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DIELECTRIC PROPERTIES OF (R)-3-QUINUCLIDINOL
IN THE POROUS MATRIX OF ALUMINUM OXIDE
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The paper presents findings of an investigation of the linear and nonlinear dielectric properties of
(R)-3-quinuclidinol embedded in porous aluminum oxide (pores of size 300 nm), in comparison with
the properties of bulk (R)-3-quinuclidinol. A decrease in the Curie temperature in the nanocomposite,
both upon heating and cooling, in comparison with a bulk sample is revealed. A decrease in the phase
transition temperature allows for interpretation on the basis of the known theoretical models for
ferroelectric small particles.
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OUSNEKTPUYECKUE CBOMUCTBA (R)-3-XMHYK/IMAUHOJIA
B MOPUCTOU MATPULLE OKCUOA AJTIOMUHUA
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[IpenacraBiieHbI pe3yabTaThl UCCICIOBAHUI TUHEHHBIX U HEJTUHEWHBIX TU3JIEKTPUIECKUX CBOMCTB
(R)-3-xuHyKIMaMHOMA, BHEAPEHHOTO B MOPUCTHII OKCUI antoMuHus (pa3mep nop — 300 HM), B cpaB-
HEHUM co cBoiicTBaMM 00beMHOro (R)-3-xunyknmmaouHosa. BeIsIBIeHO MOHMKEHUE TEeMIIEpaTypbl
Kiopu B HAHOKOMITO3UTE KaK MPU HarpeBe, TakK U OXJIaKICHUU, IO CPAaBHEHUIO C 00bEMHBIM 00pa3-
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Introduction

Ferroelectric materials have unique proper-
ties and wide application in practice. Sponta-
neous polarization and high permittivity, as well
as their dependence on exposure (electric fields,
mechanical stress, etc.) makes ferroelectrics a
popular solution for the development of various
functional electronic devices. Recently, there is
a constant search for polar materials with high
permittivity &', spontaneous polarization P_and
Curie temperature 7.; moreover, such materials
are cheap and environmentally friendly due to
the absence of heavy metals in their structure.

Recently, researchers found ferroelectric
properties of organic salts C.H, NHal, where
halogens include CI, Br and I [1-3]: diisopro-
pylammonium chloride (DIPAC) with Curie
temperature of 440 K and spontaneous polariza-
tion of 8.2 uC/cm?; diisopropylammonium bro-
mide (DIPAB) with Curie temperature of 426 K
and spontaneous polarization of 23 uC/cm?; di-
isopropylammonium iodide (DIPAI) with Curie
temperature of 378 K and spontaneous polariza-
tion of 5.17 pC/cm?.

Thanks to promising practical application of
organic ferroelectrics in nanoelectronics, there is
a considerable interest towards the studies of the
molecular size influence on the material proper-
ties. Ferroelectric phase transitions in the nano-
composites obtained based on DIPAC, DIPAB
and DIPAI, and nanoporous matrices were stud-
ied in papers [4—7].

Papers [8, 9] reported a discovery of ferroe-
lectric properties of homochiral organic crystals
of (R)-3- and (S)-3-quinuclidinol (C,H ,NO).
These crystals exist in two mirror-isometric
(enantiomorphic) forms: homochiral (R)-3- and
(S)-3-quinuclidinols. At room temperature, they
crystallize in enantiomorphically polar point
group 6 (C6) demonstrating a mirror image in
the vibrational spectra. The Curie tempera-
ture determined using the differential thermal
analysis method (DTA) for the single-crystal-
line samples was 7, = 398 K upon heating and
T., = 360 K upon cooling [8]. Dielectric per-
mittivity at the phase transition has a dramatic
jump anomaly changing approximately from 5
up to 17. Spontaneous polarization at 7'= 300 K

8

equals approximately 7 uC/cm?, coercive field is
15 kV/cm. It was also discovered that their race-
mate (Rac)-3-quinuclidinol is crystallizing in a
centrosymmetric point group 2/m (C2h) which
is not ferroelectric.

This discovery shows great significance homo-
chirality plays in occurrence of the ferroelectric
state in organic ferroelectrics. As it was found
in paper [9], the phase transition temperatures
decrease down to 7., = 338 K upon heating and
T, = 324 K upon cooling for (R)-3-quinuclidi-
nol substrate-supported films (150 nm thick).

This article presents the results of studying
dielectric properties of (R)-3-quinuclidinol em-
bedded in porous aluminum oxide AlO, with
300 nm pores. For a comparison, we also studied
similar identical properties in comparison with
the properties of bulk polycrystalline (R)-3-qui-
nuclidinol.

Samples and experiment procedure

To obtain the nanocomposites, we used the
(R)-3-quinuclidinol produced by the Acros Or-
ganics company (Belgium). According to the sam-
ple certificate, the phase temperatures amounted
to 7., =390 K upon heating and 7, = 364 K upon
cooling. The samples for the study were repre-
sented by aluminum oxide films 50 pm thick with
the pores 300 nm in diameter. Fig. 1 shoes the
photographs of the films obtained using a scan-
ning electron microscope. To fill the aluminum
oxide films with the ferroelectric, a saturated
(R)-3-quinuclidinol solution in methanol was
used. The oxide sample was placed in the solu-
tion heated up to 320 K and then cooled down
slowly. The remaining methanol was removed by
means of vacuum drying. After three repetitions
of the described procedure, the pore occupancy
measured by the change in the films weight using
AND BM-252G balances (accuracy of 10 g)
amounted to 53—55%.

Dielectric properties of bulk and nanostruc-
tured (R)-3-quinuclidinol were measured at the
frequency of 100 kHz and operating voltage of
0.7 V using E7-25 LCR meter. To electrode the
sample surface, we used Gallium—Indium paste.
The temperature was determined with the accu-
racy of 0.1 K be means of TC-6621 electronic
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Fig. 1. Photomicrograph of Al O, film: a — surface, b — end view

thermometer based on a chromel—alumel ther-
mocouple. In the course of the measurements,
the samples were heated from 300 to 440 K,
and then cooled down. The rate of temperature
change equaled 1 DPM (degrees per minute).

To study the non-linear properties, we ap-
plied 2 kHz frequency sine-curve voltage to the
sample with a series resistor. To determine the
amplitude of the multiple frequency signals, we
applied sine-curve voltage with the frequency
of several kilohertz and the field intensity of
approximately 10> V/mm to the sample with a
series resistor. To determine the ferroelectric
domain, we used third harmonic coefficient
(v,, = U, /U,). Papers [10, 11] describe the
methodology of investigating ferroelectrics by
means of non-linear dielectric spectroscopy in
more detail.

Experimental results and discussion

As a result of the studying dielectric char-
acteristics of the considered (R)-3-quinuclid-
inol samples in bulk and (R)-3-quinuclidinol
embedded in an aluminum oxide film, we ana-
lyzed temperature dependences € (1) (Fig. 2).
The ferroelectric-to-paraelectric phase transi-
tion occurs at the temperature of 390 K which
corresponds to the maximum of permittivity on
the temperature dependence €' (7). For the bulk
sample, when the temperature increases, there
is an anomaly € at 390 K which corresponds
to the transition from the ferroelectric phase to
the paraclectric one. Upon cooling, the phase
transition temperature depends on the temper-

ature up to which the sample was heated to, as
well as the cooling rate. If a sample was heated
up to 420 K with the cooling rate 1 K/min, it
is equal to 372 K. For effective permittivity of
the (R)-3-quinuclidinol/ALO, nanocomposite
(measured in the same conditions), the anoma-
lies in the neighborhood of the phase transitions
are very diffuse and shifted in the lower temper-
atures domain. As a comparison of the results
for the bulk and nanostructured (R)-3-quinu-
clidinol shows, for the (R)-3-quinuclidinol in
the pores of the Al O, films, the transition tem-
perature decreasres by 10 K upon heating and by
25 K upon cooling.

At the next stage of the research, in order to
determine the temperature interval of the fer-
roelectric phase in the nano-sized (R)-3-qui-
nuclidinol with more accuracy, we measured
the non-linear dielectric characteristics of the
bulk and nanostructured (R)-3-quinuclidinol.
The phase transition temperatures were deter-
mined by temperature dependences of the third
harmonic coefficient y, in the heating-cooling
cycle (Fig. 3). In the course of heating, both
samples have great values of the v, coefficient
starting from room temperature and up to 391 K
(for the bulk sample) and 380 K (for the nano-
composite). Above this temperatures, the third
harmonic coefficient changes insignificantly
which can be attributed to the transition of the
samples into the paraelectric state. Upon cool-
ing, the y, coefficient begins to grow at around
372 and 347 K for the bulk and the nanocom-
posite (R)-3-quinuclidinol respectively.
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Fig. 2. Dependence £'(7) for bulk (/) and Al,O, nanocomposite (2) (R)-3-quinuclidinol
samples at the frequency of 100 kHz (black symbols for heating, white symbols for cooling)

A change in the Curie temperature for fer-
roelectrics located in nanoporous matrices can
occur due to several factors. It is primarily con-
nected with size effects observed for isolated na-
noparticles. As the size of the particles decreases,
the share of surface atoms grows. Free energy F
of nanoparticles is a sum of the volume (£') and
surface (F) contributions:

F=F, +F.

The decrease of the phase transition tempera-
ture of the (R)-3-quinuclidinol embedded in the
pores of aluminum oxide agrees with the conclu-
sion of the theoretical models developed on the
basis of the phenomenological Landau theory
and Ising model [12—14]. These models predict
that the temperature of the structural phase tran-
sition for small isolated particles of spherical and
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cylindrical shape shifts deeper into the ferroelec-
tric phase as the size of the particles decreases.
The conclusions of these models were also exper-
imentally verified for separate small particles of
such ferroelectrics as barium titanate (see paper
[15] and its references).

For matrix nanocomposites, unlike for sep-
arate ferroelectric particles, we need to account
for the interaction between the matrix inclusions.
In this case, the change in the surface energy is
determined as

Fy=F+) [ods,+Y [03dS,
S, S,

where o is the surface tension; S is the particle
surface; @, is the electric potential; Si is the sur-
face-charge density.

The summand 6dS may considerably con-
tribute to the total energy of the system with
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Fig. 3. Temperature dependences of the third harmonic coefficient for bulk (/)
and Al O, nanocomposite (2) (R)-3-quinuclidinol samples in the heating-cooling cycles
(black symbols for heating, white symbols for cooling)

well developed surface of the phase interface.
Formation of a double electric layer at the phase
interface as a result electron emission or sponta-
neous polarization screening leads to emergence
of surface conductance and Maxwell-Wagner
polarization. The depolarization field depend-
ing on permittivity, conductance, shape and size
of the particles additionally contributes into the
size effect which results in decreased Curie tem-
perature.

