauus

B pabote uccneayercs BausiHue Npoduis pacnpefefeHUs KOHLEHTpaluu Jerupyrouniei
aKIIeNITOPHOM MpuMecH B 6a30B0ii 061acTu rerepoctpykTypbl CdS/por-Si/p-Si Ha mapameTpshl,
xXapaktepusyonme 3hQGeKTUBHOCT MMPeo0pa3oBaHMsSI COJHEUYHON BSHEPTUHU. YCTaHOBJIEHO,
YTO yKazaHHasg 3(POEKTUBHOCTL 3aBUCUT OT CTETICHN OOCTHEHUS JICTUPYIOIIEH aKICITTOPHOM
MIPUMECHIO TIPUITOBEPXHOCTHOTO CJIOSI ABIPOYHOTO KpeMHUs (p-Si), BXOHSIIETO B CTPYKTYPY
reteporiepexona por-Si/p-Si. IIpodunab pacrpeneneHus] KOHIEHTpalMU TpUMECH B JaHHOM
objiactu (opMUpPYETCSl B XOAE POCTa CJIOSI MOPUCTOTO KpeMHUs. YMpaBjieHUE XapaKTepom
npoduiis pacnpeaeeHus OCYIIECTBIICTCS Yepe3 M3MEHEHME TEXHOJIOIMYeCKUX I1apaMeTpOB
Mpoliecca pocTa MOPUCTOM IIEHKU: TIOTHOCTBIO TOKA U JUTMTEIBHOCTBIO 3JIEKTPOXUMHUYECKOTO
TpaBicHu. [ToBblmeHne 3h(HEKTUBHOCTH MIPeodpa30BaHUs COTHEUHOU SHEPTUN OOBICHSIETCS
YBEeJIMUYCHNEM TJIYOMHBI ITPOHUKHOBEHUS 3JIEKTPUUECKOTO IT0JISI BHYTPh 0a30BOM 00JacTH 3a
cueT hopMUPOBAHUS ONIPEACICHHOTIO BUAA TPOMUIISI paciipeaeeHrs] KOHIICHTPAIluU TPUMECH.
B kxoHeyHOM wuTOre BuI MNpoduis CIOCOOCTBYET OBICTPOMY BBIHOCY M3 0a30BOil o0JlacTU
HOCUTeJIel 3apsifa, TeHePUPYEMbIX CBETOM; BHIHOC MPOMCXOAMUT JO MOMEHTAa PeKOMOMHAIIMU
HOCHUTEJIeH TIpY YIaCTHU JIOBYIIICK.



Condensed Matter Physics >

KiioueBbie ciioBa: mopuCThIil KpeMHUI, TeTeporepexo, (hOTOBOIbTANYECKHUI TPe0Opa3oBaTeb,
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Introduction

Currently quite a lot of interest is being shown
in the study of the solar photovoltaic converter
based on the CdS/por-Si/p-Si heterostructure
[1, 2]. The CdS film plays the role of an optical
window and significantly expands the spectral
sensitivity region of the photovoltaic converter
[3, 4]. The por-Si layer is a buffer that reduces
the mechanical stresses arising between the
silicon substrate and the CdS film due to the
difference in the lattice constants (about 7 %)
[4, 5]. In addition, the por-Si film reduces the
reflectivity of the front surface of the CdS/
por-Si/p-Si  photovoltaic converter [4]. An
important advantage of the CdS/por-Si/p-Si
heterostructure is the absence of the need to
form a p — n junction by diffusion in p-Si. This
will reduce the complexity of the manufacturing
process of the photovoltaic cells and its cost,
which is important in mass production. Thus
the CdS/por-Si/p-Si heterostructure is relevant
for use in solar energy.

In this regard the urgent task is to develop
solutions aimed at increasing the efficiency of
the CdS/por-Si/p-Si heterostructure as a solar
energy converter.

One way to solve this problem is to increase
the collection efficiency of charge carriers
generated by light in the absorbing region of
the photovoltaic converter. It is well known
that the separation of photogenerated charge
carriers occurs under the influence of an
electric field concentrated in the space charge
region (SCR) of the photovoltaic converter
barrier layer (in our case, a heterojunction).
Due to the strong electric field the carriers are
removed from the SCR before they have time
to recombine through the participation of traps
[6]. Thus, to increase the efficiency of carrier
separation, it is advisable to create conditions
for expanding the region located inside the
absorbing layer in which the strongest electric
field is concentrated. For this purpose, it is
desirable to set up a concentration gradient
of the dopant in the surface region of the
absorbing layer of the photovoltaic converter
[6, 7]. According to Ref. [6] these methods

lead to an increase in the efficiency of solar
energy conversion due to an increase in open
circuit voltage and short circuit current.

The experimental samples studied in this
work are similar to the CdS/por-Si/p-Si
heterostructure investigated in Ref. [8] where
it was shown the largest contribution to the
photocurrent to make by charge carriers
absorbed in p-Si. In addition, the SCR of the
studied heterostructure was almost completely
concentrated in the surface region of the p-Si
heterojunction of the por-Si/p-Si. Thus, the base
region of the CdS/por-Si/p-Si heterostructure is
located in the near-surface p-Si layer close to the
por-Si/p-Si heterojunction. The charge carriers
generated by light are separated by the electric
field of the por-Si/p-Si heterojunction [8].

The high-frequency capacitance — voltage
(C — V) characteristics of por-Si/p-Si structures
were studied, and in this case the por-Si film
was formed by anodic electrochemical etching
at various values of the etching duration 7, and
the anode current density J, [9, 10]. It was
found that with an increase in J, and 7, in
silicon, a depleted dopant region was formed
near the por-Si/Si heterojunction.

In this paper, the influence of the distribution
profile of the acceptor dopant concentration on
the solar energy conversion efficiency for the
absorbing p-Si layer of the CdS/por-Si/p-Si
heterostructure has been investigated.

In order to control this distribution
profile, a por-Si film of the samples under
investigation was formed at different values
of the etching duration 7, and the anode
current density J,.

The technology of manufacturing
experimental samples

For the preparation of experimental CdS/
por-Si/p-Si samples the p-type single-crystal
silicon wafers with a specific resistance of 1
Ohm-cm doped with boron and a surface ori-
entation of (100) were used. The concentra-
tion of the doping acceptor impurity in the
silicon wafers was 1.5:10'® cm™3. The por-Si
film was made by the technique of anodic
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Table
Information on the experimental samples
No. | e ]t [ Un| o FE [0 [ W,
" | mA/cm min mV mA/cm? arb.unit. % cm™
1 10 12 365 12.1 0.6 34 42-101
2 18 10 487 16.5 0.7 5.7 9.7-10"
3 30 7 475 14.2 0.7 4.6 2.0-10
4 45 5 270 9.6 0.6 1.6 2.3-10

Symbols: J, is the anode current density, 7, is the etching duration,
U, is the open circuit voltage, J_ is the short-circuit current density,
FF is the filling factor of the current-voltage characteristic, n is the efficiency,

N, is the concentration of traps.

electrochemical etching in the galvanostatic
mode. An electrolyte consisting of HF and
C,H,OH in a ratio of 1:1 was used. Several
samples were made with different values of J,
and 7, (See Table). The time 7, values for the
samples were chosen so that the por-Si film
thickness at different J, values was approx-
imately the same. After the por-Si film was
grown, the surface of the samples was etched
in an aqueous HF solution (10 %) for 10 min.
The por-Si film thickness for all samples was
2.2 £ 0.3 pm.

A CdS film was formed on the surface of a
por-Si layer by the method of chemical bath
deposition (from aqueous solutions). A CdCl,
solution with a concentration of 0.44 M was
used as a source of cadmium ions. A N,H,CS
(thiourea) solution with a concentration of
0.22M was used as a source of sulfur ions.
A concentrated aqueous NH,OH (ammonia)
solution was used as a complexing agent.
At first, an ammonia solution was added to
the CdCl, one until the precipitate com-
pletely dissolved, then the same volume of
an aqueous thiourea solution was added to
the resulting solution. The temperature of
the solution was brought to 90° C, substrates
with a por-Si film were immersed in it, and
a CdS film was grown for 20 min. The CdS
layer on the back side of p-Si was completely
etched with a 30% HCI solution. Samples
were washed with distilled water and dried
in the oven. For all samples, the CdS film
thickness was 1.8 = 0.2 um.

For electrical measurements, ohmic con-
tacts were formed on opposite surfaces of the
sample to the p-Si substrate and the CdS film
by soldering indium.

14

The used investigation technique

In order to study the distribution profile
of the dopant concentration in the base
region of the structure given above, the
C — V characteristics were measured at a
frequency of 1 MHz at a reverse bias. The
reverse bias corresponds to the application of
a positive value of the constant bias voltage
U to the contact on the CdS surface and
negative U to the contact on the p-Si. The
measurements of the samples were carried
out using an E7-20 digital immitance meter
(MNIPI, Belarus) at a temperature of 300 K.
It is known that the high-frequency C — V
characteristic C(U) measured at reverse bias
reflects the dependence of the capacitance
barrier component on the applied voltage
and allows one to determine the impurity
concentration in the base region of the
studied semiconductor structure:

N, = 2 2(dC(U)-j | 0
qee,S dU

where ¢ is the electron charge, ¢ is the dielec-
tric constant of the semiconductor material of
the base region of the studied heterostructure
(silicon), ¢, is the vacuum dielectric constant,
S'is the sample area [7].

The value of the x coordinate is calculated
by the formula [7]:

&&g,S

= Cy ®)

The combined use of formulas (1) and (2)
allows us to calculate the distribution profile of
the concentration of the dopant N,(x) in the
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base region of the investigated semiconductor
structure.

The calculation of the distribution profile
of the electric field in the SCR of the studied
samples was carried out as follows [7]:

q
E(x)==—=N,(x)-(x=W), (3
e,
where W is the width of the SCR.
The main characteristics of solar

photovoltaic converters with heterojunctions
are significantly affected by surface states, and
also traps with energy levels located in the
bulk of the base region [6]. In order to obtain
information about traps, we studied the C — V'
hysteresis measured at a frequency of 1 MHz in
the region of reverse biases.

Despite the fact that at high frequencies
the charge in traps with deep energy levels
does not have time to follow the measuring
signal, it affects the value of W and the value
of the high-frequency capacitance [11]. To
evaluate the influence of traps, one can
compare the C — V characteristic, measured
with the forward bias of a constant bias
voltage from 0 to a certain limiting value U,
(C,(U)), and measured with a reverse scan
from U to 0 (C (U)). In the absence of
traps, the C, (U) and C (U) curves should
coincide completely. In the presence of traps
a hysteresis phenomenon is observed — the
C, (U, and C (U) curves differ [12]. Thus,
by analyzing the width of the hysteresis
band formed by the C, (U) and C (V)
curves, we can obtain information about
traps in the SCR.

Condensed Matter Physics >

The value ofthe barrier capacitance is determined
by the ratio of the charge increment in the SCR to
the magnitude of the voltage change [7]:

d
c=99. (4)
dUu
Hence, the charge Q concentrated in the
SCR, when the constant bias voltage changes
from U, to U,, can be expressed as follows:

U2
0=|[c(U)au. (5)
U,

On the other hand, the charge Q is
determined by the volume concentrations of
the dopant N, and of the traps N, as well as
the SCR thickness W:

Q:q(Nb+Nt)WS, (6)
Given the hysteresis of the C — V curves and

using Egs. (5) and (6), for the concentration of
traps we can write the following expression:

1
qWs

where U is the limiting value of the constant
bias voltage to which the constant bias voltage
U is scanned.

To evaluate the efficiency of solar en-
ergy conversion by CdS/por-Si/p-Si samples,
we measured the open circuit voltage U ,
short-circuit current density J , filling factor
of the current — voltage characteristic FF and
efficiency n under illumination under AM1.5.

Nt = J£1|Cin (U)_Cout (U)|dU’ (7)

/872 10" (Flom” )™

2 3

Uv

Fig. 1. Capacitance — voltage characteristics of samples No. 1 (o), No. 2 (¢), No. 3 (o), No. 4 (A),
measured at a frequency of 1 MHz with reverse bias; .S is the sample area
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Experimental results

Capacitance — voltage characteristics of the
samples under study, measured in the region
of reverse biases, are shown in Fig. 1 in the
form of the dependence (C/S)? = A U). For
sample No. 1, the graph in Fig. 1 is close to a
straight line. For samples No. 2 — No. 4, the
dependence (C/S)? = f{U) noticeably deviates
from the linear one, which indicates the
presence of an impurity concentration gradient
in the base region (see Fig. 1).

The profiles of the distribution dopant
concentration N,(x) in the surface layer of
the base region of the samples under study,
calculated by Egs. (1) and (2), are shown in
Fig. 2. For sample No.l, the N, value varies
slightly with the x coordinate and is close to the
acceptor impurity concentration (1.5-10'° cm™)

>

in silicon wafers used as a substrate for the
manufacture of the samples. For sample No. 2,
the value N, increases linearly with increasing
x to a value close to 1.5-10'° cm™. Samples
No. 3 and No. 4 are characterized by a more
complex dependence N,(x). Thus, for samples
No. 2 — No. 4 an acceptor impurity is depleted
in the surface layer of the base region directly
adjacent to the por-Si/p-Si heterojunction.
With an increase in x the value of N, tends to a
value close to 1.5-10'°cm™.

The electric field distribution profile
E(x) for the studied samples calculated by
Eq. (3) is presented in Fig. 3. Sample No. 1
exhibits a linear dependence E(x) with a sharp
heterojunction. The maximum value of E for
samples No. 1 — No. 3 practically coincides.
The region width bounded by the dependence

N, 101 cm™

1.5¢

1.0

0.5

0 0.2

04 0.6 0.8 x,um

Fig. 2. Distribution profiles of the concentration of acceptor impurities in the base region of samples
No. 1 (o), No. 2 (¢), No. 3 (o), No. 4 (A)

1.5

0 0.2

0.4

0.6 0.8 x,um

Fig. 3. The distribution profiles of the electric field in the base region of samples
No. 1 (o), No. 2 (0), No. 3 (o), No. 4 (A)
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C, nF

034

0.2

0.1 |
0 1

2 3 Uv

Fig. 4. Capacitance — voltage characteristics of sample No. 2 for a forward sweep
of a constant bias voltage (solid line) and reverse (dashed line)

E(x) is maximum value for sample No. 2.

In order to estimate the traps concentration
N, the C — V characteristics of the samples
were measured at direct C (U) and reverse
C (U scans of a constant bias voltage U in
the range 0 — 4 V. For all the samples studied
the behavior of the C, (V) and C (V) is almost
identical. The curves C (U) and C (U) for
sample No. 2 are shown in Fig. 4. The C, (U)
and C (V) curves noticeably differ in the range
of U values from 0 to 2 V; for U > 2 V this
difference practically disappears (see Fig. 4).
This behavior of the curves in Fig. 4 can be
explained by a more noticeable effect on the
barrier capacitance of traps localized at the
por-Si/p-Si heterojunction (surface states) as
compared to traps located in the bulk of the
base region of the samples.

The values of U , J , FF and n, character-
izing the efficiency of solar energy conversion
of the studied samples, are presented in Table.
The highest efficiency of solar energy conver-
sion is characterized by sample No. 2; sample
No. 3 is close to it; sample No. 4 has the lowest
conversion efficiency compared to samples No.
1 — No. 3 (see Table).

Discussion of the experimental results

The efficiency of a solar photovoltaic con-
verter with a heterojunction is significantly af-
fected by surface states and traps located in the
volume of the absorbing region [6]. However,
it is impossible to draw an unambiguous con-
clusion about the effect of the concentration
N, on the solar energy conversion efficiency
of experimental samples from the Table. So,
sample No. 4 has significantly lower values

of U, J, and n compared to sample No. 3.
Moreover, for these samples the value of N,
changes slightly. Sample No. 2, characterized
by the highest conversion efficiency n, has an
N, value close to samples No. 3 and No. 4. At
the same time sample No. 1 which occupies
an intermediate place between samples No. 3
and No. 4 in terms of conversion efficiency n,
is characterized by the lowest N, value of all
the samples studied. Moreover, the N, value of
sample No. 1, is significantly less than for the
remaining samples. Thus, the value of N, does
not have a decisive influence on the parameters
characterizing the conversion efficiency of the
studied samples.

An analysis of the hysteresis for the C — V'
characteristics (see Fig. 4) shows that the ca-
pacitance decreases upon reverse sweep U. In
Ref. [11] the decrease in the SCR capacitance
was explained by the emptying of the traps of
minority charge carriers. This situation can be
illustrated by zone diagrams in Fig. 5.

The SCR of a width W is almost completely
concentrated in the surface p-Si layer near the por-
Si/p-Si heterojunction. At this heterojunction,
surface states characterized by energy levels of £
are localized, and traps with energy levels of £
can also be contained in the bulk of the p-Si base
region (see Fig. 5). It was shown [§8], that the
of current flow mechanisms in the studied CdS/
por-Si/p-Si heterostructure are determined by the
traps with activation energies occupying a wide
range of values. For the purpose of simplification,
only one volumetric energy level E, is shown
in Fig. 5. At U= 0 V (see Fig. 5,a), the band
bending in the p-Si region is determined by the
value of the diffusion potential V,. In this case
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I
a)

por-Si

p-Si

b) Eg I

p-Si

Fig. 5. The band diagram of the CdS/por-Si/p-Si heterostructure at U= 0V (a)
and for some value of reverse bias U (b); see explanations in the text

the energy levels of the E and E_ traps located
within the SCR of the por—S1/p Si heterOJunctlon
are filled with charge carriers if they are below the
Fermi level £ and emptied if they are above E..

In the reverse bias (see Fig. 5,b), the band
bending in the SCR increases by the value of
the applied voltage U, the energy levels of the
traps below E_ are filling with carriers. Upon
subsequent change in the scanning direction U
to 0 V the bending of the zones decreases, and
a transition to the conditions shown in Fig. 5,a
takes place. This is accompanied by the depletion
of the energy levels of the £ and E_ traps.
Moreover, the dominant contribution to the
relaxation process is made by the energy levels of
minority carrier traps in the p-Si layer.

The most probable cause of the observed
differences in the efficiency parameters of the
studied samples (see Table) may be the difference
in the character of the dependence E(x) in
the SCR of the base region of the por-Si/p-Si
heterojunction (see Fig. 3). In turn, the form
of the dependence E(x) is determined by the
distribution dopant concentration profile N,(x)
(see Fig. 2). Referring to Figs. 2 and 3, depletion
of the p-Si surface region by an acceptor impurity
for samples No. 2 and No. 3 leads to a noticeable
extension of the E(x) curves towards an increase
in x as compared to that of sample No. 1, for
which the N, value weakly depends on x within
the SCR. Moreover, the efficiencies of samples
No. 2 and 3 are significantly higher as compared
to that of sample No. 1. The near-surface layer of
the p-Si region of sample No. 4 is more depleted
in acceptor impurity than those of samples No. 1
— No. 3 (see Fig. 2). As a result, the electric field
inside the SCR is noticeably lower for sample No.
4 than those for the remaining samples (see Fig.
3). Sample No. 4 exhibits the lowest conversion
efficiency of solar energy as compared to those
for the rest of the studied samples.

Thus, an increase in the conversion efficiency
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of solar energy of the studied samples can be
explained by an increase in the penetration depth
of a strong electric field into the base region.
The charge carriers generated by the light inside
this region are carried away by the electric field
before they have time to recombine through the
participation of traps. Thus, the depletion of the
doping impurity in the near-surface p-Si layer
which is in the immediate vicinity of the por-
Si/p-Si heterojunction, is an aid to the expansion
of the region in which the strongest electric field
is concentrated. At the same time an increase in
the depletion of the base region with an alloying
impurity observed for sample No. 4 leads to a
decrease in the electric field strength (see Fig. 3)
and a decrease in the efficiency of solar energy
conversion (see Table).

The depletion of the p-Si surface region
occurs during the formation of a por-Si film.
One of the causes of depletion may be the partial
etching of impurity atoms from the surface
of silicon crystallites during the formation
of a porous layer [13]. Another cause of the
depletion may be a partial compensation of the
main dopant by defects, including those having
deep energy levels localized on the surface of
silicon crystallites [9, 13].

Numerous studies have shown that por-Si
films formed on single-crystal silicon substrates
are complexly structured [14 —16]. The por-Si
film is formed by silicon crystallites separated
by pores. The average crystallite diameter
increases as it moves from the outer surface of
the por-Si film to the single-crystal substrate
[16]. Thus, a clearly defined boundary
between the porous film and the single crystal
substrate may be absent. As a result, the por-
Si/p-Si heterojunctions of the samples studied
in this work can be located inside the largest
silicon crystallites in the lower region of
the por-Si film. The states localized on the
crystallite surface can contribute to partial



\

compensation of the acceptor dopant in the
surface layer of the base region of the samples
under study.

Summary

The relationship between the distribution
profile of the dopant acceptor impurity
in the base region of the CdS/por-Si/p-Si
heterostructure and the solar energy conversion
efficiency parameters has been established.
It was shown that the conversion efficiency
depends on the degree of depletion of the p-Si
surface layer doping with an acceptor impurity
located in the immediate vicinity of the por-
Si/p-Si heterojunction. The formation of this
depletion region occurs as a result of a por-Si
film growing. By changing the main parameters
of the por-Si growth process (7, and J,) one can
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control the impurity distribution profile and
the efficiency of solar energy conversion. Thus,
in order to increase its efficiency, one of the
directions of optimizing the technology of the
solar photovoltaic converter based on the CdS/
por-Si/p-Si heterostructure is the selection of 7,
and J, parameters for por-Si film growing. An
important advantage is a forming of the depleted
region not requiring a separate technological
operation. The concentration distribution
profile is formed in the process of growing the
por-Si layer. In production conditions this will
reduce the cost of manufacturing a photovoltaic
converter.

The obtained data can be useful in the
development of solar photovoltaic converters
and optical sensors based on the CdS/por-Si/
p-Si heterostructure.
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OLLEHKA BO3MO>XHOCTEW RANS-MO/EJIEA
TYPBYJIEHTHOCTM MO PE3YJ/IbTATAM PACYETOB
CBOBOHOW KOHBEKLIUU, PA3BUBAIOLLLEMCSA BBJIU3U
BHE3AMNMHO HATPETOM BEPTUKAJIbHOM NMJIACTUHDI

A.M. JleBueHs, C.H. TpyHoBa, E.B. KonecHuk
CaHkT-MNeTepbyprckuii NONUTEXHUYECKUI yHUBEpCUTET MeTpa Benukoro,
CaHkT-lNeTepbypr, Poccuiickas ®eaepauus

B pabore mpencrtaBieHbl pe3ylbTaThl TeCTUpPOBaHUS HecKoJbkuX RANS-mopeneit
TypOYJEHTHOCTM Ha TIpUMepe PpelIeHWs 3amadyd pa3BUTUSL BO BpPEeMEHU CBOOOIHOI
KOHBEKIIMM BO3IyXa Vy IIOBEPXHOCTH BHE3AITHO HArpeToil Oe3rpaHWYHON BepTUKAILHOMN
IUTACTUHEI. Pe3yabTaTel pellleHWsT ¢ MCITOJIb30BAaHMEM PAa3IMIHBIX MOJEJICl COMOCTABIICHEI C
JIMTEPATypHBIMU TaHHBIMH, TTOJYYCeHHBIMM METOAOM IIPSIMOTO UMCJICHHOTO MOMIEIMPOBAHMSI.
YucieHHble PEIICHMS IIOJIY4YeHbI C MPUMEHEHMEM 4YeThIpeX MoOIeJeil, OB M3 KOTOPBIX
OCHOBaHbI Ha KOHIIECTILIMU U30TPOITHOI TypOYJICHTHOI BSI3KOCTH, a OCTaJbHBIC IIPEAIOIaraloT
pellleHre YpaBHEHMI ITepeHOca KOMIIOHEHT TeH30pa PEHOIbICOBBIX HaNpsLKeHU. TTomydeHb
XapaKTEePUCTUKN TEUCHUST M TEINIOOOMEHA Ha Pa3HBIX CTAAWSIX Pa3BUTUS MMOTPAHUYHOIO CJIOS
— OT JJaMMHApHOTO pexXuma A0 TypOyiaeHTHoro. Ha ocHOBe comocTaBIeHUS TOJYYEHHBIX
pe3ylnbTaTOB C HAHHBIMUA TIPSIMOTO YHCJICHHOTO MOICIUPOBAHUS CHEJIaHBl BBIBOIBI O
MpeacKa3aTeIbHbIX BO3MOXHOCTSX paccMOTpeHHbIX RANS-Mopeneil TypOyaeHTHOCTH.
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Introduction

Free-convection flow near the surface of
a vertical heated plate has long been the fo-
cus of attention because correctly predicting
heat transfer in boundary layers is important
for many practical applications. The Time-
Developing approach considering the tempo-
ral evolution of the flow is an efficient com-
putational method for analysis of developing
boundary layers.

The approach basically consists in describ-
ing the temporal evolution of a boundary layer
instead of the spatial evolution (the Spatial ap-
proach), which is usually observed in practice.
Thus, time serves as a sort of coordinate axis
along which the flow evolves. In contrast with
other methods simulating flow evolution along
the longitudinal (spatial) axis, this approach
allows to significantly reduce the size of the
computational domain and consequently the
total computation time.

The Time-Developing approach is very
popular for simulations of dynamic turbulent
boundary layers on plates in axial flow [1, 2].
In particular, Ref. [1] discussed a laminar-tur-
bulent transition in a boundary layer at high

lg
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turbulence. For this purpose, Time-Developing
Direct Numerical Simulation (TDDNS) was
used to solve a model problem of a bound-
ary layer evolving on an infinite plate in isoy
tropic turbulent fluid of zero mean velocity,
with the plate suddenly set in motion in its
plane. The method was used in [3] to solve
problems of free convection for the first time,
while [4] presented promising and detailed
computational results based on this method.

Although only DNS methods can yield the
most complete data on the laminar-turbulent
transition, whether semi-empirical RANS
turbulence models can provide a satisfactory
description of the transition is still open to
question [5]. Furthermore, it is undoubtedly
interesting to assess the efficiency of different
turbulence models for simulations of the flow
in fully developed turbulent free-convection
boundary layers, both for the models based
on isotropic turbulent viscosity [6] and for
Reynolds stress models [7].

Notably, the choice of suitable turbulence
models is especially critical for simulation
of complex free-convection flows, including
free-convection layers perturbed by different

Fig. 1. Schematic for problem statement of turbulent free-convection boundary layer
developing along an infinite heated vertical plate: a corresponds to the plate (shaded)
with the surrounding ambient (cube); b to velocity (/) and temperature (2) distributions
of the ambient air depending on the distance from the plate
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kinds of obstacles. For example, [8] reports on
RANS simulations (using the SST k- model)
for flow around a cylinder of finite height
mounted on a vertical heated plate, while a re-
cent paper [9] presents simulations and experi-
ments the same configuration.

The goal of this study consisted in assessing
the performance of several RANS turbulence
models by comparing the numerical solutions
that we obtained with the test (reference) data
from literature [4] for a model problem on
the time evolution of free convection along
an infinite vertical plate. We used the ANSYS
Fluent 18.2 package for the computations.

TDDNS method as a source of test data

We consider a model problem of free con-
vection developing along an infinite suddenly
heated vertical plate. The flow diagram is
shown in Fig. 1. The parameters of the prob-
lem in this section (described identically to [4])
correspond to the conditions of earlier well-
known experiments [10] on a free-convection
layer developing along a vertical plate (along
the spatial coordinate). The parameters are
given in Table.

The mathematical model taken for describ-
ing turbulent free convection of incompress-
ible Newtonian fluid with constant physical
properties is based on a system of unsteady 3D
Navier—Stokes equations complemented with
an energy balance equation, taking into ac-
count buoyancy effects in the gravity field in
the Boussinesq approximation:

ou,
p%+puj%=—g—i+%i—pBT(T—7;)gi,
i=1,2,3; (1)
pc a—T+pc u@_T:%
P ot " ox;  ox,

Here u, are the components of the veloc-
ity vector V in Cartesian coordinates (x = x,,
Yy =x,); p (Pa) is the pressure, T (K) is the
temperature, p (kg/m?) is the density and c,
(J/(kg-K)) is the heat capacity of the air.

The components of the viscous stress ten-
sor t and the heat flux density vector q due
to molecular thermal conductivity are found,
respectively, using Fourier’s law and Newton’s
law of viscosity:

q,=—M0T/ox,), j=123, ()
= _‘+ J , ', ':1,2,3.
Ty M[axj axl.] a ¥

The space shaped as a rectangular paral-
lelepiped adjacent to the plate acts as the com-
putational domain in TDDNS computations
(Fig. 1,a). The outer boundary parallel to the
wall is assumed to be permeable, with constant
pressure p and temperature 7, given. Periodic

Table
Problem parameters
Parameter Notation Unit Value
Plate temperature T, K 333.15
Ambient temperature T, K 289.15
Ambient density p kg/m? 1.135
Ambient viscosity n Pa-s 1.906-107°
Ambient thermal conductivity A W/(m-K) 0.0274
Heat capacity at constant pressure C J/(kg-K) 1006
Coefficient of thermal expansion B 1/K 3,458-10°
Prandtl number Pr — 0.71

Notes. 1. Physical properties of the air were assumed to be constant, computed at the

average temperature Tf =(T,+T)/2.

2. Coefficient p was computed at the temperature 7= T .

3. Prandtl number Pr = ¢ p/.
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conditions are imposed in homogeneous coor-
dinates (vertical (x) and transverse (z)). After
the flow fields are computed, they averaged
along the homogeneous coordinates (along the
x and z axes) at the next time step, so that
the unsteady problem can be considered sta-
tistically one-dimensional, where the averaged
parameters of the flow change only along the y
axis (Fig. 1, b).

The notion of integral thickness of the ve-
locity boundary layer is introduced to construct
the dimensionless parameters characterizing
the given flow at different instants in time. This
quantity can be found by the following formula
(integration with respect to y is performed over
the entire ambient):

T u
o= |—dy. 4
Jo@ 4
Dimensionless temperature is also introduced:

0=(T-T,)/(T,-T.). )

The thickness of the temperature boundary
layer &, is defined as the coordinate y, where
0 =0.01.

The Grashof number, the Nusselt num-
ber, and the dimensionless friction constructed
based on the boundary layer thickness are de-
fined as follows:

= gBAT63/v2 , (6)
=q,8/(\MAT), (7)
T=1,/(pgBATS). (8)

where AT = T — T is the temperature differ-
ence between the plate and the ambient.

Detailed data on the TDDNS model are
given in [4] for the skin friction coefficient and
the Nusselt number depending on the Grashof
number, along with data on the mean velocity
and temperature profiles and turbulence char-
acteristics at different Gr,; these data are used
for comparison in our study.

Problem statement based on
the RANS approach

The given time-developing flow is simulated
based on Reynolds-averaged Navier—Stokes
equations (RANS), initially introducing
averaging along homogenous coordinates (x
and 7). As a result, we obtain unsteady one-
dimensional equations with respect to the

24

mean axial component of velocity u and the
mean temperature 7:

8u 0 (Txy + Tt,xy )
Ot oy

e, L2
P ot " op\ b

_pBT (T_Ta)ga

+4,,)-

In this case, the transverse velocity v is taken
to equal zero.

Considering the resulting unsteady one-di-
mensional problem, we can see that only two
components of the turbulent stress tensor and
the heat flux vector remain; these are t - and
q,, reflecting turbulent transfer along a normal
to the wall:

)

_ A
T, =—PUV,

(10)

q,,=—pc, VT, (11)
(the prime denotes the fluctuating components,
the overbar denotes averaging in homogenous
coordinates).

System of equations (9) is open in order
to find a method for computing the turbulent
components of the stress tensor (10) and the
heat flux density vector (11). To this end, we
used semi-empirical turbulence models (de-
scribed below).

Notably, we obtained the solutions below us-
ing the ANSYS Fluent general-purpose code,
where one-dimensional problems are solved as
two-dimensional by introducing conditions for
translation homogeneity. The no-slip condition
and constant temperature 7, are imposed on the
wall. The outer boundary parallel to the wall is
assumed to be permeable with constant pressure
and temperature given. Periodic conditions are
imposed for the homogeneous coordinate x. It
is assumed that the air has the temperature 7,
at the initial time and is generally stationary. At
the same time, there is initial turbulence in the
region, characterized by the following parame-
ters: turbulence intensity / = 0.1%, turbulent to
molecular viscosity ratio v/v = 0.1.

Turbulence models

Let us describe the general (three-dimen-
sional) formulation of the turbulence models
available in the ANSYS Fluent code that we
used for our computations. These are two mod-
els based on the Boussinesq hypothesis (SST k-
and RNG £-¢), and two Reynolds stress models
(DRSM Stress-omega and DRSM StressBSL).
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According to the Boussinesq hypothesis, the
components of the turbulent stress tensor and
the turbulent heat flux with averaged flow pa-
rameters are related as:

Ou, Ou,

i = +—= |+2k3,,

T (8)@ ox, j 3 (12)
ou, Ou,) 2

1 = k8

Tt ij M’[@x,—i_@x ]+3 (13)

where k£ = 1 /ZE;’L{; is the turbulent kinetic en-
ergy, W, is the turbulent viscosity, A, is the tur-
bulent thermal conductivity;

A =c,u, /Pr,. (14)

Expression (14) is based on the hypothesis
that the processes of turbulent transfer of mo-
mentum and heat are similar, introducing the
turbulent Prandtl number Pr, whose value is
taken to be constant in the computations. The
system is closed by the semi-empirical turbu-
lence model to find the turbulent viscosity p.
The results below were obtained using the SST
k- and RNG k-¢ models described in [11, 12].

In case of differential Reynolds stress mod-
els, the following differential equation is solved
for each of the six independent components of
the Reynolds stress tensor:

0 —— =
P uu; +puy —uu; =

ot "’ ox,
(D"’ +D; )+P +Q, —

where D’" D’ are the terms reflecting molecular
and turbulent diffusive transfer, respectively; P,-,-
is the generation term; ¢, is the term responsi-
ble for redistribution of energy between tensor
components, ¢, is the dissipation term.

The equations for the terms related to mo-
lecular diffusion D’" and generation P are writ-
ten as follows (no "closure relations are neces-
sary in this case):

o
Dy - ai[u_]
x, | Ox,

B - pt—a +—6J )
i ik T~ ik A |*
! ox, 7 "ox,

As other terms of Eq. (15), I Vs @y € CON-
tain higher-order moments, they are computed
using closures relating these terms and the av-
eraged flow parameters.

Let us describe the specific form of the re-
lations for the two models used in this study:

(15)

lj,

(16)

Stress-omega (referred to as DRSM SO,
i.e., Differential Reynolds Stress Model
Stress-Omega),

StressBSL (referred to as DRSM BSL,
i.e., Differential Reynolds Stress Model
Stress-BSL).

These models differ by certain closure rela-
tions and constant values.

Similar to molecular diffusion, we introduce
the coefficient of turbulent diffusion propor-
tional to turbulent viscosity for the term re-
flecting turbulent transfer:

o
Yoox, | o, Ox,
According to the DRSM SO model, the co-
efficient 6, = 2.
The coefficient 6, un the DRSM BSL model
is defined by the relation

o, =Fo., +(1-F)o,,.

(18)

(19)

where ¢, = 2.0, 5, = 1.0, and function F, is
defined using the formulas
F = tanh(CDf), (20)
. Jk
@, = min| max ,
0.090y
(21)
500u 4pk
p'o)oc,,Dp" |
D! =ma 2p118_k8_03 0'°
® Ox; OX, (22)
G, =1.168,

where y is the distance to the wall.

The term responsible for redistribution of
energy between tensor components has the fol-
lowing form:

0, ==CPBi, |l ~2/38,k |-
—i,[ B -1/3R,3, |-
DIJ _1/3 Pkk6[ :I k'YO [

(23)
~1/38,8, |,

Bo[

—0u, ——0u
D. =—p|luu —*+u'u, —~|, 24
i pl:ul”k axj uu, axi:l (24)
ou ou,
S. = 25
v {8}6 Ox . } (25)
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The coefficient p*,,, is defined as follows for
the DRSM SO model:

Bas =B /5, B =0.09, (26)
L %, <0
* — 2

Sy 1+640x§’ v >0 (27)
14400y,

1 ok oo ’

X o’ dx, dxj' (28)

The coefficient p*,,,, = p° for the DRSM
BSL model.

The rest of the constants are given using the
following formulas (identical for both models):

. 8+N ~  8N,-2
a BO fl 9
2
. 60N2—4 (29)
Yo 55
where C, = 1.80, C,= 0.52. (30)

The dissipation term is calculated by intro-
ducing an additional scalar variable, the spe-
cific dissipation :

£, =2/38,pBrsy k. (1)

The value of the constant f°,, is found in
the same manner as for the term ®; (see Eqgs.
(26)—(28)).

The turbulent kinetic energy is calculated as
follows:

k=1/2uu. (32)

Turbulent viscosity is calculated by the fol-
lowing formula:
H’ - a‘* % )
0]
We need to define specific dissipation o to
close the system. For this purpose, the differen-
tial transport equation for o is solved together
with the equations for the components of the
Reynolds stress tensor (15). According to the
DRSM SO model, this equation is written as

a =1. (33)

P P e
(34)
=i[l“ aco}LG -Y +S,,
ox, ox,
I =pt+pfo,o =2. (35)

26

>

The terms G, Y, S, are found in accor-
dance with the k—o) turbulence model [13].

According to the DRSM BSL model, an
additional (cross-diffusion) term is added to
Eq. (34) with respect to w:

1 0Ok oo

D =2(1-F ,
o =2 1)90)0%2 ox; Ox, (36)

where the values of the function F, are calcu-
lated by Egs. (20)—(22).

The remaining terms are calculated in ac-
cordance with the BSL k-0 turbulence model.

The gradient hypothesis (13), (14) is used to
calculate the turbulent heat flux components
required to close the averaged energy equation;
the turbulent Prandtl number is taken equal
to 0.85.

Computational aspects

The computational domain is a rectangle on
the xy plane. Its outer boundary is located 0.5
m away from the plate. The computational grid
contained 200 cells along the y axis and 5 cells
along the homogenous coordinate x. The grid
was refined towards the plate surface to provide
values less than unity for the dimensionless
distance y* from the center of the first near-wall
cell to the wall for the entire computational
time. The time step df was taken equal to 0.005
s. To analyze the influence of the time step on
the computational results, we also performed
computations where the time step was twice
as short.

The computations were run in the ANSYS
Fluent 18.2 package. We used the non-iterative
fractional step method to advance in time.

At the stage of preliminary computations,
we analyzed the influence of numerical factors
on the quality of the solutions obtained. Fig.
2,a shows the time dependence of y* for all
turbulence models. Evidently, y* takes values
less than unity throughout the computations.
Fig. 2,b shows the time dependences for the
boundary layer thickness & (calculated as
integral thickness using Eq. (4)) for the SST
k- model, obtained with different time steps.
The differences are apparently insignificant.

Computational results and discussion

Influence of turbulence model on the growth
in boundary layer thickness. Fig. 3 shows the
time dependences of integral thickness of the
velocity boundary layer, as well as the relation-
ships between temperature and velocity layer
thicknesses; these dependencies were obtained
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Fig. 2. Time dependences of dimensionless distance y* (a) and boundary layer thickness (b).
Comparison of computational results obtained with different models («) and influence of time step (b).
SST k-0 (curve 7 and Fig. 2,b), RNG k-¢ (curve 2), DRSM SO (3) and DRSM BSL (4)
models were used; time steps df = 0.0050 (5) and 0.0025 s (6) were taken

using the given turbulence models. Fig. 3,a
shows three pronounced phases in the evolu-
tion of the boundary layer: at first its thickness
grows conforming to unsteady laminar layer
patterns (until approximately 2 s in time), then
we observe a short period with pseudo-pro-
cesses of laminar-turbulent transition, and af-
ter that the boundary layer follows the turbu-
lent flow regime (dependence of thickness & on
time is close to linear).

Comparing the results obtained using differ-
ent models, we can conclude that all models
yield similar predictions for the phase of laminar
boundary layer (as expected), while the transi-
tion point and the peculiarities in the growth of
the boundary layer in the region with developed
turbulence depend on the model applied.

The DRSM SO model yields the fastest thick-
ness growth of the turbulent velocity boundary
layer, while the SST k-o model yields the slowest
growth. Apparently, the transition to turbulence
(a point of characteristic change of dependences
in Fig. 3) occurs simultaneously for all models
except the RNG k-¢ model, where this transition
occurs much earlier. This model also differs by
the behavior of the ratio between the temperature
layer thickness and integral velocity layer thick-
ness: while this variable reaches a nearly constant
value at t > 3 s in computations by other models,
it decreases over time in this model.

Comparison with the data of direct numerical
simulation. We compared the obtained
computational results with the TDDNS results
given in [4].

a) b)
S,m 6'[‘/5 ' '
4 e :
0.16 284 , ’\ ,,,,,,,,,,,,
. 1 v !
0.12 4- NG |
1 2.4 4 " i 3
| ~ e
0.08 1 : L Y
- 2.0 H \ T~ el
0.04 - NG I
' ; % A
0.00 — 1.6 B —
2.0 4.0 6.0 Ls 0.0 2.0 4.0 6.0 s

Fig. 3. Time dependences of integral thickness of velocity boundary layer (a)
and ratios between temperature layer thickness and integral velocity layer thickness (b).
Results are given for different models: SST k-0 (/), RNG k-¢ (2), DRSM SO (3), DRSM BSL (4)
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Fig. 4. Comparison of computed dependences of Nusselt number (a) and dimensionless friction (b)
on Grashof number (lines) with TDDNS data (symbols);
Nu, and Gr, were constructed based on boundary layer thickness.
The curves are numbered the same as in Fig. 3
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Fig. 5. Comparison of computed profiles of normalized velocity (a)
and temperature () (lines) with TDDNS data (symbols); Gr, = 5.94-10°.

The curves are numbered the same as in Figs. 3 and 4

Fig. 4 shows the dependences for the
Nusselt number and the dimensionless friction
on the Grashof number constructed with re-
spect to the integral thickness of the boundary
layer (see Egs. (6)—(8)), as well as the TDDNS
results. We should note that the obtained de-
pendences differ insignificantly and are in good
agreement with the TDDNS data for the stages
of laminar and fully turbulent flow. However,
pronounced differences appear in the behavior
of the curves at the stage of transition to tur-
bulence: direct numerical simulation predicts
a local maximum for the dependence of Nu,
on Gr,, while RANS simulations indicate that
Nu, changes monotonically. Moreover, all the
curves lie below the TDDNS points (a differ-
ence up to 50%). At the same time, all the
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dependences obtained with different models
generally exhibit the same behavior in all cases,
except for the earlier turbulence transition pre-
dicted by the RNG k-¢ model (as mentioned
above).

Analyzing the distributions of dimensionless
friction over time, we found that the DRSM SO
model yields the best agreement with the direct
numerical simulation data, while the SST k-o
model predicts slightly overestimated values for
developed turbulence.

Fig. 5 shows a comparison of the TDDNS
data with the profiles of dimensionless velocity
and temperature at Gr, = 5.94-10° (corresponds
to the stage of developed turbulent flow). The
results indicate that the velocity profiles obtained
in all computations are in fairly good agreement
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Fig. 6. Comparison of computed fluctuation intensity profiles for axial («) and transverse (b)
velocity components, and turbulent shear stress profile (¢) (lines) with TDDNS data (symbols).
Results are given for different models: DRSM SO (7), DRSM BSL (2)

with the TDDNS data. There is some diver-
gence with TDDNS only in the outer region of
the boundary layer, where velocity decreases: the
RNG k-¢ yields underestimated results, while all
the other models produce overestimated ones
but these discrepancies do not exceed 5%. As for
the temperature distribution, DRSM BSL and
RNG k-¢ produced the best agreement with the
TDDNS data. Two other models yield significant
differences in the outer region of the boundary
layer: the SST k- model yields a 15—20% over-
estimation of temperature, and the DRSM SO
model a 20—25% underestimation.

Fig. 6 shows a comparison of the predicted dis-
tributions of stress tensor components along the
y coordinate with the direct numerical simulation
results for the computations performed using the
Reynolds stress models (DRSM SO and DRSM
BSL). The fluctuation intensity of the axial ve-
locity component computed using both DRSM
models appears to be significantly underestimated
in the inner region of the boundary layer. The
computed distributions of the remaining tensor
components are in good agreement with the
TDDNS data, with the DRSM SO model yield-
ing the best agreement.

Conclusion

We tested two semi-empirical RANS tur-
bulence models based on Boussinesq’s hypoth-
esis and two Reynolds stress models for the
problem of free convection developing near a
suddenly heated vertical plate. The results ob-
tained by Time-Developing Direct Numerical
Simulation were used as test data [4].

Analyzing the results of the computations
carried out with different models, we found
that the rate with which the thickness of the
boundary layer grows at the stage of lami-
nar-turbulent transition and in the developed
turbulent layer phase largely depends on the
model used. The DRSM SO model predicts the
fastest growth in the thickness of the velocity
turbulent boundary layer, while the SST k-w
model predicts the slowest growth rate.

The predictions for the dependences of the
Nusselt number and the normalized friction on
the Grashof number constructed based on the
characteristic thickness of the growing layer are
in good agreement with the TDDNS data for
the stages of laminar and fully turbulent flow;
the results obtained with different models dif-
fer insignificantly in this case. The DRSM SO
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model yields a slightly better agreement with
the TDDNS data for dimensionless friction.

The normalized velocity profiles computed
for the turbulent layer phase are in a good
agreement with the TDDNS data for all models
considered. Analysis of the temperature profiles
revealed that DRSM BSL and RNG k-¢ are in
best agreement with the test data. The DRSM
SO and SST k-o models give significant differ-
ences in the outer region of the boundary layer
(around 20 %).

The DRSM models give fairly accurate
predictions for the profiles of turbulent shear
stress and fluctuation intensity of the transverse

>

velocity component but the fluctuation intensity
predicted for the axial velocity component
turns out to be significantly underestimated in
the inner region of the boundary layer.

The computations and analysis of the results
allow to conclude that the DRSM SO model
is capable of providing the best agreement with
the test data [4] , obtained using the TDDNS
method out of all the RANS turbulence models
under consideration.

The study was sponsored by Russian Science
Foundation Grant no. 18-19-00082.
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Introduction

The classic theory of thermal stability of
wall structures developed by Seliverstov [1] uses
the methods of Fourier series theory and, in a
certain sense, originates from these methods.
This is hardly accidental, as the author of the
study was an expert in Fourier series theory. The
methods of trigonometric series are sufficient
if the boundary temperature distributions
of external sources belong to L (p > 1) on
a set of times £ Fourier series converge
almost everywhere on such a set. However,
the above condition is redundant for applied
problems. While the temperature distribution
of the sources is typically continuous at best,
according to Titchmarsh [2], it was impossible
to prove similar statements for convergence of
Fourier series almost everywhere [2, pp. 420—
421]. The methods for expanding Fourier series
are inconvenient for mixed boundary problems,
especially if the external heat source depends
on parameter 7 (time).

This study focuses on the methods for
solving boundary problems for the Fourier
equation in the form of equalities containing
functions of differential operators, comparing
the distributions obtained with the known exact
solutions.

The significance of our study is in offering
potential solutions for solving problems related
to thermal stability of construction barriers.

Key approaches to obtaining the solutions

We have formulated and proved the follow-
ing statements.

1. The solutions for the second and third
boundary problems for the Fourier equa-
tion are obtained by solving the first bound-
ary problem inverting the differentiation
operator.

2. Support measures for the distribution of
the primitive x(7,s), 8 _and the primitive deriv-
ative y:=—0x/0s, 5, satlsfy the inequality & y/8 >
1 in the first-kind boundary problem.

3. Increasing the dimension of the domain
does not increase the support measures of the
distribution.

Statement 3 implies that the thermal re-
sistance of a half-space does not exceed the
thermal resistance of a half-plane. In turn, the
thermal resistance of a half-plane does not ex-
ceed the thermal resistance of a half-line.

As an auxiliary technique, we use the follow-
ing representation of the Taylor series (shift)

for functions f{(#), analytic on half-line # > 0, f

€ C*(0,00):\
34
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f(t+s) = exp(s@t)f(t),

and its inversion
f(t) = exp(—s@t)f(t + S),

containing integer powers of the differential
operator 0,.

Simple expressions for measures of the
supports &

Using “the operator norms of fractional
powers of the operator 0, allows to obtain simple
expressions for measures of the supports o, .

Preliminary  considerations. Fractional
differentiation is related to the solution of the
Cauchy problem for an ordinary differential
equation of arbitrary positive integer (natural)
order s > 0.

Let

te@(x)c@(s)( ) ye§(x

S"(loc (Rl)
then the Cauchy problem
d)x=y,0,x(0)=0,

(1)
r=0()s—1,0,:=d/dt

has the following solution [3]:
t

x(t)=ﬁj( -7 ek, @

"0

or, in symbolic form,

x(t)=0."y(1). (2a)
Given non-integer s, Eq. (2) can be
extended:
1 t
o 'y(t)= t— 7)dr,
10 FSQ( 95

[(s)=
If s =0 + ip, o > 0, Eq. (2b) takes the form

(o4 1

P (c+ip) f) =
() I'(c+ip) *

t

xJ.(t—
0

(s—l) s> 0.

1) B (cos(pln (1— r)) +
+i sin(pln (1— r)))y (t)dr.

Let s=1/2. Then, by virtue of expression
(2b), we obtain Abel’s formula:
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(2¢)

o'—.k‘
/—\
N
l\l

N
~
&

The formula obtained (2c) can be used to
calculate the derivatives of the powers of 7, for
instance,

o7 1=2t/m, 5”21=1/\ﬁ5;

W
Wn

furthermore, for any n > 0:

n o__ tn+1/2 F(n + 1)

at—l/2t 81/2

J}

671/2t — ,
' F(n+3/2)
V2 _ iz (n+1/2)C(n+ 1)'
f T(n+3/2)

Clearly, the kernel of the operator 07,
N(0,), contains only one element, y = 0, for
any 0 < s < 1.

Commutation. By definition, the following
expression holds true:

or

(atﬁt_l/z _ a;l/zﬁt)y(t) = ﬁ 3)

If y(0) = 0, then the operator 0, com-
mutes with its negative fractional power,
e.g., —1/2:

(0.0, -0,"8,)y(t)=0, (3a)

or, in symmetric form,

a 172 a la 1/28 a a 1/26 81/2.

It follows then that the operator o, and its
fractional powers are self-similar in case of
commutation.

It
y(txt)-y(t)=

in the Cauchy problem (1) is a primitive period,
and a periodic solution is sought, so that

x(tx1,)—x(r)=0,V]i|>0,

the periodic condition can be replaced by the
homogeneous condition [3]:

O/ x(—0)=0, r=0(1)s -1,

0,V|i|>0,4,>0

and then the solution to the periodic Cauchy
problem takes the form

(t—r)s_1 y(t)dr=

)1
AN p—
8 o]
~
é!_.~

®)do.

TT(s)1

Let s =1/2, and then the previous formula
takes the form

(2d)

Thus, the commutator in the periodic
boundary problem equals zero, and the
fractional power of the operator 0, is permutable
with its inverse power.

Relations (2)—(2d) are known as the
Abel—Liouville identities [13]. Applications
to different mechanics problems are presented
in Caputo’s study (unfortunately, the original
text was unavailable to us but it is cited in
many later studies, for example, in [5—17] and
references therein).

Extension 1. For any s > 0, inversion of the
fractional differential operator has the form

6t x:m}[y(t—zl/ )dZ

for a non-periodic problem and
-5 1 K 1/s
6t X—m}[y(t—Z )dZ

for a periodic one.
Indeed, if

y(t£1)-y(¢)=0,v[{>0,

then the Cauchy condition for all derivatives
takes the Lyapunov form:
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Extension 2. Let us consider an equation
depending on the parameter A:

(0,-1)x(t)=y(1).

Evidently, the kernel N(0—A) of the opera-
tor 0—A consists of the exponents x(7)=exp(1r?).
Therefore, the solution to the equation is

=(0,-1) " y+2z,2e9(d,-1).
The equation
(0, -2)" x(t)= (1)

has the solution

x(1)=(2,-1)" y(1)+(2).
(z)eo((2,-2)'):

evidently,
(8, - 2) 9 (d, - A) c...c (s, -A)".

Integral representation of the solution to the
homogeneous Cauchy problem has the form

j o) exp(A(1-7)) (1)

Here the kernel consists of functions
P_ (t)exp(rt)=z(r) c 91(2, 1),

where P(7) is a polynomial of degree s.
Let us continue solving the homogenous
Cauchy problem for fractional values of z:

x(t)=(0,=2) "»(1) =

:;j(t— )" exp( (t- )) (t)d.

T (n)y
Let n=1/2; then

() (0, - 7»)”2 ()=

k(t 1) (’C)d’CZ

o'—-.a

y

:%Iexp(kf)y(t—f)dz.

0

It is sufficient for integrals to converge that
the following condition hold true for the real
part of the number A: Rei < 0.
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Similarly, the periodic solution takes the form

x(1)=(2,-2) " y(r)=
:%!exp(kzz)y(t—zz)dz.

Extension 3. Given arbitrary n > 0, the
inversion equations for the fractional powers of

the operator take the form:
1 . "
X(l):mi[exp(le/ )y(t—Zl/ )dZ,

for a non-periodic problem and
x (1) =

———|exp(Az"") y(t—2"")dz
F(n+1)'([ p( )y( ) >
for a periodic problem, while Rex < 0.

This extension is thoroughly explored in
monograph [13] but the authors but apparently
did not use the trivial substitution V¢ = z. This
substitution is convenient because it allows to
represent the fractional differential operator as
a probability integral. Indeed, the integrand in
Eq. (2d) can be expanded in a Taylor series:

x(t —22) = exp(—zzﬁt)x(t),

then the left-hand side of Eq. (2d) is obtained
immediately.

Nash’s and Kuiper’s studies (discussed in
Gromov’s monograph [18]) formulated the
so-called A-principle: differential operators R
connecting partial derivatives are regarded as
algebraic relations for partial derivatives.

The h-principle is substantiated in [18],
accompanied by a list of publications up to 1990.
Sobolev spaces of functions with (generalized)
derivatives of fractional order were considered
by Slobodetskii in a series of studies [19, 20],
developing Bakelman’s earlier ideas [21] on the
geometric theory of equations.

Va

Analysis of Fourier boundary problems
for half-line s > 0

First boundary problem. Let us consider
the first boundary problem in an unbounded
domain > 0, s > 0:

ot os*’

x(2,0)=x,(7). “4)

We find a formal solution to this boundary
problem by separation of variables.



\

Let
x(,5) = exp(—sa)x,(t), 5

While the parameter o > 0, which guaran-
tees a decrease in x(,s), uniform with respect
to ¢. In this case, substituting equality (5) in the
equation of problem (4) leads to the condition

exp(—soc)(@t —~ az)xo (1)=0,

from which it follows that a = 62, and, by
virtue of equality (5), the solution of boundary
problem (4) has the form

x(t,5) :exp(—sﬁi/z)xo (¢). (6)

Verification of solution (6). Step 1. The
classical solution for boundary problem (4) has
the following form:

2 : 2
x(t,s):ﬁ I xo(t—%jexp(—z )dz. 7

2\/; 2
. S .
Let us expand the function x, (t - _2j into
z

2
N

a Taylor series in powers of F:
z

s 5%0,
Xo| =5 |[Zexp| Xy (2).

Solution (7) then takes the form [4]:

x(t,s)z% T exp[—zz —22;1 jdz(xo(t)). (7a)

However, it is known from the course on
analysis of infinitely small quantities, devel-
oped by de la Vallée Poussin [3], that

%Texp(—uz —a/uz)du = exp(—2\/a).

Therefore, if the lower limit in the integral in
(7a) equals zero, then Eq. (7a) coincides with
Eq. (6). Thus, Eq. (7a) takes the following form:

x(t,5) = exp(—s0)* ) x, (¢) -

S 7b
2 A , 870, 70
N J‘ exp| -z~ — = dz - x, (t).

Consequently, given that S <<1, Egs.
(7b) and (6) yield close results. 2V
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Step 2. 1If x,(7) is a periodic time function, i.e.,
x,(£1) = x,(1),
where 7, < 0 is a primitive period, then, instead

of solutions (7), (7a) and (7b), we obtain a
solution in the form

x(t,s)= %Txo (z — 4S—Zzzj exp(—z2 )dz, (7¢)

and solutions (7¢) and (6) are then identical.
To confirm this, it is sufficient to expand the
integrand in solution (7¢) in a Taylor series:

2 7 ’0
x(t,s)= ﬁfexp(—zz —%]dz-xo (1)=
0

= exp (50" ) x, (1),
which proves the identity.

Thus, Eq. (6) and its corollaries hold true
for a boundary value x(7,0) = x/(7), periodic
with respect to the parameter ¢, i.e., for the
solution of the quasi-steady boundary problem
of thermal conductivity.

The second boundary problem. Eq. (6)

0.
implies that the derivative y(t, s) = _6_x
A

calculated as follows:

y(t.s)=0)exp(-s0)%)x,(¢). (8
Let s=0. By virtue of expression (8),
y (t,O) =Y (t) =0"x, (t) ,

X0 (t) = 6;1/2)’0 (t)’
and by virtue of solution (6), the solution to the
second boundary problem takes the form

x(t,s): exp(— séyz)@;l/zyo(t). )

The third boundary problem. The given
problem is formulated as follows for the
Fourier equation:

where x, is the potential of an external source,
B is the transfer coefficient.
Equality (10) then takes the form

(8, +B)xo (1) =B,

which implies that

is

(10)
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% (1) =(8,+B) " (B.),
x(1,s) = exp(~s0))((2, +B) " (Bx,)).

So, if the boundary parameters y,, x,, p are
periodic time functions, then solutions (9)
and (11) coincide with the classical solutions.

Measure of distribution supports
for half-line s > 0

We define the support supp(x(z,s)) of the
distribution x(z,s) as a set of values of the
coordinate s on which the distribution x(z,s)
is concentrated. If the distribution x(z,s) has
continuous density, we can define the support
as the thickness of the x-layer with respect to
the density limit, x(7):

5, (1):=— [ x(1.5)ds.

X0

By virtue of solution (6), the thickness of
the x-layer is expressed as

8_1/2 x. (1
)
x, (1)
If the distribution x,(?) is periodic, the given
thickness follows the expression

8. (¢) =ﬁ(t)jxo (t—zz)dz.

0

Similarly, the thickness

expressed as

of y-layer is

where the dot denotes the derivative with
respect to the entire argument 7 — Z2.

Lemma 1. The ratio between the layer
thicknesses (form parameter), expressed by the
SJormula
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has a value of at least unity for any bounded
distribution x(1).

Proof. Indeed, the above expression can

be written as -
5y/6x=£—6’1x° S22,
2 ( o, xo) 2

Here we use the Cauchy inequality to
estimate the integrals.

To illustrate that the lemma proved holds
true, let us provide an example which allows
to calculate the support lengths directly. The
distribution x(z,s) for a straight line (ray) s>0
takes the form

x(t,5)= erfc[z%/;j,

x(t,O) X, (t)—l =x(0,s) =0.

where

Then we obtain the following equations:

N

(65) = =2 Lo =5
S = T Tm o T a )

The lemma is proved.
Lemma 2. Let

f(x)= Texp(—at’” )dt,f(O) = Texp(—at”’ )dt,

x 0

where a, m are positive constants, and
—f(x)=0(x)= exp(—ax’”),—f(O) =1.
Then the ratio between the support lengths

of function f(x) and its derivative f(x) = ¢(x)
(8¢ and 5, respectively) has a value no less

than unity:
2
i(l“(l/m)) o
m F(2/m) B

Proof. Indeed, the following equations hold
true:

H=8,/8, =



and it remains to rewrite the integrals in Euler
form.

The Lemma is proved.

The results of Lemma 2 can be rewritten
differently, if we use a duplication formula for
the function I'(z) [2, 3]:

_om I(1/m)
2" D(1/m+1/2)

Let m =1, then 3( = 1; if m =2, then ¥ =
nn/2. It is easy to use the asymptotic form of the
I'-function to prove that 9% — .

m—»0

Thus, the measure (length) of the distribu-
tion support for decreasing integer distributions
of the order m > 1, the measure (length) of the
distribution support does not exceed the mea-
sure of the distribution support derivative.

The quantity & /SX in problems of thermal
conductivity of wall structures is the ratio
of absolute to effective thermal resistance of
one-dimensional heat conducting medium (of
the half-line s > 0)[22].

Fourier boundary problems

for half-plane s > 0, |u| < «
Let

D(x) = (t,5,u: £>0,5>0,|u|< ),

where u is the second coordinate.
The Fourier equation
ox
—= Vf WX
ot ’

and the first-kind boundary condition
x(2,0,u) = x,(t,u)

are satisfied.
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We define the transformation

A A

x(t,s,u), x:x(t,s)

that is integral with respect to the argument u as

A

x(t,5)= on(t,s, v)exp (iov)dv,

where the circumflex ~ denotes the Fourier
transform of the function x(z,s,u) with respect
to the argument u.

The Fourier transform of the function

x(t,5,u) satisfies the partial differential
equation:
A 2 "
(Lafjx:a—x. (12)
ot s*

Eq. (11) can be obtained from Eq. (4) by
replacing the operator 0, with the operator
8t,w=8,+u)2,

where o is the spectral number.
The first-kind boundary
formulated as

condition is

x(£,0) = xo (0).

Then, similar to solution (6), we obtain:

x(t,5) = exp(=502)x, (1).

Next, the solution to the second boundary
problem has the form

;c(t,s) = exp(—s@ifi)@tigz ;/0 (1),

: ox
yo(t) S g

s=0

Finally, the solution to the third boundary
problem follows the expression

A

x(t,5)= exp(—s&if}) X

(o))

As a result, Egs. (6a), (9a) and (11a) co-
incide with the exact solutions of the pe-
riodic boundary problems and are obtained
from the solutions to one-dimensional prob-
lems by replacing the operator o, with the
operator 61@.

(13)

(6a)

(9a)

(11a)
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Generalization of analysis. The Fourier equa-

tion with respect to the coordinates s, u, ..., u,_,

for the case d > 1 has the following form:

ox 0'x Eo'x
— =4 —_—,
ot os’ ,Z:I: ou’

Applying (d — 1)-fold Fourier transform,
the equation is written as

0 2 0’ x 2 < 2
—+ Q" |x= Q7= .
(at j Os’ ; '
The solution to the first boundary problem
in traditional notation has the form

;c(t,s) = exp(—s&}fé)on,

where we introduce the following notation for
(d — 1)-fold Fourier transform

" 1
X (£,0,,..0,_ ) = ——7 X

(27t)d_1

Xj.dvl...-[dvd_lxo (t903v17"'vd—1 ) X
0 0

d-1
xexp(z’Z(Divl).

i=1

(6b)

The inverse Fourier transform should be
represented as

X, (t,O,ul,...udfl) = J‘a’(x)l...J.a’(n[F1 X, ¥
0 0

d-1
x(t,@,,...0,, )exp(—iZmiuij.

i=1

If x,(2,0,u,,..., u, ) is a periodic function of
the argument 7, then Eq. (6b) coincides with
the exact solution to the first Fourier boundary
problem. Egs. (9a) and (11a) also hold true if
the subscript o is replaced with Q.

Let us return to the thermal conductivity
problem mentioned at the end of the section
“Measure of distribution supports for half-line
s > 07”. It can be proved that if the dimen-
sion of an infinite domain occupied by scalar

40

heat-conducting medium increases, its thermal
resistance does not increase with an increase in
the dimension of the domain d > 1.

Indeed, for any value d > 1,

o+ » o <|o;|<le.]"-
1<i<d-1
Conclusion
Using the algebra of unbounded

differentiation operators and reviewing the
results of the analysis carried out, we have
drawn the following conclusions.

1. The unbounded operator of fractional
differentiation over a ring of continuous
functions can be inverted (known as the Abel—
Liouville formula). The inverse operator is
bounded on functions from the set L (0,7,
where ¢ <. The solutions for the second and
third Fourier boundary problems are obtained
by inverting the differentiation operator of the
first boundary problem.

2. The operator 0, in a quasi-steady
(periodic) boundary problem commutes with
any fractional inverse power. There are no
operator powers in aperiodic commutation
problems.

3. In case of decreasing integer distributions
of order m > 1, the support measure (length)
of the distribution x(#,s) does not exceed the
support measure corresponding to the derivative
of the distribution y(z,s)=0x/0s. In other words,
the thickness of the heat flux boundary layer
(decreasing distribution of order m > 1) should
be no less than the thickness of the temperature
boundary layer.

4. Increasing the dimension of the domain
D(x) of the sought-for function x(z,s) does not
increase the measures of the supports supp(x)
and supp(y), where y = Vx| (|Vx||is the Euclidian
norm of the scalar function x(7,s)). The support
measure (length) of the distribution x(z,s) does
not exceed the support measure corresponding
to the derivative of the distribution for any
decreasing integer distributions of order m > 1.
Therefore, the thermal resistance of the domain
D(x) does not increase along with increasing
dimension: the heat flux vector y gains an
additional component (additional degree of
freedom).
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Introduction

This paper continues a series of studies [1—
4] considering the properties of homogeneous
harmonic functions and their applications for
synthesis of electric and magnetic fields for electron
and ion-optical systems with special properties [5—
8]. Carrying on where [9] left off, our work heavily
relies on the results presented therein.

A function fix,, x,, ..., x) is called Euler-
homogeneous with the degree of homogeneity
equal to p if the identity

SOx, Ay, oL hx)) =W AX L X, ., x). (1)

holds true for any real values of A.

The main properties and theorems on
Euler-homogeneous functions are described
in monograph [10]. In particular, any
homogeneous function of degree p can be
represented as

S, x,,

= p
x P h(x,/x, x/x,,

BX )=

X /X)),

(2)

where A(t,, f,, ..., t) is a certain function of
(n—1) Vanables, while any function taking the
form (2) is homogeneous with the degree p.
The function f{x,, x,, ..., x) is called positive-
Iy homogeneous in Euler terms with the degree
p if identity (1) holds true for any positive real
values of A, while the identity is not guaranteed
to hold for negative real values of A (for example,
function f{x) # x). Imposing a constraint that A >
0, in particular, allows to safely operate random
real degrees of homogeneity in Eq. (1): addi-
tional steps need to be taken for a random real
degree p to determine the power function ? at
negative values of A to satisfy the condition

M= (LY.

Positively homogeneous function fix,, x,, ...,
x ) of degree p can be represented in the form:

ifx >0fx,x,...,x)=
3)
=X h(x/x, x/x, ..., x /x);
ifx <0flx,x,..,x)=
“4)
= (=% Y gx,/x, x,/x, ..., X /X)),

where A(z,, t,, ..., t ) and g(¢,, £, ..., t ) are func-
tions of (n — 1) variables independent of each
other (in general).

Egs. (3) and (4) are obtained from relation
(1) by substituting into it the values A = +1/x,
for x, > 0 and —1/x, for x, < 0, if the functions

h(t, t, ..., t) and g( ), L, ..., 1) are defined as
follows:
h(t, t, ...t )=f(+1, 0, ¢, ...,1),
glt,ty, .. t)=f=1,~t,~t, ..., ).

If x, = 0, the function A0, x,, x,, ..., x) is
positively Euler-homogeneous of degree p with
less variables, so parametrization of the form
(3), (4) can be applied to it. A recursive pro-
cess of constructing complete parametrization
for a positively homogeneous function fix,, x

., X ) stops when a set of variables x, x,, ...,
x is exhausted.
Consider the functions taking the form

ifx > 0: f (X5 X,
= (I/kY) x/ (g Inx,)* x (5)

X h(X,/X X%, oy X X)),
ifx <0: f (X X
= (/kY) (=, (g In (=x,))" * (6)

X g(x,/x, x,/x ..y X /X)),
where p, g are real constants; k is an integer
index (k= 0, 1, 2, .); Aty 1y oy 1), 8(t,, £,
., 1) are certain functlons of (n— 1) variables;
the values of the variable x, satisfy the condi—
tion x, # 0.
Given the functional relations

SOx, A, o, M) =
= Zaij(k)f(xl, Xy oies X ),

where i, j =1, 2, ..., k, and the functions a, (k)
are unknown in advance then, in a partlcular
case when all elgenvalues of the matrix la, (Wl
are real numbers p equal to each other (see f9]),
functions taking the form (5), (6) may qualify
as possible solutions to functional equations of
the form (7).

X )=

e X)) =

(7
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Using direct substitution, we can confirm
that for vA > 0, functions (5), (6) satisfy the
functional relations

S (Xxl,kxz,...,kxn):
Zak J xl,xz, ,Xn), (8)
j=0.k

where a(A) = (1/j1) ¥ (¢ In &) .

The objectlves of this study are, firstly, de-
veloping general formulae for the functlons sat-
isfying functional equations (8) provided that
functions aj(k) take the form

a () = (Uj!) ¥(g In )/,

and, secondly, proving certain important
theorems on the obtained class of real functions
of multiple variables.