Moreover, paper [16] indicated that elec-
tric interaction between ferroelectric particles
in neighboring pores could influence the phase
transition shift in the matrix nanocomposites.
However, in our case, the electric interaction
between the particles in neighboring pores plays
no significant role due to the small value of the
spontaneous polarization of (R)-3-quinuclidi-

nol (P =7 uC/cm’) and a considerable distance
between the neighboring pores (around 200 nm).
Taking mechanical stress for the nanoparticles
into account in the measurements is essential in
terms of retaining polar properties of the ferro-
electric. In this case, pressure under the curved
surface is defined by the surface tension tensor .
The dependence of the polar properties of ferro-
electric particles on surface tension was evaluat-
ed in paper [17—19]. Thus, paper [19] shows that
at u = 0.5 - 50 N/m, the effect of the transition
temperature shift due to electrostriction begins
working at the nanoparticle radius of curve R =
= 5 — 50 nm, which is significantly less than the
size of the pores in the composite of interest.
Therefore, a decrease in the ferroelectric phase
transition temperature of (R)-3-quinuclidinol in
porous matrices of aluminum oxide discovered in

11
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this article is due to the influence of size effects
characteristic of free particles.

Conclusion

The results of the study of (R)-3-quinuclid-
inol embedded in porous aluminum oxide pre-
sented in this article revealed a decrease in the
Curie temperature in the nanocomposite, both

upon heating and cooling, in comparison with
the bulk sample. A decrease in the phase transi-
tion temperature allows interpretation based on
the known theoretical models for ferroelectric
small particles.

The study was supported by the Russian Founda-
tion for Basic Research (grant No. 19-29-03004).
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The composition, structure, particle size distribution, diffuse reflectance spectra, integral
absorption coefficients of solar radiation and dielectric properties of BaTi(1—x)Zr(x)O, powders
synthesized from micro powders BaCO,, ZrO, and TiO, at x = 0 — 0.3 have been studied. Changes
in the integral absorption coefficient of the powders at different concentrations of zirconium cations
were found to be within 34 %. Dielectric studies conducted over the wide ranges of temperature
and frequency showed the presence of two phase transitions, one of them undergoing near the room
temperatures. This fact makes it possible to consider these powders as pigments for thermal control
coatings at operating temperatures of space crafts.
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DA3O0BbIE NMEPEXO/Abl U CMEKTPbI
ANDODY3ZHOIO OTPAXXEHUA TBEPAbIX PACTBOPOB
TUTAHATA-LULUPKOHATA BAPUA
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WccnenoBaHbl cocTaB, CTPYKTypa, I'paHYJIOMETPUYECKUI COCTaB, CIEKTpbl Auddy3HOro OT-
paxxeHusl, MHTerpajibHbie KO3(PMUIIMEHTHI TMOTJIOMIEHUSI COJTHEYHOTO M3JIYYEHUS U IUBJIeKTPU-
yeckue cpoiicTBa nopowkos BaTli(1—x)Zr(x)O,, CMHTE3MPOBaHHBIX U3 MUKponopoukos BaCO,,
ZrO, n TiO, npy KOHLEHTPALMK 3aMELIAIOIIUX KATUOHOB LIMPKOHUS B IMara30He 3HAYeHUI X OT
0 mo 0,3. YcTraHOBIEHBI U3MEHEHUSI UHTErpaibHOI0 KO3(hGUIIMeHTa MOIJIOIIEeHUS UCCAeI0BaHHbBIX
IMOPOILKOB TPU Pa3IUYHON KOHIICHTPAMK 3aMeIlaolnX KAaTUOHOB IIMPKOHUS B mpenenax 34 %.
JMaaeKTpuiyecKre UcCieoBaHus, MPOBEACHHBIC B IIIMPOKOM TEeMIIepaTYpHOM U YaCTOTHOM M-
ara3oHax, BBISIBUJIM CYLIECTBOBaHUE JIBYX (Pa30BBIX MEPEXOI0B B MCCIEAOBAHHBIX COCIUHEHUSIX.
OrnpeneeHbl TeMITepaTyphl (a30BBIX MEPEX0I0B; YCTAHOBJIECHO, YTO HU3KOTEMITepaTypHbIi (ha3o-
BBII TIepeXo1 TPOUCXOIUT IMPW KOMHATHBIX TeMITepaTypax, 4To MO3BOJISIET pacCMaTpUBaTh JaHHbBIE
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Introduction

There is now currently a growing interest to
the studies of thermal control coatings, which
can be used to maintain the temperature of the
objects they are applied to stable [1, 2]. So-called
intelligent coatings draw the most attention, since
they are capable of modifying their functional
physical properties in response to small environ-
ment changes. Such coatings are very promising
in terms of thermal control applications, in par-
ticular space craft device, where their ability to
change emittance and radiated power in response
to the change in the environment or the absorbed
energy allows stabilizing the temperature of the
space craft working points.

Solid solutions with phase transitions (PT)
accompanied by rearrangement of the crystal-
line structure can be used as pigments for ther-
mal control coatings (TCC) of reflecting type;
the PT are located in the range of operating
temperatures of the unit. Solid solutions of bar-
ium titanate BaTiO, are solid solutions of this
type with its barium or titanium cations partial-
ly substituted by cations of other elements. The
Curie temperature for barium titanate BaTiO, is
120°C. Barium titanate has cubic structure above
this temperature. As temperature 7 decreases,
there is a structural transition into phases with
tetragonal (5 < T7<120°C), rhombic (=90 < T'<
< +5 °C) and rhombohedric (7' < —90 °C) lattic-
es. The electric [3], dielectric [4] and optical [5]
properties change as well. The most significant
modification of the indicated properties is ob-
served in the neighborhood of the Curie point
(in the transition from the cubic to the tetrago-
nal syngony): there is a variance by several times
in dielectric permittivity € and by five orders of

magnitude in electrical conductivity ¢ [3]. Op-
tical properties can change as well [6].

The change of electrical properties in the
domain of phase transitions leads to significant
changes [6] of the barium titanate emittance,
which depends on the carrier density, in a tem-
perature range from the values characteristic of
quasi-metallic state (0.10) to the value specific to
dielectrics (0.96). In case the coating is heating
up to the PT temperature, its emissivity increases
dramatically, which results in thermal radiation
rising and the coating temperature decreasing.
In the opposite situation, i.e. when the coating
temperature is below the operating one, there is
an abrupt drop in emittance. This leads to a re-
duction of thermal radiation and, respectively, to
the temperature rising back to the previous level.
This is the basis of thermal stabilization in the op-
eration area of the object with the thermal con-
trol coating on its surface.

For practical purposes, there is a need for
coatings, which can operate at lower temper-
atures than that barium titanate can provide. A
partial substitution of barium or titanium cations
with other positive ions 4 or B forming solid solu-
tions of Ba, A4 TiO, or Bali, B O, type allows
the Curie temperature to shift into lower value
ranges [7]. The value of the shift and PT charac-
teristics are defined by the type of the substituting
element and its concentration. If we vary the type
and concentration of the substituting elements A4
or B, as well as the conditions of the pigment pro-
duction, we can control the phase transitions of
the coatings produced on the basis of such com-
pounds [8—10].

The objectives of this study included a sol-
id-phase synthesis of the Bali, Zr O, com-
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pound at various values of x, as well as finding its
phase and particle-size distribution, phase tran-
sition temperature and other essential physical
properties characterizing its ability to reflect so-
lar radiation (there is a need for materials prom-
ising in terms of producing reflective coatings
for space crafts).

In favor of the set goal, we subjected the syn-
thesized samples to X-ray phase and particle-size
distribution analysis, studied their dielectric
properties, obtained and analyzed their diffuse
reflectance spectra and integral absorption coef-
ficients.

Samples and test procedure

This paper presents a solid-phase synthesis
of solid BaTli, Zr O, solution based on BaCO,,
ZrO, and TiO, micro powders at concentration
of substituting zirconium cations in the range of
0—0.3.

The samples were produced by means of
solid-phase synthesis from manufactured mi-
cro-sized BaCO,, ZrO, and TiO, powders. For
each concentration of substituting zirconium
cations, we prepared a mixture of the initial Ba-
CO,, Zr0O, and TiO, powders in such a way as to
meet the set barium atoms/Ti,  Zr_ compound
ratio of 1:1 for the obtained Bali,  Zr O, com-
pound at each value of x in compliance with the
molecular masses of the initial BaCO,, ZrO, and
TiO, powders. The barium carbonate micropo-
wder was dissolved in distilled water agitated by
ultrasonic waves; then we added the silicon di-
oxide and titanium dioxide micropowders to the
solution. The obtained compound was mixed in
a magnetic stirrer for 1 h. The mixture was dried
at 150°C, ground in an agate mortar and subject
to double heating under atmosphere: first it was
heated at 800°C for 2 h, then (after completely
cooled down) it was heated at 1200°C for 2 h. The
rate of temperature elevation on average amount-
ed to 50°C/min, of cooling — 9°C/min.

We studied the samples of Bali, Zr O, with
six different concentration of substituting cations
in the range from 0 to 30%: x = 0.01; 0.03; 0.10;
0.15; 0.20; 0.30. We studied particle-size distri-
bution of BaTli, Zr O, powders using Shimadzu
SALD-2300 laser diffraction particle size ana-
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lyzer. We employed Shimadzu XRD 6000 X-ray
diffractometer to perform X-ray phase analysis
(XRD).

For dielectric measurements, we pressed the
powders under 10 MPa pressure into tablets 1
cm wide and 1 mm thick. We used gold contacts
with a chromium sublayer as electrodes for better
adhesion. In the course of the measurement, the
samples were heated at 120°C for 30 min first to
remove the adsorbed water.

We measured dielectric properties using a
broad-band spectrometer Novocontrol BDS80 in
the frequency range from 0.1 Hz to 10 MHz, with
the scanning field amplitude of 10 V/cm; relative
measurement error of impedance and capacity is
approximately 3-10~°. The measurements were
performed in a heating/cooling mode, the tem-
perature change rate amounted to 1—2°C/min,
measurement temperatures ranged from —50 to
150°C.

To measure diffuse reflectance spectra, the
BaTi,  Zr O, samples were pressed into supports
24 mm wide and 2 mm tall under the pressure of
1 MPa with hold time of 2 mm. For diffuse reflec-
tance spectra, we used Shimadzu UV-3600 Plus
spectrophotometer with an integrating sphere at-
tachment (ISR-603) in a wavelength range from
200 to 2200 nm and resolution of 5 nm.