Relationship of functions (5) with associated
homogeneous Gel’fand functions

Functions (5) and (6) satisfying function-
al relations (8) are a refinement of associated
homogeneous Gel’fand functions as defined in
[11, 12]. However, these studies falsely assume
that the system of functional relations (8) is a
bidiagonal matrix with functions a()) for the
main diagonal and b()) for the auxiliary one,
unknown in advance. Unfortunately, while this
insignificant mistake in the formal definition
did not affect the other fundamental results ob-
tained in [11, 12], was further uncritically dis-
seminated in subsequent publications by other
authors [13—20]. We could only find mentions
of this inaccuracy in [21, 22] but even in these
instances the authors omitted the factor 1/k!
in the respective formulae from consideration.
This shortcoming is absent in earlier formu-
lae presented in [23]. Moreover, no analysis of
the general solution was performed in [21—23]
for the obtained functional equations after ver-
ifying the required functional relations for the
given functions (i.e., after obtaining a particu-
lar solution).

It is easy to prove at least for differentiable
functions' that a bidiagonal system of functional
equations (8) can have nondegenerate solutions
different from the null equation only when a(})
= » and b(L) = M(q In X). At the same time,
these solutions (if they exist) must have a form
of linear combinations with constant factors
composed of functions (7) [21]. Unfortunately,

! For this conclusion, it is actually sufficient to impose that
each of the functions a(A) and b(A) is continuous in at least
one point of A > 0. Rigorous proof of this statement is not
complicated but lies beyond the scope of our study.
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even when k = 3, functions (7) do not satisfy
the system of bidiagonal relations (8), and we
can prove that these functional relations have
essentially no solutions for k > 3 [21].

One of the goals of this work is to reintroduce
mathematical rigor to associated homogeneous
Gel’fand functions, as well as to study some in-
teresting properties of the obtained functions.

We should stress that we consider a rather
narrow subclass of functions that is the closest
to associated homogeneous Gel’fand functions.
The general solution for functional equations
(8) with the functions a(x) unknown in ad-
vance is far more extenswe and we are in fact
planning another pubhcatlon on this subject.

General formulae

So as not to confuse the constructions we
consider with the associated homogeneous
functions in terms of Gel’fand definitions [11,
12], let us add the following definition.

Definition. A semi-infinite chain of functions

(X, X, x) where k =0, 1, 2, ..., and the
f nctlons f k(x ..., X,) satisfy the functional
relations

ﬁﬁh@kx SAx) =
=3, (UGk)) W (g In W) x

X.];’j(xla xza"'a xn)a
for all . > 0 is called fundamental associated
homogeneous functions of degree p and order k.
Changing the order of summation, relations
(9) can be written in an equivalent form as

1,00, A, 0) =
=3, ()W (gIn Ry x

j;k](xl,x o X))

Parameter ¢ is responsible for normalization
of the fundamental associated homogeneous
functions and does not affect the rest of their
properties. After substituting

j‘I)J(xl, Xyy oens X )=

= q/ Fp’](xli ‘x b xn)7

the parameter ¢ is reduced in functional relations (9),
and functions F (x,, x,, ..., x ) take the meaning of
normalized func ental associated homogeneous
functions corresponding to the choice g = 1.

We need to find the general formulae for
the functions satisfying functional relations (9),
similar to formulae (3) and (4). The solution is
provided by the following theorem.

)
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Theorem 1. Chain of fundamental associated
homogeneous functions f, (x,, X, ..., x,) of degree
p and order k, obeying jfinctional relations (9) for
all va > 0, has the following one-to-one repre-
sentation for x, # 0:

ifx >0 fp’k(x], Xyperey X)) =

=X o (k)Y x 7 (g Inx )< > (10)
‘>< hj(xz/xl, XX s X /X);
ifx, <0 f;,k(xv Xpperry X ) =

=X, (1(=)Y (=)
7 (g In (=x)))" x

X gj(xz/xl, XX s X /X)),

where gj(tz, Ly ooy 1), hj(tz, t, ..., 1) are re-
al functions of (n — 1) variables, which have
a one-to-one correspondence with functions
j;)k(xl, Xy5 ey X))

The reverse is also true: a chain of functions
given by FEgs. (10) and (11) obeys functional
relations (9) for x, # 0 with randomly chosen
Jfunctions gj(tz, Ly ..., t) and h(t, t, ..., 1).

When x, = 0 and x, # d, parametrization
for fundamental associated homogeneous
functions j; ,k(O, X,, X,, ..., x) of degree p and
order k is constructed similar to Egs. (10), (11).
Complete parametrization for functions ]; (X

(1D

X,, ..., X ) is repeated recursively until the set of
variables x,, x,, ..., x_is exhausted.
Proof. Let us confine ourselves to

considering only the case when x, > 0, since the
case when x, <0 is derived from it by substituting
x, = —x,, with relations (9) remaining unchanged.
When k£ = 0, relations (9) transform into
homogeneity relation (1), while the function
j; )O(xl, X,, ..., X ) turns out to be a positively
homogeneous function of degree p which is
defined at x, > 0. Consequently, Eq. (10) holds
true with £ = 0, as it coincides with Eq. (3) for
positively homogeneous functions, while the
function A(z, t, ..., t) is mapped one-to-one
using the obtained function fp oXp Xy X).
Let us employ tmathematical induction.
Suppose Egs. (10) are proved for all values
of k satisfying the inequality 0 < k < m. Let us
write the function j; )m(xl, X,, ..., x ) for x, > 0 as

fl‘J,m(xlg x2" cey xn) = x]p
+
H(xly xz,...,xn) (12)
3, (Vo)) x7 (g In )

X
hj(xz/xl, XX s X /X)),
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where the functions A (1, £, ..., t) for j =0, 1,
m—1 have been alreac{y defined at the previous
steps of the proof. It is required to find the
form that the function H(x, x,, ..., x ), which
has a meaning at x, > 0, should take for the
identity

fnm(kxl, Ay, Ax) —

—/lpfp’m(xl, Xypery X,) —

=X o (W(m=k)!) 77 (¢ In L)k x

><fp’k(x1, X, . X,) = 0.

to hold true for vA > 0.

After simplifying expression (13) given that
the functions f ,(x,, x,, ..., x,) can be replaced
by relations (16) for 0 < k < m, we obtain the

condition:

(13)

if V2> 0,x,>0

Hx, M, ..., hx)) = H(x, x,, ..., X).

Consequently, the function H(x,, x,, ..., X))
must be a positively homogeneous function of
zero degree, defined for x, > 0. This condition
is necessary and sufficient to fulfil equality
(13), because all algebraic transformations
simplifying expression (13) are reversible.

According to Eq. (3), when x, > 0, the
function H(x,, x,, ..., x ) can be represented as

H(x,x, ...,x )=

=h (X,/x, X/x, ..., X /X)),

where A (2, t,, ..., 1) is a certain new function
of (n — 1) variables.

Next, if we substitute the values x, = 1 into
equality (12), we obtain the condition

j;’m (Lxy .o x)=h (x,, X, ..., X),

which implies a one-to-one correspondence
between the functions f and &, .

Thus, with x, > 0, Eq. (10) holds true for
k = m as well.

Theorem 1 is proved.

The chain of associated homogeneous functions
can be also represented in parameterized form by
other means. For example, a method for construct-
ing the most generalized type of parametrization
can be formulated as the following theorem.

Theorem 2. Suppose (op(xl, X, .y X) IS a
positively homogeneous function of degree p,
v,(X, X, .., x) is a positively homogeneous
Junction of degree q # 0, and vy,(x,, x,, ..., X ),
V(X Xy ey X)), ooy V(X Xy, ..., X)) are posi-
tively homogeneous functions of zero degree.
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Let these functions be defined at any point
of the domain Q. Additionally, suppose that the
Jfunction ®, does not become zero in the domain
Q, the function vy, is strictly positive, the functions
Yy, Vs, ...y, are functionally independent.

Then the fundamental associated homoge-
neous functions f (x,, X,, ..., X), which obey
the functional relations (9) for vh > 0, can be
mapped one-to-one as follows in the domain Q:

1) =
=X, =)) o (x) (Iny (x)~ < (14)
X h(y,(x), yy(x), ..., ¥, (%)),

where x = (x, Xx,,..., x ), and h(1,, t,, ..., t) are
certain real functions of (n — 1) variables.

Proof. When k = 0, the functionj;’o(xl, X,
..., X ) is a positively homogeneous function of
degree p, while the function

];’O(xl, Xy vees xn)/(up(xl, Xy oves X,)

is a well-defined positively homogeneous func-
tion of zero degree. It can be represented as
hy(y,, v, ..., ), as it is functionally dependent
on the functionally independent functions v,
V,, ..., y,. Indeed, if we can find such a posi-
tively homogeneous function y(x, x,, ..., x ) of
zero degree, which forms a functionally inde-
pendent set with the functions

\'Ilz(xl, xz’ M ‘xn),

WX X s X )y s W (X, X oy X)),

then the free variables x, x,, ..., x can be ex-
pressed in terms of functionally independent
positively homogeneous functions v, y,, ..., v,
of zero degree. Then any function of the vari-
ables x,, x,, ..., x, would be a positively homo-
geneous functions of zero degree. This cannot
be true, so the corresponding function 4, (y,, v,,
..., y,) must exist, and thus, Eq. (14) is fulfilled
for k = 0. Further proof by induction repeats
the proof of Theorem 1 practically verbatim.

Theorem 2 is proved.

Using Egs. (14), the entire space R" is di-
vided into non-intersecting conic> domains Q,
for each of which the selected functions (op(xl,

X,, ..., X,) and \yq(xl,_ X,, ..., X ) do not become
zero®, and the functions
\Ilz(xla xza LR xn)a

2 The domain Q is called a hypercone, if it follows from the
condition x € Q that the condition Ax € Q is also satisfied for
any points Ax at random values A > 0.

3 If the function v, is negative in the given domain, it is
replaced by v,

48
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WX, X ey X )y s W (X, Xy s X))
form a functionally independent set of posi-
tively homogeneous functions of zero degree.
Generally speaking, we construct parametriza-
tion (14) for each of the domains Q using a
separate set of functions hj(tz, t,, ..., t) unrelated
to the functions hj(tz, f, ..., 1) used for other
domains. The boundaries between the conic do-
mains are conic surfaces of smaller dimensions,
along which the given functions fp ,k(xl, Xy ey
x ) act as fundamental associated homogeneous
functions of smaller dimensions, with parame-
trization constructed by a similar algorithm.
Importantly, parametrization of fun-
damental associated homogeneous func-
tions j; )k(xl, X,, ..., X,) is partitioned into several
independent branches as a result; moreover,
such a partition depends on the selected aux-
iliary functions (op(xl, X,, ..., X)) and q;q(xl, X,
..., X)), and, to a lesser degree, on the functions

Wz(xlaxza e rxn)a

V(X Xy oes X )y ey W (X, X oy X)),

and does not reflect the inner structure of the
chain of functions parameterized.

Partitioning the space R" into several inde-
pendent branches can be avoided as the follow-
ing theorem implies.

Theorem 3. A chain of fundamental associ-
ated homogeneous functions j; (X X, o, X)),
which adheres to functional relations (9) for all
VA > 0 can be mapped one-to-one as follows:

L0 =2, (k)Y r (g Inr)* x 0

X hj(xl/r, xX,/r, .., x /1),

where x = (X, X,,..., X ), V' = \/xl2 + x22 +e 4 x,f
and h,—(fp t,, ..., 1) are arbitrary real functions
given on the surface of a unit hypersphere

1P+t =1,

with a one-to-one correspondence to the functions
j;,k(xl, Xyy ey X))

Proof. If £k = 0, we can establish that Eq.
(15) holds true for a positively homogeneous
function j; )O(xl, X,, ..., x ) after substituting A
= 1/r into homogeneity relation (1) and using
the function h(¢, 1, ..., 1) =fp‘0(tl, by ooy 1)
(recall that each of the functions hj(tl, by o
t) is defined only for the surface of a unit
hypersphere 72+ 2+ ... + t>= 1). Further
proof by induction repeats the proof of Theorem
1 practically verbatim.
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Theorem 3 is proved.

Relations (9) imply that the linear
combination with  constant coefficients
comprised from several chains of fundamental
associated homogeneous functions of degree
p and order k is also a chain of fundamental
associated homogeneous functions of degree p
and order k. Besides, if f AX X, e, x) is a
chain of fundamental associated homogeneous
functions of degree p and order k, then a new
chain of functions

gp k(xls 29 o x,,) :j;,k-l(xl’ xza * Xn)

with an 1ndex shift, supplemented by a leading
zero g (X, ..., x) = 0, is also a chain of
fundamental ass001ated homogeneous functions
of degree p and order k.

Egs. (10), (11) (as well as (14) or (15))
illustrate the validity of Gel’fand’s hypothesis
that any chains of associated homogeneous
functions of degree p and order k are obtained
from the main chains with a nonzero first
term by shifting the index k£ and subsequent
summation. At the same time, all elements of
the main chain of functions are reconstructed
one-to-one by to its first term according to
a certain rule; the accurate formulation of
this rule reflects the researcher’s preferences
and, generally speaking, can be different
for the same initial function. In case of the
theorems proved above, the respective chains
of fundamental associated homogeneous
functions have the form

a) for Egs. (10), (11):

ifx >0 f(")p’k x)=

= (x,”/k!) (g Inx ) x
X hj(xz/xl, XX 5 s X /X))
(x)=
= ((=x)? /k!) (g In (=x)))* x
o X /X))

i . £0)
ifx, <0: /0

X gj(xz/xl, x,/x,,
b) for Eq. (14):
1) =0, (x) /& (In v, () x
< h(y,(x), y5(x), ..., W, ()
c) for Eq. (15):
f (i)p,k(x) =

=/ k) (qInr) h(x/r,x[r, ..., x /).

Remark. As follows from Egs. (14), the
fundamental associated homogeneous functions
are actually linear combinations of chains of
functions taking the form

(1/k)) Rp(xl, Xy oeey X,) X
X (In S, (X5 Xy oo x ),
where R (x ..., X ) are random positively

homogeneous functlons of degree p, and § (x
X,, ..., x) are fixed positively homogeneous
functions of degree g, for which we also shift
the index k and supplement the shifted chains
with leading zeros.

The situation will not change and no new
functions can be obtained if we demand that
the functions § (x ..., x) are random
positively homogeneous functions of degree
q.

In particular, this approach allows to
formulate  the  fundamental  associated
homogeneous functions more elegantly without
using artificially derived variables x,. Changing
the selected function § (x , X ) makes the
current main chains secondary, and vice versa,
the chains that were previously secondary the
main ones. Because of this, the definition of
the main chains of fundamental associated
homogeneous functions is fairly arbitrary
and depends on the selected parametrization
of fundamental associated homogeneous
functions.

Differentiation and integration of
associated homogeneous functions

If an  Euler-homogeneous  function
fx,, x,, ..., x) of degree p is differentiable,
then its derivatives with respect to the variables
X,, X,,..., X are homogeneous functions of de-
gree (p - 1) [10]. A similar statement is valid
for the associated homogeneous functions. Let
us formulate and prove the following theorem.

Theorem 4 (on differentiation). If
];k(xl, X, ..., X) is a chain of fundamental as-
sociated homogeneous Sfunctions of degree p and
order k, and the functions f (X, X, .y X,) are
differentiable, then their fi st partlal derlvatlves
of, /0, with respect to the variables x,, oy X,
form chains of fundamental assoczatea’ homoge—
neous functions of degree (p — 1) and order k.

Proof. The statement of the theorem fol-
lows from a term-by-term differentiation of the
right and the left-hand sides of Eq. (9) with
respect to the variable x.

Theorem 4 is proved.

A similar statement is valid for integration.
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Theorem 5 (on integration). Iff k(x X)) F,, (xlaxz ...,xn) =
is a chain of fundamental associated homoge— g
neous functions of degree p and order k, then - J‘ m al
integrals represented as F x4

F o(x,x,...x )=
i (215X, ,) X p’k(xl,xz. X, 1ol X,1se s X, ) dE,
= If Pk (prz,- Xi sl Xipyseees ,,)df form a chain of fundamental associated
0

(if they exist) form a chain of fundamental
associated homogeneous functions of degree (p ~+
1) and order k.

Significantly, the initial point of integration
is zero.

Proof. The proof follows from term-
by-term differentiation with respect to the
variable 7 in the interval 7 € [0, x] of relation
(8) after substituting x,— 7 in it in view of the
equality

Ax,)dt =

JESERERY

Jifp’k (kxl,kxz,...,kxl.fl,?ut,kx
0

A, )d.

[ASERER

17
_x_'.fl’”‘ (kxl,kx SAX, LT AX
0

Theorem 5 is proved.
It is also possible to consider the integrals

Fp’k(xl,...,xn):
X
- pr,k (Xpsee s Xl X X, ) dE +
L
+gk(xl,...,xl.fl,xm,...,xn),
where the functions g(x,, x,, ..., X_,, X,

..., X)) are such that the obtained functions
f k(xl, X,, ..., x,) form a chain of fundamental
associated homogeneous functions of degree
(p + 1) and order k. We can prove that such
functionsg, doindeed existand canbe expressed
in terms of the functions f X Xy ey X))
with a one-to-one correspondence up to the
additive elements in the form of fundamental
associated homogeneous functions of degree
(p + 1) and order k£ depending on the variables
X, Xyy ey X5 X, (s -y X,. The proof of this
statement is given in the following section.

Theorem 6 (on fractional differentiation).
]ff (X, X, ..., X ) Iis a chain of fundamental
assoczatea’ homogeneous functions of degree p
ano’ order k, then their fractional derivatives

k(x,, X, ..., x ) of order a€(0, 1) (Riemann—
Liouville mtegrals of order o [24—26]), ex-
pressed as

50

homogeneous functions of degree (p — o) and
order k (if such integrals exist, in particular, if
m —a > 0).

Significantly, the initial point of integration
is zero.

Proof. The proof follows from term-by-
term application of the linear convolution
operator L[f] to relation (8):

L[f(xl,xz...,xn)]z
=J£(xf_t)mfon71 %
0
Xf (X125 e X 0 X, X, )

where we should also take into account the
equality

't m—o— 1
J. X, —t
0
Xfp,k (}\'xl’}\’xz }\"xz 1’7\‘t }\’x1+la :kxn)dt =
1
= km—a _[ (}\'xz - T)m_q_l X
Xf o (MI,MZ JAX, S TAX ,Mn)dt,

As a result, we obtain a chain of fundamental
associated homogeneous functions of degree
(m + p — o) and order k, which, after m-fold
differentiation with respect to the variable x,
becomes a chain of fundamental associated
homogeneous functions of degree (p — a) and
order k.

Theorem 6 is proved.

Theorem 7 (on convolution with a generalized
Abel kernel). If f (X, , X ) Iis a chain of
Jfundamental assoczated homogeneous Sfunctions of
degree p and order k, then provided that there the
corresponding integrals exist, their convolution
with the generalized Abel kernel expressed as

Fp’k(xl,xz...,xn)=
o5 B Ky
:J,,,I(xlkl_tlzﬁ)‘kl (b=l ) &
0 0
< (8 )dt,...dt



\

where Y. > 0, forms a chain of fundamental as-
sociated homogeneous functions of degree p + |,
+ ... + u, and order k. The result for partial
convolution with respect to the variables x,, x,,
.., XIS a chain of fundamental associated ho-
mogeneous functions of degree p + p + ... +
and order k.

Significantly, the initial point of integration
is zero.

Proof. The proof follows from term-by-
term application of convolution with the Abel
kernel to relation (8) in view of the equality

XX, w1 u, =1
kl_ ky k... kn_ ky k,
frf (et -t
0 0

< foo (MM, . At )t dt, =
1 A A,
:}\,Hl ,,}\l”n J‘j ((M
0 0
w,—1
(2, ) -

ko \ K,
T ) Lo (11T
Theorem 7 is proved.

‘ w-l
)I_Tfl) ky eee X

t,)dt,...dt,.

Euler’s criterion

Let wus recall FEuler’s theorem on
homogeneous functions [10]:

Euler’s theorem (Euler’s criterion for
homogeneous functions). [f the function
fx,, x,,..., x) is continuously differentiable in
any point of space R", then for it to be FEuler-
homogeneous of degree p, it is necessary and
sufficient that in any point of space R' the
Jfollowing condition is satisfied

x, Oflox, +x,0flox, + ... +

(16)
+x oflox = pf.
Relation (13) is obtained through
differentiation of identical equation
SOx, Ay, o A ) =W AX L X, X))

for a homogeneous function of degree p with re-
spect to parameter A in point L = 1, therefore, its
necessity is obvious. However, it is highly non-
trivial that condition (16) is not only necessary
but sufficient for the function fix,, x,,..., x ) dif-
ferentiable everywhere to be Euler-homogeneous
of degree p. The proof of this theorem can be
found, for example, in monograph [10].

Euler’s criterion (16) works for continuously
differentiable positively homogeneous functions
of degree p as well. The only difference is that
in this case the function f{x, x,,..., x,) can have
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no derivative at point x, = x, = ... = x =0
and, consequently, condmon (16) is violated
at thlS point.

Theorem 8 (generalization of Euler’s
criterion). For the functions f, (x, X,,..., x,)
continuously differentiable everywhere to form
a chain of fundamental associated homogeneous
Jfunctions of degree p and order k, it is necessary
and sufficient that the following equations are
fulfilled at all points of space R", possibly except
Jor point x, = x,= .. =x = 0:

X, 6];,/(/6)61 +x, @;Jc/&x2 + ...+
+x an,k/axn Zpﬁ)’k + qf;;,k—l'

Proof. The necessity of relation (17)
follows from differentiation of relation (9)
as a composite function of A at point A = 1
(continuous differentiability is required here so
that we could safely differentiate relation (9) as
a composite function). The remaining task is to
prove the sufficiency of relation (17).

When k = 0, the sufficiency of criterion (17)
follows from Euler’s theorem on homogeneous
functions. Next, we apply the method of
mathematical induction.

Suppose the statement is proved for all values
of the index k in the interval 0 < k < m — 1.
Consider the function

®, M) =1, 0x, A

(17)

2 )/ —

2 onSom s Xy s X,) (g In D)KL,

with summation carried out with respect to the
index 1 < k< m.

This expression coincides with identity (9),
whose right and left-hand sides were divided by
M, up to the substitution of the summation in-
dex. The derivative of the function ® (1) with
respect to the parameter A is transformed to

do, ()/dh = (1) [Ax, of, (x)/ox, +
+ 0, 0, (L), + ..+
+ 0, O, (W)/ex, —
ol 00~ af,,, (0x) +
+qf,, O ~q T, f ()W
x (g In M) /(k— 1)1 =

because relation (17) for the func-
tion f X0 ..., xn) is fulfilled, including
at p01nt (Ax ..., Ax)), and the function
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, x,) satisfies condition (9) by in-
éuctlve assumptlon Therefore, ® (1) = const
and, in particular, ® (A) = @ (1)

However, as it is easy to verify, the con-
dition ® (1) = @ (1) means that relation (9)
is fulfilled for the functions f (X Xy e, X)),
Consequently, if condition (17) is satlsﬁed for
vk >0 at all points of space R", except possibly
the origin of coordinates, then relation (9) is
satisfied for vk > 0.

Theorem 8 is proved.

Note. To provide the condition ® (1) = @ (1)
= const, the derivative @’ (A) must exist and be-
come zero at any point of the segment connect-
ing the points (Ax,, Ax,, ..., Ax)) and (x,, X, ...,
x ). If equality (14) is violated for at least one in-
termediate point, or at least the derivative @ (1)
exhibits discontinuities at one intermediate point,
then the function @ (A) can be decomposed in-
to piecewise constant steps. This is exactly why
violation of continuous differentiability of the
function at zero provides only positive Euler ho-
mogeneity for the function f{x,, x,,..., x ), and not
the general Euler homogeneity.

Theorem 9 (on integrating fundamental as-
sociated homogeneous functions). If f (X x

, X,) is a chain of fundamental associated ho—
mogeneous functions of degree p and order k,
then there exist such functions g,(x, X, ..., X )
Jfor which the functions

FP,k (xl"xza---,xn) =

x,)

form a chain of fundamental associated
homogeneous functions of degree p + 1 and order k.
Naturally, any coordinate x, can be used
instead of the coordinate x,.
Proof. According to Theorem 6, it is
necessary and sufficient that relations (17) are

X
= J.fp,k (t,%y,%;5,...,x, ) dt + g, (X5, %;,...,
A

fulfilled for the functions F (x5 x,, ..., x ). This
leads to the equation
0=x,f,, (X,%,,..05x, ) +
0
+I pk+---xnﬁ dt —
s 8t 8x2 Oox,

(p+1)ffp,k (£,%y,%,,...) di -

A

—Jlt—p”‘dt—
> o
—q{j i (6,30 x,,.. ) di +

k-1
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h 0g, agk
+J.fp’,{l(t,xz,)c},...)dt}+x2a—xz+x3 o, +

a

0
nggk—(p+1)gk (x,,x5,..

n
x,)=

48,1 (%, %50,
x1 af
=X/ i (xl,xz,...,xn)—J‘[ta—”t’k+fp’kjdt

A

+...x .’xn)_

_(]J. fp,kfl(t,xz,x3,...,xn)dz+
+x2dﬁ+ %_
ox, ox,
(p+1)gk(x2a ’xn)_
48 1(x29~ ,xn)

_x % %+- og,
2 5x2 ax3 n axn
_(p+1)gk_qgk_1_
_qj fp,k—l(taxz,x3,...,xn)dt+

A1

+akfp’k (ak,xz,x3...,

x,).

The variable x, is absent in the obtained
equations. Moreover, the function g_ (x,, x
., X)) is already known. The remaining task is
to find the solution to the equation

x,0g,/0x,+ x,0g,/0x,+ ... +
+x O0g/ox —(p+ 1)g, (18)
=G (X, Xy o005 X)),

where the function G (x,, x;, ...,x,) is already
known at the k™ step of integration:

G, (xy,X5,..0s%, ) = g8, (%, X550, ) +

L3
+q _[ fp,,ﬁ1 (t,xz,x3,...,xn)dt—
A1

—a, [ (@%5,%5,..,x,).

It is convenient to use the following
substitution to find this solution

gk(x25 REIRRRS]

= xZ”+1 h (x

x)=

2o X3/ XX, s

X /x,).



\
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Then Eq. (18) takes the form
x,720h,(x,, t t)/0x,=

2’ 39 4’ M

0 X LX0s o oiy

=G (x

A particular solution of this equation is
found by transferring the multiplier x,”** into
the right-hand side and integrating the result
with respect to the variable x, with ‘frozen’
variables z,, 7, ..., ¢ . Furthermore, we need to
add the general solution of homogeneous Eq.
(18) with a zero right-hand side to the obtained
particular solution of the inhomogeneous equa-
tion, that is, an Euler-homogeneous function
of degree (p + 1) depending on the variables
X,y Xy ooy X,

Theorem 9 is proved.

As a result, we managed to not only prove
that the required function g (x,, x;, ..., x,) exists
but also to define its explicit quadratic form.
The final solution is the sum of a particular
case of the chain of functions g (x,, x, ..., X))
expressed recursively in quadratic form in terms
of the functions f A X, X5, .y X,), and a ran-
dom chain of fundamental assocrated homoge-
neous functions of degree (p + 1) and order k
of the variables x,, x,, ..., x , which can be given
explicitly using Eqs (10) (11) (14) or (15).

Problem. Suppose for all pornts of space R",
except possibly the point x, = x, = ... = x =0,
that the continuous drﬁ"erentrable functrons
g(x,, x,, ..., x) satisfy the equalities

tXx,).

x 0g/0x +x 0g/0x, + ..+

1 gk 1 2 gk 2 (1 9)
+x,08/0x,=p, g 4.8
where p,, g, are the given constants, and the
functions g,(x,, x,, ..., x,) with negative subscripts
are taken to equal zero. What can we say about
the form of the functions g (x,, x,, ..., x,)?

If vk, p, = p = const, and g, = g = const,
Euler’s criterion (17) provides an answer im-
mediately: the functions g (x, x,, ..., x,) are
fundamental associated homogeneous func-
tions f X5 X,, ..., x,) of degree p and order k.
In the general case, "additional calculations are
required. After substrtutmg

gx, X, X)) =
HX /X)),

the chain of conditions (19) is reduced to a
system of ordinary linear differential equations
with constant factors and a bidiagonal matrix
of factors, where 7 = In x, is a free variable, and

=h(Inx,x/x,x/x,

the variables 7, = x,/x
are ‘frozen’.

After solving the obtained system of differ-
ential equations and making the reverse tran-
sition to the variables x,, x,, ..., x, we obtain
the general form of the functions g (x,, x,, ...,
x ). At the same time, it should be borne in
mind that the free constants obtained after in-
tegrating a system of ordinary linear differential
equations with constant factors are in fact ran-
dom functions depending on temporary ‘fro-
zen’ variables £,= x,/x, £,= x,/x, ..., L = X /X,.
Depending on what the constants p, are equal
to and how many of them turn out to be equal
to each other, the structure of the solution can
be quite complicated.

In a particular case, let us take a chain of
relations (19), where all values of p, equal the
same number p, while Vg, # 0. Then, according
to condition (17), the functions g (x,, x,, ..., X,),
scaled up by ¢, times, turn out to be fundamen-
tal associated homogeneous functions f X, X

, X ) described by the general equatrons (10)
and (1 1) (or (14), or (15)), if the relations c,g,/
¢,_, = q are fulfilled (where the value of the
parameter g # 0 is chosen arbitrarily). In other
words, scaling factors ¢, should be chosen in
accordance with the recursive rule ¢, = qc,_,/
q,, where ¢,= 1, and the results coincide with a
certain chain of fundamental associated homo-
geneous functions f (x,, x , x) of degree p
and order k up to the multrphers

b EE XX, o, =X /X,

Differentiation with respect to
degree of homogeneity

An interesting technique allowing to generate
new fundamental associated homogeneous
functions is considered in [11, 12]. Specifically,
suppose f(x,, ..., X) is a one-parameter
family of Euler homogeneous functions with
the degree of homogeneity equal to p, where p
is a continuously changing parameter.

Repeatedly differentiating the homogeneity
relation

[0, 00, o Ax) = W (X, X, )

with respect to the parameter p, we obtain that
the functions

S Xy oo x,) = (1/ARY) 8k];(xl, X, ..., X )/Op

satisfy functional relations (9), are a
particular case of fundamental associated
homogeneous functions.

The homogeneous function f(x,,

vy X))
can be represented using Egs. (3p) and (4)

n
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ifx >0,/ (x,x,....,x)=
! (20)
=x7 hp(xz/xl, XX (5 s X /X))
ifx <0 f(xl, g ees X)) =
(21)
=(=xy gp(xz/xl, XX, e X /X)),
where h(z, s s 1), g(z, . ..., 1) are func-

tions of (n—1) varlables mdependent of each
other.

These functions are mapped one- to -one
with respect to the given function f (x,, s
x ) according to the formulae

h (tz, e b)) f(+1, o by s ),
8 (tza 39t tn) :fl‘,(_la _tza ] _tn)a
and depend on the continuous parameter p as well.
Repeatedly  differentiating  expressions

(20), (21) with respect to the parameter p,
we obtain the universal formulae (10), (11)
for fundamental associated homogeneous

functions, if the new functions hj(xl, Xyy ey X))
and g(x , x,) are defined as
h(z, e t) (17 G’h(z, 1 e £)/OD,
g(z’ R t) (10')81g(25 35"'5tn)/8pj'
Egs. (15) are obtained similarly by
differentiating the function f (x,, x,, ..., x,) with

respect to the parameter p The functlon is
written as

];(xl, Xppeors X, ) =17 hp(xl/r, xX,/r, .., x /1),

where r—\/x12+x22+ A+ sandh (1,1, ..., 1)
is a real function given on the surface of a umt
hypersphere

t12+ t22+...+ tn2= 1

and related to the function f (x,, x
h (tl, o eeen k) f(t1’ pr e )

where 12+ £ +.. .+ 2= 1.

It follows from the obtained formulae that the
process of differentiating the Euler-homogeneous
functions with the degree of homogeneity equal
to p with respect to the continuously changing
parameter p does not generally lead to a loss
of possible chains of fundamental associated
homogeneous functions.

Importantly, if the functions f (x;, x5 ..o,
x ) are harmonic (or fulfil some other hnear
differential equation in partial derivatives with
constant coefficients), then all the fundamental
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associated homogeneous functions obtained
by differentiating the initial function f (x,,

, x ) with respect to the parameter p are also
harmomc

Conclusion

Analyzing mutually homogeneous functions
which correspond to a matrix of functional
equations with identical real -eigenvalues,
we obtained a refined class of associated
homogeneous Gel’fand functions [11, 12]. The
definitions and theorems formulated in the
study allow to correctly describe this important
class of functions and consider its properties in
detail. In particular, Theorem 2 on fundamental
associated homogeneous functions allows to
safely consider the following generalizations

f‘z‘],k(xl’ xza '5‘xn) =
=(l/k") R (xl, gp eees X)) X
X (In S (xl, e X))

and argue that such functions identically coincide
with the given class of functions, while fully
preserving their properties without producing
any fundamentally new mathematical objects.

The mathematical constructions we have
discussed may prove useful not only for theoretical
studies but also for practical applications.
The property of Euler homogeneity for scalar
potentials of electric and magnetic fields [5—8]
allows to synthesize efficient electron and ion-
optical systems, presented, for example, in a
series of works by Khursheed [27—43].

We hope that the obtained functional
constructions generalizing the relation of Euler
homogeneity can make it possible to transfer
the principle of trajectory similarity, introduced
by Golikov [5—8], to wider classes of electric
and magnetic fields.

The calculations in this paper were carried out
using the Wolfram Mathematica software [44].
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Introduction

This paper continues a series of works [1—4]
on the properties of homogeneous harmonic
functions and their applications in synthesis of
electric and magnetic fields for electron and
ion-optical systems with special properties
[5—8]. A system of fundamental mutually ho-
mogeneous functions constructed in this paper
can be used to transfer the principle of trajec-
tory similarity, introduced by Golikov, to new
classes of electric and magnetic fields, and thus
serve as a basis for synthesis of various elec-
tron and ion-optical systems, presented, for
example, in Khursheed’s studies [9—25].

The paper is a direct extension of [26, 27] and
heavily relies on the results presented therein.

Consider the following functions

fc)p (X)) =x"((g In xl)k/k!) X
| (1)
X h(x,/x,, x,/x,, ..., x /x) cos(w In x)),
fs)pk (x) =x/((q In x))"/k!) x
’ @

X h(x,/x, x,/x, ..., x /x ) sin(o In x)),

where x = (x, x,, ..., X ); p, ¢, o are real con-
stants k is an integer index (k = 0, 1, 2, ...);
h(t, t, ..., 1) is a certain function of (n — 1)
variables; values of the variable x, satisfy the
condition x,> 0.

In fact, functions (1), (2) are the real and
the imaginary part for the chains of fundamen-
tal mutually homogeneous functions with a
common real eigenvalue from [27] when the
degree of homogeneity p (multiple real eigen-
value of the matrix of mutually homogeneous
functional equations) is replaced by a complex
number p + i(o Since, generally speaking, the
generator A(%,, £,, ..., t ) must also be considered
in this case as a complex-valued function

h( t)+lg(2a 3,"-,tn)7

from a formal standpoint, Egs. (1), (2) should
be written as

fc)p’k(x) =x/((q Inx))"/k!) x

X h(x,/x,, x,/x,,

2 3, ..

X /x)) cos(w Inx)—

—x/((q Inx )"k!) x

x g(x,/x, x,/x,,
£, )
h(x,/x,, x,/x,,

X /x)) sin(o In x,);
=x((q In x,)*/k!) x

X /x)) sin(® Inx ) +
+x/7((q In x,)"/k!) x

x g(x,/x, X /x,, ..., x /x,) cos(® In x)),
where expressions (1), (2) are a particular case
corresponding to the choice g(z,, £, ..., 1) = 0.

By virtue of this, the properties of the
chains of fundamental mutually homogeneous
functions with a common pair of complex
conjugate eigenvalues closely resemble the
properties of the chains of fundamental mutually
homogeneous functions with a common real
eigenvalue, considered in [27].

Given the functional relations

£0x) = Xa,00 f(%), 3)

where i, j = 1, 2, k, and functions a, (k)
are unknown in advance in a particular case
when all eigenvalues of the matrix la, ()] are
pairs of complex conjugate values p = o equal
to each other, functions of the form (1), (2)
can be regarded as the solutions to functional
relations (3) [26].

Using direct substitution, we can confirm that
functions (1), (2) satisfy the functional relations

£ 00 =2, a, (W fO (x) -
S3 0 b (WS (%

4

£ (0x) = 2, b OO () +
o 4 (DS, (%),

where the functions aj(k) and bj(k) are defined as

aj.(?») = (1//)! ¥(q In Ly cos(w In 1), (6)
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b() = (1)! W(q In Ay sin(@Ind).  (7)

Introducing nondegenerate linear combina-
tions of functions f‘) «x) and f©  (x), which
can be written as

g(C)p,k(x) - (ka C)p,k(x) B ka(' Y)p,k(x);
g9 ()=7,/ (X)+8,f9 (%)
ak2 + BkZ ;é O’ ,YkZ + 8k2 ;é O,

.0, T B, 7,70,

the new functlons g@ x) and gm {X) can be
simplified to the followmg form

g9, = Cox (g Inx,)/kt)
X h(x,/x, x,/x,, ..., x /x) cos(w In x + ¢,);
8{s>p,k(x) =S, x/((q Inx)"k!) *

X h(x,/x, x,/x,, ..., X /X)) sin(o Inx + )

G, :\/ai +Bia A =\/Yi +82;
¢ = arctg(B /o), v, =

C #0,5#0,0, #y, 12,

It follows from conditions (4), (5) that
functions g@ (x) and gm Ax) satisfy  the
functional relatlons

g9 M) =2, ¢ (M) g9 (x)+
T o 4,0 g2, (X);

gV (x) =% e M) g (x)+
+ Z OkSk.(X) g(lc) k(x)s

arctg(y,/ d,),

where the functions c, (X) kJ(x), ekJ.(k) and
(X) are defined as

» k=j

o, (=)~ GG,
(k—j)! cos(d)j —‘If_,-)

xcos(colnk+(¢k —\pj)),

, s,

dk’j(x):_k (11‘17\,) k/ J >

(k= j)! cos((l)j —\|1j)
xsin(mlnm(q)k—q)j)),
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A () s, /C
(k—j)! cOS(¢j_‘Vj)
xsin(mlnk+(\lfk _\VJ))’
M) SS)
s, (M) = (k—j)! COS((P,-_‘V/')
XCOS(@IHK"‘(W/( _(I)j)).

X

e ()=

X

When a linear transformation satisfies the
conditions

atVko, =y, =¢,C =S8, =C,
the new functions g“) [x) and g“) J(X)
satisfy functional relatlons @), (&) w1th

functions (6), (7).

The objectives of this paper consist in, firstly,
developing general formulae for the functions
f‘) (x) and f© (x) which satisfy functional
equatlons 4), (5) with functions (6), (7), and,
secondly, proving certain important theorems
on the obtained class of mutually homogeneous
functions.

Auxnllara' formulae for positively
Euler-homogeneous functions

The function f{x) is called positively Euler-
homogeneous with a degree of homogeneity
equal to p [28], if the condition

JOX) =N f(x)

holds for every Vi > 0.

Universal formulae can be obtained for
positively homogeneous functions which
allow to represent them in a generalized form
convenient for practical applications. The
following expressions are typical examples,
which will be useful later on.

If we substitute the values

A= Jrl/xl and —l/x1

in condition (8), then after permutation of the
right and the left-hand sides of the obtained
equality, we obtain the following formula:
if x, > 0,
SX)=xp h(x,/x, x/x,,

2771

®)

LX) 9)
if x, <0,

SX) = (=P glx,/x, x./x, ..., x /x)), (10)
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where h(t,, t, ..., t) and g(¢, ¢, ..., ) are
arbitrary functrons of (n—1) varrables, which,
generally speaking, do not depend on each other
and are related as follows to the function f{x):

h(t, t, ...t )=f(+1, 0, ¢, ...,1),

g(tza 39t tn) :ﬂ_l, _tZ’ . _tn)'

The case x, = 0 is not described by Egs. (9),
(10). However, the function f0, x,, x,, ..., x)
is positively homogeneous as well, but depends
on a smaller number of independent variables.
Therefore, there is actually an entire hierarchy
of equations of the form (9), (10) corresponding
to a successively reduced list of independent
variables x,, , x ), X

k12 “Vkt20
2. If we substitute values A = 1 /rin

2o b3y e

condition (8), where r= \/x1 +X5 X,
we obtain the formula

SX) = s(x /r,x/r, ... x /1), (11)

where s(7,, ¢ Ly wons t) is an arbitrary function of n
variables, given on a unit hypersphere

1Pt A=,

which is related as follows to the function f{x):
s, t, ..., t)=At,t,...,1).

3. The domain Q contains a fixed positively
homogeneous function v, (x) of degree p which
does not become zero in this domain, as well as
fixed positively homogeneous functrons v,(X),
V,(X), ..., v (x) of zero degree which are func-
tionally independent, all of them having no
singular points. We obtain in this domain Q a
formula

Pl

Sx) =y (x) x(y, (x),
Yy(%), -0 W, (X)),

t) is an arbitrary function of

(12)

where x(z, £, ...,
(n — 1) variables.

As a result, Egs. (9)—(11) turn out to be
particular cases of Eq. (12).

Indeed, function y(x) f(x)/\y (x) is well de-
fined in domarn Q and, as it is easy to prove, is a
positively homogeneous function of zero degree.

The function y(x) cannot be functionally
independent of functions

¥,(%), Wi (X), .. ¥, (X),

otherwise the variables x,, x,,
expressed in terms of functions

Y(x), (X)), ... v, (X),

..., X _could be

which are positively homogeneous of zero
degree, and then any function of variables x,,
X,, ..., X would be a positively homogeneous
function of zero degree, which is meaningless.

Therefore, this function can be represented as

Y(x) = x(y,(X), yy(X), .., ¥, (X))

After this, expression (12) is obtained for the
function f(x).

On the other hand, if the function f{x) has the
form (12), it is positively Euler-homogeneous
with the degree of homogeneity equal to p.

Note. Given a fixed choice of positive
homogeneous functions

v,(0) and y,(x), v,(), - ¥,(X),

the entire space R is partitioned into
non-intersecting conic' domains Q, where
the function v, (x) does not become zero the
functions

Y,(X), W5(X), -.ns W (X)

form an independent set of functions, and the
given functions have no singular points.

Generally, while constructing parametriza-
tion (12), a specific function y (z,, By ey t)isused
for each of the domains Q, whrch is completely
unrelated to the functrons x(t, L, ..., 1) used
for other domains. Moreover the boundaries
between the domains Q_are conic surfaces of a
lesser dimension, with the function f(x) again
behaving as a homogeneous function of degree
p depending on a smaller number of variables
along these surfaces. A separate method of
parametrization depending on a smaller num-
ber of independent variables and using a new
set of fixed functions has to be constructed for
these boundaries. As a result, parametrization
of positive homogeneous functions is parti-
tioned into several independent branches, such
a partition depends on the selected auxiliary
functions

v, (%), Wy (X), wy(X), ..., v (X)

and does not reflect the internal structure
of  positively homogeneous functions
parameterized using them.

A direct check shows that the functions given
by Egs. (9)—(12) indeed satisfy the homogeneity
relation (8) for any selected functions involved
in parametrization.

! The term ‘conic’ means that when point (xl, S xn) be-
longs to a certain geometric object, then all points of the form
(Ax, Ax,, ..., Ax) corresponding to arbitrary values of A > 0

also belong to this object.
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General equations for fundamental
mutually homogeneous functions

Definition. A semi-infinite chain of pairs of
functions f")p) . (x) and fS)P, . (x), where the ina’e?c k
=0, 1, 2, ..., and the functions themselves satisfy
the functional relations

1,0%) =
=%, ¥((q In DIk )1 *
X ff“)pJ(x) cos(® In 1) —
~ X, M((q In DYk )) %
X j‘”p’j(x) sin(o In 1);
1,00 =
=%, W((q In )k~ )b x
X ff")pJ(X) sin(ow In 1) +
+E_ o, M((q In ) k=)Y) *
X f“)pJ(x) cos(m In 1)

(13)

(14)

for any X > 0, is called fundamental associated
homogeneous functions of degree p and order k
with the correlation factor o.

Conditions (13), (14) can be written in
equivalent form by changing the order of

summation:

1,0%) =
3, (g In 2Y}j) %
X fff)p,k_j(x) cos(® In 1) —
X, M((q In 2} x
X f“’p’kﬁ. (x) sin(o In A);

1,100 =
3, 2((q In 2Y}j) %

X f"’p,k_j (x) sin(o In 1) +
+E_, M((g In2)/jj!) x
><f”p’k7j (x) cos(w In A).

(15)

(16)

When o = 0, relations (13), (14) for functions
j_‘f"p ((X) and /¥ | (x) are decoupl@d and become
independent of each other. In this case, a chain
of functions f"’p)k(x) and a chain of functions
fs)p‘k(x) turn out to be chains of fundamental
associated homogeneous functions of degree p
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and order k, independent of each other, which
were considered in detail in paper [27].

The parameter g is responsible for normaliz-
ing fundamental mutually homogeneous func-
tions and does not affect the rest of their prop-
erties. After substituting

£ = FO (x),
L 0=g Y (x),

the parameter ¢ vanishes from functional
relations (13), (14), and functions F° J(x)
and F”M.(x) take the meaning of normalized
fundamental mutually homogeneous functions,
corresponding to the choice g = 1.

We obtain for fundamental mutually homo-
geneous functions of zero degree the functional
relations

SO x) =W f9(x) cos(o In 2) -

(17)
=N f9(x) sin(w In 2);

SO Jx) =W f9 (x) sin(o In ) + as)
+ N jfs)p,o(x) cos(® In A).

Lemma 1. Fundamental mutually homoge-
neous functions f")p)o (x) and /| (x) of zero de-
gree, satisfying functional relations (17) and (18)
Jor Vi > 0, can be represented for x, > 0 as

ﬁ”>p’o(kx) =N f"p,o(x) cos(o In 1) —
—N f“)p’o(x) sin(o In 4); f‘c)p’o(x) =

=x7 h(”)(xz/xv XX, oy X /X)) X (19)
x cos(o In x,) -
—x/ h(s)(xz/xl, x3/x], s xn/xl) X
x sin(w In x,);
P (%) =
=x7 h(c)(xz/x], x3/x1, . xn/xl) X
x sin(o Inx) + (20)
+x7? h(s)(xz/xl, x3/x1, cens xn/xl) X

x cos(w In x)),

where the functions h(t, t,, ..., t) and h(z,
by ooy t) are.arbitrary real functions of (n — 1)
variables which have a one-to-one correspon-
dence with functions f")p)o (x) and f”m (x), and

represented for x, < 0 as
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£ 3 = (x,y %

X X/, X /X 5 ooy X X)) X

21)

x cos(o In (=x))) —
—(=x Y g0, /x , x /x, ..., X [x)) X

x sin(o In (—x,));

frs)p’o(x) = (—xl)P X
XG0 x, X%, ..y X /X)) X
x sin(w In (=x,)) + (22)
+ (—xl)P g(s)(xz/xl, xS/xl, . xn/xl) X
x cos(w In (—x))),

where g9(t,, t,, ..., t) and g9(t,, t,, ..., t) are
arbitrary real functions of (n — 1) variables
which have a one-to-one correspondence with
functions f© (x) and f”p o(X), and are selected
independently of functions h(,, t, ..., t) and
ho(t,, t,, ..., t) used for x, > 0.

Proof. Let us substitute the value A = 1/
x, in relations (17) and (18), assuming that x,
> 0. As a result, we obtain the following linear
equations for the functions f”)pyo (x) and /9 (x):

xS oL xy/x, xfxy, L x x ) =
=/ o(x) cos(ow Inx,) +
+ /0 (%) sin(o In 2);
xS0 o x e, xx g, x fx ) =
=/ (%) sin(e Inx,) +

+ ffs)p,o(x) cos(® In A).
Let us add the notations:
o, t, ..., t)= ff")P’O(l,tz, Ly.onl),

Oty by, 1) =9 (L1, b o 1)

Egs. (19), (20) are obtained after that from
the resulting system of linear equations.

Respectively, if x, < 0, after substituting A
= —1/x, in Egs. (17) and (18), we obtain Egs.
(21), (22), where the functions g9(z,, £, ..., t)
and g1, ¢, ..., t), generally independent of
the functions A(z,, 1, ..., t ) and h9(¢, ¢,, ..., 1 )
used in Egs. (19), (20), are given by the relations

Nty 1y, s t) =S (1,1, b o ),

gty ty, . t)= fs)p’o(—l, ..

Lemma 1 is proved.

If x, = 0 and x, # 0, the problem of parame-
trization of functions f© (x) and / (x) obeying
the functional relations (17) and (18 but depend-
ing on a smaller number of independent variables
is solved using the formulae similar to Egs. (19),
(20), (21), (22). The process is repeated until the
list of variables x,, x,, ..., x is exhausted.

Lemma 2. Fundamental mutually homoge-
neous functions [, (x) and SO (X) of zero de-
gree, which satisfy functional relations (17) and
(18) for v» > 0, can be represented as

f(‘C)p’()(X) =X

X hx /r, x,/r, ..., x [r) cos(® In r) —

“t).

(23)
= hOx [r, x Jr, ..,
x /r) sin( In r);
£ =%
X hOCx,/r, x,/r, ..., x /r) sin(w In r) +
(24)

+ 1 WO [r, x I, ...,

x /r) cos(o In 7),

where r:«/xl2 +---+x§, while h(t, t,, ..., 1)
and hY(t, t, ..., t) are arbitrary real functions
of n variables given on a unit hypersphere

1Pt =1,
which are have a one-to-one correspondence
with the functions f”p,o(x.) and f”p)o(.x).
Proof. The reasoning is similar to the

proof of Lemma 1, except for the multiplier A
> 0 chosen as A = 1/r. The functions

() (s)
WXt t,, ..., t)and B¢, 1, ...
given on a unit hypersphere
1P+t =1,

oL,

are defined as
RNt by oo ) =€ (18 o ),

WXt b, .. t)= fmp’o(tl, Ly .o t).

Lemma 2 is proved.

Lemma 3. Suppose Sp(x) is a positively ho-
mogeneous function of degree p, S, (X) is a pos-
itively homogeneous function of degree o #+ 0,
while y(X), y,(X), ..., v, (X) are positively homo-
geneous functions of zero degree.
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Let us assume that these functions have no
singular points in the domain Q, the function Sp
does not become zero, the function S, is strictly
greater than zero, the functions y,, v, ..., y, are
Sfunctionally independent.

Then fundamental mutually homogeneous
functions f‘) o(x) and f”p (x) of zero order which
satisfy functtonal relatlons (17) and (18) for v >
0 can be represented in domain Q as

940 = S,(x) %
X HOy,(X), yy(X), s (X)) X
x cos(w In S (x)) =S (x) x
X ROy, (%), Wy(X), .0 v (X)) X
xsin(w In § (x));
£ (3 =5, () x
X HOCy,(X), yy(X), - (X)) X
xsin(o In § (x)) + Sp(x) X
ROCy,(X), Wy(X), -.0s W (X)) X
x cos(o In S (x)),

(25)

(26)

where h'9(t, t,, ...,t ) and h¥(¢, t,, ..., t ) are ar-
bitrary real functlons of (n — 1) variables which
are have a one-to-one correspondence with the
functions f” (%) and f©(x).

Proof. “'he functions

29(%) = £ (X)/S (%),
g9 =1 (X)/S (%)

are fundamental mutually homogeneous
functions of zero order and zero degree
satisfying the relations

¢9(0:%) = g(x) cos( In ) -
g9(x) sin(o In }),

gY(X) = g9(x) sin(® In X) +
+ g¥(x) cos(m In A).

Let us substitute the value A = § (x)"/* in
this relation, which is well defined in the given
domain and satisfies the condition A > 0.

The functions

2O /S, (X)1, x /S (X)°,...., x /S (X)),

I /S, (X)1, x /S (X)°,...., x /S, (X))
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are Euler-homogeneous of zero degree,
therefore they can be written as

hO(y,(X), yy(X), ...y, (X))
and, respectively,

hO(y,(X), yy(X), ..., (X))
(see Eq. (12)).

After this, using relations
HOCy,(X), yy(X), ..., ¥, (X)) =
= g(x) cos(In S (x)) +

+ g9 (x) sinln §,(¥));

RO, (X), Wy (%), -5 v, (X)) =
= g (x) sin(ln S, (x)) +

+ g% (x) cos(In S (x)),
we can express the functions g (x) and g (x).

As a result, we obtain Egs. (25), (26) for the
functions f© 0(X) and & (x).

Lemma 3 is proved.

Lemma 4. Fundamental mutually homoge-
neous functions f, (x) and f* (x) of zero or-
der, satisfying functlonal relatlons (17) and (18)
Jor v > 0, can be represented in the form

J,(X) =R (x) cos(In |® (x));  (27)

£ (=R ) sin(ln [D (X)), (28)
where R (x) is an arbitrary positively homoge-
neous functlon of degree p, while ® (X) is an ar-
bitrary positively homogeneous functlon of degree
®, Which are have a one-to-one correspondence
with the functions f” (x) and f“) o(X).

Proof. Let us use Lemma 3 where Q =
R" and the following positively homogeneous
functions are chosen:

S (X) =, 8, (=",

W, (X) = x,/r, g (X) = x /7, .,

v, (x) =x,/r, r:\/xlz+x22+~--+xf,

which satisfy the conditions of the lemma in
the entire space R", except for the origin of
coordinates.

The functions A“(y,, v, .., y,) and
h9(t, t, ..., t), included in Egs. (25), (26),
can be represented as



R, W s p,) =
= H(y,, ¥y -5 ¥,) €oS(G(Y,, Vs, --50,));
hOW, s 0 0,) =

=HW,, vy, .. ) sI(G(y,, vy, -, 1)),

where H(y,, v,, ..., v ) and G(y,, y,, ..., y,) are
arbitrary functions of (n — 1) variables.

According to Eq. (12), an arbitrary positively
homogeneous function Rp(x) of degree p can be
represented as

Rp(x) = Sp(x) X

X H(y,(x), yy(X), .., W, (X)),

while an arbitrary positively homoge-
neous function @ (x) of degree o can be
represented as

O (x) ==£S (x) ¥

x exp(G(Y,(X), W, (X), ..., ¥ (X)),

where G(x) = In(|®, (x)|/S (x)) is a positively
homogeneous function of zero degree, and the
sign is chosen in accordance with the signs of
the functions @ (x). Here, we should take into
account that the positively homogeneous func-
tion @ (x) preserves the same sign at all points
of the form Ax.

Egs. (25), (26) take the form (27), (28) after
the given substitutions.

Lemma 4 is proved.

Theorem. A chain of fundamental mutually
homogeneous functions j“')p‘ (x) and fs)p’ (),
obeying functional relations (13) and (14) jor Vi
> 0, at all points where the function S (X) is not
equal to zero, can be expressed in the form

SO0 =2, (I [S O/ (k=)!)
X Rp(f)(x) cos(ln QY (x));

F,00 =, (@IS QDD *
X RPU)(X) sin(In Q¥ (x)),

where Rp@(x) are arbitrary homogeneous func-
tions of degree p, Q V(X) are arbitrary homoge-
neous functions of degree o # 0 taking positive
values, Sq(x) is a fixed homogeneous function,
nonzero at any point, of degree q #+ 0.

There is a one-to-one correspondence between
the functions [, (x), S, (X) and the functions
RY(x), 0 9(x), providecf that the function S,(x)
is fixed.
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Proof. If kK = 0, the validity of Egs. (29),
(30) is established by Lemma 4 and Egs. (27),
(28). Employing the method of induction, we
assume the following: let conditions (29), (30)
hold true, when £ =0, 1, ..., m — 1. Let us
substitute

fO.M=g X +X_ ((In]S (x))7k!) x
X Rp('”*")(x) cos(In Q™ (x));

=g+, (In[S (X)) x
X Rp(m—k)(x) sin(ln Q(mfk)w(x))’

where g (x) and g(x) are arbitrary functions for
the time being, while the functions Rp(f)( x) and
0 9( x) are obtained in the previous steps of
the proof.

Let us substitute these expressions together
with Egs. (29), (30) for k=0, 1, ..., m — 1 in
Egs. (13), (14) for kK = m, which can be now
written as

0= ffc)p’m(kx) — N cos(® In L) (ff")p’m(x) +

+E_ (g In Tk fO (X)) +
+  sin(o In X) (ff“)p,m(x) +

I, (@ In MR £, (0);
0= fts)p’m(XX) — ¥ sin(o In 1) (fcc)p’m(x) n

+Z,_,, (g IRk £ (%))~
— N cos(m In A) (f(’q)p’m(x) +

+X_,, (g In 1)k f“)p’mfk(x)).

We need to find such functions g(x)
and g(x), for which these equations hold.
After rather cumbersome simplification, the
equations are converted to the following form:

g (A x)=g (x) ¥ cos(® In 1) —
—g,(x) ¥ sin(w In X);

g (A x)=g (x) ¥ sin(® In &) +
+g (X) ¥ cos(o In &)

According to Lemma 4, there are such
functions Rp‘"”(x) and Q "(x) satisfying the
conditions of the theorem, that the following
equalities hold true:

£.(%) = R "(x) cos(In 0, "(x));
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g(x)= Rp(’"’(x) sin(In Qm(’")(x)).

Respectively, Eq. (21) also holds true for k = m,
which means for any £ =0, 1, 2, ... as well.

The theorem is proved.

Note. A set of points for which Sq(x) =(0com-
prises a conic surface of a smaller dimension,
along which the functions fmp‘ (X)and f9  (x) are
again fundamental mutually homogeneous
functions but of a smaller number of indepen-
dent variables. Therefore, parametrization of
the form (29), (30) is again applicable for the
boundaries separating the conic domains S (x)
# 0, but with different functions Sq and with a
smaller number of variables involved, etc.

Corollary 1. A chain of fundamental associ-
ated homogeneous functions f")p (X) and [0 (x),
which obeys functional relations (13) and (14)
Jor Vi >0, can be expressed as follows, if x,> 0:

SO ) =2 x (g Inx Y (k)Y
X hO(x,)x ), xy)x,, .., X /X)) cos(o Inx ) —
=2, % ((g Inx )/ (k=)!)

X h(‘g)j(xz/xp x3/x1’ e xn/xl) sin(® In xl);

f S)p,k(x) =X X P((q In x)/(k=)!) *

(1)

x h@)j(xz/xl, X,/x, ..y x /x)) sin(o In x)) +

+3_ x2((q Inx ) (k=)!) x

=0 V1

(32)

X h(s'?j(xz/xl, x,/%,, ..., X /x) cos(w In x,),

where hj(")(tz, tyy ..., t) and hO(t, t,, ..., t) are
arbitrary real functions of (n — 1) variables,
which are have a one-to-one correspondence with
the functions fc)p’ (X) and fs)p‘ J(X).

By substituting x, - —x, in Egs. (31), (32) we
obtain the formulae for the case x, < 0:

S c)p,k(X) = Zi=0,k (fxl)l’((q ln(,xl))k—j I(k—j)!)
X g{C)j(xz/xl, x3/x1’ .
=%, (g I ) =

-y X /X)) sin(o In(=x,)));

., X /x)) cos(o In(=x,))
(33)

x g(“‘?/.(xz/xl, x,/x, .

S0 = Z, (g () k) =

x g(c’],(x2/xl, X,/x, .

X, (2 Y (g In(=x)) (k=) *

X g“)j(xz/xl, x,/x,, .

X /x,) sin(o In(—=x))) +
(34)

.., X /x)) cos(w In(—x))),
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where gj(c)(tz, t, ..., t)and g¥(t, 1, ..., 1) are
arbitrary real functions of (n — 1) variables,
with a one-to-one correspondence with the func-
tions f“)p)k(x) and j“‘)p (X), while the functions
g9ty ty, .., 1) and gj(s)(tz, t,, ..., 1) are selected
independently of the functions hj(")(tz, Ly ooy 1)
and hj(s)(tz, Ly, ..., 1), used in the case x, > 0.

Proof. Let us confine ourselves to proving
Corollary 1 for the condition x, > 0, as the case
x, < 0 is obtained from calculations for the case
x, > 0 after substituting x, = —x,, with which re-
lations (29), (30) preserve their form. We apply
the proved theorem with the function Sq(x) =
x,9, where the functions Rp(/')(x) and Q “(x) are
represented in the domain x, > 0 in accordance
with Egs. (9) in the following form:

Rp(j)(x) — xlp [—[j(xz/xl, x3/x1’ ceey xn/xl),

0 V(x)=x° Gj(xz/xl, XX ooy X X)),

After substitution and transforming Egs.
(29), (30) for the new functions

) =
hiNt, 1, ... 1)

=H(t,t, ..., t) cos(In Gj(tz, Ly t));
hj@)(tz, Ly t)=
= Hj(tZ, ly ..., t)sin(In Gj(tz, Ly .. t)),

we obtain Eqgs. (31), (32).
Because the functions

H].(tz, ty,...,1)and Gj(tz, Ly ost)
are arbitrary, then the functions
(c) (5)
RNty by o t), ROt s t)

are arbitrary as well.

This proves Corollary 1.

Note to Corollary 1. When x, = 0 and x,# 0,
the problem of parametrization of functions f©
p’k(x) and ff)p,k(x), which obey functional rela-
tions (13) and (14) but depend on a smaller
number of independent variables, is solved using
formulae similar to Egs. (31), (32), (33), (34).
The process is repeated recursively, until the list
of nonzero variables x, x,, ..., x_is exhausted.

Corollary 2. A chain of fundamental associ-
ated homogeneous functions j‘")p (X)) and [0 (x),
which obeys functional relations (13) and (14)
Jor v > 0, can be represented as

f C)p,k(x) - 2j=0,k (g In r)9/(k=)!) >

X h<"’j(x1/r, x,/r, ..., x /r)cos(w Inr) —

(35)



X, 7((q In k)

(35)
X h(s)j(xl/r, x,/r, ..., x /r)sin(® In r);
S X =Z (g In ryl(k=)!) >
X hO(x /r,x/r, ..., x /r)sin(o In7) +
7 (36)

+3,, (g In Py (k)!)

X h(S)j(xl/r, xz/r’ cce ‘xn/r)cos((o ln r)’

2
n

where r=|x|=/x] +x; +---x, and

h(t, b, ...t )and A1, 1, ..., 1)

are arbitrary real functions given on the surface
of a unit hypersphere

1P+ttt =1

and which have a one-to-one correspondence
with functions f©  (x) and j‘s)p) (X).

Proof. We use the same procedure as for
proving Corollary 2, where S (x) = 7, and Egs.
(11) are applied for functions ?ip(ﬁ(x) and Q 9(x).

Corollary 2 is proved.

Corollary 3. Suppose y (x) is a positively ho-
mogeneous function of degree p, vy (X) is a pos-
itively homogeneous function of afegree qg # 0,
v, (X) is a positively homogeneous function of de-
gree o # 0, ay,(X), y,(X), ..., v (X) is a positively
homogeneous function of zero degree.

Assume these functions have no singular points
or discontinuities in the domain Q, the function
vy, does not become zero, the functions y_ and y,
are strictly positive’, the functions y,, y,, ..., y,
are functionally independent.

Then fundamental mutually homogeneous
functions f“)p)k(x) and f© (X), which obey func-
tional relations (13) and (14) for v > 0, can be
mapped one-to-one in the domain Q as

SO =2 v (x) (Iny (X)) (k)!

 cos(In () K0, W, (X), .., ,(9) ~

(37)
=%, 00 (I y ()Y (k)] %
< sin(In y,(0) A (y,(0, (0, ... ¥, (%));
S0 =%, ) (I (%) /(k)! x
 sin(In () A9 (), Yy(x), ... v, (6) +
(38)

£ 3,0, v (%) (In g, () (k) x

x cos(n v, (%)) Ay, (%), W, (), -... ¥, (),

2 Absolute values are used for negative functions.
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where hj“')(tz, ty..., t) and hj(s)(tz, ty, ..., t) are
arbitrary real functions of (n — 1) variables, with
a one-to-one correspondence with the functions
£9,,%) and £, (x).

roof. The same scheme is used for the
proof as in Corollary 1, where S (x) = \yq(x),
and Egs. (12) are applied for the functions Rp(f)
(x) and Q “(x).

Corollary 3 is proved.

Note to Corollary 3. Using Egs. (37), (38),
the entire space R is partitioned into non-in-
tersecting conic domains Q, where the func-
tions q;p(x), \yq(x) and y_(x), selected in a fixed
manner, do not become zero, the functions

V(X0 Wy(X), s W, (X)
form a functionally independent set of func-
tions, and the given functions have no singular
points or discontinuities. Generally speaking,
constructing parametrization (37), (38), we use
for each of the domains Q_a specific set of
functions

(¢) ()
hty, 1, ..y t) and B, 1, ),

which
functions

(c) (s)
hj (¢t ..., ¢ ) and hj (), Ly -

is completely unrelated to the

5 1),

used for other domains.

As a result, parametrization of fundamental
associated homogeneous functions f©  (x) and
j‘s)p)k(x) is partitioned into several indpépendent
branches, and such a partition depends on the
selected auxiliary functions \yp(x), v (x) and
v, (x), and, to a lesser degree, on the functions

V(0 Wy(X), - W, (X),

and due to this does not reflect the internal
structure of the chain of functions parameterized.

A linear combination of functions with
constant factors comprised from several
chains of fundamental mutually homogeneous
functions of degree p is a chain of fundamental
mutually homogeneous functions of degree p
as well. Besides, if j(")p‘k(x) and f© (x) are a
chain of fundamental mutually homogeneous
functions of degree p, then the new chain of
functions

g9 (x)=f9 (x)andg® (x)=/ (x),

obtained by shifting the index Kk — k£ — 1 and
supplemented by leading zeros g“”p)o(x) =0 and
g“),,,o(x) = 0, is also a chain of fundamental
mutually homogeneous functions of degree p.
The resulting Egs. (29)—(38) illustrate the
validity of Gel’fand’s hypothesis that chains
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of general form are obtained from the main
chains with a nonzero first term using a linear
combination with constant factors comprised
of main and derived chains, which in turn
result from the main chains by shifting the
index k and supplementing the chain with
leading zeros. At the same time, unlike
composite chains, all terms of the main chain
of functions are reconstructed with a one-
to-one correspondence by its first element in
accordance with a certain rule.

The accurate formulation of this rule reflects
the researcher’s subjective preferences and can
widely vary. Generally speaking, the main
chain is a fairly vague notion, as selecting a
different method for function parametrization
makes previously main chains composite, and
conversely, some previously composite chains
become main ones.

As follows from Eq. (21), fundamental
associated homogeneous functions are in fact
linear combinations with constant factors
generated by the main chains of functions
expressed as

(1/k1) (In S, (x)])* R (x) cos(In |S,(x)).
(1/k") (In |Sq(x)])" Rp(x) sin(In |Sm(x)]),

where Rp(x) are arbitrary positively homoge-
neous functions of degree p, S, (x) are arbitrary
positively homogeneous functions of degree
o, and Sq(x) are fixed positively homogeneous
functions of degree g. The situation does not
change and we can obtain no new functions, if
we allow for functions Sq(x) to be arbitrary pos-
itively homogeneous functions of degree ¢ (al-
though distinguishing main chains from com-
posite ones becomes exceptionally challenging
with this approach).

Preliminary conclusions

Analyzing mutually homogeneous functions
which correspond to a matrix of functional
equations with identical real -eigenvalues,
we obtained a class of functions which are a
generalization of associated homogeneous
Gel'fand functions [29, 30]. The definitions
and theorems formulated in the study allow
to define this important class of functions
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well and consider its properties in detail.
In particular, the theorem on fundamental
mutually homogeneous functions allows to
safely introduce the functions of the form

fc)p,k(x) = (1/k!) x
X (In Sq(x))" Rp(x) cos(ln @ _(x));

f“‘)p,k(x) = (1/k!) x
X (In Sq(x))" Rp(x) sin(In @ _(x)),

as well as their linear combinations with
constants factors (possibly, with a preliminary
shift of index & and supplement of the function
chain with leading zeros),

where Rp(x) is a positively Euler-
homogeneous function of degree p; Sq(x) is a
positively Euler-homogeneous function of de-
gree ¢, taking positive values; @ (x) is a posi-
tively Euler-homogeneous function of degree
o, taking positive values.

These functions identically coincide with
the given class of fundamental mutually
homogeneous functions, while fully
retaining their properties without producing
fundamentally new mathematical objects.

We intend to continue the analysis of
differential and integral properties of chains of
fundamental mutually homogeneous functions
as a new functional class of real variable
functions in subsequent publications.