Test results and their discussion

X-ray phase analysis data. A diffraction spec-
tra analysis of the synthesized barium titan-
ate powders with partially substituted cations
showed that the peaks of intensity correspond
to BaTliO, or Bali,_ Zr O, compounds. As an
example, Fig. 1 demonstrates an X-ray diagram
of BaZr Ti ,O, powder (x = 0.1). Aside from
the basic compound, the synthesized powders
contained phases of Zr'TiO, and BaZrO,, as well
as residual unreacted initial powders used in the
synthesis: BaCO,, ZrO, and TiO,. A study of the
obtained X-ray diagrams allowed us to conclude
that the basic phase of the produced powders
had a tetragonal structure.

Based on the obtained diffraction data, we
calculated the content of various compounds in
the synthesized BaTi, Zr O, powders (Table I).
The yield of the main phase for all obtained sam-
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Fig. 1. X-ray diagram of BaZr, Ti ,O, powder

Table 1
Percentage of different compounds in the synthesized
BaTi,_ Zr O, powders at x = 0.01 — 0.30
Compound composition, %

g BaTi, Zr O /BaTiO, 7r0, | TiO, | ZtTiO, | BaCO, | BaZrO,
0.01 84.9 0.2 6.7 3.7 3.6 0.9
0.03 85.1 0.8 7.0 33 34 0.4
0.05 90.3 1.3 2.8 2.2 1.9 1.5
0.10 80.6 3.9 6.2 3.0 3.1 33
0.15 78.9 5.0 5.1 2.5 2.3 6.2
0.20 67.6 114 6.2 2.0 2.0 10.8
0.30 62.0 10.8 7.2 2.6 2.4 15.0

N ot e. The presented results were obtained on the basis of the X-ray phase analysis data.

ples containing from 0 to 0.3 of the substituting
zirconium cations is in the range between 62.0
and 90.3%. The highest yield of the main phase
(90.3%) is observed at the substituting zirconium
cations concentration x = 0.05, while the lowest
one (62%) — at x = 0.30. The content of BaZrO,
and ZrO, phases grows with the increase in the
substituting cations density. The percentage of
the remaining non-essential phases in the syn-
thesized solid solutions depends on the concen-
tration of the substituting cations insignificantly
and at various concentrations of x = 0.01—0.30
vary as follows:

TiO, — from 2.8 t0 7.2 %,

ZrTiO, — from 2t0 3.7 %,

BaCO, — from 1.9 t0 3.6 %.

Particle-size analysis data. The particle-size
research showed that the synthesized powders
contain particle of the size from 0.2 to 12 pm.
The function of particles distribution for the
BaTi, Zr O, powders has a form of a curve with
two peaks corresponding to the particle sizes of
0.51—0.53 pm and 2.30—2.67 pm respectively.
With the change of the zirconium cations per-
centage from 1 to 30%, there is no significant
shift of the distribution peaks (within the range
0of 0.02 and 0.37 pum for the first and the second
peaks respectively), just as there is no consid-
erable change in the intensity of the said peaks
(up to 20% for the first peak and up to 10% for
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the second one). The median particle size in
the BaTi, Zr O, powders ranges from 1.911 to
2.990 um. The maximum median particle size
is observed in the BaTiO, powder (2.196 pm)
at the zirconium cation concentration equal to
0.15(2.199 um). The minimum median particle
size (1.911 um) corresponds to the maximum
zirconium cation concentration equal to 0.03.
The modal particle diameter (diameter with the
highest incidence rate of grain sizes or a prevail-
ing fraction) for all the powders under study was
identical and equal to 2.234 pum.

Dielectric properties study. We can see two
peaks on the permittivity temperature depend-
ences of all the samples: a more prominent one is
observed at the temperature range of 109—117°C
and a less prominent one — at 27—47°C (Fig. 2).
Note that the temperature values corresponding
to the maximum permittivity during heating are
lower than that during cooling down (see Fig. 2
for an example); for a high temperature peak in
the range of 109—117°C the thermal lag is
around 5°C. The respective data for the remain-
ing values of x are similar.

In the entire temperature test range, we ob-
tained and analyzed the frequency dependences
of the real and imaginary components of per-
mittivity €'(®), €"(®) for the solid Bali, Zr O,

solutions. To describe the relaxation contribu-
tions, we used the Cole—Cole distribution, which
allows describing the spectra extending over a
wider range than Debye relaxation. As a model
function, we applied a sum of DC conductivity,
several relaxation processes and high-frequency
conductivity contributions:

z c
*(m)= CC. + j—RC =
e*(o) 8w+; l+](1)80
:800-}-” ae, GtA—]’GDC,
i=1 1+(l'(D‘Ci) ' (O

where CC, is the relaxation process contribution
described by the empirical Cole—Cole formula;
¢  is the phonon modes and electric polarizability
contribution; Ae =€ —¢_; 1, s, is the most proba-
ble time (relaxation frequency ®), T = 2n/®; 6,
S/m, is the DC conductivity; o is the relaxation
time distribution (0 < a < 1).

The best way of approximating the frequency
dependences was finding the sum of the contri-
butions made by three relaxation processes; the
processes differ in the most probable relaxation
frequencies: one of the processes was observed
in the frequency range of /= 0.1—1 Hz and had
a monotone temperature dependence of the Ag
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Fig. 3. Temperature dependences of the Ae parameter for relaxation processes / and 2 (see text)

in solid solutions BaZr, Ti ,O, (a) and BaZr

Ti, O, (b)

Table 2

Temperature values corresponding to peaks on Ag(7) dependences
for relaxation processes 7 and 2 in the studied BaTi,_ Zr O, samples

Peak temperature, °C
x value
Process / Process 2
0.01 31.6 118.5
0.03 36.9 115.6
0.10 27.4 112.4
0.15 359 111.2
0.20 42.1 109.6
0.30 27.8 113.9

N o te. The presented results are obtained on the basis of dielectric measurements data. Processes 7/ and 2 differ
in the temperature ranges where their peaks were observed.

parameter; two other processes with different
relaxation frequencies lying in the range of f =
= 10° — 10* Hz had peaks on the Ag(T) depend-
ences at the temperature of around 27°C (pro-
cess /) and around 109°C (process 2) (Fig. 3). As
an example, Fig. 3 presents the corresponding
data for two studied samples.

Thus, we were able to identify the relaxation
processes responsible for the phase transitions
in the material under study. We used tempera-
ture dependences of the Ag parameter to de-
termine the phase transition temperatures for
each compound (Table 2). The peak tempera-
tures Ag(7) for process 2 in all the samples was
close to the temperature of the ferroelectric
transition from the cubic into tetragonal phase

in pure BaTiO, (7 .= 120°C) and solid solutions
of BaTi,_ Zr O, with low zirconium concentra-
tion. A small decrease in the temperature of
this transition agrees with the phase diagram of
the solid BaTi, Zr O, solutions, according to
which at low zirconium content the tempera-
ture of this transition decreases in these solu-
tions [11].

The peaks of Ag(T) for relaxation process 1 in
the samples of Bali, Zr O, are observed at tem-
peratures close to the respective value of the tran-
sition between two ferroelectric phases of pure
BaTiO, (T = 5°C) with the orthorhombic and
tetragonal crystalline structures. The observed in-
crease in the temperature of this transition agrees
with the phase diagram of the solid BaTi, Zr O,
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solutions in the range of small zirconium con-
centrations.

However, we should note that the temperature
values of both phase transitions in all six samples
vary insignificantly with the change of the as-
sumed zirconium concentration in solutions and
show no dependence on x [12]. This is probably
due to the fact the main contribution to the die-
lectric response of the obtained solutions is made
by the phase of the solid BaTi, Zr O, solutions
with low and approximately identical zirconium
concentration of x < 0.1 for all the samples.

Diffuse reflectance spectra and integral ab-
sorption coefficient. A study of the diffuse reflec-
tance spectra in the solar range of the synthesized
powders necessary for finding the optimal con-
centration of the zirconium cations to obtain the
BaTi,  Zr O, powder with high reflectance and
low absorption coefficient as is of particular in-
terest.

The diffuse reflectance spectra of the
BaTi,_ Zr O, powders were registered in the UV,
visible and near infrared ranges. Fig. 4 presents
the diffuse reflectance spectra of the synthesized
powders with the concentration of substituting
zirconium cations in the range from 0 to 30%.

For all concentrations of substituting zirco-
nium cations, the reflectance coefficient of the
BaTi, Zr O, powders varies in the range of

85—96% in the area from the main absorption
edge to 2200 nm. Qualitatively, the form of p
spectra is practically identical for all the pow-
ders under study, at 1400 and 2040 nm wave-
lengths, there are absorption bands visible due to
OH-groups located at the surface of the powder
grains and granules of Bali, Zr O, [13]. In the
area of the main absorption edge, as the zirconi-
um concentration grows, we can observe a minor
deterioration in reflectance.

It follows from the diffuse reflectance spectra
shown in Fig. 4 that BaTi, Zr O, powder has the
highest reflectance in the visible and near infra-
red ranges at the zirconium concentration of x =
= (0.05, and the lowest reflectance at the concen-
tration of x = 0.15. The difference in the reflec-
tion coefficient for different zirconium concen-
trations in one wavelength reaches 10%.

The integral absorption coefficient of solar ra-
diation as was calculated based on the diffuse re-
flection coefficient using the following formula:
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Fig. 4. Diffuse reflectance spectra of solid BaTi, Zr O, solutions
with different content of substituting zirconium cations
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Fig. 5. Dependence of the integral absorption coefficient of solar radiation
on zirconium content in the solid BaTi,  Zr O, solution

Table 3
Values of the integral absorption coefficient of solar radiation
for the BaTi,_ Zr O, powders at different values of x
X 0.00 0.01 0.03 0.05 0.10 0.15 0.20 0.30
a 0.104 0.102 0.101 0.100 0.128 0.151 0.107 0.107

N ot e. The presented results are obtained by means of calculations on the basis of the diffuse solar radiation

reflectance spectra.

where R is the integral absorption coefficient of
solar radiation calculated as the arithmetic mean
value of the reflection coefficient over 24 points
located in equal-energy areas of the solar radi-
ation spectrum according to the international
standards [14, 15]; p, is the spectral reflectivity; [,
is the solar radiation spectrum; A, A,, um, are the
boundary values of the solar spectrum range (in
the area of 0.2—2,5 um the sun radiates 98% of
the total energy); n is the number of equal-energy
areas of the solar spectrum given by the standard
tables [14, 15].

As you can see from Table 3, all synthesized
powders have rather low integral absorption coef-
ficients of solar radiation in the range from 0.100
to 0.151 and can fall into the class of “solar re-
flectors”. The BaTli, Zr O, powder with 5% of
zirconium cations (x = 0.05) possesses the small-
est value of a_(0.100), while the powder with 15%
of zirconium (x = 0.15) has the greatest value.

Fig. 5 presents a dependence of a_on the
percentage of the substituting zirconium cat-
ions in the range from 0 to 30% (x = 0—0.30).
As the zirconium cations concentration in the
BaTi,_ Zr O, compounds increases, the integral
absorption coefficient of solar radiation chang-
es based on a rather complex dependence with a
minimum and a maximum. The highest values of
as are observed at 10 and 15 % zirconium con-
centrations.

Conclusion

We used the solid-phase synthesis method
with a two-step heating to produce Bali,  Zr O,
powders from a mixture of micron-sized BaCO,,
Zr0O, and TiO, powders at concentration of sub-
stituting zirconium cations in the range of 0—30
weight % (x = 0.01-0.30). We studied the de-
pendences of the particle-size distribution, phase
composition, diffuse reflectance spectra in the
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UV, visible and near infrared ranges, and the in-
tegral absorption coefficient of solar radiation
as on the zirconium cations concentration. The
established maximum yield of the main powder
phase amounts to 90.3%. The form of the diffuse
reflectance of the synthesized BaTi,  Zr O, micro
powders varies insignificantly dependihg on the
zirconium concentration; however, the qualita-
tive changes reach 10%. The integral absorption
coefficient of the studied powders at different
zirconium concentration varied within 34%. The
conducted dielectric research of the pressed pow-
ders revealed two peaks on the permittivity tem-

perature dependences associated with the phase
transitions. We determined the temperatures of
these phase transitions for all compositions and
revealed that the low temperature transition in
the solutions under study was observed at room
temperatures. This fact makes these compounds
a promising material for production of pigments
for thermal control coatings at operating temper-
atures of space crafts.

The study was financially supported by the Russian
Foundation for Basic Research as part of scientific
project no. 19-32-60067.
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A known physical fact of the anomalous rise of dielectric permittivity € of C,, fullerite films at ac
low frequencies (below 1 kHz) has not had a convincing explanation up to now. Our study was aimed at
elucidating the causes of that anomaly. The p-Si/C, /InGa-eutectic structure was made and a frequency
dependence of its capacitance was measured. Relying on the experimental result, a versatile analysis of
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AHANN3 NPU4YUH AHOMAJIbBHOTIO NMOBbLIWWEHUA
EMKOCTU NNIEHOK DYJINNEPUTA C,, HA HU3KUX YACTOTAX

A.U. Jomkenko, U.b. 3axapoea, H.T. Cypapb

CaHkT-MeTepbyprcknin NONUTEXHUYECKUIA YHBEpCUTET MeTpa Bennkoro,
CaHkT-MeTepbypr, Poccuiickas denepaums

W3BeCTHBIN 9KCIIEpUMEHTAJIbHBIN (haKT aHOMaJIBHOTO BO3pacTaHUs JUDJIEKTPUUECKON TPOHUIIA-
emMocTH € IieHoK ¢yuepura C,; Ha HU3KKX YacToTax (Huxe 1 xIir) nepeMeHHOro 3JeKTpUYECKOro
TOKa HE UMEET JI0 HACTOSIIEr0 BpEMEHU YOeaUTEIbHOrO 00bsicHeHus. JlaHHOe uccieaoBaHue ObLIo
HALIEJIEHO Ha BhIACHEHME NIPUYMH yKa3aHHOM aHoManuu. bblia nsrorosnena crpykrypa p-Si/C, /o8-
tektvka InGa 1 u3MepeHa 4acTOTHasl 3aBUCUMOCTh €¢ eMKOCTH. Ha 0CHOBaHMM MOJyYEHHBIX 9KC-
MePUMEHTAbHBIX TaHHBIX MPOBEIEH MHOTOCTOPOHHUI aHanu3 siBieHus1. [TokazaHo, 4TO BO3MOX-
HOM MPUYMHONW aHOMAJIbHOTO TOBBIIICHUS € B HU3KOYACTOTHOW 00JIACTU SIBJISIETCS] MHTEPKASLIMS
(dyiepuTa MOJIEKYJIaMu KUCI0pOAa ¢ oOpasoBaHKeM MOJEKYJspHbIX rpynn C /O,, obnanaomumx
3HAYUTEIBHBIM TUITOJBHBIM MOMEHTOM. Hammuue Takux rpyIin BbI3bIBAeT KapAWHAJIbHOE pa3andue
MeXX1y 3HAUCHUSIMU AUDJIEKTPUUECKON MPOHUIIAEMOCTH MOBEPXHOCTHBIX 00J1acTeil KpUCTATUTOB U
TaKOBOI ISl 00J1aCTH UX 00bEMa, UTO, B CBOIO Ouepe/ib, MPUBOIUT K KaXKyIIEeMYCs TOAbEeMY TU3JIEK-
TPUYECKOI TPOHUIIAEMOCTH UCCIICIYEMOI CTPYKTYPhI.

KmioyeBbie cioBa: dysuiepur C ), MOJIMKPUCTAIMYECKAs IJIEHKA, OMDJIEKTPUYECKas MPOHULAE-
MOCTb, ypaBHeHUe Dpénnxa, UHTEPKATSLMS KUCIOpoIa
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Introduction

Fullerene thin films are currently believed to
be promising candidates for organic electronics
[1 — 3]. A major focus is investigations into the
properties of fullerene C, since its molecules
have the greatest symmetry and stability. A char-
acteristic feature of fullerene in condensed phase
(fullerite) is that impurity atoms can be interca-
lated into its crystal lattice [4]. Impurity atoms
in the face-centered cubic (fcc) lattice of C,
fullerite fill octahedral and tetrahedral voids be-
tween the host molecules, interacting with them
with a potentially pronounced effect on the phys-
ical properties of fullerite films [5].

Intercalation of fullerite by oxygen atoms is
a particularly intriguing subject. The electron
affinity of C,, molecules is significantly high-
er than that of oxygen molecules, estimated at
about 2.67 eV [6], while for oxygen it amounts
to about 0.45 eV [7]. Therefore, it can be ex-
pected that oxygen acts as an electron donor,
and fullerite as an electron acceptor. It is hy-
pothesized in [8] that partial transfer of an elec-
tron from a donor to an acceptor generates a
dipole moment in the C, /O, molecule, which
is what likely causes a significant increase in the
dielectric permittivity for C , films at frequen-
cies below 10° Hz. However, the actual physi-
cal mechanism behind this phenomenon is not
considered in [8].

Electrode polarization is often the cause of the
abnormal increase in capacitance at low AC fre-
quencies, occurring in dielectrics with noticeable
electrical conductivity given poor contact be-
tween the sample and the electrode. A thin layer
forms at the interface in these conditions, char-
acterized by a significant electrical impedance
[9]. Obviously, this reason is not related to the
physical properties of the actual fullerite films.

Other reasons for the anomalous increase in
the capacitance of dielectrics in the low-frequen-
cy region are also discussed in the literature. For
example, the Maxwell — Wagner polarization is
observed in inhomogeneous dielectrics with con-

ducting impurities [10]; for polycrystalline die-
lectrics, this can be attributed to the difference
between the permittivities (and conductivities) of
the external and internal regions of crystallites,
i.e., the grain-interlayer model [3, 10].

The goal of this study consists in understand-
ing the potential role of the described effects and
assessing the degree to which they influence the
dielectric permittivity of C,; fullerite films.

Experimental procedure

The sample was a C,; fullerite film deposit-
ed on a cold substrate made of p-type silicon of
KDB-1 grade by thermal spraying. The thickness
L of the film, measured with an MII-4 interfer-
ence microscope, was 25050 nm.

A close focus was on ensuring reliable contacts
between the fullerite sample and the electrodes.

The C,; film produced by this method had a
polycrystalline structure with the size D of crys-
tallites equal to 100 — 200 nm [11]. The crystal-
lites forming the film were randomly arranged on
the silicon substrate in several layers. Before the
experiments, the C films deposited on the sub-
strates were exposed to an air atmosphere for a
long time in order to ensure reliable contact of
the film with the silicon substrate, since the latter
was used as one of the electrodes.

The second electrode was a needle probe made
of a liquid indium-gallium eutectic [12]. Such an
electrode provided reliable electrical contact with
the fullerite film, without mechanical damage,
due to interaction of the surface tension forces of
the eutectic and gravitational forces.

An E7-20 LCR meter was used to measure the
capacitance C and the tangent tgd of the dielec-
tric loss angle in the frequency range from 25 Hz
to 1 MHz. The amplitude of the test AC voltage
was 0.04 V. All measurements were carried out
at room temperature 7 = 293 K in a darkened
measuring cell. The given section of the C,; film
was subjected to electroforming prior to dielec-
tric measurements: a constant voltage U = 30 V
was applied to the electrodes for several tens of
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minutes. Electroforming considerably increased
the stability of the readings and the reproduci-
bility of the results for repeated measurements
in this section of the film [11].

The area S of the contact spot of the needle
electrode with the fullerite film was calculat-
ed based on the data for the capacitance C of
the given structure measured at a frequency of
1 MHz. It was assumed that the dielectric per-
mittivity of the film at this frequency was close
to the value of the high-frequency dielectric per-
mittivity € _of C_ fullerite. According to the data
given in literature [13], & = 2.6. Therefore, with
a capacitance C = 8.2 pF, the area of the contact
spot turns out to be S =~ 0.09 mm?. This value of
S was subsequently used to calculate the dielec-
tric permittivity spectrum in the entire investigat-
ed frequency range.

Experimental results and discussion

The goal posed at the first stage of the study
was to find out whether the increase in capaci-
tance in the low-frequency region is due to the
phenomenon of electrode polarization. Accord-
ing to the data given in [9], the correction for
electrode effects in low-frequency measure-
ments, defined as the difference between the
measured capacitance C and the true capaci-
tance C_  (appearing in the absence of elec-
trode polarization), depends on the material
conductivity ¢ and the frequency f, at which the
measurement is carried out, so that

c-c, ~c'/f

true

(1)

Since the photoconductivity of C; fullerite
is observed in the visible spectral range, the
conductivity of the given structure could be in-
creased by exposure to light. For this purpose,
we used a white LED with a color temperature
of 4000 K, producing a luminous flux of 250 Im.
The light was focused on the contact spot of the
indium-gallium electrode with the fullerite film
using a special lens. The structure's conductivity
increased from 7-10~7 S/cm (value in the dark) to
3:107° S/cm upon illumination.