The calculations in this paper were carried out
using the Wolfram Mathematica software [31].
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B.A. Mauuiee@, I0.E. CaHdomupckuti, M.IO. YecHoko8,
10.A. YecHoko8, A.A. lHOBuUY

WMHCTUTYT pU3UKM BbICOKMX 3HEPruii uMeHmn A.A. JloryHoBa
HUL, «KypuaTOBCKUI UHCTUTYT>,
r. MpoTBMHO MockoBCKoOW 06nacTu, Poccuiickas deaepaums

B craTtbe omumcaH MHTEPECHBI MeETON U3ruba KPUCTAJIMYECKUX IIJIACTUH KPEMHMUS
C TIOMOIIbI0O HaHECEeHWs MeXaHWYeCKMM ITyTeM KaHaBOK Ha WX IIOBepXHOCTU. Merton
MEepPCIeKTUBEeH I TpUMEHeHUs KakK B yckopurteiae Y70 HMHcTtuTyra (U3MKKA BBICOKUX
SHEpruii, Tak U B ycTpoiicTBax bomabimoro agponnoro komraiiaepa (BAK). C ucnonrs3oBanuem
YKa3aHHOTO METOJa CO3JaHbl KOHKPETHBIE YCTPOMCTBA: KPUCTALIMYCCKUN OHAYISATOP IS
ny4yKa MO3UTPOHOB ¢ sHeprueit 3 9B, kopoTkue Kpuctamimueckue nedaekTophbl A BbIBOAA
nydyka npoToHoB ¢ sHeprueit 70 I'B u3 yckopurenst Y70, MHOronoaoCKOBbIe KPUCTAIbI IJIsT
KOJIZTUMALIMK Tydka npotoHoB B BAK mpu sHeprum 6500 I'sB.

KmoueBbie cioBa: Bosbiioii agpoHHBIN KoJIaiiaep, KOJJIMMALIMS ITyYKOB, KPUCTAJINYECKUA
OHJIYJISITOP, MHOTOITOJIOCKOBBIC KPUCTAJLIbI
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Introduction

The idea to use channeling in bent crystals to
steer particle beams, first proposed by Tsyganov
(Joint Institute for Nuclear Research, Dubna,
Moscow Oblast) [1], was advanced and tested
in many experiments (see [1—3] and references
therein). The idea found the widest practical
application at the U70 accelerator at the Institute
for High Energy Physics (Protvino, Moscow
Oblast), where crystals are used in regular
sessions for extracting and steering the beams.
Problems related to the physics of particle beam
channeling were considered in [4, 5].

Our study introduces a method for bending
crystals for subsequent use in accelerators.
Notably, the efficiency of particle deflection by
a bent crystal (for example, see book [4]) is
described by the ratio of the critical angle of
channeling 6, to beam divergence j, decreasing
exponentially with crystal length L:

Eff ~ (0, /j)exp (<L / L),

where the characteristic parameter L, called the
dechanneling length increases linearly along
with the particle energy; it amounts to 5 cm
in silicon crystals for 100 GeV energy protons.

The critical angle of channeling (the
Lindhard angle) is rather small:

0_~ (1/E)"* = 0.020-0.002 mrad

for protons with the energies £ ranging from
100 to 10 000 GeV, respectively.

~10 pm

CS
DCPs

Several hundred um N

Fig. 1. Effect of deformation of crystal planes
from microscratching of crystal surface:
groove G, crystal surface CS,
deformed crystal planes DCPs
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Because the angle is small, this beam steering
method is not versatile but can be quite useful
in some cases, especially for extraction of
circulating beams and their splitting in particle
channels where crystals act as miniature magnets.

The sizes of crystal plates (along the beam)
range from 0.1 mm to 10 cm depending on the
degree of bending and the type of problems solved.
A commonly used bending method consists in
applying the bending moment generated by a
metal holder to the crystal [4, p. 85]. A method
involving mechanical scratching of grooves on
the surface of crystals was used in several cases
for small bending angles.

Basic principles of the groove
scratching metho

The Twyman effect, known in optics [6], is
a phenomenon when small mechanical damage
to the surface from microgrinding produces
stresses causing the surface structure to bend,
in some cases substantially. It is important that
these deformations are smooth for channeling
high energy particles. Experiments on particle
deflection with crystals conducted at IHEP [4]
revealed interesting phenomena in the end face
of crystal, when the trajectories of channeled
particles escaping the crystal are generated
specifically depending on the microscratches
present on the surface (i.e., the trajectories are
sensitive to microscratches).

The explanation for the effect is that protons
near, for instance, scratches are channeled in
deformed layers of the crystal and move around
these scratches. Reconstruction of deflection
angles of the particles indicates that deformation
of the crystal planes penetrates to substantial
depths, up to a few hundred microns (Fig. 1). This
effect was successfully applied to solving several
acceleration problems for silicon crystals bent by
periodic microgrooves scratched mechanically on
the surface (using a diamond blade).

Example applications of the
method in accelerators

A method for creating a crystalline
undulator, i.e., a periodically bent crystal,
by mechanically scratching grooves on the
faces of the crystal was first considered in
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Fig. 2. Schematic representation of crystalline undulator:
grooves are denoted as Gs, d is the groove period, # is the thickness of the crystal plate, e*is the positron beam.
The sinusoid corresponds to the bent crystal planes in the bulk of the crystal

a) b)
d
h —
Pr—
——

Fig. 3. Schematic representation of bent silicon crystal plate:
smooth bending obtained by periodic scratching of grooves on the surface (a);
plate fragment in the region of interaction with proton beam p (b)

[7]. An X-ray diffractometer was used to
establish that the deformation amplitude of
40 E was reached in 10 periods with a 0.5
mm step, which is sufficient for generation
of hard photons. The first experiment with
such an undulator was carried out at the U70
accelerator with a 10 GeV positron beam [8].
Fig. 2 shows a scheme of the undulator with
grooves developed at the IHEP.

The period d of bilateral groove scratching
has to be no less than the thickness /# of the
crystal plate for the sinusoidal deformations
to penetrate deep into the entire bulk of the
crystal according to the Saint-Venant’s prin-
ciple, known from elasticity theory [9]. If the
grooves are scratched with a small period, so
that d << h, then the stresses become uniform
at a depth approximately equal to d, producing
a smooth bend in the crystal (Fig. 3,a).

The thickness of the layer with efficient
channeling equals # — d. This method of
crystal bending was first applied using a 70
GeV beam splitting station at the U70 ac-
celerator [10]. The bending angle of a crys-
tal 16 mm long and 0.5 thick amounted to
10 mrad. The experience with proton beams

with an intensity of 10'> particle/(cm?-s7!),
accumulated since 2009, indicates that the
crystal preserves its bending and channeling
properties, splitting the beam with the same
efficiency. Fig. 3,b shows a fragment of the
crystal after irradiation with protons (dose of
5-10" particles).

Notably, the method of bending the crys-
tal by scratching grooves on the surface is also
applicable for production of crystal strips with
a small bending angle (around 50 prad), optin
mal for TeV energies. Such crystals were tested
with a 400 GeV proton beam at the Super
Proton Synchrotron (SPS) at the European
Organization for Nuclear Research (CERN,
Switzerland) via particle deflection by multiple
volume reflection [11].

Fig. 4,6 shows a photograph of the silicon
crystal plate with periodic grooves serving as
a deflector, prepared by the IHEP team for
the experiment. Fig. 4,a shows a schematic
for the deflector’s operation during multiple
volume reflection of particles. Deep grooves
with a rough surface were made by a triangu-
lar cutter with diamond grit, providing suffi-
cient curve bending of the strips produced on
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Fig. 4. Thick bent silicon multistrip crystal with periodic grooves scratched on the surface:
operation sequence for multiple volume reflection (a); photograph of crystal (b); computational results
for efficient 6.5 TeV proton deflection by multiple volume reflection in bent strips (c):

Monte Carlo simulation and SCRAPER code were used. Fig. 4,a shows bent crystal planes (/);
triangular grooves (2); tracks of particles deflected due to channeling (3)
and multiply reflected by bent planes (4); the oval in Fig. 4,c marks the reflection region

the polished face of a thick silicon plate. The
beam in the experiment described in [11] was
deflected at an angle of 50 prad and agreed
with the calculated value with an efficiency
of about 90%.

Bending of separate strips and their mutual
orientation was studied with the Kurchatov
Synchrotron Radiation Source (Kurchatov
Institute, Moscow) using a parallel X-ray beam
[12]. Analysis of the results showed that this
structure, i.e., a series of bent strips formed be-
tween large grooves on a thick plate, is aligned
perfectly, fitting for collimation of 50 TeV pro-
ton beams at the Large Hadron Collider (LHC,

2 3
Length, mm

CERN) and even the Future Circular Collider
(FCC, CERN), using multiple volume reflec-
tion of particles. The parameters of the crystal
device can be easily adapted to this energy by
varying the size of the grooves and the distance
between them.

Fig. 4,c shows the calculated deflection
angles of beam particles at 6.5 TeV depend-
ing on the orientation of the crystal plate in
a form of two-dimensional density marked
with dots. The calculations were performed
using our SCRAPER software and the Monte
Carlo method [14]. Evidently, the particles at
the edges of the beam (on the right and left)

Fig. 5. General view of silicon crystals with periodically (a) and aperiodically (b) arranged grooves
The insets show distributions of the bending angle along the length of the crystals
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VRS il i e G ‘o] S R ik L s W P
0 0.2 04

Deviation angle, prad

Fig. 6. Schematic layout for beam extraction by crystal (C): peak of channelled particles efficiently
extracted (I); fraction of dechanneled particles (II); losses at the septum S (I1I);
H, B denote halo and beam, respectively.
The inset shows distributions of particles deflected by the crystals with constant (curve 1)
and dropping (curve 2) curvature; computed using Monte Carlo method with our SCRAPER software [14]

are not deflected as they do not fall within the
range of the strip bending angles. Almost the
entire beam in the reflection region marked in
the figure shifts down by an angle of 15 prad
corresponding to multiple reflection on five
crystal strips. According to our estimations,
the calculated efficiency of beam deflection
amounts to 92%.

Novel approaches introduced at the
U70 accelerator using the proposed
method of crystal bending

Optimized beam extraction from the
accelerator. Beam extraction by short silicon
crystals has been used at the U70 accelerator
since 1998 [13]. The new bending method
is aimed at increasing the efficiency of
extraction by reducing the length of the
crystals while preserving the required bending
angle, since the surface grooves increase the
crystal curvature. Moreover, if the grooves
are arranged aperiodically, a bend with
decreasing curvature can be achieved. This
also suppresses particle dechanneling along
the length of the crystal, which in turn
reduces particle losses [14].

We prepared several samples of crystals bent
by scratching grooves on the surface, includ-
ing those with aperiodic scratching (Fig. 5).
We conducted an optical test of the bend using
a laser device (the technique is described in
[4]). The insets in the figure show distributions
of the bending angle along the length of the

crystals. Apparently, periodic grooves produce
uniform bending, while aperiodic grooves result
in a decreasing curvature. Fig. 5,a also shows
that identical crystals are stacked to increase
the transverse size of the crystal beam deflec-
tor, thus additionally improving its efficiency.

Fig. 6 shows a schematic layout for beam
extraction with the improved crystals, illus-
trating how the beam extraction efficiency can
be improved by reducing the share of dechan-
neled particles. The inset in Fig. 6 shows dis-
tributions of particles deflected by the crystals
with constant (curve ) and decreasing (curve
2) curvature calculated by the Monte Carlo
method and our SCRAPER software [14]. It
is apparent that decreasing curvature results
in reducing the share of dechanneled parti-
cles by several times. Experiments aimed at
improving the crystal extraction at U70 are
planned as soon as the accelerator equipment
is upgraded. The SCD19 crystal station uses a
crystal 5 mm long with a bending angle of 2
mrad. The prepared crystals (see Fig. 5) allow
to reduce their length down to 3 mm, which
will increase the extraction efficiency from 70
up to 85%.

Testing the crystal undulator with a 3 GeV
positron beam. The energy of photons gener-
ated by the undulator is proportional to the
squared Lorentz factor of a y particle and in-
versely proportional to the undulator period
L. The period of a simple electromagnetic
undulator reaches several centimeters. Thus,
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Fig. 7. Crystal undulator with 3 GeV positron beam: photograph and schematic cross section (inset) (a);
calculated spectrum of photons obtained with the undulator
and undulator peak around 0.23 MeV (inset) (b)

photons with the energies of several keV reach
approximately 1 GeV in the beam of the elec-
tron accelerator. Consequently, crystal undula-
tors with submillimeter periods are the subject
of intense scrutiny because of the potential they
hold for increasing photon energies.

The first data on radiation produced with
a crystalline undulator were obtained for a 10
GeV positron beam at IHEP [8]. However, the
majority of electron accelerators where crys-
talline undulators can be used operate at ener-
gies below 6 GeV. We prepared novel samples
of crystal undulators (Fig. 7,a) optimized for
positrons at lower energies achievable by the
electron accelerators currently available. The
first tests are planned to take place at IHEP’s
Crystal setup at the energy of 3 GeV. Given the
achieved parameters, specifically, a period of
0.4 mm, an amplitude of 50 E, and the num-
ber of periods equal to 9, we plan to obtain a
photon peak at approximately 0.23 MeV with
the undulator. Fig. 7,b shows the calculated
photon spectrum obtained using the software
described in [15]. This software implements an
algorithm for simulating undulator radiation in
the crystal taking into account rather strong ra-
diation during positron channeling, proposed

in [16]. The undulator peak around 0.23 MeV
is shown in detail in the inset to Fig. 7,b. The
background radiation up to 20 MeV is due to
channeling.

Conclusion

The paper presents an interesting method
for bending silicon crystal plates by mechanical
scratching of grooves on the surface. This
method has already been applied for a number
of problems related to steering particle beams
but we also propose vital improvements
for potential applications in new problems
described in the study. The method was used
to construct novel devices: a crystal undulator
for 3 GeV positrons, short crystal deflectors
for extraction of 70 GeV proton beams at the
U70 accelerator, and multistrip crystals for
collimation of 6500 GeV proton beams at the
LHC. The latter show promise for solving the
global problem of beam collimation at future
multi-TeV colliders.

The paper is sponsored by the Russian
Foundation for Basic Research (grant No.
20-02-00045).
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Introduction

Accelerated ion fluxes in vacuum are
widely used in physical research, medicine,
technologies for producing microchips and
various materials, as well as in electric propulsion
spacecraft [1—13]. There is a general call for
systematized review of the physical problems
related to electric propulsion systems (EPS)
[2—6, 14—17]. It is difficult to improve the
existing devices or develop new ones given the
lack of comprehensive theory. A crucial task is
to construct a new generation of EPS featuring
alternative types of propellants, effective
design and operation solutions, high reliability,
extended service life, relative simplicity, and
low cost.

Standard EPS are electromechanical vacuum
systems where electromagnetic energy is
converted to mechanical energy of propulsion.
Momentum is generated using the following
operating cycle: the propellant is transformed
into an ionized gas/vapor phase, ions are
accelerated in an electric field with subsequent
neutralization of the charge of accelerated
particles and free expansion of the neutralized
beam into space. The main condition for
generating the desired thrust is increasing
the momentum of the mass accelerated in
the beam, which means consuming greater
amounts of propellant.

Reducing the consumption of propellant in
EPS is based on obtaining high-velocity beams
(50—100 km/s). The efficiency of EPS is 50%
and higher, while the efficiency of chemical
propulsion units does not exceed 35%. The mass
of propellant on board a spacecraft amounts to
5—15% of the initial mass of the spacecraft in
case of an EPS and 70% and higher in case of a
chemical propulsion unit. The great advantages
of the EPS are their large number of controlled
firing cycles (10°+ times) and long service lives
(10,000+ hours).

Modern EPS are largely represented by
electrostatic thrusters, including ion thrusters
with perforated electrodes (grids) and Hall-
effect plasma thrusters. The latter group
includes stationary plasma thrusters, thrusters
with anode layer, end Hall thrusters, and multi-
stage Hall thrusters [1—17].

Grid ion thrusters are characterized by the
highest efficiency (60—80% and more), high
specific impulse (2,000—10,000 s; determined
as the ratio between the exhaust velocity of the
beam ejected into space and the acceleration
of gravity (about 9.8 m/s?)) with the voltage
difference in grids up to and exceeding 10 kV.
Such thrusters consume propellant efficiently
and have a long service life (up to 10—12 years
of operation in space).

Hall thrusters have a simpler design and
require fewer power sources compared with
grid ion thrusters. Hall thrusters use a magnetic
field to generate electron drift motion in the
direction £ xB (transverse to the magnetic
and electric vectors). Such motion of charged
particles in vacuum can be attributed to the Wien
filter (known since the end of the 19 century)
with electron drift motion in vacuum in crossed
fields rather than to the Hall effect (the classical
Hall effect consists in voltage difference across a
semiconductor placed in a magnetic field). The
principles of the Wien filter were applied for
the first time by Thompson in mass-analyzers
in the early 20" century. Stationary plasma
thrusters are typically referred to as Morozov’s
stationary plasma thrusters in Russian literature
and practice, since it was Morozov who that
a spatially-distributed electrostatic field could
be obtained in plasma, which underlies the
operation of such thrusters [2, 3].

However, the term Hall thrusters became
widely accepted internationally. These units
provide the most practically significant and
reliable operating parameters, generate slightly
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lower impulse but a higher thrust (compared
with grid ion thrusters) at the same power.
The typical parameters of Hall thrusters
(manufactured by Experimental Design
Bureau Fakel, Kaliningrad, Russia) in different
configurations range within the power/thrust
ratios of 13—19 W/mN at a power consumption
of 200—2500 kW. Their specific impulse
amounts to 1600—2500 s. The basic parameters
of Russian-made thrusters are compared in
Table 1 below.

Meteor, Kosmos-1066, Kanopus-V, BKA
and several other spacecraft are equipped with
SPT-50 Hall thrusters operating with xenon
propellant.

The following can be added for comparison:
the thrust to power ratio in such devices as
solar sails, laser or photon propulsion systems
is 3.33—6.67 uN/kW for forward or reflected
radiation, respectively.

According to the fundamental laws of
physics, propulsion can be achieved in a device
emitting an electromagnetic field (EMF).
As the EMF is emitted, the thrust force
exerts mechanical pressure on the antenna,
which was predicted by Maxwell in 1873 and
experimentally proved by Lebedev in 1899. It
was also confirmed theoretically based on the
Maxwell equations within the framework of
classical electrodynamics for processes at the
edge of a conductor.

The maximum pressure of an electromagnetic
field on the antenna is as follows:

F el = 201V,

EMF

where W is the power of radiation freely
expanding in space; V. is the group velocity of a
wave (close to the speed of light); the coefficient
2 appears because the incident wave is reflected
and emitted in the opposite direction.

To achieve noticeable accelerations with a
force of approximately 1 N, significant wave
power is required (approximately 150 MW).

>

An ion source is usually considered the most
complex and critical element in the design of
EPS [2, 3, 11—13, 16, 18]. The method and the
characteristics of propellant ionization largely
govern the required mechanical parameters.
An ionizer should provide fuller ionization of
the propellant so that the number of neutral
particles entering the accelerating gap does not
exceed 10—20% of the total number of particles
exiting the ionizer. As a rule, the charges and
masses of all ions should be the same, and
the number of impurities should be minimal.
Homogeneous processes should be maintained
in the volume ionization chamber. Besides, the
energy consumed by the ionizer and its mass
should be minimal. The current density at the
exit of the ionizer should correspond to the
preset modes of the ion accelerator and the
thruster as a whole.

Volume ionization by electrons is the
main ionization method in stationary plasma
thrusters and grid ion thrusters. The design
of a volume ionizer should satisfy a certain
set of requirements. In particular, in case of
gas of propellant particles with the ionization
cross-section ¢ and concentration n, the size
L of the ionization chamber should exceed the
ionization length X of an electron track in gas
(A= 1/on), i.e., L > .

Along with these conditions, the device
should have a long service life (about 10,000 h),
during which fail-safe controlled switching and
stable ionization should be ensured. In addition
to ionization by electrons, methods of volume
ionization in stationary plasma thrusters, grid
ion thrusters, and prototype models of thrusters
include discharge, plasma, laser, high-frequency
ionization, etc. [2, 3, 14—16].

The high density of thrust in local surface
areas is provided by field ionization with a
strong local electric field near the cusps, e.g.,
with propellant in the form of liquid metal:
mercury, magnesium, indium, cesium, zinc,
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Table 1
Basic operating parameters of Hall thrusters
Parameter Unit Value
SPT-50 SPT-70 | SPT-PPS
Thrust mN 14.3 40 80
Specific impulse S 860 1450 1600
Efficiency % 26 44 48
Power w 220 650 1350
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gallium, etc., as well as electrospray capillary
ionization where propellant particles are
immersed in a colloidal solution. Using field
ionizers with a multi-cusp surface in an ion
thruster can generate a thrust of about10 mN at
a power consumption of about 300 W. Colloid
thrusters provide an impulse of 2500 s and a
thrust of 100 uN with a thrust to power ratio of
about 40 mN/kW. The volume of the ionization
chamber in a colloid thruster is 0.3 dm?, and
its efficiency may reach 50%. However, due
to high concentration of energy damaging
microscopic areas of the surface, these thrusters
cannot compete with volume electron ionizers,
especially in terms of durability.

Evidently, existing EPS use a wide variety
of ionization methods, including ionization
and accelerated motion of charged particles
obtained from compressed gases (nitrogen,
argon, xenon, krypton, etc.), liquid metals, as
well as colloidal solutions of organic substances.
It is believed that such volatile solids as iodine,
teflon, etc., may have good prospects. Despite
a large number of studies, many propellant
materials have only been tested in laboratory
setups. The EPS used in spacecraft mainly
operate with xenon because it has several
advantages: chemical inertness, sufficiently
high atomic mass and ionization cross-section,
acceptable ionization energy. However, due
to its high cost and limited resources, it is
expedient to replace xenon with an alternative
propellant. Consequently, a novel design of an
EPS has to be developed for such propellant.

In this regard, surface, or contact ionization
distributed over the surface of a solid seems quite
interesting [17—23]. Contact sources equipped
with a surface ionizer where cesium vapor
passed through a porous tungsten membrane
were tested in electrostatic ion thrusters [2—6].
However, for reasons that are now clear, the
experiments met only with limited success and
were not continued.

Currently, with further advances made in
the theory and technology of porous materials,
a new stage in surface ionization studies
appears to be more justified. The probability
of electron tunneling and surface ionization
in a porous material can be increased due
to new materials and technologies, unsteady
processes, increased energy of neutral particles
and electrons in the material, and surface
heterogeneity [12, 13, 16—23].

Extensive experimental studies should be
conducted in ground laboratories to develop
novel designs. Surface ionization combined

with implementing and monitoring a range of
ion-plasma processes should play a major role.

Ground tests of spacecraft prototypes
equipped with EPS are carried out in vacuum
chambers with a large volume characterized by
a high pumping speed. They include a VU-M
chamber with a vacuum volume of 2.4 m?
and a pressure of 1-1073 Pa, designed at the
Military Space Academy named after A.F.
Mozhaysky [24, 25].

The chamber was used in a series of studies
conducted by the team comprising staff
members from the Military Space Academy
named after A.F. Mozhaysky and Peter the
Great St. Petersburg Polytechnic University.
Parameters were measured, and theoretical
analysis (including computer simulation) was
carried out for physical processes, as well as for
operating parameters of laboratory prototypes
of ionic and ion-plasma accelerators for
electric propulsion systems used in spacecraft.
The vacuum chamber provides the necessary
processes, measurement methods and tools,
operating parameters and modes of ion
accelerators.

This paper describes the prototypes, the
main methods for testing them, the stages and
characteristics of the analysis, and results of
experimental and theoretical studies.

Experimental methods and equipment

Characteristics of experimental prototypes.
The required parameters of the prototypes to
be tested were obtained by computer simulation
(primarily using the Computer Simulation
Technology (CST) package) [26—30]. This
approach allowed to obtain the size and
shape of the electrodes as well as the current-
voltage characteristics of the charged particle
flux in the injector circuit and distributions of
particle velocity and electric field with respect
to the coordinates in the accelerator volume.
Additionally, new physical and technological
solutions were introduced, and an ion-
mechanical algorithm was used to determine
the thrust in different sections of the accelerator
with varying operating modes [31—35]. The
following parameters of the experimental
prototypes were measured:

electric voltage of ion acceleration,

ion drift current in the accelerator,

ionization coefficient of the vapor-gas flow
injected,

neutralization coefficient of the accelerated
ion flux,

beam pressure force.
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Based on the obtained values, we determined
the main performance characteristics of the ion
thruster developed.

Fig. 1 shows a typical block diagram for
the experimental prototype in the form of
a single-stage linear DC accelerator and an
electrical circuit of the measurements. The
ionized gas flow of the propellant is injected
into accelerating gap 4 via ionizer /, where drift
current 5 of accelerated ions is generated. Due
to the Coulomb force, ions are attracted to the
charges induced on grids I and II. This generates
ion acceleration and thrust. The accelerated ions
are neutralized in neutralizer 7, these particles
no longer generate thrust after that and expand

>

into vacuum as beam &. The power of source /0
is transferred to the ion flux in gap 4 and is then
carried away in the form of a kinetic energy flux
by a beam of neutral particles.

Fig. 2 shows a simplified schematic
representation of the experimental prototype
with ion trajectories in the accelerating gap,
obtained using CST.

Fig. 3 shows a photograph of a simple
two-electrode experimental prototype
(corresponding to the scheme in Fig. 2) tested.

The tested device is based on surface or
contact ionization in the module injecting
the ion flux into the acceleration section.
Tonization with positively or negatively charged

——i I EEEEEEI O

Fig. 1. Block diagram for experimental prototype
and electric circuit for measurements (cation generation):
gas flow of propellant 7; ionizer 2; electrodes 3, 6 generating the electric field;
accelerating gap 4 and ion drift current 5 in the gap; neutralizer 7,
beam & of neutral particles; beam impulse meter 9; EMF source 710

W, eV

5476

4877
4364
3851
3337
2824
2310
1797
1284

770

0.0895

Fig. 2. Schematic representation of two-electrode prototype with ion trajectories
in accelerating gap, obtained using the CST package
(the black line marks the boundary of the computational domain):
electrode / with ionizer distributing gas, ion-plasma flow 2,
electrode 3 generating an electric field; the color scale reflects the energy spectrum of the plasma
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Fig. 3. Photograph of experimental prototype tested (see Fig. 2):
electrode [ with ionizer, ion-plasma flow 2, electrode 3 generating the electric field

particles generated occurs due to electron
tunneling from a neutral particle to the surface
or in the opposite direction. The experimental
prototype used a structured microporous
ionizer distributing gas with a flat electrically
conductive surface (/ in Fig. 3), manufactured
in accordance with the description given in
[23]. Aside from efficient generation of ion flux
and plasma, such a spatially developed surface
made it possible to focus the ion flux in the
electrostatic field of the accelerator. Electrodes
1 and 3 (Fig. 3) were made of copper. The
diameter of the gas-distributing ionizer was 25
mm, the gap between the electrodes was varied
in the range of 2—20 mm.

e

__

%

The measured parameters of the experimental
prototype were compared with the results of
computer simulation as well as with the known
values typical for the best modern devices.

Experimental vacuum chamber. The
experimental prototypes of electrostatic ion
accelerators were tested in a large VU-M vacuum
chamber, maintaining the necessary parameters
of processes and operating modes, equipment
and technologies were provided [22, 23].

The parameters of ion and ion-plasma
processes, including the following quantities,
were measured in the tests:

voltage at the gaps between the electrodes in
the acceleration module:

Fig. 4. Photograph of main VU-M vacuum chamber (/) with instrument module (2)
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electric currents in the circuits of the
accelerator electrode;

mass flow rate of propellant in the gas
distributor channel;

characteristics of the radiation in the visible
range;

mechanical thrust generated by the beam of
particles.

The measurements were performed with
continuous and pulsed high-voltage power
supply. The measured parameters of the
experimental prototype were compared with
both theoretical and standard parameters of
existing and newly proposed ion thrusters.

The experimental prototype was placed in
the instrument module connected to the main
VU-M vacuum chamber with a volume of 2.4
m? through a gate valve (a photograph of the
chamber with the instrument module is shown
in Fig. 4).

The instrument module was a cylindrical
metal structure with a vacuum volume of
approximately 0.03 m?. The gate valve was
installed between the flange and the cylindrical
body. Such a technical solution made it possible
to quickly change experimental prototypes in
case of depressurization and subsequent rapid

HFS

>

bypass pumping of the instrument module.
Vacuum pressure was maintained in the main
vacuum chamber. The instrument module
had two transparent windows to record visible
radiation, as well as an end flange for mounting
the tested prototype, high-voltage leads,
and a choke to supply propellant gases. The
mechanical impulse of the beam was measured
using a ballistic pendulum installed in the
instrument module.

Fig. 5 shows a scheme of the VU-M vacuum
chamber. The required vacuum pressure
was maintained during the tests in the main
chamber as well as in the instrument module
upon propellant gas supply.

The vacuum pumping system and control
equipment of the VU-M vacuum chamber
included the following components:

two NVBM-5 oil-vapor booster pumps;

NVDM-400 oil-vapor diffusion pump;

TMN-500 turbomolecular pump;

piping system with shutoff valves and gates;

vacuum gauge heads;

backing-vacuum system, including
mechanical pumps, a piping system with shutoff
valves and gates, and vacuum gauge heads;

measuring equipment.
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Fig. 5. Scheme of VU-M vacuum chamber:

PMT-2 thermocouple gauge heads 1,

5, 15, 18, 21, 25, 27, 29, 40, 42, 44;

PMI-2 ionization gauge heads 2, 6, 17, 20, 23, 34, lead-in wires 3, 30, leak valves 7, 33;

valves 4, §—11, 16, 19, 22, 24, 26, 32, 35, 39, 41, 43;

NVBM-5 high-vacuum oil-vapor booster pumps 12;

TMN-500 high-vacuum turbomolecular pump 13; NVDM-400 high-vacuum oil-vapor diffusion pump 14
VN-6G backing-vacuum pumps 2§ with oil seal; instrument module 37/; VK-M vacuum chamber 35;
VN-461M backing-vacuum pump 36 with oil seal; VN-6Gm backing-vacuum pump 37 with oil seal;

VN-7 backing-vacuum
90

pump with oil seal 3§
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The operation of the VU-M vacuum
chamber is characterized by the following
parameter values:

residual gas pressure (without propellant gas
supply) no higher than 1073 Pa;

pressure upon propellant gas supply no
higher than 1072 Pa;

pumping time (from atmospheric pressure
to residual gas pressure below 1:-107° Pa) no
more than 4 h.

The total capacity of the high-vacuum
pumps comprising the VU-M chamber was
approximately 18 m?/s at a pressure of 10! Pa,
meeting the condition for free passage of ions
in the accelerating gaps between the electrodes
at an operating pressure upon gas supply.

The mass flow rate of the gas supplied was
measured and controlled using an RS-3A
rotameter. The mass flow rates for different
propellant gases used during the experiments
(compressed air, helium, argon, etc.) were
varied in the range of 0.5—15 mg/s. The upper
limit for air was 0.06 m3/h, the measurement
error did not exceed +4.0% of that value.

The rotameter was calibrated by atmospheric
air. The mass flow rates of propellant gases were
found by recalculation by the following formula:

pa. r
me = Qa.gr £ > (1)
\ Lo

where Qa'gr, m?3/h, is the air flow rate during
calibration; Pogr kg/m?3, is the air density during
calibration; p, ., kg/m? is the density of the
propellant gas fed into the vacuum chamber.

The mass flow rate of propellant p at the
inlet to the gas distributor was determined
based on the following relation:

m = mwm = mepwm = Qa.gr pa.grpwm . (2)

Mass flow rate of the propellant and ion current
in the injector circuit in the accelerating
gap were measured simultaneously during
the experiments, which made it possible
to determine the ionization coefficient for
propellant atoms in the gas flow using the
following equation:

K, )= [(enfp) 11", ()

where m, mg/s, is the mass flow rate; I, A, is
the ion current; u, mg, is the ion mass; e, C, is
the electron charge.

The ionization coefficient depends on the
geometric and physical parameters of the
experimental prototypes.

The approximate estimate of mechanical
thrust is based on formally accounting for the
mechanical impulse of the beam:

dm

where U, V, is the voltage; g, C, is the ion
charge; v, m/s, is the ion velocity at the exit
from the gap, d, mm, is the gap width.

Since the expression does not account
for elastic interactions of ions with neutrals,
resonant charge exchange, radiation losses, and
ion scattering in the acceleration module, it
was used only for initial rough estimation.

The supply power of the stationary
accelerator is converted to the power of ion drift
motion in the gap, heat and radiation losses.
The mechanical properties of the stationary ion
thruster on the test bench correspond to the
idle mode (in terms of power consumption)
when the kinetic energy of the device amounts
to zero.

Results and discussion

When DC voltage in the range of 0—5 kV
was supplied to the ion accelerator at zero
propellant flow, no discharge phenomena
(breakdowns) were observed, and the measured
currents in the acceleration module circuits
were close to zero.

With voltage switching and propellant
gas supply, the ion accelerator was brought
into operation almost with zero lag. The
measured current in the injector circuit
reached its maximum of approximately 1 A,
and the value depended on the gas type, the
voltage (up to 5 kV), and the velocity of the
gas flow supplied. The switching threshold
(the average value of electric intensity in the
accelerating gap) was approximately 250—
500 V/cm for different propellant gases. The
focused flow was observed to glow brightly,
which is typically due to charge and energy
relaxation of the ion flux. The glow was
uniformly distributed over the surface of the
microporous injector and remained stable
during continuous testing. In particular,
visible radiation from the accelerating gap
of the experimental prototype (Fig. 3) was
obtained with dry atmospheric air supplied,
accompanied by generation of negative ions.
Similar results were obtained for different
propellants and positive ions.

Figs. 6 and 7 present typical experimental
characteristics and their extrapolating curves
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Fig. 6. Typical experimental current-voltage characteristics (points)
of negative ion flux in injector circuit and their extrapolating curves (lines)
for different propellants and mass flow rates 7:
air (1), m = 8 mg/s; SF, gas, m = 3, 6 and 9 mg/s, respectively (2—4).
The curves are given for d = 16 mm, 2 = 4 mm (/—4); 5 is the theoretical curve obtained
using the CST package for the conditions corresponding to dependence 4.
Extrapolating power-law relationships are summarized in Table 2.
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Fig. 7. Typical relationships between ionization coefficient and mass flow rate of propellant
(see Eq. (3)) for two values of supplied voltage U, kV: 2.5 (1) and 3.0 (2);
The propellant is the SF, gas, d = 12 mm, 4 = 3 mm

for ion current in the injector circuit depending
on the DC voltage supplied at different mass
flow rates of the propellant, and for ionization
coefficient depending on the mass flow rate of
the propellant mass. Data were obtained for
two distances between the electrodes d and
two thicknesses / of the microporous plate. To
provide a comparison with experimental data,
Fig. 6 shows curve 5, which is a theoretical
dependence obtained with CST for the
conditions corresponding to the experimental
dependence 4. Extrapolating power-law
dependences are summarized in Table 2.
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According to the form of the extrapolating
power-law dependences, the theoretical
current-voltage characteristic 5 given in
Fig. 6 for the computer model (see Fig. 2)
corresponds to the kinetic ion model described
by the Child—Langmuir law (three-halves-
power law). However, the experimental curves
obtained in a wide range of modes exhibited
considerable differences and peculiarities in
terms of the current increase. This indicates
the influence of ion-plasma phenomena,
including strong radiation effects, collisions,
neutralization, and resonant charge exchange.
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Table 2

Extrapolating functions for current-voltage
characteristics in Fig. 6

Curve I(U) dependence
1 [,=0.32440 >%%
2 1,=0.0004U 6726
3 I.=0.1466U *2
4 1,=25.178U 13"

Note. The given functions correspond to the data in
Fig. 6 only.

Furthermore, the processes were of a
general quasi-stationary nature and were not
accompanied by any uncontrolled discharge
phenomena. Typical relationships between
the ionization coefficient and the propellant
mass flow rate (Fig. 7), calculated on the basis
of the experimental curves according to Eq.
(3), correspond to an approximately linear
increase of plasma generation effects in a wide
range of parameters.

Conclusion

It has been established in the experiments
that proper methods and means of
measurement, values of process parameters,
and operating conditions at a mass flow rate
of different propellant gases (air, helium,
argon, etc., in cation and anion generation

modes) within the range of 0.5—15 mg/s were
ensured in the vacuum chamber.

Measurements and analysis of the
characteristics of the experimental models
of ion accelerators have also revealed that
the calculated and experimental ion-physical
characteristics of the tested prototypes
correspond to the current tasks. The given
prototypes have the following properties:

enhanced surface ionization;

ion and plasma ion bipolar modes;

uniform distribution of radiation and
temperature over the developed surface of
the injector;

ion injection with almost zero lag.

It has also been established that it is possible
to use different propellant alternatives other
than xenon.

We have found that the ion-physical
characteristics of the laboratory prototypes
with  contact ionization implemented
and tested can meet the requirements for
developing promising electric propulsion
units.

We assume that the developed unit with a
novel physical and technological design and
the given characteristics will be of interest
for developing new promising equipment. In
general, the experimental setup, its measuring
and technological capabilities, as well as the
designs of prototypes lay the foundations for
further in-depth research and development of
electric propulsion units.
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In the paper, the influence of phase distribution over the objects’ space on resolution and
depth of field of computer-generated holograms has been investigated. The study was carried
out through mathematical simulation of real physical processes of synthesis and reconstruction
of binary transparent holograms. The possibility of a significant increase (up to several times)
in the resolution and depth of field of the reconstructed image because of using phase-shift
masks was found. Moreover, this increase was achieved due to representation of the object wave
in hologram synthesis as a superposition of object waves emanating light from two identical
objects located at different, strictly fixed distances from the hologram synthesis plane.
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B/IMAHUE PACNPEAEJ/IEHUA ®A3bl B TPOCTPAHCTBE
OBBEKTOB HA U3OBPAXXAIKOLWMUE CBOUCTBA
CUHTE3UPOBAHHDLIX TOJIOTPAMM

C.H. Kopewe@, [].C. CmopoduHoB, M.A. ®ponoba, C.O0. CmapoBolimol

CaHkT-MNeTepbyprckuii HaLMOHASbHBIW UCCIeA0BATENBCKUIA YHUBEPCUTET
MHDOPMaLMOHHBIX TEXHONIOMMUI, MEXAHUKU U OMTUKH,
CaHkT-MNeTepbypr, Poccuiickas ®eaepauus

B pabore wu3yuyeHo BIMsSHHUE pacrpeneacHus ¢aspl B TPOCTPAHCTBE IPEAMETOB Ha
pa3pelialollyl0  CIOCOOHOCTh U TJIYyOMHY PE3KOCTH CHHTE3MPOBAHHBIX TOJOTPAMM.
HccrnemoBanme TIpOBEIEHO METOIOM  MaTeMaTHMYEeCKOro  MOICTWPOBAHUS  pealbHBIX
¢U3MYECKNX TIPOILIECCOB CMHTE3a M BOCCTAHOBJICHUS TOJOTpaMM OWHApPHBIX TPaHCIIAPAHTOB.
YcTaHOBIEHA BO3MOXHOCTD CYIIECTBEHHOTO (B HECKOJBKMX pa3) YBEIWUCHUS pa3pelIcHUS U
[JIyOMHBI Pe3KOCTU BOCCTAHOBJICHHOTO U300paxkeHus 61arogapsl UCIOJIb30BaHUIO IIPU CUHTE3e
rojlorpaMmbl (pa30BbIX MAacOK M IPEICTAaBICHUI0O OOBEKTHOM BOJHBI B BHMIE CYIEPIIO3ULIUU
00BEKTHBIX BOJIH, MCXOASIIUX OT ABYX OMMHAKOBBIX OOBEKTOB, PACIIOJIOKEHHBIX HA Pa3INYHBIX,
CTporo (GPMKCHMPOBAHHBIX PACCTOSHUSIX OT TJIOCKOCTH CMHTE3a TOJIOTPaMMBI.

KioueBbie ciioBa: CHHTE3MpOBaHHAs TrojiorpamMma, OWMHapu3amus, MHoporoBas o0paboTKa,
rnyouHa pe3kocTH, pazoBast Macka
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Introduction
Holography is widely used in electronics,
microtechnology and other spheres. In

addition to well-known holographic methods
of protection against counterfeiting of goods,
holographic diffraction gratings, complex
wave front shapers, sights, three-dimensional
projection, and other holographic technologies
can be applied in photolithography.

The advances of holography in projection

photolithography is primarily due to the
possibility of simultaneous aberration-free
reconstruction of large-sized real images,

including images of binary two-dimensional
transparencies, namely, photomasks [1 — 3].
The application of holograms in projection
photolithography makes it possible to avoid the
usage of sophisticated optical systems, complex
in design due to strict requirements for quality
of the images formed using a photolithographic
lIens. In particular, the current tendency of size
reduction of electronic devices leads to gradual
increase in resolution of optical systems. This
is usually achieved by reducing the operating
wavelength, which in turn leads to a reduction in
the size of the aberration-free area of an image.

Particularly noteworthy is the possibility
of using images of photolithographic objects
of computer-generated Fresnel holograms as
projectors, which are a set of discrete pixel-
cells with different phase and intensity values
and can be easily calculated using modern
computers and displayed on physical media.
The methods of hologram synthesis for extreme
ultraviolet, as well specific requirements for
synthesis scheme parameters that would allow
to reconstruct a high-quality image were
presented earlier [4—6].

Imaging properties of the computer-
generated holograms in some cases differ from
the properties of analog holograms and have
their own characteristics. These features are well
studied and exist primarily due to the discrete
structure of the hologram and image [7—11].

This paper presents our findings of the
phase distribution effect in the objects’ space
during synthesis of the Fresnel holograms on
its resolution and depth of field of the image
formed using these holograms. Real physical
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processes of synthesis and reconstruction of
reflection holograms have been mathematically
simulated.

The discrete object-transparency is usually
presented as a set of coherent point sources
with each source emanating light uniformly in
all directions. In this case, the ratio between
the values of the amplitude at two selected
points on the hologram registration plane is
determined by the ratio of the areas of the
spheres on which the points are located (Fig.
1). Thus, if the amplitude located at a point
on the normal and restored from the source
to the hologram plane is taken as a unit, it
becomes possible to determine the amplitude
at any point on the plane.

Fig. 1. Distribution of amplitude from a point
source (s) emanating light over the hologram
registration plane (a straight line);

R, R, are the spherical radii of light rays;

S, S, are the spherical areas

Furthermore, since all the point sources
making up the object are coherent, the phase
shift from the source to the point on the holo-
gram also depends solely on the radius of the
sphere R and the wavelength A:

27R,
0, = N + @,

where ¢, is the initial value of the light source
phase.

The final value of the amplitude at each
point on the hologram plane is defined as the
vector sum of the amplitudes from all points
of the object, taking into account distances
between the point of the object and the
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point on the hologram. At the same time,
the structure of the hologram and the image
formed are significantly influenced by initial
phase distributions during hologram synthesis
in the object space.

The phase distribution effect in the object’s
space on the resolution of computer-
generated Fresnel holograms-projectors

The phenomenon of the overlap between
diffraction maxima from closely spaced elements
of the object which leads to resolution lowering is
called proximity effect. To correct it, it is proposed
to apply a method like the one used in traditional
projection photolithography: the installation of
phase-shifting masks in the object space, which
makes phase difference between wave fronts
that form images of neighboring elements of the
object structure equal = [12]. Since the synthesis
of holograms is performed in virtual space, this
could be achieved through the correction of the
mathematical model of the photomask, i. e., the
introduction of the necessary phase modulation
in its transmission function.

Let us find out the applicability limits of
the proximity effect compensation method, i.e.
conditions under which the elements of the
structure of the photomask can be considered
neighboring, so that the method under
consideration would have a positive effect on
the quality of the reconstructed image. This
could be done either by diffraction integral
calculation, or experimentally, for example, by
using mathematical simulation. It was carried
out in a software package for synthesis and
digital reconstruction of Fresnel holograms [4].
The research included a series of numerical
experimentsof synthesisand digital reconstruction
of the phase-relief reflective Fresnel hologram
of a flat object: two slits located closely in a
non-transparent screen. It was assumed that the
effectiveness of the method for correcting the
proximity effect should depend on the distance
between the slits.

The parameters for the  hologram
synthesis scheme were selected based on the
requirements described in Refs. [5, 6]. Thus,
laser wavelength A was 13.5 nm; the pixel size
of the object and the hologram d, was 20 x 20
nm?. The characteristic size of the minimum
element of objects’ structure was 80 nm. The
pixel size of the object was chosen to satisfy the
requirements of the Rayleigh criterion [5]. The
angle of the parallel reference beam incidence
was chosen equal to 14.7 ° in all experiments,
and the distance between the plane of the

object and the plane of hologram registration
was R, = 20345 nm.

The influence of proximity effect on image
quality for different distances between the
structural elements of the object was studied
by synthesizing and digitally reconstructing the
holograms of two slits of 4 x 40 pixels, i.e.,
80 x 800 nm each. The resulting numerically
reconstructed images are shown in Fig. 2.
According to the Rayleigh criterion, two point-
sources (in this experiment, narrow slits could
be considered as point sources) are completely
resolved if the diffraction maximum of one
of them is superimposed on the diffraction
minimum of the other. Therefore, experiments
should be carried out only for those distances
between slits that are smaller than Rayleigh
resolution criterion for coherent radiation,
which is equal to 57 nm for the slits under study.

a) b)
3

Fig. 2. Reconstructed images obtained with
in-phase (a) and out-of-phase (b) radiation for two
distances (nm) between segments: 20 (/) and 40 (2)

Thus, the distances between the slits in the
experiments ranged from 1 to 2 pixels, i.e. from
20 to 40 nm. Two holograms were synthesized
for each of the indicated distances between the
slits — one for the case when all the radiation
incident on the object was in phase, the other
for the case when the beams incident on slits
were out of phase. Thus, four holograms were
synthesized, and the corresponding images
were numerically reconstructed.

To assess the quality of the reconstructed
images, we used a method based on comparing
the number of threshold processing levels, which
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imitates photoresist response to actinic radiation
exposure. Since the pixels of reconstructed
images are encoded using 8 bits, the total
number of possible threshold processing levels
(intensity gradations) is 256, from 0 (black)
to 255 (white), in accordance with so called
“gray scale” [13]. So, the greater the number
of threshold processing levels (gradations) at
which the intensity distribution on the image is
identical to intensity distribution on the object,
the higher the quality of reconstructed image.
The eligibility of using this criterion is explained
by the threshold properties of photoresists.
The larger the number of acceptable threshold
levels for the reconstructed image, the larger
the range of exposure doses is permissible in
the photolithographic process.

Images reconstructed wusing holograms
recorded with all incident radiation being in
phase, corresponded to the original objects
in the interval of zero gradations of threshold
processing at a distance between slits of 20
nm and 12 gradations at 40 nm. With waves
incident on slits being out of phase, the image
corresponded to the original object in the range
of 14 gradations with a distance between slits of
20 nm and 17 gradations at 40 nm. Thus, in the
case of the smallest possible distance between
the slits (20 nm), the use of phase masks
makes the slits resolvable, while if the distance
between the slits is 40 nm, its quality is almost
the same regardless of using the phase masks.

Thus, numerical experiments have shown that
the application of the phase correction method
for the proximity effect allows one to successfully
resolve structural elements of the object that are
at the minimum possible (equal to the size of the
object’s pixel) distance between them.

The phase distribution effect in the object’s
space on the depth of field of the computer-
generated Fresnel holograms

The image is considered to be sharp within the
limits of such a displacement of the observation
plane, at which the diameter of a point object
image represented as a geometric point does not
exceed the Airy disc diameter. The expression
that allows the depth of field of the optical
system to be determined in accordance with this
criterion is presented as [14]:
én

ZAZ 4 (2)

where A is the system numerical aperture,
A is the wavelength of the laser used, » is a
refractive index of a medium, equals 1 for air.
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Thus, the numerical aperture of the radiation
diffracted on the smallest element of the object
structure, a pixel with the size a, is described
as follows:

A:nsina:i, (3)

a,

where « is the aperture angle of the diffracted
radiation.

From Egs. (2) and (3), the only parameters
affecting the depth of field are the operating
wavelength L and the size of one pixel a.
Currently, various methods are known to
further increase the depth of field of images.
In particular, there are methods based on
phase-shift masks [15], modifications of optical
devices [16], special digital processing of images
at the stage of their registration [17].

However, not all these methods are suitable
for photolithography. The best results in this
case can be obtained by the method based on
representation of an object wave during the
hologram synthesis as a superposition of several
object waves generated by the same object, a
photomask, located at different distances from
the hologram [18].

In this case, the increase in the depth of field
of the reconstructed image is due to the fact
that the hologram restores not one, but several
images with a small offset, not exceeding the
depth of field. Since the objects used are flat,
the sequence of such images will be perceived as
a single image with an increased depth-of-field.

Practical implementation of the hologram
synthesis mentioned above requires
representation of the object beam as a
superposition of two or more object waves
generated by the same objects. Such an operation
would require a very precise installation of
objects during the physical registration of the
hologram, inversely to holograms synthesized
in virtual space. The distance between flat
objects leads to a certain phase difference
between the object waves, which obviously
affects the recorded hologram structure, the
final intensity distribution in the reconstructed
image and, accordingly, and the depth of field.
In this case, the reconstructed image has the
best quality when the object beams are fully
in-phase.

If the object and the reconstructed image
are in-phase, as proposed above, then the
reconstructed images has a constant phase
difference in each plane of the image space. If
the wavelength is considered as a constant, then
the only factor affecting the phase difference
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between the object waves is the distance
between the planes of the objects.

These data are almost completely consistent
with the results of phase distribution in the
reconstructed image [18]. It should be noted
that for small distance values A between
objects, the main factor affecting phase
distribution in the hologram synthesis plane
is the point position on the hologram relative
to its axis. At the same time, as the A value
increases, the influence of the point position
gradually decreases and the distance between
light sources becomes the main factor affecting
the phase difference.

Another equally significant factor is
discretization. Theoretically, the value of the
complex amplitude calculated at a particular
point is actually set for the entire pixel due
to the limited size of discrete cells of the
hologram plane, calculated with Eq. (3). This
leads to uncertainty and, as a consequence, to
an increase in difference between the recorded
values of the phase and the complex amplitude
and the real value, as it shifts from the center of
the pixel to its boundaries. Note that an offset
of one spatial period leads to a phase shift of the
reconstructed image of 2z [11]. A sharp change
in the phase and amplitude values occurs at the
boundaries of adjacent pixels.

The relationship of distance between the
object planes and the quality of the reconstructed
image was demonstrated experimentally
with the above mentioned software package.
Experimental evaluation included the synthesis
of half-tone Fresnel holograms of the test
object called “corners”. The object is shown
in Fig. 3,a.

a)

[

Fig. 3. The original image of the test object (a)
and the image reconstructed using
a synthesized hologram: before (b)
and after (c) threshold processing

The test object was characterized by cross-
lines of 1 x 7 pixels. Two corners closest
to the cross were made up of 1 pixel-thick
segments, the distance between them equaled
1 pixel. This was followed by a gap of 2 pixels

in width, and a third corner with 2 pixels in
width. The width of the fourth corner was 3
pixels. The total size of the object was 23 x
23 pixels.

The synthesis parameters were chosen
in accordance with the conditions defined
in [11] and generally coincided with the
parameters used in the previous experiment.
That is, the size of the minimum element
of the object was 80 x 80 nm, the pixel size
of the object planes and holograms d, was
20 x 20 nm, and the wavelength X was 13.5
nm. Under such conditions, the angle of
incidence of the reference beam o was 14.67°,
and the distance between the hologram and
the plane of the nearest object was at least
20345 nm. Since the structure of the object
is rather complex, R, value was doubled to
40690 nm. The distance was increased two
times to avoid overlapping of restored orders
of diffraction. This step is needed to address
the problem of interference which starts to
influence the quality of the image when high
resolution is applied [5]. The depth of field
of the reconstructed image at the parameters
specified above were b = £237 nm, according
to Eq. (3).

The second plane of the object was placed
a little farther from the hologram at some
distance A relative to the first, with this distance
changing during the experiment.

The reconstructed image quality estimate
was carried out using the method based on
comparing the number of threshold processing
levels described above. The only difference
was that due to the high resolution on the
reconstructed image, it was considered identical
to the object not only when their intensity
distributions were the same, but also when the
difference between their intensity distributions
did not exceed 15 %.

Fig. 4 shows dependence between the
allowable levels of threshold image processing
obtained in the plane of the best installation at
a distance R, related to the maximum number
of gradations achieved with the above described
hologram synthesis and reconstruction, and
the distance A between the planes of two
objects.

As long as the A value remains sufficiently
small (within several wavelengths), the image
quality as a whole is not strongly dependent on
A. The exceptions are the individual maxima
corresponding to the object images with higher
quality, characteristic of the distances, at which
the registered object waves are in phase in the
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Fig. 4. Graph of the quality of the image of the test object obtained in the plane of the best installation
vs the distance A between the planes of the objects during the synthesis
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Fig. 5. Graphs of the quality of the test object’s image reconstructed vs. defocus & for different A values, nm:
A =0, i.e., without installing the second plane (/), A = 4 (2), 21 (3), 194 (4), 199 (5);

A is the distance between the planes of the objects during the synthesis

synthesis process. Thus, the minima on the
chart correspond to the distances at which the
object waves are out of phase.

As A increases, the values of the minima
approach zero: the influence of the aperture
can no longer compensate for the violation of
in-phase. As a result, restoration of a high-
quality image using such holograms becomes
almost impossible. At the same time, the in-
phase recording of object waves in absence of
the aperture influence can significantly improve
the image quality. The “phase uncertainty in
hologram synthesis” described above leads to
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abrupt transitions between adjacent minimum
and maximum due to abrupt changes in phase
values.

At large distances A, close to b, the
influence of the hologram aperture
practically disappears: the image quality is,
on the average, noticeably lower, except
for individual maxima arising from the in-
phase recording due to the influence of
discretization.

The distance between the adjacent maxima
corresponds to the working wavelength A; thus,
checking a series of values when shifting within
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the wavelength, allows to accurately determine
the position of the maximum.

To directly estimate the depth of field of
the reconstructed images using holograms
synthesized at given A values, a series of images
was reconstructed at distances & different
from the distance R, by values from —1000 to
+1000 nm with a step of 50 nm. The results
of the study of image quality in gradations,
normalized by their maximum number, are
shown in Fig. 5.

Thus, it was established that the addition
of a second object plane, provided that the
phase of the object waves coincides, made it
possible to increase not only the depth of field,
but also the overall image quality (maximum
number of gradations). The best quality of
the reconstructed images was achieved by
installing the second plane of the object at
distances close to the b value of the limiting
depth of field, in this case the depth of field of
the image increases by 2 times.

Physical Optics
y p >

Summary

In this paper, the influence of phase
distribution in the object’s space on the quality
of the images reconstructed from computer-
generated Fresnel holograms has been studied.
The main features of image formation were
considered and the factors affecting their
resolution and depth of field were identified.
It was established that modifications of the
structure of the digital hologram, inaccessible
to holograms recorded by traditional methods,
could significantly improve the image quality.
In particular, the use of phase correction of the
proximity effect allows to resolve features being
as close as one pixel to each other. Installation
of the second object plane in addition to the
original one made it possible to increase the
depth of field up to 1.5 — 2.0 times depending
on the distance between planes.

The results obtained can be used for
recording and reconstruction of holograms in
real physical space.
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AHAJIU3 BbIXOAHOW MOLLHOCTHU
ONTOBOJIOKOHHbIX UHTEP®EPOMETPUYECKUX CXEM
C MYIbTUNNEKCUPOBAHHbIMU
YYBCTBUTEJIbHbIMU SJIEMEHTAMMU

A.O. KocmpomumuH'2?, J1.b. JluokymoBuy4?, ®.B. CknapoB'?, O.1. KomoB?
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2 CaHkT-MeTepbyprckuii MOMTEXHUYECKUI YHUBEpCUTET MNeTpa Benukoro,
CaHkT-lMNeTepbypr, Poccuiickas ®eaepauus

B crarbe mipemsioxkeHa MAEOJOTMSI pacueTa I[apaMeTpoB BJEMEHTOB M  aHajlu3a
BBIXOJHOIM MOIIHOCTM B BOJIOKOHHO-OINTHYECKUMX MHTEePOEPOMETPUUYECKMX CXeMaxX C
MYJbTUIIIEKCUPOBAHUEM YYBCTBUTEbHBIX 3jieMeHTOB no BpemeHu (TDM). Meton pacueta
mapaMeTpOB 3JIEMEHTOB ITO3BOJISICT OOECIICYMBATH PABEHCTBO OINTHUYCCKON MOIIHOCTH OT
BCEX MYJIBTUIUIEKCUPOBAHHBIX UYBCTBUTCIBHBIX 3JIEMEHTOB, a TaKKe OLICHWBATh BIIMSHUE
OTKJIOHEHMSI IlapaMeTPOB ONTUYECKOM CXeMbI OT pacyeTHbIX. Ha mpumepe ABYX ONTUYECKUX
CXeM IIoKa3aHa peaju3allds TaKol MACOJIOTMM pacyeTa, IOCAeI0BaTeJbHOCTh IOJyYeHUS
MaTeMaTUYECKUX BhIpAXXeHUI 1 IPUMEPBI PaCUeTHBIX pe3yabTaToB. ONUCaHHbIM METOI pacyeTa
npeyiaraeTcsl MPUMEHSATh MPU IIPOCKTUPOBAHMU UHTEPGHEPOMETPUUECKUX HM3MEpPUTENIe ¢
MYJIBTUTIIICKCUPOBAHUEM BOJIOKOHHO-ONTUYCCKUX YYBCTBUTCILHBIX 3JICMEHTOB.
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Introduction

Major advances are currently made in de-
veloping fiber-optic interferometric sensors and
introducing them to measure different physical
quantities [1]. Multiplexing a large number of
fiber-optic sensitive elements (SE) in a sin-
gle fiber-optic cable allows to create efficient
quasi-distributed interferometric measuring
systems, including long-distance ones. These
technologies hold potential, for example, for
constructing towed hydrophone arrays for seis-
mic surveys of mineral resources in the shelf [2,
3], as well as many other similar systems.

There are several approaches to multiplexing
in fiber-optic interferometric measuring devices
separating signals from different SE: time-divi-
sion multiplexing (TDM), frequency-division
multiplexing (FDM), wavelength-division mul-
tiplexing (WDM), code-division multiplexing
(CDM) or polarization-division multiplexing
(PDM) [4]. The TDM technology, providing
the maximum number of multiplexed elements
using a single laser and photoreceiver, is the
most widespread approach [5]. A TDM/WDM
combination is often proposed, even though
the TDM remains the primary technology in
this case, while WDM technologies are used
for secondary multiplexing of SE arrays sepa-
rated in time, which allows reducing the num-
ber of fiber cables used [6].

An important issue related to installing fi-
ber-optic systems with TDM is selecting rea-
sonable parameters for the optical scheme el-
ements providing multiplexing, estimating and
optimizing the key parameters values of inter-
ference signals, such as relative level of inter-
ference signals and its difference for different
SE, signal-to-noise ratio, contrast, etc.

However, studies considering fiber-optic
multiplexing schemes for interferometric mea-
suring devices practically never provide clear
accounts of the procedures for calculating and
estimating the parameters of such schemes in
terms of methods for reasonably choosing opti-
mal beam-splitting elements. While expressions

for such calculations are occasionally presented
[7, 8], they are usually obtained with many
simplifications. It is often proposed to neglect
the losses of optical power in the elements, or
to approximate a large number of multiplexed
SE [8], although systems with 4, 8 and 16 ele-
ments in one fiber-optic cable are often used in
practice [9, 10].

Most studies give estimates for phase resolu-
tion depending on the number of sensitive el-
ements N, i.e., the calculations rely on certain
methods of auxiliary modulation and process-
ing of interference signal [8, 9].

This paper presents a procedure for energy
calculation of the parameters of the fiber-op-
tic part, independent of the operating princi-
ples, considering two standard fiber-optic in-
terferometric schemes with SE multiplexing.
Formulated in this manner, the procedure can
be applied for schemes with different types of
auxiliary signal modulation and processing.
The proposed approaches to calculations allow
to take into account the influence of deviations
from parameter values of passive fiber-optic el-
ements on parameter values of interference sig-
nals formed in schemes from multiplexed SE.

Problem statement

Time-division multiplexing implies that
short optical pulses with high duty cycle and
optical power P, are fed from a laser source to
the input of an optical scheme with an array of
N sensitive elements. The fiber optic scheme
contains beam-splitting elements (splitters
or semi-transparent reflectors) and should be
constructed so that every input pulse passes
through different paths and different combina-
tions of SE, forming a sequence of N+1 output
pulses with the power p (n is the number of
an output pulse changing from 0 to N), de-
layed in time relative to each other. Most of
the practical schemes (including those consid-
ered below) are organized so that every subse-
quent output pulse passes through one more
SE than the previous one. The difference in the
delay between the output pulses relative to each
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other is due to the difference in optical paths
AL which the input pulse passes to form out-
put pulses. These differences must be identical.
The so-called compensated interferometer (CI)
with the optical path difference also equal to
AL is used to generate interferometric signal.
When output pulses pass through the CI, they
are split and combined in pairs with a shift by
one pulse. As a result, a new sequence of N+2
pulses with the powers P (it is convenient to
number them from 0 to N+1), where each ini-
tial output impulse is combined with the pre-
vious one, is generated at the CI output and is
subsequently transmitted to the photodetector.
Each pulse P is a result of interference of the
pulses p and p_,. The only exceptions are the
first and the last pulses, P, and P N1 which
are not combined with the previous and the
subsequent pulse while passing through the CI
due to lack thereof. Impacts on the »" fiber
SE change the phase delay Ag, of light emis-
sion passing through this SE. For this reason,
the interference of the pulses p and p | is re-
lated to Ag,, as the pulse p _ passed through
SE from the first to the (n—1)", and pulse p,
passed through the SE from the first to the #™.
Given that P_is defined by the interference of
two output pulses, they have the form

P ()=C{P, +P -cos[A¢ ()]}, (1)

m

where P = p + p | is the constant compo-
nent; P = 2(pp, )" is the amplitude of the
interference component.

The argument of the interference signal Ag,
contains target oscillations of the phase delay
of the n'" SE, related to measured impacts,
and can be determined during subsequent pro-
cessing. The coefficient C is related to losses
during passage through the CI, and ideally, C
= 1/2. Notably, CI can be located at the input
of a fiber optic scheme as well. In this case,
the details differ for the pulses passing through
the scheme, but interference signals taking the
form (1) are also generated as a result.

Comprehensive analysis of fiber-optic in-
terferometric schemes with SE multiplexing
should consider different systems of relations
including different types of parameters for
the optic scheme elements, characteristics of
other elements of the system and interrogation
pulses. In terms of energy relations, one of the
key problems is selecting the elements that pro-
vide optimal parameter values of interference
signals P, and P . The set of values of P, and

O . . . . 0
P plays an essential role in organizing correct
mn
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signal recording, estimating the signal-to-noise
ratio achieved, and, consequently, resolution of
a system.

An important result of energy calculation
from the standpoint of scheme design is find-
ing the required ratios for light beam split-
ting in the splitting elements of a fiber-optic
scheme. Depending on the elements used in
the scheme, these parameters include the split-
ting ratios of fiber-optic splitters or the reflec-
tion coefficients of semi-transparent reflectors.

If identical splitting elements are used, in-
evitably, the values of p and P_ greatly depend
on n, and the problem of choosing optimal
splitting ratios necessitates complex analysis of
the criteria of optimality. A more attractive op-
tion in terms of the achieved effect and, at the
same time, a simpler one in terms of the crite-
ria of optimality entails choosing the splitting
elements provided that all p are equal:

p,=p,=...=p,=...=p,= P, 2)

In this case, P, = P, = 2P,, the contrast of
all interference signals equals unity (if polariza-
tion matching is ensured).

The scheme constructed in this study sat-
isfies this condition specifically. At the same
time, the normalized power level of pulses
serves as an important indicator:

p norm - PO/Pin; (3)

this indicator makes it convenient to compare
the “energy efficiency” achieved in different
schemes and at different values of .

Generally, if condition (2) is fulfilled, it is
evident that the higher the value of p_ . the less
influence different noises and fluctuations have
on the output signals of a measuring device.

Clearly, a special set of splitting ratios for
splitters or reflectors has to be used to satisfy
condition (2), but since modern technologies
allow to produce these elements with
virtually arbitrary parameters, this approach
to constructing optimal schemes based on
criterion (2) can be put into practice. However,
it is essential for designing such schemes that
not only the optimal splitting ratios of the
elements are found but various additional
aspects can be analyzed in detail, including
the influence of other parameters of splitting
elements, their fluctuations and other factors
on the parameters of interference signals, all of
which must be taken into account at the stage
of design.
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General principles
of the calculation procedure

Considering the calculation procedure,
let us review different groups of parameters
characterizing the scheme elements, which are
used in analysis and calculations. First of all,
these are transmittances (with respect to power)
in fiber sections connecting the scheme elements
including those in SE. These transmittances
differ from unity due to optical power losses in
the fiber-optic cable and additional conditions
(fiber sections can be wound into a coil, contain
connections, etc.). The transmittances defined
initially are assumed to be given and are not
supposed to be found in the calculations. The
transmittances can actually be either identical
or different for different SE but are regarded as
known parameters.

Another type of parameters are the splitting
ratios of optical power in splitters and semi-
transparent reflectors (typically fiber Bragg
gratings) if the schemes use the first or the
second type of elements as optical power
splitters. Optimal splitting ratios should be
selected on the calculation procedure that
satisfies condition (2).

We should note that splitters or fiber-optic
Bragg gratings also incur internal losses which,
strictly speaking, should be also taken into
account in the calculations. In general, the losses
of splitting elements may depend on splitting
ratios and transmission coefficients. This can be
included in the calculations if the dependence is
known. To represent the specific results obtained
in a clear and simple manner, the analysis below
includes a case when these losses have fixed
values, and are regarded as a known parameter.

Calculating optimal splitting ratios of splitters
or reflectors, it is of course possible and feasible
to take into account only regular components
of transmittances in the fiber sections known
in advance and losses in the splitting elements.
However, the calculation procedure as a whole
should provide a possibility to analyze the
influence of potential deviations of the calculated
and initially given parameters of the elements
from the actual ones. These phenomena can be
caused by both regular deviations from reference
values and by fluctuations of parameters
during operation. The changes may occur, for
example, due to aging, unstable temperature
and polarization of optical emission.

The procedure for energy calculation and
analysis of fiber optic elements of the scheme
involves obtaining and applying two systems of
relations:

firstly, the equations of multiplicative
structure for calculating the values of p_taking
into account all key parameters characterizing
the elements of the fiber optical scheme;

secondly, recurrence relations connecting
the selected parameters of splitting elements
of adjacent links in the scheme and allowing
to calculate the splitting ratios of all splitting
elements taking into account certain conditions
for boundary elements.

The first system of relations is formulated by
considering a light pulse related to the »t" splitting
element passing from the input to the output.

The second system of relations requires
considering the condition for power balance
P, , = p,= P, and solving the balance equation
with respect to the splitting element parameter.

Regarding the choice of schemes discuss
further in this paper, we should note that
different types of optical schemes with TDM
can be divided into two types: reflective
schemes or passage schemes.

In case of the reflective scheme, a scanning
pulse passes through the scheme from the
first to the n" SE, then travels in the opposite
direction and is fed as an n™" output pulse into
the same part of the scheme (or directly to the
same fiber-optic line) as the input pulse, but in
the reverse direction. In this case, the scheme
requires mirrors (the so-called Faraday mirrors
are often used to suppress polarization fading).

In case of the passage scheme, an input
pulse is fed from one end of the scheme and
then, passing from the first to the n" SE, forms
an n™ output pulse at the opposite end of the
scheme. It is typically assumed for the schemes
considered below that the decrease of p  with
the growth in N is described by ~ 1/N? provided
there are no losses [9].

There are different types of schemes where
the decrease is described by 1/N, but they may
contain multiple passes through the SE and
aliasing of different pulses, as well as crosstalk
[8]. The schemes with crosstalk have their own
peculiarities, but they are not considered in this

paper.

Analysis of the power of output pulses
in a reflective-type scheme

Let us consider a standard scheme of the
reflective type (Fig. 1). The scheme includes
N coils of sensitive elements (SE) numbered
n=12, .. N, as well as (N+1) Ysplitters (Y)
and mirrors (M) numbered n =0, 1, 2, ..., V.

It seems helpful to introduce the direct (K)
and cross (K)) gains of the splitter, the gain K " of
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Fig. 1. Reflective scheme and generation of output pulses (a), n" link of scheme (b):
sensitive elements SE; mirrors M ; splitters Y ; input pulse P, ; output pulses p,

a fiber section with the sensitive element, gain K
of a service fiber section between the sphtter anc{
the mirror, the reflection coefficient R (ideally,
R=1, however, the actual reflection coefficient
may be less than unity) as the key parameters
of the scheme. If the scheme contains connec-
tions, the losses in them should be taken into
account in the fiber section gains K and K. The
gains K, and K are rigidly bound to the spflttlng
ratio D and the parameter of internal losses of
the splitter a, as described in Appendix 1.
Considering the path of an input pulse from
the n" mirror and back (see Fig. 1), it is easy to
formulate multiplicative equations for p :

P PK K R, H(Kd(q 1) sfq) 4)

Eq. (4) implies that if the upper limit of
the product is less than its lower limit, which
occurs at n = 0, then the product equals unity.
Furthermore, the case when n = N, related to
the difference of the final link in the scheme
from others, is different because there is no
need to direct the optical power further for the
last M SE, and it is not practical to use a
splitter between the M SE and the M mirror.
However, expression (4) is relevant for all n, if
the presence of formal coefficients K , =K, = 1
is taken by definition. In practice, it can be of-
ten assumed that all SE are equivalent and K
does not depend on n. Then this parameter can
be excluded from the product in Eq. (4) and
the multiplier (K f)z” can be used.