Fig. 1 shows the low-frequency dependences
for the capacitance of the given structure in the
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dark (curve /) and under LED lighting (curve
2), i.e., at different concentrations of free charge
carriers determining the conductivity in it. Ap-
parently, the curves on the graph practically co-
incide, although the value of the capacitance
should have increased by about four orders of
magnitude, in accordance with Eq. (1). Further-
more, the assumed dependence should have been
linear in the case of electrode polarization in the
considered coordinates C (1/f2) but this did not
happen either.

Thus, analysis of the experiment carried out
at the first stage of the study allows eliminating
electrode polarization as the cause of the anoma-
lous increase in capacitance in the low-frequen-
cy region of the spectrum. In other words, the
increase in capacitance we have observed should
not be regarded as an artifact, that is, it is not
associated with the specific experimental condi-
tions or the peculiarities of electrical contacts.

At the second stage of the study, we consid-
ered the deep mechanisms underlying the in-
crease in the capacitance of the structure at low
frequencies.

As noted above, fullerite films obtained by
thermal spraying are polycrystalline. Oxygen
molecules quickly penetrate into the film, diffus-
ing along the crystallite interfaces; as a result, the
near-interface regions of the crystallites are sat-
urated with oxygen to a greater extent than their
bulk. For this reason, the conductivity and die-
lectric permittivity of the surface layers of crystal-
lites and their bulk are different [3]. Consequent-
ly, the dielectric dispersion in such structures is
best described by the theory of multilayer die-
lectric systems, characterized by an abnormally
high dielectric permittivity in the low-frequency
region [9].

Fig. 2, a shows the dependence of the dielec-
tric permittivity on the frequency f. The values of
€' were calculated with the equation for a plane
capacitor based on capacitance measurements.
Evidently, the dielectric permittivity increas-
es rapidly and monotonically with a decrease in
the frequency of the applied AC voltage. For ex-
ample, €' = 3 at a frequency of 10° Hz, reaching
€'~ 300 at 30 Hz.

The dependence of the dielectric loss angle



Condensed matter physics >

C, pF ]
] °
1200 | o1
1000
: °
800 4 o
600 A o
4 /.
4004 /
200 4 /.
T T T T T T T T 2 T 2
0 500 1000 1500 2000 2500 1/F% (kHz)"

Fig. 1. Low-frequency dependences for capacitance of a p-Si/C, /InGa
eutectic structure in the dark (/) and under LED lighting (2).
Luminous flux (250 Im) focused on the contact spot of the C, /InGa eutectic at 7= 293 K
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Fig. 2. Dependences of dielectric permittivity («) and dielectric loss angle tangent (b)
for p-Si/C, /InGa eutectic structure; 7= 293 K
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tangent tgd (f) (Fig. 2, b) bears a non-monotonic
character. The value of tgd = 0.01 at frequencies
above 10° Hz, however, it gradually increases with
decreasing frequency, reaching a maximum value
of about 0.8 at /'~ 10> Hz, subsequently decreas-
ing to about 0.1. It is impossible to accurately de-
termine the position of this maximum on the fre-
quency scale due to the significant scatter of data
in measurements of tgd. Notably, a broad maxi-
mum was also observed in [8] for the frequency
curve tand in the region of 1 kHz during meas-
urements of C fullerite films. The appearance
of the maximum was attributed to intercalation
of fullerite with oxygen and formation of dipole
groups in the C, /O, molecule.

According to the grain-interlayer model, the
set of links that are internal crystallite regions
(grains) and their surface regions (interlayers) is
considered as a homogeneous structure with a
common relaxation time 1t corresponding to the
relaxation time of an individual link, while the
value of 7 is calculated by the Debye equations
for dipole orientation polarization.

As polar molecular groups C, /O, are accu-
mulated in the interlayers, their dielectric per-
mittivity turns out to be higher than that of grains,
and the conductivity of these groups is lower [9].
Therefore, the low-frequency dielectric permit-
tivity €, of the oxidized near-surface crystallite
layer (interlayer) can be estimated using the re-
lation

g =g D/d, ()
where €' is the dielectric permittivity of the C;
film, determined experimentally; d is the thick-
ness of the oxidized near-surface crystallite layer
(interlayer).

The thickness d can only be estimated ap-
proximately. According to the data in [14], the
value of d should not exceed 15 nm. Conse-
quently, given a crystallite size of D = 150 nm,
we obtain that the dielectric permittivity & of
the interlayer lies in the range from 10 to 30 at
a frequency of 35 Hz with d in the range from 5
to 15 nm.

Let us estimate the values of the dipole mo-
ment of the C, /O, molecule and the concentra-
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tions of these molecules at which the given value
of g, is attainable. We use the Frohlich equation
relating the macroscopic dielectric permittivity
to the dipole moment of the molecule

(e,-2,)(2¢,+e,)  Negp’
g (e, +2)2 9e kT’

€)

where N is the number of polar molecules of
C,,/0, (dipoles) per unit volume of the interlay-
er; p, D, is their dipole moment; 7, K, is the
temperature, kB, JK™!, is the Boltzmann con-
stant; g, F/m, is the vacuum permittivity; g is
a parameter accounting for the local ordering of
molecules;

g :1+z<c0sy>.

Here z is the coordination number (z = 12 for
the fcc lattice), <cos y> is the average cosine of
the angle between the molecule at the point of
reference and its nearest neighbors (<cos y> =
= (.7 was taken in the calculations).

Let us calculate the value of N bearing in
mind that there are two C,, molecules for each
fce cell. Suppose that all C,; molecules in the
near-surface layer of the compound are oxi-
dized; then the number of dipoles per unit vol-
ume of this layer is equal to

N =2 Yo

Tox 4
(a -D)3 ’ @
where V_, nm?, is the volume of the oxidized lay-
er in one crystallite, a, nm, is the edge length of
the fce cell of C ) (@ = 1.417 nm [14]).

We obtain for these conditions that N =
~ 2.5:10% m~3. This value of the concentration of
polar groups seems reasonable, since, according
to the data in [14], the relative oxygen content in
the oxidized layeris C: O =10: 1.

According to the data in [8], the value of the
dipole moment p of the C, /O, molecule is 0.9 D.
The authors estimated it assuming that the frac-
tion & of the charge transferred from the donor
(intercalated oxygen O,) to the acceptor (C,,
fullerite molecule) was 4%. This value of & was
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Fig. 3. Dependences of left (A) (straight line /) and right-hand (B) (straight lines 2 — 6)
sides of the Frohlich equation (3) on the thickness of oxidized near-surface crystallite layer (interlayer)
at different values of the dipole moment of the C, /O, molecule, p, D: 5(2), 4 (3), 3 (4,2 (5),1(6)

determined by the authors from the condition of
the best agreement between the calculation re-
sults and experiment. Nevertheless, it is pointed
out in [15] that a substantially larger fraction of
the charge can be transferred. According to the
estimates in that study, the value of § can reach
49%.

We should note that estimating the dipole mo-
ments of the given molecular groups should ac-
count for the fact tha interaction of oxygen with
fullerene molecules produces various forms of
oxidized fullerene C O . For example, the so-
called 'open' and 'closed’ epoxides can evolve, as
well as other isomers, where the oxygen atoms
can be attached to different sites of the fullerene
molecule. An oxygen atom in the 'open' epoxide,
C,,0 (5-6, pentagon-hexagon), is attached to two
carbon atoms at the border of the corresponding
faces. The oxygen atom in the ‘closed’ one, C, O
(6-6, hexagon-hexagon), is located above the
double bond at the border of two hexagons [16].
As already mentioned, the oxygen atoms in oth-
er isomers can be attached to various sites of the
fullerene molecule.

Evidently, all the formed C, O, molecules are
characterized by different lengths of chemical
bonds and the degree of electron density transfer
from donor to acceptor, and, as a consequence,
different dipole moments.

In view of the above, let us find the values of

the interlayer thickness d and the dipole moment
p for which relation (3) can be satisified. Calculat-
ing its left-hand side for various values of d, we use
expression (2), taking € = 300 and D = 150 nm.
We denote this left-hand side as A (d), and the
right-hand, which includes the previously esti-
mated parameters N and g, as B (d). We consider
the dipole moment of the C, /O, molecule as a
parameter, varying its values.

These dependences are shown in Fig. 3.
Apparently, the condition A = B can be ful-
filled only at the thickness of the oxidized layer
d = 15 nm (which is consistent with the known
experimental results), but at significant dipole
moments of the C, /O, molecules, amounting to
4—5 D, when the relative fraction o of the trans-
ferred electron charge exceeds 22%, according
to the data in [8].

Conclusion

We have considered the frequency dependence
of the dielectric properties of the p-Si/C, /InGa
eutectic structure. We have confirmed that the
molecular groups C, /O, evolving in the exter-
nal regions of the crystallites of the C,; fullerite
possessing a substantial dipole moment can be
regarded as a physical mechanism governing the
anomalously high increase in the capacity of the
given structure at a low frequency. The conduc-
tivity and dielectric permittivity of the surface
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layers of crystallites and their bulk are different,
producing an apparent increase in the dielectric
permittivity of the given structure. Therefore, the
dielectric permittivity in such structures can be
described based on the theory of multilayer die-
lectric systems.
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B paborte ucciienyercst ycTOMUUBOCTD YIIPYroit OpTOTPOINTHON MPSIMOYTOJbHON KOHCOJBHOU Tia-
CTUHKM MO/ IEUCTBUEM CXKUMAIOIIUX YCUJIUIA, TTPUTOXKEHHBIX K TPaHU, TPOTUBOIOJI0XHON 3a1e/Ke.
Llenblo ucciienoBaHus SIBISIETCS MOJyYEHUE CMEKTpa KPUTUUYECKUUX YCWIUNA U COOTBETCTBYIOLIUX
dopM 3akpuTHUecKoro paBHoBecus. DyHKITMS TPOruOOB BHIOMPAETCS B BUAEC CYMMBbI ABYX TUTIEPOOJIO-
TPUTOHOMETPUYECKUX PSIIOB C 100aBIEHNEM K CUMMETPUYHOMY PEIICHUIO CIelMabHbIX KOMITeH-
CHUPYIOIINX CJIaraeMbIX JJIsI CBOOOIHBIX WICHOB pa3yioxkeHUs (hyHKINI B psiabl Dypbe 1o KOCUHYCaM.
BoinosiHeHUE Bcex YCI0BUM KpaeBOMl 3aauu MPUBOAUT K OECKOHEUHOUW OTHOPOIHON CUCTEME JIM-
HEWHBIX ajredpanyecKuxX ypaBHEHUI OTHOCUTEILHO HEU3BECTHBIX KoadduineHToB psimaoB. Ilouck
KPUTHUYECKUX HArpy30K (COOCTBEHHBIX YMCEJ), MAlOIIMX HETPUBUAIbHOE PEllIeHUEe ITOW CUCTEMBI,
OCYIIECTBJISIETCSI TIepeOOPOM BEJIMUMHBI CXXUMAIOLIEH HArpy3Ku B COYETAHUM C METOJOM TOCHEeN0-
BaTeJIbHBIX NTpUOIMKeHU . 711 KBagpaTHO peOpUCTOil MIACTUHKYU TTOTYYeHBI TIEpBbIe TPU KPUTH -
yeckue Harpy3ku CUMMETPUYHOTO pellIeHUs U TiepBasi KpUTU4YecKasi Harpy3ka aHTUCUMMETPUYHOTO
pemenus. [Ipencrasiaensl 3D-n300paxkeHnss COOTBETCTBYIOIINX (DOpM paBHOBecus. Pe3ynbrarTsl pa-
OOTbI MOTYT OBITh UCITOJIb30BAHBI J151 UCCIIEOBAHNS YCTOMUMBOCTU KOHCOJIbHBIX 3JIEMEHTOB pa3iny-
HBIX KOHCTPYKILIUH.
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Introduction