112

Analyzing one link of the scheme and
comparing the difference in the paths of the
(n—1)" and n" pulse (see Fig. 1,b) we can
obtain an equation corresponding to the bal-
ance p, _, = p . For the given scheme (if the
definition K K = 1 is preserved), this
equation has the form

2 2
Kc(n l)Kf(n 1)Rn 1=
= K?

2 2 2
dmn— l)K K Kfan 1

S

The recurrence relation for the parameters of
the splitters is obtained by taking into account
the connection between K, and K. In view of
the explanations in Appendix 1, we can use a
model of splitter parameters that has the form

K,= (1-a,)-D/(1 + D)
and K = (1 —a )/(1 + D),

(6)
then Eq. (6) is transformed directly transforms
to the recurrence form:

D, ,=A4,(+D), (7)

based on the assumption that the parameter of
excess splitter losses a, does not depend on D
and is the same for any #, introducing a constant

An = Kf(n—l) \]Rn—l X

)
[(1-a,) K, K, R, 1"



\

It is commonly acceptable for calculations
of practical schemes to assume the gains K
and the coefficient R to be identical for aﬁ n.
In this case, the calculation of optimal values
of D does not depend on the values of K, and
R, while the constant A does not depend on n
and is simplified:

A=1[(1- 0 )K,, ©)

(here the calculations of the optimal values of
D are affected by the excess losses of the split-
ters and the SE).

If it is acceptable to neglect the excess losses
of the splitters and the SE, it can be assumed
that o, = 0.

To use Eq. (7), we need to define the initial
condition for recursive calculation of optimal
values of D . For this scheme, this condition is
a direct result of the absence of a splitter with
the number N. A different connection of the
last SE would definitely impair the obtained
values of p, and P _ . At the same time, con-
sidering the final link which contains the last
SE provides a condition of power balance (5),
if K K =1 is substituted in the right-hand
side. Then taking into account Egs. (6) for the
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I(ﬂn N and K o and the coefficients R, | and R,
approach unity, which is a logical result for the
balance of such a link with splitting close to a
50:50 splitter, regardless of the losses in the
splitter.

Furthermore, recurrent expression (7) can
be used to successively obtain values for the
rest of the splitters numbered from n = N — 2
to n = 0, forming a set of values {D}, and then
recalculating the values of {D} into sets of val-
ues {K } and {K} for all splitters based on Eq.
(6) and a given o,

Substituting sets of values {K} and {K} in
expressions (4), we obtain the same value of p;
because of the method by which these sets of
values were obtained; moreover, this value of p,
is the largest possible for any » with the given
parameters used in the calculation.

However, an important result of the calcu-
lation is the actual value for the level of p ., as
well a possibility to analyze its dependence on
N and other parameters used in the calculation.

The calculated sets of values {D}, {K} {K}
for the splitters are given in Appendix 2 for
N =28 and

(N—1)® sphtter leads to a simple relation: Coam) ~pam) ~ 0.10 dB,
D _ Kf(N_l) Ry 0 Oy = 0.05 dB and R = 0.99,
(N-D) KfN R, ’ (10)  Wwhere it is taken that
S
which corresponds to the recurrent expression Oitamy — 101g(Kf)
(7), excluding the parameters K, K and a,, ~101g( K)
from Eq. (8) for determining the constant A. tam) ~ g
Evidently, expression (10) gives D, 1 for _101 (l—a ).
small losses in the elements, when the gains Cogamy ~ &
Prorm 1
10" ==
1 +=— OLyaB] =Olerapt = 0.1 dB;
5 s — OgdB1 = 0.3 dB
107 t 4= OledB) = 0.2 dB.
e
R
1074 S==.
e
4 I S A
10 N * w ‘ ‘ ‘
10 20 30 N

Fig. 2. Example of reflective-type scheme. Normalized power level of pulses
depending on the number of sensitive elements (SE) for different values of losses o sand o,

113



4St. Petersburg State Polytechnical University Journal. Physics and Mathematics 13 (2) 2020

>

These values of the splitting ratios are im-
portant for practical implementation of this
scheme, as they have to be known in order to
install the appropriate splitters. However, the
examples shown in Fig. 2 for p _ depending
on N for the same set of parameters, as well as
for cases when either of the parameters o s Of
a,, have different values are more important for
analysis of energy efficiency of the scheme.

An example of the dependences in Fig. 2
shows the achieved levels of relative power for
the schemes with the given parameters and
with optimal splitting ratios chosen for the
splitters, the exponential form of the depen-
dences p _(N), indicating that it is possible to
study the influence of other parameters of the
scheme elements on the achieved level of p .

Importantly, the given systems of expres-
sions allow not only to analyze the influence of
scheme element parameters on the achievable
level of p ., but also take into account and
study the influence of deviations of actual pa-
rameters from ideal ones for the values of p .
If the ratios D are given as (1— d)/d with the
accuracy in selecting d ranging, for example,
to 1 or 2% in production of real splitters, the
set of optimal values {D} value set obtained by
a recurrent procedure can then be rounded up.
Next, we can substitute the rounded values in
expressions (4) and, calculating p, , estimate
their variance and deviation from the calcula-
tions without the round-off.

Similarly, we can take into account the in-
fluence of both fixed and random deviations
of element parameters from the initially calcu-
lated ones.

The first case concerns precision measure-
ments of the parameters of an actual set of
splitters produced for the scheme, which are
then used in calculations.

The second case implies that the element
parameters may fluctuate during operation.
Then, after the initial calculations of optimal
sets {D} for the splitters using regular parts of
o, Kf, K. and R, the parameters containing,
aside from the regular component, random ad-
ditions are substituted in Eq. (4) at the second
stage of the calculations. Then the calculations
will give a set of values of p with random devi-
ations with respect to the estimate obtained for
P, in the calculations with regular parameters.

Those are important aspects of the proposed
calculation procedure, although considering spe-
cific examples is outside the scope of this study.

Analysis of the power of output
pulses in a passage-type scheme

Let us consider a standard scheme of the
passage type (Fig. 3). The scheme includes
pairs of Y-splitters in the “upper” and the
“lower” lines. The sequence of output pulses is
formed by means of the »n™ pulse passing a part
of the path through the “upper” line, splitting
into the lower part through the #™ couple of
splitters and then propagating towards the out-
put through the “lower” line. We can confirm
that both of the nt" splitters must have the same
splitting ratios within the scope of the given
problem. The situations differ for » = 0 and
n = N, when a pulse passes to the “lower” line
only through the zero or only through the V"
splitter which have no pair.

Fig. 3. Passage-type scheme and generation of output pulses (a),
n™ link in given scheme (b); the notations are the same as in Fig. 1
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We also need to take into account the trans-
mittance of fiber sections: K. for a fiber section
with the #" sensitive element K for service fiber
sections connecting the (n — 1)‘h "and the nh split-
ters in the “lower” line; K } for “vertical” sections
between a pair of the n‘h splitters. The difference
in optical paths DL is formed by the difference
in the lengths of fiber sections between adjacent
splitters in the “upper” and in the “lower” lines
(the fiber in the SE is typically larger than the
service section of the “lower” line). The scheme
could be constructed symmetrically, with the SE
located in the “lower” line but the principles of
operation and calculation would remain the same.

Considering the path travelled in the
scheme by the n™" pulse, it is easy to compose
multiplicative equations to find p . As the
structures of the first and the last links differ
from the structure of the central links, the
expressions are different for =0 and n=N:

pO ln dl H

forn = 0;

) n

D, PK‘jqKLn HKd(q 1) sfq Hl dq Jq
q= q=n+
forn=1,..(N-1), (1)

m LN H d(q-1) 5f‘1
forn:N.

Equations for the power balance of adjacent
pulses for the first and the last links also differ
from the equation for the central links and, as
follows from the difference in the paths of the
(n — 1)™ and the »™ output pulses (Fig. 3,5),
take the following forms for these three case

K. KK, =K, KZKWK'

forn=1;
2 ' 2 '
Kc(n I)K K/(n I)Kfn Kd(n I)KcnstlK fn (12)
forn=2,...(N-1);
2 ’
KC(N 1)K K JIN=- 1)K(N 1) K Kd(N—l)KS.fN
forn= N;

where n corresponds to the link covering the n™ SE.

Notably, Egs. (11) imply equal ratios for
the n™ splitter in the “upper” and the “lower”
lines.

Radiophysi
a|py5|cs>

Based on Eq. (12), we can obtain recurrence
relations connecting the splitter parameters. In
view of model (6), we can obtain an equation
for the first link (for »=0) from Eq. (12), which
has the following form:

Dl2 + D1_ AODOZ 0, (13)
where we introduce a constant
A0=(1 —a )K?ﬂKﬂ/K (14)

The solution to this quadratic equation (only
one of the two roots is positive and acceptable)
has the form

D, =0.5[(4D,A4,+1)"* -1]. (15)
Using model (6) and Eq. (12), we obtain

a relation for the subsequent links (except the
last one):

D}+D, ~A[D, y+D, 1=0, (16)
introducing a constant
A K K /(K Py f) (17)

The solution to this equation provides a
recurrence relation taking the form

D, =05 {[4(D, )+
+D )4 +1]"2 -1},

(18)

And, finally, the equation for the last link
(n = N) follows from model (6) and Eq. (12):

(DN—l)2 * DN—IZANDN’ (19)
introducing a constant
A= =0 ) Ky (KoK (20)

In this case, we need to determine D,, so
the solution takes the form

D=[(D, )+D, VA, (1)

(N—l)]

We should note that we formulated the
expressions for the passage scheme assuming
that N > 2. The case N = 2 has to be considered
separately to obtain the corresponding
expressions but because it has little practical
value, it was not included in this study.

If we give a certain value for D, then, based
on Egs. (15), (18), (21), we can derive the
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Fig. 4. Example of passage-type scheme. Calculated normalized power level of pulses p  depending

on splitting ratio of first splitter for two values of N (a) and on number of sensitive elements N
for two different values of losses in SE and in splitters.

Dependence of p, -
values of D for all the remaining splitters, i.e.,
a complete set {D}. Clearly, if we recalculate
the set {D} into the sets {K } and {K }, and then
calculate p based on Eq. (10), condition (2) is
satisfied, and we obtain a certain value of p |
which does not depend on n. However, this
value does depend on the initial choice of D,.

Thus, the condition for obtaining the maxi-
mum value of p in this scheme is the choice
of the optimal value of D,. A direct and sim-
ple approach to solving this problem consists in
enumerating the values of D and choosing an
optimal value D ,of such a value of D, for which
D,.., feaches the greatest level. Evrdently, a spe-
cific value of D_, as well as maximum achieved
byp obvrousl depends on N and on the val-
ues of ¢ other parameters used in the calculations.

Let us provide examples of the calcula-
tions, where, as before, we assume for sim-
plicity that K,K } and K do not depend on
n. Fig. 4,a shows examples of dependences of
Do ON D with « = (0.1 dB and

= d O(lS dB for the cases when
1<} =8 and N = 16. In the first case, it fol-
lows from the calculation that D, o= 16.86,
providing p. = 6.63-107. In the seeond case,
Da = 62. 67 provrdrngp = 1.15-1073.
Calculated sets of value for {D}, {Kc } and
{K} are also given in Appendix 2 for N = 8,
which can be used for practical applications of
the scheme with these initial data.

From the standpoint of energy analysis, this
scheme provides a good illustration of the de-
pendences of p  on N (shown in Fig 4,b), ob-
tained selectrng D D . for each N. As before,
aside from calculatron Of the dependences with
the above parameters of losses, two additional
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for the reflective scheme is shown for comparison (b)

curves are given for the cases when the param-
eter a, and o, have different values. To com-
pare this scheme with the reflective one, Fig.
4 shows a dependence obtained earlier for the
main sets of parameters.

Comparing the calculation results in Figs. 2
and 4, we can see that the levels achieved by
D, With the optimal choice of the splitting ra-
tios of the splitters are almost the same for both
schemes given equal losses in the SE, with a
small advantage in case of the reflective scheme
(increasing with greater values of N). This is an
expected result because, despite the different
configurations of the schemes, a pulse passes
through an equal number of splitters forwards,
the same number of branches and sections of
SE in both of them.

Each link of the second scheme contains
an additional connecting section but the first
scheme includes losses due to reflection from
the mirror (the second scheme can be improved
slightly in terms of power by changing the ratio
of losses in these elements).

Fig. 4,b also shows that the depen-
dence on N has an exponential behavior of

D,or(N) ~ N7¢, and the value of g is close to 2
if the losses decrease but increases if the losses
increase. For the given dependences, g has val-
ues in the range of 2.5—3.3. We should note
here that approximation yields different results
and better accuracy if limited ranges of N are
analyzed. For example, the values of the pa-
rameter for the curves in Figs. 2 and 4 lie be-
tween 2.4 and 2.8 in the range 4 < N < 16, and
between 2.8 and 3.7 in the range 10 <N < 32.

However, it was not our intention to carry
out comprehensive studies of such patterns as
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we focused instead on the procedure for correct
calculation of this kind of dependences and the
expressions required for this purpose. At the
same time, correct calculation implies that the
optimal choice of parameters is provided for
the splitters.

Similarly to the reflective scheme, the prin-
ciple proposed for the calculations of the pas-
sage scheme allows (except for the choice of
the optimal system of splitters and estimation
of the p  value) to analyze the influence of
various additional factors: limitations in the ac-
curacy with which the splitters can be made,
random fluctuations of the element parame-
ters, etc. However, we should also consider the
fact that multiplicative expressions (11) restrict
such analysis, assuming equal parameters in the
pairs of splitters in the “upper” and the “lower”
lines. Egs. (11) are simplified because of this,
and, most importantly, we can obtain a simple
recursive expression (18) that is easy to inter-
pret. To analyze the influence of the rounded
splitting ratios, regular or random deviations of
these ratios and similar factors, we need to use
multiplicative equations of the following form:

N
Py = PmechoKdl 'dequq
g=1

forn= 0;
n N
P, = PinK’qucnkcn 'HKd(q—l)stq ) Hl kqufq
q= g=n+

forn=1,...(N-1); (22)

Py =Pk 'HKd(q—l)stq
q=1

forn=N,

where the gains K,, K of the splitters on the
“upper” line are separate from the gains k, , k|

of the splitters on the “lower” line.

Conclusion

We have proposed a procedure for calculating
the parameters of elements in optical schemes
with multiplexed fiber optic sensors, allowing to
optimize the scheme in terms of achieving the
maximum level and contrast of the generated
interference signals, taking into account the
optical power losses in splitting elements as
well as in fiber sections and mirrors included in
the fiber optic scheme.

The procedure for obtaining expressions for
calculating the element parameters is described
for two optical schemes.

We have given examples of the calculations
of the element parameters in the scheme under
consideration for N = 8 sensitive elements and
the dependences of the normalized power level
of an optical pulse at the output of the schemes
on the number N for certain sets of element
parameters.

The principles proposed for organizing the
calculations allow not only to calculate the
optimal splitting ratios of the scheme splitters
and the power achieved by the output pulses
but also to analyze the influence from varying
the parameters of individual elements of the
optical scheme (including random ones) on the
characteristics of the system as a whole.

The calculated expressions formulated for
the given schemes illustrate how similar calcu-
lations can be organized for other configura-
tions of similar schemes.

The methods and results presented can
be applied in design of fiber-optic interfer-
ometers based on multiplexing of sensitive
elements.

Appendix 1
Parameters of Y-splitter

A Y-splitter has three terminals and is for-
mally described by nine power gains Ky In
view of symmetry, which is easy to achieve in
practice, K. . Kﬂ Lets us choose numbering so
that when fight is submitted to the first termi-
nal, it is then transmitted to the second and
the third terminals. Then, due to directivity,
K,, . 0, and the coefficients of reflection from
the splitter, K, . 0, are small as well (in reality
these coefficients correspond to attenuations
by several tens of dB). Then two coefficients
are significant: K, and K ,. Assuming K,> K,
(the connection between terminals 1 and 2 is
direct, and K, = K, while terminals 1 and 3
are cross-connected, and K, = K), the key
parameter of the splitter, its splitting ratio, is
given by the relation D =K,/K, (D > 1). If K,,,
K. < K ,, then based on the condition imposed
for the power balance, K, + K, = 1. However,
taking into account the internal (excess) losses
of optical power, K, + K, =1 — a, for an
actual splitter (where o, is a small parameter
characterizing the losses). The last equality

from the definition of D gives
K,=K,=(l1-0,)D/(D+1),
K.,=K=(1-a)/(D+1),
introduced as expression (4).
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Table
Calculated parameters {D}, {K} and {K }
for reflective and passage schemes
with optical power losses given in scheme elements
Reflective scheme Passage scheme
n
D K, K, D K, K,

0 9.848 0.887 0.09 16.857 0.923 0.055
1 8.405 0.873 0.104 3.543 0.762 0.215
2 7.026 0.855 0.122 3.520 0.761 0.216
3 5.71 0.832 0.146 3.498 0.76 0.217
4 4.453 0.798 0.179 3.475 0.759 0.218
5 3.253 0.747 0.23 3.453 0.758 0.219
6 2.106 0.663 0.315 3.43 0.757 0.221
7 1.012 0.491 0.486 3.408 0.756 0.222
8 — — — 15.374 0.918 0.06

>

Notations: n is the number of the Y-splitter.

Giving the parameters D and a, rather than
K, and K|, is often clearer and more wide-
spread for real splitters (a = 10-lg(1— a,) is

el[dB]
usually taken).

Appendix 2

Examples of calculating
the parameters {D}, {Kc} and {Kd}

The summary Table below presents the cal-
culation results for the splitting ratios D and
gains K,, K for the schemes described in case

N=238,a,= 0977, K. .= 0977, K. = 0.989,
and R = 0.99 for the reflective scileme and
K ’f = 0.989 for the passage scheme (the given
ratios and gains correspond to the levels
Copap) ~ Ogam) — 0.1, Qg & ;IdBl = 0.05).

While the values listed in the Table are not
particularly illustrative or interesting for the
considered dependences of p.on N and other
parameters of similar characteristics, splitters
with the calculated set of parameters {K } and {K}
should be chosen for practical implementations

of the optimal scheme satisfying condition (2).
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POXXAEHUE K*-ME3OHOB B CTOJIKHOBEHUAX
ANEP MEAU U 30J10TA NMPU DHEPTUU s, = 200 DB

B.C. bopucod, 5.A. bepdHukoB, A.5. bepdHUKOG,
.0. Komo@, I0O.M. MumpaHkoG8

CaHkT-MNeTepbyprckuii NONUTEXHUYECKUI YHUBEPCUTET lMNeTpa Benukoro,
CaHkT-lNeTepbypr, Poccuiickas ®eaepauus

B cratbe mpuBeneHbl pe3yabTaTbl M3MEPEHUI WHBApPUAHTHBIX CIIEKTPOB POXACHUS U
daxkTopoB snepHoii Moaudukanuu K*(892)-Me30HOB B CTOJKHOBEHUSIX siIep MEAU W 30J10Ta
(Cu + Au) npu sHepruu \/%V = 200 I'sB. M3MepeHus1 BBIMOJIHEHBI B MSATU KJlaccaX COObI-
TUH TIO0 IEHTPAJIBLHOCTU B JAMAIIa30HE MOTepeYHbIX nMIyabcoB oT 2,00 mo 5,75 I'sB/c B akc-
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Introduction

Studies on the properties of nuclear mat-
ter under extreme conditions, where quarks
and gluons become deconfined, are aimed at
solving an important problem in high energy
physics. It is hypothesized that deconfinement
existed in the early Universe [1].

Quantum chromodynamics (QCD) predicts
for high energy densities of approximately 1
GeV/fm?3 that a phase transition occurs from
ordinary hadronic matter, described in terms of
color-neutral hadrons, to a new state of matter
called the quark-gluon plasma (QGP), where
the degrees of freedom are quarks and gluons
leaving the confinement region about 1 fm in
radius [2]. Matter with extremely high energy
density can be produced in the laboratory by
colliding heavy ions at ultrarelativistic energies.

One of the key signatures for QGP produc-
tion is jet quenching, which consists in strong
suppression of particle yields in central colli-
sions of heavy nuclei due to energy losses of
quarks and gluons in the medium [3, 4].

An intriguing effect observed in collisions of
heavy nuclei is an increased yield of strange
hadrons. Since quark-antiquark pairs ss are
mainly produced in gluon-gluon interactions
(gg — s5), the probability of the process in QGP
increases for the following reason. Restoration
of chiral symmetry in QGP results in decreas-
ing the strange quark mass, which in turn re-
duces the energy threshold for strangeness pro-
duction, making the production of an ss pair
energetically more favorable than that of wi
and dd pairs [5]. Therefore, extracting the yields
of vector K*(892) mesons (whose rest mass is
equal to 0.8916 GeV/c* = 892 MeV/c?) with
open strangeness (dfs) is an effective method for
studying the properties of QGP [6].

Our study presents the data on the yields of
K* mesons, their invariant spectra depending
on transverse momentum (p7), and the nuclear
modification factors R, ,. The observables were
measured experimentally in collisions of copper
and gold nuclei (denoted as Cu + Au) at \/m =
200 GeV at midrapidity in the transverse mo-
mentum range from 2.00 to 5.75 GeV/c using
the PHENIX detector at the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National
Laboratory, USA [7—9].

Measurement procedure

Extracting K* meson yields, we used two
procedures to generate independent sources
of systematic uncertainties. Experimental
data from different detectors were combined

122

>

to cover different p, bins, providing the wid-
est range of transverse momenta possible in
this collision system. The procedures have
different sources of systematic uncertain-
ties; importantly, both procedures were used
in the range of intermediate transverse mo-
menta, making it possible to check the valid-
ity of the results obtained.

K* and K* meson yields were extracted us-
ing the following subsystems of the PHENIX
experiment: drift chamber (DC), third-layer
pad chamber (PC3) [10] and time-of-flight
(TOF) detector [11].

The transverse momenta of K and = me-
sons are measured in DC and PC. The TOF
detector is used to reconstruct K and n me-
sons, as well as protons. K* and K* meson
yields are reconstructed from hadronic de-
cays into K*'nm- and K xn* pairs. Unlike-sign
particles detected in one collision are com-
bined into pairs for this purpose. Only parti-
cles with transverse momenta exceeding 0.3
GeV/c are extracted. A charged particle is
assumed to be either a K or a = meson, and,
depending on the given decay channel and
the particle’s charge, it is assigned the mass
of a charged K or = meson. Two procedures
described below are used to reconstruct the
invariant mass spectra of (Km) meson pairs,
increasing the statistical significance of the
experimental data in a wide range of trans-
verse momenta.

The first procedure, ToF-PC3, assumes
that the transverse momenta of K mesons are
measured in DC, and K mesons are recon-
structed in the TOF detector, while the trans-
verse momenta of = mesons are measured in
DC and in PC3. This procedure allows to de-
tect and calculate the kinematic characteris-
tics of K* mesons at low p, (1.9—2.9 GeV/c).

The second procedure, PC3-PC3, as-
sumes that the transverse momenta of K and
n mesons are measured in DC and in PC3.
This procedure allows to extract K* meson
yields at intermediate and high p, (2.6—6.5
GeV/c). The drawback of the second pro-
cedure is that the combinatorial background
is much larger compared with that for the
first procedure, which means that K* meson
yields cannot be extracted at transverse mo-
menta below p, = 2.0 GeV/c in Cu + Au
interactions.

Fig. 1 shows examples of approximated
invariant mass distributions for (Km) meson
pairs in central collisions; the results were
obtained using both procedures.
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Fig. 1. Invariant mass distributions of K and = meson production in central Cu + Au collisions,
obtained by two procedures: ToF-PC3 (a) and PC3-PC3 (b)
in p ranges of 2.3—2.6 and 2.9—3.4 GeV/c, respectively

Because K and n mesons produced in K*
meson decays cannot be distinguished from
other particles of the same kind, all tracks of
these particles from each event satisfying the
acceptance criteria are combined into like-sign
or unlike-sign pairs. The components of the
three-momentum vector p for each track are
measured using DC:

p,=psin @ sin @,

p.= pcosh,.

The invariant mass and transverse mo-
mentum are then calculated for a pair of
(Kr) mesons based on two-body decay
kinematics.

m =(Eg+E,) —(pc+P.) >
2

22 =(p, +p.) +(p, +p.)

where E, =4/p; +m; and m, = 0.43667 GeV;,

E, =+p>+m’ and m_= 0.13957 GeV.

The invariant mass spectrum for a pair
of unlike-sign mesons contains both the K*
meson signal and the combinatorial back-
ground. The latter includes two components:
the correlated and the uncorrelated back-
ground. Event mixing is used to estimate the

combinatorial background. Analysis is aimed
at extracting the yields of K* mesons from
the yields of inclusive (Krn)* pairs. K* meson
yields were obtained in all reconstructions
by integrating the invariant mass distribution
within £100 MeV/¢? of the K* meson mass
(892 MeV/c?) after subtracting the combina-
torial background.

The experimental data are reconstructed
as two-dimensional distributions of K* me-
son yields as functions of invariant mass and
transverse momentum, divided into trans-
verse momentum bins and fitted with a rel-
ativistic Breit—Wigner distribution (RBW)
convoluted with a Gaussian plus a second-or-
der polynomial accounting for the residual
background:

RBW:L' 2 sz‘/[gr 22
2n (M~ -M;) +M,T

where M, GeV/c? and T', GeV/¢?, are the mass
and the decay width of K* mesons, respectively,
according to the data from PDG (Particle Data
Group); M, GeV/c?, is the experimental value
of particle mass.

The residual background is mostly generated
by decay of other types of mesons.

The invariant production spectrum of K*
mesons is calculated as follows for each trans-
verse momentum bin:
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LN 1

2mp, dpdy  2mp;
L1 1 N(p)
2 NuBr ey () Apdy

events

where p,and Ap,, GeV/c, are the meson trans-
verse momentum and its bin width; y and Ay
are the rapidity and its bin width; N(Ap,) is the
number of mesons reconstructed by the detec-
tor (meson yields); N,  is the total number
of events reconstructed for a given centrality
bin; ¢_(p,) is the K* meson reconstruction effi-
ciency, obtained by Monte Carlo simulation of
decay, passage, and regeneration of mesons in
the PHENIX detector; Br = 0.666 is the proba-
bility of meson decay in the given channel. The
coefficient 1/2 is taken in the formula for aver-
aging the invariant K* and K* meson yields.

The nuclear modification factors of particles
in heavy ion collisions, used to analyze the
collective effects governing the particle spectra
depending on transverse momentum, are
calculated by the formula:

Ny (pr) / dydp,
/6’"61 d 20 o/ dydp,’

Cudu —
coll

where the numerator is the quantity charac-
terizing the invariant spectrum of meson pro-
duction in collisions of heavy copper and gold

>

nuclei; d’c /dyde is the invariant differential
cross section for production of these particles
in collisions of the given nuclei at the same
center-of-mass energy; N_, is the average num-
ber of binary collisions per event in Cu + Au
collisions; ¢ is the inelastic cross section for

proton- protopn scattering (here c’""’ = 42.2 mb).

Measurement results and discussion

The reconstructed invariant spectra for
the production of K* mesons as a function of
transverse momentum are shown in Fig. 2. The
measurements were performed in five centrality
bins with the transverse momenta ranging from
2.00 to 5.75 GeV/c. The given spectra were
approximated by the Levy function for K*
mesons [12].

Fig. 3 shows the measured nuclear modification
factors R, with systematic uncertainties,
depending on transverse momentum, obtained
for K* mesons in Cu + Au interactions at \/SEV =
200 GeV for different centrality bins. The results
were obtained using two procedures: ToF-PC3
and PC3-PC3. We found that the results for the
same transverse momenta are in good agreement.

The nuclear modification factors R, ,for K*
mesons in central Cu + Au collisions take values
less than unity at high transverse momenta
(R,, values for pT' = 5—6 GeV/c lie in the
range from 0.4 to 0.7). As collision centrality
increases, there is less suppression of K* meson
yields, and R, values approach unity.
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Fig. 2. Invariant spectra for production of K* mesons in Cu + Au collisions
at \/EZV = 200 GeV for five centrality bins, %:
0—80 (®); 0—20 (m); 20—40 (A); 40—60 (V¥); 60—80 (e).
The statistical uncertainties of the measurements are no larger than the symbols.
The boxes correspond to systematic uncertainties.
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Fig. 4. Comparison of nuclear modification factors

R,, for K* mesons in Cu + Au collisions (circles)

with nuclear modification factors R, for Cu + Cu collisions (triangles)

AA

at the same \/—_ = 200 GeV and with similar numbers of participants N ot :80.37 (Cu + Au)
and 85.9 (Cu + Cu) (a); 34.92 and 45.2 (b); 11.54 and 6. 40 (¢).

Bars and boxes correspond to statistical and systematic uncertainties

Fig. 4 compares the nuclear modification
factors R,, for K* mesons, measured in
collisions of Cu + Au nuclei, with the nuclear
modification factors R, measured in collisions
of identical nuclei (Cu + Cu) at the same
energy of 200 GeV. Evidently, the results are
in good agreement given a similar number of
participants (within the uncertainties).

Fig. 5 compares the data for p, distributions

of nuclear modification factors of K*, ¢, =,

n, K; and o mesons in Cu + Au collisions at
200 GeV. Evidently, the nuclear modification
factors R,, of K* and ¢ mesons equal unity
in central collisions at intermediate p, values,
while the nuclear modification factors R,
of n°, n, K, and © mesons are suppressed in
central collisions over the entire range of p,
values. All light mesons exhibit the same level
of suppression at high p, in the most central

collisions. The nuclear modification factors
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Fig. 5. Collisions of Cu + Au nuclei at Vs,, = 200 GeV.

Data are compared for distributions of nuclear modlﬁcatlon factors
as functions of transverse momentum for different light mesons
in central (a) and peripheral (b) collisions.

Bars and boxes correspond to statistical and systematic uncertainties

R,, equal unity in peripheral collisions for all
mesons considered (within uncertainties). The
same behavior was also observed for light mesons
in Cu + Cu collisions at \/_ = 200 GeV [12].

Conclusion

We have measured the invariant production
spectra and nuclear modification factors of
K* mesons in collisions of copper and gold
(Cu + Au) nuclei at Vs,, = 200 GeV, in the
pseudorapidity range |n| <0 35, at transverse
momenta in the range of 200 < p, <575
GeV/c and for five centrality bins. All data
for the measurements were obtained at the
PHENIX experiment in 2012.

We have carried out comparative analysis of
the nuclear modification factors of K* mesons
in Cu + Cu and Cu + Au interactions at the
same energy MZ 200 GeV and the nuclear
modification factors of K*, ¢, n°, n, K and o

mesons in Cu + Au collisions at \/% = 200
GeV. We have found that K* meson yields in
Cu + Au and Cu + Cu collisions at the same
energy \/_ = 200 GeV have the same values
over the enure range of transverse momenta
given similar numbers of participants.

Thus, suppression of mesons depends on the
size of the nuclear overlap region but does not
depend on the shape of the nuclei for a large
number of participants [13—15].

K* and ¢ meson yields in central Cu + Au
collisions are less suppressed in the range of
intermediate p, compared to mesons consisting
only of first-generation quarks, which points
to excessive production of strangeness. The
yields of K* mesons and other light mesons
are suppressed in the range of high transverse
momenta in central collisions of copper and
gold, which confirms the presence of the jet
quenching effect.
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(p + Al, small system) at \/m\, energy of 200 GeV has been studied. The PHENIX experiment
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U3MEPEHUE ®AKTOPOB AAEPHOU MOAUDUKALIUU
¢-ME30OHA B CTOJZIKHOBEHUAX NMPOTOHHbIX NMYYKOB
C AAPAMU ANNTIOMUHUA NMTPU DHEPTUU 200 I'SB

M.M. JlapuoHoBa, S.A. bepdHukoB, A.S. bepdHukoB,

I0O.M. MumpaHkoG, /].0. KomoG
CaHkT-MeTepbyprckuin NonmMTexHMyecknin yHusepcuteT lMNeTpa Benukoro,
CaHkT-lMeTepbypr, Poccuiickas deaepauus

B pabote u3yueHO pPOXIEHHE (-ME30HOB B PEISITUBUCTCKUX CTOJKHOBEHUSIX ITyYKOB
MIPOTOHOB C SiApaMu amoMuHus (p + Al, Mamas cucTteMa) Mpu 3HEPIUU \/m\, = 200 I'»B,
npoBeaeHHbIX B akcrepumeHTe PHENIX Ha xomnaiinepe RHIC. M3MepeHbl mHBapuaHTHBIE
CIEKTPBl (@-ME30HOB II0 IOMEPEYHOMY MMITYJbCY M UX (haKTOPBI siIEpPHON MoauduKamuu
IJIS1 YeThIpeX KJIACCOB COOBITMI 1O LeHTpasbHOCTH, %: 72 — 0 ,72—40 ,40 — 20 ,20 — 0.
[IpoBegeHO cpaBHEHUE TTOJYYCHHBIX PE3YIbTATOB C AaHAJOTMYHBIMU JTAHHBIMU IO POXKICHUIO
n°-MEe30HOB. AHAJIM3 MOJyYEHHBIX SKCIEPUMEHTANIbHBIX JaHHBIX MPUBEI K 3aKJIIOYECHUIO, YTO
BO BCEX JOCTYIHbBIX OMAara30Hax IO LEHTPAJbHOCTU M IIOMNEPEYHOMY HMIIYJIbCY (haKTOPLI
siepHOi MoauduUKaluMU @-ME30HOB paBHbI EIMHMIE B IIpeleaX HeOoIpeaeJIeHHOCTe
usMepeHus. [ToaydyeHHBIN pe3yabTaT CBUAETEAbCTBYET B MTOJb3Y TOI0, YTO B pacCMaTPUBaEMbIX
CTOJIKHOBEHHUSIX KBAapK-TJIOOHHAS TIJla3Ma He o0pasyeTcs.
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Introduction

Quantum chromodynamics predicts the
existence of a state of matter known as
quark-gluon plasma (QGP), where quarks
and gluons are deconfined. Ultrarelativistic
heavy ion collisions provide an opportunity
for studying the behavior of nuclear matter
at temperatures and pressures sufficient for
QGP production [1]. Exploring the proper-
ties of QGP produced in controlled condi-
tions and its evolution into hadron gas is the
main purpose of the PHENIX experiment
[2] at RHIC (Relativistic Heavy Ion Collider
located at Brookhaven National Laboratory,
USA) [3].

One method for studying the properties of
QGP experimentally is measuring final-state
particle yields. In particular, ¢ mesons have a
range of distinctive properties, such as small
cross section for interaction with non-strange
hadrons and much longer lifetimes (42 fm/c)
than those of QGP [4]. Thanks to these prop-
erties, hadron interactions have less effect on
¢ meson production at the late stages in the
evolution of the system formed in heavy ion
collisions; furthermore, ¢ meson daughter
particles are not rescattered in the hadron
phase.

Thus, the properties of ¢ mesons mainly
depend on the conditions in the early parton
phase, and measuring ¢ meson yields can be
regarded as a clean test for the behavior of
the matter produced in collisions of relativ-
istic nuclei.

Measuring ¢ meson yields can be used
to study the so-called cold nuclear matter
(CNM) effects in small collision systems [5].
Cold nuclear matter effects are understood
as modifications of parton distributions in
the nucleus [6], the Cronin effect [7] asso-
ciated with multiple rescattering of incoming
partons inside the target nucleus, and other
effects.

Analysis of CNM effects by measuring ¢
meson production in small systems can ex-
plain whether the effects observed in heavy
ion collisions are connected with the effects
of cold or hot nuclear matter. In particular,

results of such studies can help understand
the difference between nuclear modification
factors of n” mesons, ¢ mesons, and protons
obtained in collisions of gold (Au+Au), cop-
per (Cu+Cu), copper-gold (Cu+Au) nuclei
at %: 200 GeV, as well as uranium nuclei
(U+U) collisions at Vs, = 192 GeV [8, 9].

Measurement procedure

We used the measurement results obtained
with the PHENIX detector at RHIC.
Our goal consisted in reconstructing the
production of ¢ mesons decaying into charged
kaons (¢ — K*K") in collisions of proton and
aluminum nuclei (p+Al) at Vs,, = 200 GeV.

We primarily focused on obtaining invariant
transverse momentum spectra and nuclear
modification factors R, , for ¢ mesons in p+Al
collisions.

As kaons produced in ¢ meson decay are
indistinguishable from other kaons, so all
kaon tracks from each event are combined
into unlike-sign pairs. The components of the
three-momentum vector p for each track were
measured using the drift chamber. Invariant
mass and transverse momentum are calcu-
lated for kaon pairs based on two-body decay
kinematics.

The invariant mass spectrum for unlike-sign
kaon pairs contains both the signal of ¢ me-
sons and the combinatorial background. The
latter includes two components: correlated
and uncorrelated background. The event-mix-
ing technique is used to estimate combina-
torial background [12]. After subtracting the
uncorrelated background from the total spec-
trum, the correlated background is estimated
by fitting the invariant mass distributions to
a Breit-Wigner distribution convoluted with
a Gaussian (where the dispersion equals the
experimental mass resolution of the detector)
to describe the signal, plus a polynomial to
describe the background.

The experimental mass resolution of
the detector is estimated by Monte Carlo
simulation of the spectrometer with zero
width for ¢ — K*K°, where ¢ mesons have
infinite lifetimes. We obtained ¢ meson yields
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by integrating the invariant mass distribution
within £9 MeV/c? of the ¢ meson mass (1.019
GeV/c? [13]) after subtracting the combinato-
rial background.

The invariant spectrum of ¢ meson produc-
tion is calculated as follows in each transverse
momentum bin:

1 d°N
2mp; dprdy 0
1 1 1 N(Ap;)

2TEpT NeventBr geff (pT) ApTAy ,

where p,. and Ap, GeV/c, are the meson
transverse momentum and its bin width re-
spectively; y and Ay are the rapidity and its
bin width; N(Ap,) is the number of mesons
reconstructed with the experimental detector
(meson yields); N, is the total number of
events reconstructed in the given centrality
bin; Sef/(l’r) is the ¢ meson reconstruction
efficiency obtained using Monte Carlo
models of decay, passage and regeneration
of mesons in the PHENIX experiment; Br is
the probability of meson decay via the given
channel.

Suppression of particle yields in relativis-
tic heavy ion collisions is studied by finding
the nuclear modification factors R,,, calcue
lated as a ratio of invariant particle yields
measured in relativistic heavy ion collisions
to the yields of the same particles measured

>

in elementary collisions of protons (p+p).
The yield for A+B collision is normalized
to the number of inelastic nucleon-nucleon
collisions.

Nuclear modification factors of particles
in collisions of different nuclei are used to
account for the collective effects governing
the transverse momentum spectra of particle
production, and are calculated by the formula:

R (p ) — ﬁiia‘&'ci:l;[ dNAB (pr) (2)
w ! Ncoll dep (pT) ,

where

1 d’N ( p )
dN — AB T
wlpr) 2np,  dp,dy

is the invariant spectrum of meson production
in heavy ion collisions;

1 d’oc o
2np, dpdy
is the invariant differential cross-section for
production of these particles in p+p collisions
at the same center-of-mass energy; f, is the
Bayes factor correcting for the bias in centrality
measurements; c’;’;’ = 42.2 mb is the cross sec-
tion for inelastic proton-proton scattering; N_,
is the number of binary collisions in the given
centrality bin.

If R, (pT) = 1, collective effects are
probably absent in heavy ion interactions,
and the interactions may be represented by
superposition of individual nucleon interactions.

dcpp (pT) =

1_
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— .
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Fig. 1. Invariant transverse momentum spectra of ¢ meson production in p+Al collisions
at \G;v = 200 GeV in four centrality bins, %: 0—20 (1), 20—40 (2), 40—72 (3), 0—72 (4).
The dotted curves were fitted with the Lévy function.

Bars and boxes correspond to statistic and systematic uncertainty, respectively
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If R (pT) < 1 (> 1), particle yields are
supressed (or, respectively, excessive), which
may confirm the presence of collective effects
in heavy ion interactions.

Experimental results and discussion

Fig. 1 shows invariant transverse momentum
spectra of ¢ meson production in p+Al
collisions at M = 200 GeV. These spectra
were measured in four centrality bins, %:
0—72, 0—20, 20—40 n 40—72, with transverse
momenta ranging from 1.0 to 4.0 GeV/c, and
fitted with the Lévy distribution:

I dN _m
2np, dp;dy 2m

(n—1)(n-2) k+Joim | ©

><(ker(p(n—l))(k+mw) k+m, ’

where m, GeV/c?, is the invariant mass of the
¢ meson, k, m, n are free parameters.

The transverse momentum spectra obtained
were used to calculate nuclear modification
factors of ¢ mesons in p+Al collisions at
m = 200 GeV.

Fig. 2 shows the distributions of nuclear
modification factors R depending on

AB
transverse momentum, measured for ¢

>

mesons in p+Al interactions at m = 200
GeV in different centrality bins. Evidently,
the nuclear modification factors R,, for
¢ mesons equal unity in all centrality bins
over the entire range of transverse momenta
within uncertainties.

Fig. 3 shows a comparison of nuclear
modification factors for ¢ and n° mesons in
p+Al collisions at m = 200 GeV. Apparently,
the nuclear modification factors for ¢ and =°
mesons take the same values in all centrality
bins over the entire range of transverse momenta
within uncertainties. This may indicate that
CNM effects have no impact on the difference
between the nuclear modification factors for
¢ and n° mesons in collisions of gold, copper
and uranium nuclei (Au+Au, Cu+Cu, Cut+Au,
U+U) [8, 9].

Conclusion

We have measured the invariant transverse
momentum spectra and nuclear modification
factors for ¢ mesons in p+Al collisions at
\/%V = 200 GeV.

The nuclear modification factors for ¢
mesons equal unity in all available centrality
bins and over the entire range of transverse
momenta within the uncertainties. The results
obtained confirm that the collisions under

consideration produce no quark-gluon plasma.
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ONPEAEJIEHUE DPDEKTUBHOTO MOLY/IA FOHTA
CPEbl C MUKPOCTPYKTYPOM,
XAPAKTEPHOM A9 BOOOPOAHOM OErPAAALLUU

K.l1. ®posnoba

MHCTUTYT npobnem MalumnHoBefeHust PAH, CaHkT-MNeTepbypr, Poccuitickas deanepauus;
CaHkT-MNeTepbyprckuii NONUTEXHUYECKUI YHUBEpCUTET lMNeTpa Benukoro,
CaHkT-lNeTepbypr, Poccuiickas ®eaepauns

PaGora mnocesiieHa onpenaeicHuo 3GGEKTUBHBIX  YOPYTMX CBOMCTB METaIOB €
MUKPOCTPYKTYpPOM, XapaKTepHOU [T BOAOpOoAHOW paerpagaumu. C IeEIbI0 ONpeneeHUs
abdekTnBHBIX Momyieir KOHra pemaeTcss 3amada roMOTreHM3alMu IO cxeme Makcsesia
B TepMWHAX TEH30pOB BKJIaga. MUKPOTPEIINHBI, BO3HMKAIOIIME II0 TpaHWIAM 3EpeH,
MOJIEJINPYIOTCS CIUTIOCHYTBIMU cheponaaMu, Mopsl — chepamu. PaccMaTpuBaeTcst Tpu BapruaHTa
OpUEHTAllMM OCeil CUMMETpUM C(EepoUIOB B MaTepuaie: IIPOU3BOJIbHAS, IPEUMYILIEeCTBEHHAS
OpUEHTallMsl C MapaMeTPOM pacCesHMsI, MPOM3BOJIbHAS OPMEHTALUMsI B OMHOM ILJIOCKOCTH.
Hccnenytores 3aBucuMocTH 3(PpPeKTUBHBIX Moayieid KOHTa OT MOpUCTOCTH MaTepwajia M OT
COOTHOIIIEHUS JUTMH TIOJIyoceil chepounmIoB.

KmoueBbie ciaoBa: sapdexkTuBHbINN Moaynab FOHra, cxema romoreHusauuu Makcsellsia, BOA0©O
pomHas nerpanaius, cheponnaabHasi HEOJHOPOIHOCTh
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Introduction

Hydrogen dissolved in metals may lead
to degradation of mechanical properties and
premature fracture of metal workpieces. The
impact of hydrogen on the properties and
character of material fracture largely depends
on both external factors, and the features of
the internal structure and characteristics of
materials. This is why the phenomenon of
hydrogen degradation, comprising an entire
range of negative effects induced by hydrogen,
remains an important topic in materials science
demanding further comprehensive studies [1, 2].

Many works considered the effects of
hydrogen on the material microstructure [3—
9]. Hydrogen is assumed to diffuse through the
metal lattice and interact with the defects of the
structure, such as dislocations, pores, vacancies,
etc., thus inducing microcracks. The defects
develop in workpieces during production, and
are typically located along the boundaries of
grains or inclusions in alloys (the defects are
also found inside the grains, but to a lesser
extent). Ultimately, if there are no significant
internal or external stresses, hydrogen-induced
microcracks form, propagating along the grain
boundaries [3—5, 9] or blisters that lead to
embrittlement of the surface [7, 9]. At the same
time, microcracks can be observed at grain
boundary triple junctions as well [4, 5, 8, 9].
Microcracks are often seen to initiate with a
preferential orientation, which is parallel to the
rolling direction [3, 7].

Several papers [10—12] studied hydrogen
diffusion along the grain boundaries, finding
the effective diffusion coefficient in a composite
material, where one phase consisted of grain
boundaries with a high diffusion coefficient, and
the other phase included the actual grains with
a low diffusion coefficient. However, hydrogen-
induced changes in the microstructure were not
simulated in these studies. For example, [13]
used phenomenological approaches to solve
a related problem of hydrogen transfer and
changes in the defects structure of the material.
The effect of hydrogen on the material was
accounted for within the cumulative damage
theory. A number of papers discussed hydrogen-
induced degradation of elastic properties of
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material [9, 14, 15]; in particular, [9] dealt with
hydrogen degradation in low carbon steels at
different levels. The authors found that long-
term hydrogen saturation leads to a reduction
in bulk elastic modulus. Microstructural
analysis revealed that the reasons for this may
lie in the deformation of larger grains, cracks,
and blisters caused by hydrogen penetration. As
observed in [14], prolonged hydrogen charging
may decrease the value of Young’s modulus
by up to 15% in a gamma titanium aluminide
alloy. The experiments in [15] were conducted
for three different grades of high-strength
steel. Hydrogen charging of steels resulted
in degradation of mechanical properties and
changes in the microstructure in all cases.

Summarizing the above, we can remark
that analytical models of hydrogen degradation
generally tend to account for diffusion assumed
to be the primary process leading to changes
in microstructure and to degradation of
mechanical properties. The degradation of
elastic properties due to the actual changes
in the microstructure has received much less
attention.

The goal of our study consisted in determining
the effective elastic moduli for a material whose
microstructure is assumed to have formed as a
result of hydrogen degradation.

For this purpose, we solve the problem of
homogenization which allows to estimate the
contribution of inhomogeneities to a given
property. We consider the influence that the
potential shape and orientation of microcracks
in the material, as well as its porosity have on
effective Young’s moduli.

Microstructure of the material

This paper studies the influence of coin-like
microcracks, as well as pores on the effective
properties of materials, assuming that the
former accounts for intergranular cracking, and
the latter for the impact of the pores which did
not merge into microcracks, and the voids near
grain boundary triple junctions. It was found in
[16] that jagged boundaries of planar cracks or
deviations from circular shape are unimportant
for elastic properties of the material, so these
inhomogeneities can be simulated as elliptical.
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Microcracks were modelled by oblate spheroids
and pores by spheres in our study. We consider
three cases of inhomogeneities in the material.

In the first case, we assumed that microcracks
have random (isotropic) distribution in the
bulk. This pattern is characteristic for metal
products weakly deformed during production.

In the second case, we assumed that
microcracks have preferential orientation (for
instance, in case of rolling and layered structure
of material). A factor that we took into account
was that microcracks may deviate from the
preferential orientation in this instance.

Finally, to complete the picture, we considered
the case when the symmetry axes of spheroid
microcracks have random orientation in a certain
plane. This situation is observed, for example,
when a material is compressed and there are no
cracks forming in the plane of loading.

Compliance tensor of spheroid microcrack

Contribution tensors are used within the
homogenization method to describe the
contributions of individual inhomogeneities
into the given properties [17].

Taking a homogenous elastic material (ma-
trix) with the compliance tensor S°, let us con-
sider a representative volume V, containing an
isolated inhomogeneity of volume V, with the
compliance tensor S'. The volume V should be,
on the one hand, large enough to reflect the
characteristic microstructure, and, on the other
hand, small enough compared with the entire
volume of the material so that the variations of
the macroscopic fields are negligible.

Correct choice of representative volume is
discussed, for example, in [17]. The effective
elastic properties of the material are estimated
by means of a tensor accounting for the con-
tribution of inhomogeneities to compliance:
it is a fourth-rank tensor H, which describes
extra strain Ag generated in volume V due to
inhomogeneity:

A8=%HZGO, (1)

where o, is the stress field depending on bound-
ary conditions, which would be generated in
the volume in the absence of inhomogeneities.

The tensor accounting for the contribution
of an ellipsoidal inhomogeneity to compliance
can be expressed in terms of compliance
tensors of the matrix, inhomogeneities
characterizing the material properties, and the
second Hill’s tensor Q reflecting the influence
of inhomogeneity shape:

H- [(s1 -8°) "+ QT . 2)

The fourth-rank tensor Q is related to the
first Hill’s tensor P by

Q=C-C":P:C,

where C’is the matrix stiffness tensor.
In turn, the fourth-rank tensor P is ex-
pressed in terms of derivatives of Green’s func-

tion G for displacements as
N

P=|V[G(x-x)VaV’ )

n (1,2)(3,4)
where ( )(31‘2)(3’ " indicates symmetry with respect
to permutation of subscripts in the first and the
second pair.

Pores and microcracks are characterized by
zero elastic moduli. Then S' — o0, and expression
(2) is reduced to H = Q~'. Tensors H and Q are
transversely isotropic for a spheroidal microcrack
in an isotropic matrix (the symmetry axis is
codirectional to the inhomogeneity symmetry
axis), and can be expressed as linear combinations
of the tensor basis elements T, T,, ..., T, [18]:

6 6
H:thTk9 QZZQka- 4)
k=1 k=1

The basis elements have the following form:

T, =00, T, = %((ee) +(00),,, - 06),

T

(14)

T,=,nn, T,=nn,,

T

(2:4)

1 T
T, =Z(n6n+(n9n) + (&)

(12)(3:4)
T

+(9nn)(1’4) + (Gnn)(Tm)),

T, =nnnn,

where 6 = I — nn (I is the second-rank unit
tensor) is the projection to the plane normal to
the unit vector n along the symmetry axis.

The basis introduced allows to represent
the transversely isotropic tensor B = )T,
(summation over repeated indices from 1 to 6)
and its inverse in one basis [17]:

B =b—6T1 +L ) —5T3 -
2A b, A
—QL +iT5 +%T6,
A b A

where A = 2(b,b,— b.,b,).

(6)
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Thus, determining the tensors Q and H for a
pore or a microcrack is reduced to determining
the components of tensor Q, which are calculated
as follows in case of a spheroidal inclusion [19]:

= [4x-1-2(3k-1) £, -2, |,
g, =20 [1-(2-x) f, ~ ;.
g =q,=20"[(2x-1) fy+2xf, |, (D)
qs = 4% [ f, +4xf, ],
g5 =80k £, £]. k=(1-1") /2,

where p° and ° are the shear modulus and
Poisson’s ratio of the matrix, respectively.

Parameters f, and f, depend on the aspect
ratio of spheroid semiaxes y = a,/a (a, is the
axis of rotation) as follows:

o 2(1-v7)

, \/l—yz arctan y
L (y+\/y —1} -
2y4y* -1 N

For a spheroidal inhomogeneity, y = 1,

=1, f,= 1/3, f,= 1/15. The compliance

tensor of a spher01da1 pore H is isotropic and
takes the followin, form

REEIN

2p

(8)
[ I PP (J_lnﬂ,
10(1+v)3 7-5v 3

where I is the second-rank unit tensor,

1 T T
J= E((H)(l’“) + (II)(2,4))

is the fourth-rank unit tensor.
Tensors II and J can be represented as
follows in the transversely isotropic basis [17]:

H=T+T,+T,+T,

p

1 )
J:ET1 +T, + 2T, + T,.
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Effective properties of metals
with spheroidal microcracks and pores

Effective properties of heterogeneous materials
can be determined by different methods. A
historical review of these methods can be found,
for example, in [20], while [17] presents analysis
of the current situation. All analytical methods are
approximate solutions, while the exact solution
can be obtained only numerically for specific
materials with a known microstructure. The best-
known analytical methods include:

non-interaction approximation,

effective media schemes,

differential scheme,

effective field methods (including both
Mori—Tanaka and Kanaun—Levin methods),

Maxwell scheme.

These methods differ in their approaches to
accounting for the mutual influence of multiple
inhomogeneities, while their applicability
is limited by material symmetry, shape and
orientation of inclusions. The Maxwell scheme
seems to be an optimal method to describe the
contributions of inhomogeneities of different
shape and orientation [21].

Let us find an effective compliance
tensor using the Maxwell scheme in terms of

contribution tensors:
-1

{ ZVH} -Q, ¢ , (10)

where Q,, is the second Hill’s tensor determined
for a homogenized region Q which contains
isolated inhomogeneities and possesses the
required effective properties.

In the absence of Q,, the effective compli-
ance tensor coincides with the value determined
neglecting the interaction of inhomogeneities.

Let us determine the total contribution of
isolated inhomogeneities to compliance. If the
inhomogeneities have the same shape and size
but different orientation, then their total con-
tribution can be determined as the product of
the averaged contribution by volume fraction
of inhomogeneities [17]. The averaged value
of the contribution tensor for spheroidal inclu-
sions coincides with the contribution tensor of
a separate spheroidal pore H due to symmetry.
If spheroidal microcracks and spherical pores
are present in the material, their total contri-
bution is determined as

S =

1
;ZViHi:(Pmc<Hmc>+(PpHp7 (11)
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where ¢, and ¢, are the volume fractions of
oblate sphermds and spheres, respectively,
<H, > is the value of the averaged total tensor
descrlblng the contribution of microcracks to
compliance.

It is sufficient to average the elements of the
tensor basis to determine <H >, i.e.,

<Hmc> - hmc(k) <Tk >

If there is a preferential orientation m, the
symmetry axes nm of spheroidal microcracks
tend to coincide with m with a certain devia-
tion depending on the scatter parameter A.

Let us introduce a probability density func-
tion for the orientation distribution of spheroid
axes of symmetry over a semisphere (0 <6 <mx/2)
in accordance with [22]:

v, (0)= %[(7& +1)e™ +re™ ). (12)
T

=~
1l >
—

If A = 0, the microcracks have a random
orientation in the representative volume and
the material is isotropic. If A — oo, the symme-
try axes of the microcracks are oriented strictly
along the preferential direction and the mate-
rial is transversely isotropic with the symmetry
axis coinciding with m. To average the elements
of the tensor basis, let us integrate them with
respect to the surface of a semisphere Q,, of
unit radius:

(13)

If the spheroid axes of symmetry n are ran-
domly oriented in a certain plane normal to m,
the material is transversely isotropic and its axis
of symmetry is co-directional to m. To average
the tensor basis elements, let us integrate them
with respect to a unit circle /, lying in a plane
normal to m:

1
<Ti>_£;[Tidll' (14)

The averaged values of the elements of
transversely isotropic basis are given in the
Appendix.

The choice of homogenized domain Q used
in the Maxwell scheme to account for the in-
teractions of inhomogeneities is discussed in
detail in [22].

In case of spheroidal inhomogeneities, this
domain is also a spheroid with the aspect ratio
of semiaxes expressed as

PULEFONLCHE
it V0% [ 2V 0 <1

g = i , as)
LVA |2V Ps
IDNLEHDNL LS

where Q. , P are Hill’s tensor components Q

ijkl’
and P, réspectwely

In general the shape of homogenized domain
depends on concentration, orientation and shapes
of inhomogeneities. If the inhomogeneities have
isotropic orientation distribution, the shape is
spherical. Otherwise, if the material contains
spherical pores of the same size and spheroidal
microcracks of the same size and shape, we
need to define the quantity

%ZKQz = Qe <ch>+(prp’

Q C> = ;qmc(k) <Tk>

After we find the components of the effective
compliance tensor, Sef{,, we can determine
effective Young’s moduh To be definite, let us
assume that the symmetry axis of the matenal
coincides with the direction e, of the Cartesian
basis (e, e, e,).

Then the effective Young’s moduli of the

(16)

transversely isotropic material EY = E%, E%
can be calculated as follows:
: 1 .
Ef = Ej) = Ef = (17)

eff > U337 Tqef -
Sllll S3333
Results and discussion

In this study, we found the effective elas-
tic properties of steel with shear modulus p°=
80 GPa and Poisson’s ratio v = 0.3. Young’s
modulus of steel E° follows the expression

B =2 p(1 + ).

If the inhomogeneities
orientation distribution, the
isotropic, i.e.,

S” =K1I+i 7 (J—%Hj, (18)

have random
material is

where K¢ and p¢ are the effective values of the
coefficient of compressibility and shear modu-
lus respectively.
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Fig. 1. Dependences of moduli K%/ K° (solid lines) and p¢//u° (dashed lines)
on porosity of material (¢) and density of cracks (b).
Pores are modeled by spheres (7, 2), microcracks by spheroids
with aspect ratio of semiaxes y = 0.1 (3, 4)

Fig. 1, a shows the dependencies of moduli
K&/ K, nf/u° on porosity of the material ¢ for
a spherical pore (y = 1) and a spheroidal mi-
crocrack (at y = 0.1). Evidently, the porosity
of the material with spherical inhomogeneities
may theoretically reach 100% (the material
disappears). In case of microcracks of oblate
spheroidal shape, the elastic moduli approach
zero at porosities less than 100% (around 26%
at y = 0.1). Negative values of elastic mod-
uli at high concentrations of inhomogeneities
indicate that the problem of homogenization
cannot be solved correctly for this material.

Thus, the acceptable porosity of the mate-
rial is defined by a relation between the as-
pect ratio of the microcrack semiaxes. To take
this correlation into account, we can introduce
crack density into the model

p = (4/3)na’N/V

a)

pérud

(N is the number of microcracks) [17], related
to porosity ¢ as ¢ = py.

Fig. 1, b shows the dependences of moduli
K/ K and p¥/p° on crack density.

To find a possible explanation for the limited
acceptable porosity, we studied the dependence
of effective shear modulus p<,,/p° on porosity
for different scatter parameters A. We consid-
ered spheroidal microcracks with y = 0.10 and
0.05. The results are shown in Fig. 2.

The results indicate that given the same as-
pect ratio of spheroid semiaxes y, the porosity
of the material may theoretically reach 100%
if it contains parallel oriented microcracks (A
— o), or, if the microcracks deviate from the
preferential orientation, the acceptable poros-
ity decreases, reaching the minimum with an
isotropic distribution (A = 0). As evident from
comparing Figs. 2, a and b, spheroids with a
high value of y have a higher value of acceptable

b)

Psﬂ}!‘lﬂ

1.0 |y

0.5

0.0

0.2 0.4

0.0

Fig. 2. Dependence of effective shear modulus p?,/u° on porosity of material
at aspect ratio of spheroid semiaxes y = 0.10 (@) and y = 0,05 (b).
Scatter parameter L = 0 (dashed lines), L = 10 (solid lines) and A—oo (dotted lines)
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porosity. Apparently, when porosity reaches a
certain value depending on the degree of devi-
ation of spheroid microcracks from the prefer-
ential orientation, as well as on their degree of
oblateness, multiple narrow microcracks cannot
be regarded as isolated. Since this assumption
is actually adopted for self-consistent schemes
(which also include the Maxwell method), more
accurate methods need to be found to account
for the mutual influence of inhomogeneities.

We determined the dependences of effective
Young’s moduli £%/E° on porosity of material
¢ for three case of orientation distribution of
inhomogeneities:

isotropic distribution (1),

preferential orientation with the scatter
parameter A (1I),

random distribution of symmetry axes of in-
homogeneities in a certain plane (I11I).

We assumed that the material contained two
types of inhomogeneities: oblate spheroidal mi-
crocracks with y = 0.1 and spherical pores.

Total porosities ¢ of all inhomogeneities
were taken in the range between 0 and 10%.

Materials with the following types of micro-
structure were considered:

only oblate spheroids are present (¢,
¢,= 0);

ratio of total volume of oblate spheroids
to total volume of pores is 2 : 1 (¢, = 2¢/3,
¢, = ¢/3);

total volume of oblate spheroids equals total
volume of pores (¢, = ¢/2 = 0, );

only pores are present (9,. =0, ¢, = = 0).

Fig. 3 shows the computatlonal results tak-
ing into account the given conditions. As ex-
pected, an increase in porosity leads to a de-
crease in elastic moduli in all cases. Evidently,

=0,
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Fig. 3. Dependence of moduli £ /E® on porosity of material
for different orientation distributions of inhomogeneities
(y=10.1): T (a), IT (mpu A = 10) (b, ¢) and III (d, e) (see explanations in the text).
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Fig. 4. Dependences of moduli E%/E’ on parameter y at different orientation distributions of
inhomogeneities (crack density p = 0.1): I, II (a, b) and III (¢) (see explanations in the text);
a, b correspond to the scatter parameters A = 0 (dashed lines), A = 10 (solid lines) and A—oo (dotted-dashed lines);
¢ corresponds to the moduli £4/E, (dashed lines) and E%/E, (solid lines)

pores have less effect on Young’s modulus than
microcracks at the same value of ¢ for an iso-
tropic distribution (Fig. 3, a). For example, if
¢ = 0.10, then the value of modulus £4/ E* ~ (.82
ate, =0,¢,=¢and EJE ~0.58 at ¢, = o,
¢,= 0.
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Fig. 5. Dependences of moduli £¥/E,
(dashed line) and E%/E, (solid line)
on scatter parameter;
parameter values y = 0.1, ¢ = 0.01 were taken
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If microcracks have a preferential orienta-
tion in the material (Fig. 3, b, c¢), Young’s
modulus along the material axis decreases
more than Young’s modulus in the isotropic
plane. Narrow cracks make a larger contribu-
tion to E% compared to pores, and a smaller
contribution to E¥. Conversely, if the sym-
metry axes of microcracks are distributed in
the isotropic plane (Fig. 3, d, e), Young’s
modulus along the material axis decreases less
than Young’s modulus in the isotropic plane.
Narrow cracks make a larger contribution to
E4¥ compared to pores, and a smaller contri-
bution to E4.

Next, we studied the dependence of effec-
tive Young’s moduli £%/E® on the aspect ra-
tio of spheroid semiaxes y. An increase in the
parameter y from 0 to 1 describes the change
in the shape of the spheroid from a disk to a
sphere. As established above, the total poros-
ity cannot be random in case of narrow mi-
crocracks, so the concentration of cracks was
assumed to be constant and, thus, the total
porosity varied due to varying y.
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It was assumed that crack density p = 0.1;
in this case, if y = 0.1, the total porosity of
material amounts to 1%, which provides the
best agreement with the experimental data.

Fig. 4 shows the computational results for
the considered cases of orientation distribution
of inhomogeneities. Evidently (see Figs. 4, a,
b), if A > 0, the presence of oblate spheroids
leads to a larger decrease in Young’s modu-
lus along the material axis and to a smaller
decrease in the isotropic plane. For example,
the values of the moduli are E%/E, ~ 0.86,
ES/E ~0.92at L= 10,y = 0.5. If the symme-
try axes of microcracks have random orienta-
tions in a certain plane (see Fig. 4,c), Young’s
modulus in the isotropic plane of the material
is more sensitive to the decrease of the as-
pect ratio y of spheroid semiaxes than Young’s
modulus along the material axis. For example,
we obtained E¥/E ~ 0.89, E4/E ~ 0.92 at y
= (.5. A decrease in Young’s moduli was ob-
served with an increase in y for all orientation
distributions of inhomogeneities, because the
total porosity of material depends linearly on
the parameter y.

We considered a separate case of prefer-
ential orientation of spheroids and studied
the dependence of effective properties of the
material on the scatter parameter A, taking y
= 0.1, ¢ = 0.01. Fig. 5 shows the computa-
tional results. The material is isotropic at i
= 0, characterized by effective Young’s mod-
ulus EE° =~ 0.95. As seen from Fig. 5, the
more the symmetry axis of inhomogeneities
deviate from the preferential orientation (with
decreasing 1), the more significantly the ef-
fective moduli change. Different patterns are
observed in the changes in Young’s moduli
along the material axis and in the isotropic
plane: Young’s modulus along the material
axis decreases if inhomogeneities smooth out
(A — ), while Young’s modulus in the isotro-
pic plane conversely decreases with increasing
scatter (A — 0).

Conclusion

We have analyzed the variation in effective
Young’s moduli of metals with microstructures
typical for hydrogen-enhanced degradation,
specifically, for the microstructures
containing intergranular microcracks and
pores. Microcracks were modeled by oblate
spheroids, and pores were modeled by spheres.
The homogenization problem was solved using
the Maxwell problem in terms of contribution
tensors. We have studied the dependences of

effective elastic properties on porosity, degree
of oblateness of spheroids and orientation
distribution of inhomogeneities. We have
established that effective Young’s moduli
heavily depend on the aspect ratio of semiaxes
of spheroidal microcracks and porosity of
the material. Effective Young’s moduli along
different directions can change to a greater or
lesser degree depending on the orientation of
microcracks in the material. This proves that
it is essential to account for the structure of
metal products (for example, layered structure
of metal) and, consequently, the method by
which they were produced (for example, rolling)
when determining the characteristics of metals
charged with hydrogen. Moreover, depending
on orientation, microcracks can make smaller
or greater contributions compared to pores,
with the same concentration of microcracks
and pores. In addition, we have found that the
correlation between the porosity of material
and the shape of microcracks should be taken
into account in solving the homogenization
problem.

Appendix

Averaged values of transversely
isotropic basis elements
If inhomogeneities have isotropic orienta-
tion distribution, the averaged values of the
transversely isotropic basis elements have the
following form [16]:

(1)

<T2>:%[Tl +6T, —2(T,+T,) +12T, +4T, |,

%[71 +2T, +6(T,+T,)+ 4T, + 8T, |,

(T,)=(T,) =%[3T1 —2T, +4(T,+T,) -
—4T, +2T,],

(Ty) =%[T1 +6T, —2(T,+T,) +12T, +4T, |,
(T,) =%[2(T1 +T,)+ T, +T, +4T, + 3T, |.

If the symmetry axes of inhomogeneities have
a preferential orientation along the axis m with the
scatter parameter A, the averaged values of trans-
versely isotropic basis elements are expressed as

(T)=(1-2g, (1) + g5 (X)) T, + g5 (A) T, +
+(1—g1 (A)-g,(X)+g, (k))(T3 +T,)+
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+4g, (M) Ty +(1-2g, (1) + g5 (X)) T,

(T,)= g3§k) T, +(1—2g1(k)+$jT2 +

+%(g1 (M) +g, () +g, (M) -1)(T, +T,)+

+2(g (X)—gl(K)—gz(K)+l)T5+
( s(A)-2g, (2 )+1)T6’

(T > ( ()= gs())T gs()T
+(g, () - g, (1)) 3+( g, ()
—4g4 )T+ (g, ( )T

(T > ( (M) ¢ ()) gz(%)Tz
)

+(g (1)~ g (1) Ty + (g2 (1) - g, (M) T, -

_4g4 Ts (gz(x) gs(x))Té

(B2 g

—&; 7”) — &4 (k)(T3+T4)+

+(g1 (1) +g, (h)—4g, (1)) T +
+(g: (%) - g5 ()T,
(Te)=g; (M) (T +T,)+

+g, (M) (T, + T, +4T,) + g5 (L) Ty

Here
nk

18—he 2 (x2+3)

&(r)= 6(1> +9)
(3”%_?)(%2 +3)
g(4)= 3(R7+9)
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30
s =)
= (7x4 +17802 + 435)
60(%2 + 9)(x2 + 25)’
B 3(5+x2)
M=)
N R (x4+19x2+3o)
50 r0) 7 v 2s)
B (x4+22x2+45)
&M =)
N =2 (x4+34x2+105)
TS e) ()

If the symmetry axes of inhomogeneities
have a random orientation along the plane nor-
mal to the axis m, the averaged values of trans-
versely isotropic basis elements are expressed as
follows [16]:

1
T1>:Z[T1 +T,+2(T, +T,) +4T, ],
<T2>:é[Tl +T,-2(T, +T,) + 8T, +4T6],

(T,)

1
<T4>:Z[T1—T2+2T3],

1
:Z[Tl -T, +2T4],

<T5> :%[Tz +2T,],

<T6>:%[T1+T2].
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