Cantilever plates are used in various fields of
technology: in civil and mechanical engineering,
shipbuilding and aviation, in instrumentation and
control engineering [1] (ferromagnetic plates).
Cantilever plates are used in nanotechnology as
key sensor components for nanoscale transistors
[2], where they are exposed to magnetic fields in
the plane of the plate. Cantilever plates are also
used in different smart structures [3, 4].

The stability of orthotropic cantilever plates
has received insufficient attention this far due to
the complexity of the basic differential equation
of the problem and the boundary conditions.
Reliable numerical analytical methods need to
be developed to solve this problem. If we assume
the plate material to be perfectly elastic, then
there is an infinite number of critical loads that
change the form of the plate equilibrium. This
eigenvalue problem is similar to the problem on
determining the frequency spectrum of free vi-
brations of a plate [5]. It is primarily interest-
ing from a mathematical standpoint. In prac-
tice, only the first critical load (assumed to be
load to failure) is computed for planar elements
of standard metal structures; however, elastic
plates can work in the supercritical region in
the presence of structural bending limiters and
arapid increase in the compressive load, acquir-
ing subsequent forms of equilibrium, including
antisymmetric ones. Failure may not occur at
the first critical load; therefore, it is of practi-
cal importance to determine a certain range of
critical loads and the corresponding forms of
equilibrium.

The stability problem is solved in this study in
a linear statement within the theory of thin rigid
plates. A more complex nonlinear problem aris-
es for stability of flexible plates; however, linear
solutions are used as reference to check the accu-
racy of the given approximate method.

The stability of anisotropic and isotropic rec-
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tangular plates was investigated in [6 — 16] by dif-
ferent means. The methods for solving the buck-
ling problems of anisotropic plates and shells
considered in [6 — 9] are also applicable to can-
tilever plates.

The stability of an isotropic cantilever plate
was described in [10, 11] for the cases when a
compressive load was applied to a face parallel to
the clamped edge [10], and when it was applied to
aside face [11]. The first critical loads were found
from the condition of the minimum potential en-
ergy. Lateral buckling under the action of a con-
centrated force was also considered in [12] using
finite element modeling (FEM). FEM was used
in [1] to analyze buckling in ferromagnetic can-
tilever plates in a magnetic field accounting for
plastic deformations.

Anisotropic cantilever nanoplates exposed to
in-plane magnetic fields were characterized in
[2]. The analytical solution to the linear prob-
lem was constructed by a simplex method using
trigonometric series. The range of critical forc-
es was obtained for isotropic and orthotropic
plates.

FEM and an approximate analytical approach
are used in [13] to study the influence that the
stiffness of the mid-surface has on the bending of
the cantilever plate.

Refs. [14, 15] are dedicated to the stability of
an isotropic cantilever plate under the action of
compressive forces applied to two parallel free
edges [14] or to all three free edges [15]. Two hy-
perbolic trigonometric series produced an infinite
system of linear algebraic equations containing a
compressive load as a parameter. Numerical re-
sults were obtained for critical loads.

Notably, while FEM has become widespread,
it brings the challenge of verifying whether
boundary conditions are satisfied. Such verifi-
cation is fraught with great difficulties, since this
numerical method operates arrays of numbers
rather than analytical expressions (which can be
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substituted into the boundary conditions). FEM
is not a universal method for solving mechanical
problems and has other drawbacks: insufficient
accuracy of solving high-order partial differential
equations, computational 'locking' on a refined
grid, associated with rounding errors when solv-
ing a huge system of linear algebraic equations,
'viewing' of singular points of the solution (stress
raisers). The method itself often needs to be ver-
ified by purely analytical or numerical analytical
methods.

An exact solution to the stability problem has
been obtained in our study using hyperbolic trig-
onometric series with respect to both variables.
Satisfying all the conditions of the problem pro-
duced an infinite homogeneous system of linear
algebraic equations for the coefficients of these
series. If the determinant of the system is equal
to zero, this yields nontrivial values of the coeffi-
cients. However, the procedure for obtaining and
solving this equation turns out to be incredibly
cumbersome.

We propose a method searching through the
load values followed by an iterative process for
determining the coefficients. The initial coeffi-
cients of the first functional series were given as
an arbitrary decreasing sequence; the values of
the remaining coefficients were computed next,
and they are all refined during the iterative pro-
cess. The load was selected so that the process
converged to nontrivial solutions, that is, adja-
cent iterations (with nonzero coefficients) did
not differ from each other. This load was taken as
critical. This method was successfully used in our
earlier studies [14, 15].

Problem statement

Let uniform compressive forces with intensity
TY be applied to the free edge Y = b of a thin or-
thotropic rectangular cantilever plate of constant
thickness / (Fig. 1). We assume that the main di-
rections of elasticity are parallel to the sides of the
plate.

The differential equation of plate stability
takes the dimensionless form [16]:

4 4
D, vap,
Ox Y Ox*0y

+ (1)

2
+T aW:O,

4
+Daw I
4

y 8y4
where w is the relative deflection (w = W/b,
W(X,Y) is the deflection function of the plate's
mid-surface); x, y are the dimensionless coor-
dinates (x = X/b, y = Y/b); D, Dy, ny are the
relative stiffnesses in the principal directions,
D .=D,/D, Dy =D,/D, ny =D,/D (Disthe cy-
lindrical stiffness of the corresponding isotropic
plate of the same thickness, D, D,, D, are the
principal stiffnesses) T is the intensity of rela-
tive compressive forces (7' L= T,b°/D).

The value D is expressed as

D:E/f/[lz(l—vz)],

where E is Young's modulus of the given plate, v
is its Poisson's ratio.
The main stiffnesses follow the expressions

(1)

D, = E1h3/[12(1 -v,v,) ]

D, =ER [[12(1-v,v,)],
D,=Dyv,+2D,,

where £, E,, v,, v, are the principal elastic con-
stants; Dr is the torsional stiffness, D, = Gh’/12
(G is the shear modulus).

The relative dimensions of the plate are y x 1,
where v = a/b.

The boundary conditions are written as fol-
lows [16, 17]:
on the face y =0,

w=0, 2o @
Oy
on the face y = 1,
o’w o’w
—+v,— =0,
oy ox
o’w —\ 0w
Dyy+(ny 2D, ) o (3)
.%o,
y ay
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Fig. 1. Loading diagram of cantilever
plate (thickness £);
T, is the intensity of uniform compressive forces

on the faces x = ty/2,

o’w o’w
e + \/2 e = 0,
ox oy
4)
3 3
Dxa—‘:}+(Dx +25r)8_w2: 0;
ox ! 0Ox0dy
at points (+y/2, 1),
2
oWy, (5)
oxoy

Egs. (2) here are the geometric conditions for
rigidly clamped edges (the section does not move
orrotate). Egs. (3), (4) prohibit bending moments
and shear forces on the free faces. Condition (5)
excludes torques at the corner points of the free
part of the boundary. Note that the second con-
dition (3) for shear forces on a face along which
a compressive load is applied is complemented
with a term accounting for the action of this load
in the deflected state of this face. This was point-
ed out by Alfutov in [17].

Problem (1) — (5) always has a trivial (zero)
solution for the deflection function. This corre-
sponds to a stable undeformed state of the plate.
Aside from the trivial solution, the problem can
also have nontrivial solutions for certain loads Ty,
when the plate acquires a new form of equilibri-
um upon loss of stability. Plates with high elastic-

40

ity can 'pass' the critical state several times with
increasing load, changing the form of the subse-
quent equilibrium. This refers to plates made of
novel highly elastic materials, including nano-
plates (graphene).

Construction of the symmetric solution

We represent the sought deflection function as
a sum of two series:

(7

where 4,,B,C,H,E,F,a,p,E,n are un-
determined coefficients; A, = km/2; u = 2m /y;
y=y-L

Notably, both of these functions satisfy the
boundary condition (5).

We require that functions (6), (7) satisfy the
differential equation (1). This gives biquadratic
equations of the following form for the coeffi-

cients o, B,, £, M

D.a; —2D ok, + DAy =T\ =0,

(8)

Dy -2D g} +DE+TE =0
(the equations for the coefficients B, and n_are
similar).

These equations each have four roots, how-
ever, based on the properties of hyperbolic func-
tions, it is sufficient to take one pair of roots from
each of the quartets:

2 DxT;/
D, +,D,—-D.D, +7
A —,
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T,
D —\/D2 ~D.D,+—5
Bk:}\'/{ D : >
2
3 \/ZDW“S LR o
2D,

where

2 2
. T?~4D p’T, +
© \+4u!(DL-DD,)

We now require that the sum of functions (6),
(7) satisfy boundary conditions (2) — (4). Then
we obtain the following system of equations:

C sh& +H shn -
(10)
_Es Ch&m _F; Chns :O’
C&, chg, +
< s +Hsns Chns -
-1
200 g g - [
—Fn, shn,
- (1)
+ > A (4, cho,x+ B, chB,x)=0,
k=1,3,...
> ES (E_,? _V1“§)+
(=1’ COS L X —
T [ E (v
(12)
e ( oA (vlai —li)chakx+
- -1 =0,
= + B, (v} =1 JchB,x
CE T +D é D_+2D, +
[7+0E- (0, +2D )]s

C, (12 -v,e2)she i+ |
- |+ H, (uf —me)ShﬂJJf

S| 4 E (W -vag)ehe i+ ’
+F(ug—Vm )Chmf’
- T (14
o | A (o} —Vv,) chd, + (9
+ . |sinA,y =0,
5| +B, (B = vy} )chp,
4,0, [Dxai —(ny + 25r)7»i +] sha, + as)

+BB,| DB} (D, +2D,)1} |shp, =0.

Here, &, =o,v/2, B, =By/2, k=(k+1)/2.

Note that the signs of the sum are omitted in
Egs. (10), (13), and (15), since the trigonometric
series vanishes when all its coefficients are equal
to zero.

Summation in the series in Egs. (11), (12),
(14) is carried out over different indices, so we
expand the hyperbolic functions in them into
Fourier series. We use the well-known expansions
in cos (p x) for Egs. (11) and (12):

cho,x=
—sha, {_4_4&,{ Z q cosus }
(ST A Olk +1;
chB,x= (16)
4[3 scosu,x}
—ShB k s .
{B Z B +u

then these equations (after permutation of the
summation signs in the double series) take the
form

C&,ché +
= | +Hm, chn -
(- P fcospx+
s=1 - Es&s Sh E)s -
— Fn.sh
sns ns (17)

+ @, + i(—l)s ¢, cosp x =0,
s=1
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| >
o [E(E ) where
> (1) , L\ |cospx+
= +F,(n} - Vi) W viE
© . (18) 2, g2
+my+ Y (1) m cosp x =0, Mers,
s=1 1 k
C (_ ) s T
where % +A, sh&, +
. e —E\, ch&
© h h — N S
0, z 2| 4 s ~OLk B, S~Bk , b, 2; 2y (22)
k=1,3 k Bk +52—22SX
7\'1{ + ns
4 o, sha shf )
(Ps:—zkk[/lk kz+ zk BkB];+B§]’ H, ( l) |
= Oy + K, Pl + 1 X +A, shn,
h ~ _F:v}\’k Ch Tls
sha
. ) A, (Vlai 7“2) & ‘
m, =— Z (_1)" Lo Since the free terms ¢, and m from cosine
k=13.... +B (v B2 22 ) Sl}Bk series expansion appeared in Egs. (17), (18), we
T ‘ should introduce an auxiliary deflection function
w,, which can compensate for these free terms,
r 4 252 T satisfying Eqgs. (1) — (3), (5) of the problem to-
k (Vla" k )X gether with the main solution.
% sha, We select this function in the form
2 2
4 s k ak + us
m=—— > (-1) L |9 = _ ,
Y53 + B, (vlgk - kk)x wi(¥)= D gsink,y+—My* -dy, (23)
~ k=1,3,...
B, shB,
X .
B2 +p? where the coefficients g,, M, © are found from

To transform Eq. (14), we use the expansions

(_1)1; as +}\’k Sh és
M +E
s =N
che 7 =2shg, 3 — g7 Sy

k=13,.. Mg s

sin, y,
(20)

(the expressions for sh(n y) and ch(n y) are the
same if &_is substituted with 1 ) and permute the
summation signs in the double series obtained:

0

> b sinky+
k=13,...
o | A (ai —vzki)chdk +
+ sini,y =0,

| + B, (B} —v,); )ehB,

21)
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conditions (2) — (4):

i g\ (DA ~T, )sind,y+MT, =0,

k=13,...

z gl —P+¢,=0, (24)
k=1,3....
i (=1) A2g, + M +m,=0.
k=13,

We expand the constant M7 in the first equa-
tion in (25) in a sine Fourier series:

= 2.
MT, = MT, Z }L—smkky. (25)

k=13,... "V}

Then we obtain the following expressions:



T,
Y (Dpi-1)
—-m
M LI 70
e (-1)'r,
k=13,... 7»,( (Dy}\'z _Ty)

The residual of the function w, with respect
to the bending moment M _on the faces x = tvy/2
(the first condition (4)) is expressed as

v, (M— z A sinkky]—
k=1,3,...
. (27)
= Z b, sin},y,
k=1,3,...
where the coefficient
- 2v,MD y?u K
“ DM -T,
_ 2v,D e, /(D -T,) 28)

& ()
1-2T _
"B (pp )
is added to Eq. (21).

Then system of equations (10) — (15) takes the
following final form after the external summation
signs are removed, taking into account Egs. (17),
(18), (21), (27):

C sh& +H_ shn, —
(29)
—E ch§ —F chn =0,
CE cheg +H hn —
sas C és ST]S C T]S (30)
- ESEJS Sh as - Enc Sh ns = _(Ps’
E (& V) +F () —vipl)=-m,, (1)
CE,|DE (D, +2D, )l +T, |+
(32)

y+25r)uf+T]:O,

X
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A, (ai —vzki)chdk +

33
+ B, (B} —v,\; )chB, =—(b, +5;), (3)

Aoy | Do -(D, +2D, )} [shé, +
34
+ BB, DB; (D, +2D, )1} |shp, =0. B9

The set (29) — (34) is an infinite homogeneous
system of linear algebraic equations with respect
to the coefficients 4, B, C, H, E, F .

Notice that the right-hand sides ¢ _and ms
of Egs. (30), (31) contain the coefficients 4,,
B, under the sum sign (see Egs. (19)), while the
terms on the right-hand side of Egs. (33) con-
tain, respectively, the coefficients C, H, E, F,
and also 4,, B, under the sum signs (see Egs. (22,
28)). It is extremely complicated to represent a
homogeneous system in standard form, to com-
pose and expand the corresponding determinant
of the system, to find its roots giving nontrivial
solutions; therefore, here we propose a method
for enumerating the parameter Ty (the 'shooting'
method) combined with the method of sequen-
tial approximations for determining the coeffi-
cients4,,B,,C,H,E, F.

To organize the iterative process, the resolving
system is divided into two subsystems:

(29) — (32), where the principal coefficients
are assumed tobe C, H, E, F';

(33), (34), where the principal coefficients are
assumedtobe 4, B,.

First, the right-hand side of Eq. (33) is sub-
stituted with an initial arbitrary decreasing se-
quence (in this case, 1 /?»k), then the subsystem
of equations (33), (34) is solved for the selected
value of the compressive load T W The initial co-
efficients 4 0> B, found are substituted into sub-
system (29) — (32), from which the coefficients
C, H, E, F, are found, used then togeth-
er with 4, , B, to form the right-hand side of
Eq. (33) and a new solution 4, , B, of systems
(33), (34). Next, the first-approximation coeffi-
cients Csl’ H , E , F  are computed, followed
by the iterative process of refining the problem
coefficients.

If the corresponding coefficients of the series
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coincide in absolute value (up to 4—5 significant
digits) for the given load starting from some iter-
ation, then this is exactly the nonzero solution of
the homogeneous system (29) — (34): its deter-
minant is equal to zero. This (critical) load de-
termines a new form of equilibrium after loss of
stability (it corresponds to the minimum poten-
tial energy of the plate).

Construction of an antisymmetric solution

We also represent the sought solution as the
sum of two series, where odd functions with re-
spect to the variable x appear:

& (Apshoyx+
wi(or)= 2 [+Bkshf>kx

k=1,3,...

jsin Ay, (35

Wz(XJJ’)Z
C sh& y+
0 s| +H shny+|
= -1 . (36
S| LT i o)
+F chny

Here §=(s+1)/2, p, =mns/y; the coeffici-
ents A, a, B,, &, n_ have the same values as
before.

Satisfying all the boundary conditions of the
problem, we arrive at a system similar to (29) —
(34), but with the sines and cosines interchanged
in the last two equations:

C shé +H shn —
SS &S Ss T]S (37)
—E ch& —F chn, =0,
CE che +H hn —
&, ch&, + Hn chn, (38)
- ESECDS Sh EJS _F;ns Shns = _(ps’
E (8 -vpl)+F (0 —vpul)=-m, (39)
CE| D ~(D,+2D,)ul |+
_ (40)

+ Hpn,[ D’ =(D,, +2D,)u’ | =0,
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A, (ai —vzki)sh&k +
, 2\ = (41)
+ B, (Bk —V,h, )Sh By =—b,,
4o, [Dxak D +2D ]ch&k +
. (42)
+ BB, | DB ~(D, +2D,)1} |chp, =0,
where
o, cha
4 & Ak a{cz +H2k
k s
(‘ps I Z }\'k
Y k=13, B, B, ch Bk
Bk +I"I’s
4 (vlock 7»2) |
o, cha,
4 & i o
mS = Z (_1) 2 2 2
VA= (VIBk -\ )X
Bk Cth
Bk +“’s
s _V2<t3§ X W
A +E;
C li(_l)l; s +:|
x +A, sh& +
o E X\, chg
by=-2Y . (43)
s=1,3,... +H —V,N, v
A+,
k
i {(—1) n ]
X +A, shm,
_F;}\'k Chns J

Here we used the sine expansion of hyperbolic
functions of the variable x in Fourier series:

4o ~ s sinp x
sha,x=——%cha -1 s
st SN
4B - s sinpL x
shB,x=——%chp -1) ——.

' v 2. ( )Biwf



Computations for ribbed plate

As an example, we consider a square plate
with closely spaced stiffening ribs placed parallel
to the coordinate axes at an equal distance from
each other (Fig. 2).

Formulas for calculating the stiffnesses for
such a ribbed plate are given in [16]:

ERIR

D =D,=D+ , D, =D, (45)

where D is the cylindrical stiffness of the plate it-
self; £, I, are, respectively, Young's modulus and
the moment of inertia of the ribs relative to the
midline; d is the distance between the ribs.

Then the relative stiffnesses take the form

D, =D, =1+D, D, =1

_ (46)
(D=E,I,/dD),
and the discriminant of the biquadratic equation
(8) (and the similar equation for @_and y ) is
negative:

D} -D.D, =-(D’+2D)<0,  (47)
producing complex roots o, B, ¢_and y .

The transformations of complex expressions
carried out prove that the sought solution is ob-
tained in real form. Computations with the Ma-
ple system confirmed this.

We assume that the plate and the ribs are made
of the same material. We take Poisson's ratio v =
= 0.3, rib width b, = A, rib height &, = 3h, rib
width to rib spacing ratio b,/d = 0.1. Then the
moment of inertia of the rib and its relative stiff-
ness are expressed as

hL._._
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]R:M_E:§h4
12 12 12
EJ, 26ER‘12(1-V*)
dD  12-10hER
=2,6(1-v*)=2,366.

b

D=

Numerical results

Critical loads and forms of equilibrium were
determined according to the above algorithm us-
ing Maple software.

The following parameters of the computa-
tional process were used:

T ) is the intensity of the relative compressive
load applied to the face y = 1; v = 0.3 is Poisson's
ratio; y = a/b is the ratio of the sides of the plate;
N is the number of terms in the series; NV is the
number of iterations.

The coefficients of series (7), (8) or (36),
(37) were printed out at each iteration in order
to control the process of successive approxima-
tions. After finding the critical value, the deflec-
tion function was computed and a 3D image of
the corresponding form of the plate equilibrium
was printed. There were 59 terms retained in a se-
ries, a larger number of terms did not significant-
ly affect the accuracy of the computations. The
number of iterations was assumed to be 25. The
run time for each loading scenario was no more
than two minutes. The strategy of enumerating
the load was chosen to account for the behavior
of the sought coefficient values and did not take
much time.

The first three critical loads found for sym-
metric forms and the first critical loads for the
antisymmetric form of equilibrium for square
plates (ribbed, with low anisotropy, isotropic) are

br

uJ

[

| M|

Fig. 2. View of ribbed panel
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Fig. 3. First (a), second (b) and third (¢) symmetrical forms of equilibrium
for a ribbed square plate at 7, = 7.824, T , = 64.933 and 7, = 100.970 respectively

Fig. 4. First antisymmetric form of equilibrium for a ribbed square plate at 7| = 25.6765

shown in Table, and the corresponding 3D forms
of equilibrium of a ribbed plate are shown in Figs.
3, 4. Importantly, the number of iterations had to
be increased to 200 for finding the first antisym-
metric critical load due to the weak convergence
of the process.

Discussion of computational results

The variation method was used in [10] to find
the first critical load for an isotropic square can-

46

tilever plate p = 2.4571-D/a’. In this study, the
first critical load was computed for comparison
for a plate with low anisotropy D = 0.005, which
amounted to 2.1164:D/a?. These values are com-
parable. We should note that energy methods typ-
ically yield overestimated results.

The numerical results in [2] were obtained for
the stability of elastic isotropic and orthotropic
cantilever nanoplates in a magnetic field using
the simplex superposition method based on the
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Table
Computed range of critical loads 7, for square cantilever plates
T =T,b/D
ogg{)eﬁce D Symmetrical solution Anti:())/{l& gloelirical
crl cr2 cr3 crl
Ribbed 2366 | 7.8235 | 64.933 100.970 25.676
With low anisotropy 0.005 | 2.1164 | 20.525 58.721 7.835
Isotropic 0 2.1057 | 20.457 58.597 8.080

Notations: D is the relative stiffness of the ribs, T, is the intensity of uniform compressive forces, b is the plate
length, D is the cylindrical stiffness of the isotropic plate.

nonlocal elasticity theory. Stability computations
were performed to verify the method for a very
thin (#/a = 1/1000) isotropic cantilever plate
but within the framework of the linear Kirchhoff
theory. In particular, for a plate with the aspect
ratio y = 2 subjected to a uniform compressive
load applied to the face y = 1, the first relative
critical values of symmetric forms of equilibrium
amounted to (converting these data to the nota-
tion we adopted) 2.4174 and 20.5173 versus the
values of 2.1594 and 20.663 that we obtained for
a standard thin plate (h/a <1/5).

The significant discrepancy (10.7%) for the
first critical load can be explained by the large
difference in the relative plate thicknesses. Nota-
bly, the range of the first six critical loads is given
in [2], and the corresponding forms of equilibri-
um are obtained. This is perhaps the only work
on determining the spectrum of eigenvalues and
forms in the problem on stability of cantilever
plates. On the other hand, however, the buck-
ling in a clamped plate subjected to shear forces
along the edge was considered in [18] within the
framework of the linear theory; a range of 10 first
critical loads and the corresponding 3D forms of
equilibrium of plates with different aspect ratios
were obtained.

The method proposed in this paper for studying
the stability of an elastic orthotropic rectangular
cantilever plate allows finding the range of critical
loads and the corresponding forms of equilibri-
um with high accuracy, increasing the number of
terms in the series, the number of iterations and
the length of the mantissa in the computations.

Conclusion

We have obtained a numerical analytical solu-
tion to the stability problem for an elastic rec-
tangular orthotropic cantilever plate. Hyperbol-
ic trigonometric series were used to reduce the
problem to an infinite system of linear algebraic
equations with respect to unknown coefficients,
containing a compressive load as a parameter. An
efficient iterative process for finding critical loads
has been constructed. A range of critical forces
was obtained for a specific example of a ribbed
plate; if necessary, it can be expanded by compu-
tational means using the Maple environment for
numerical analysis. The corresponding 3D forms
of equilibrium are given. Finding the critical loads
will allow avoiding failure in cantilever elements
or understanding their behavior in supercritical
regions, offering application for nanotechnology
and smart structures.
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BY A PASSING SHOCK WAVE
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The behavior of the interaction between a shock wave and a gas suspension layer with curved
boundaries has been studied using the hybrid large-particle method, the wave running over the layer.
The conducted research made it possible to reveal two-dimensional effects of double refraction (von
Neumann effects), focusing or divergence of the refracted shock wave, and baroclinic instability at the
gas-suspension interface with the formation of mushroom-shaped or ring-shaped vortex structures.
The features of the flow nonequilibrium were brought out. These features were associated with a
decrease in the intensity of the passing shock wave and the splitting of the initial separation of the
media into two contact discontinuities: a jump in porosity and a contact discontinuity in the gas
phase.
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YUCNEHHbIE CLEHAPUU AUHAMUKHU
HEPABHOMEPHOIO MO LUUPUHE CJZ1051 TA3OB3BECM,
YCKOPSAIEMOIO NPOXOAALWLEN YOAPHOMU BOJIHOM

A.B. CaguH

BoeHHO-koCcMMYeckast akageMusi umenn A.®. Moxalckoro,
CaHkT-MeTepbypr, Poccuiickas denepaums

B pabGote u3yueHbl 3aKOHOMEPHOCTU B3aMMOJEHCTBUS yIapHOW BOJHBI CO CJIOEM Ta30B3BECH,
WMEIOLIUM UCKPUBJIEHHbIE TPAHUIIBI; IPU 9TOM BOJIHA HaOeraeT Ha yKa3aHHbI cioii. Mcnonb3oBaH
rUOpUAHBIA MeToa KpynHbIX yactull. [IpoBeneHHOe MccaeqoBaHue MO3BOJIUIO OOHAPYXUTH JBY-
MepHbIe 23D deKThl ABOKHOTO MpeaomiaeHus (3¢ dexTo poH HelimaHa), GOKYCUPOBKM UM PACXOXK-
NEHUS TIPEJIOMJIEHHOM ylapHO BOJIHBI, 0ApPOKJIMHHOW HEYCTOMYMBOCTHA Ha MOBEPXHOCTHU pasjena
rasza v B3Becu ¢ 00pazoBaHUeM rpUOOBUIHBIX MU KOJbIEBBIX BUXPEBBIX CTPYKTYP. BbIsiBIEHBI 0OCO-
OEHHOCTM HEPaBHOBECHOCTU T€UEHMUS, CBSI3aHHbBIE C YMEHbIIEHUEM MHTEHCUBHOCTU MPOXOMISIIEi
YAApHOU BOJIHBI M PACIIETUIEHMEM HAYaIbHOTO pa3/elia Cpell Ha Ba KOHTAKTHBIX Pa3pblBa: CKAYOK
MOPUCTOCTU M KOHTAKTHBINM pa3phiB B ra30Boii a3se.

Kirouesbie clioBa: ruOpUIHBIN METO KPYITHBIX YACTULL, HEPaBHOMEPHBII CJIOI Ta30B3BECH, yIapHast
BOJTHA, TIpEJIOMJICHUE
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Introduction

Studies of shock wave propagation in inho-
mogeneous media (uneven distribution of phys-
ical-chemical and thermodynamic parameters,
including those at the media interface) are rel-
ative in various scientific and technical appli-
cations. This topic is encountered in the course
of solving gas dynamics problems, which imply
spatial change in the ratio of specific heats, mo-
lecular weight or temperature. The phenomena
of shock-inhomogeneity interaction are notable
for their complex topology of reflection, refrac-
tion and diffraction of the shock waves, as well
as the development of the Richtmyer — Meshkov
instability [1 — 6].

In the recent decades, the research on the
shock wave dynamics in inhomogeneous relaxing
multiphase media (gas with particles, fluid with
bubbles) have been attracting more and more at-
tention. The work in this direction are connected
with the study of gas suspension cloud accelerat-
ing in the passing shock wave [7, 8], dispersion
of a cloud of particles [9, 10], deformation of
boundaries and instability development [11, 12],
splitting and escape of gas—particle mixtures [13,
14]. Along with the common qualitative patterns
emerging in inhomogeneous flows of “pure” gas,
the presence of fine disperse inclusions can lead
to unobvious results, for instance, to formation of
“abnormal” shock-wave structures at the subson-
ic carrier-gas flow regime [14, 15].

Due to significant labor intensity of experi-
ments and obtaining quantitative results, mathe-
matical modeling is the most effective method of
research. Multiscale solutions are an important
feature of problem statements for nonequilibrium
flows of heterogeneous media. If the relaxation
scale (time of phase relaxation) is significantly less
than the gas-dynamic scale of the time the dis-
turbance travels between the grid points and cells
(the condition by Courant — Friedrichs — Lewy),
then such problems are regarded as stiff. Applica-
tion of traditional explicit difference schemes of
source terms calculation is impractical due to the
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unacceptably small time step, which is limited by
the characteristic time scale for the fast solution
component. To overcome this obstacle of numer-
ical integration of the equations of gas-dispersion
media dynamics, researchers propose schemes
with explicit spatial approximation of derivatives
and implicit scheme for source terms calculation
(interphase interactions) [ 16 — 20]. The other ap-
proach consists in construction of fully-implic-
it schemes represented within vector and scalar
runs [21 — 23].

The type and properties of the differential
equation system, for example, its hyperbolicity,
influence the choice of difference or finite-vol-
ume schemes. For two-speed and two-temper-
ature formulations with general pressure or two
pressures, the laws of conservation for some mod-
els are of hyperbolic or of composite type depend-
ing on the phase speed difference [24 — 26]. This
places restrictions on the applicability of discrete
models based on characteristic representation of
the initial equations system, for instance, Godu-
nov type schemes or grid-characteristic methods.

Modification of schemes used in the problems
of computational fluid dynamics, for heteroge-
neous flows modeling in general encounters the
problem of nonconservativity (nondivergence
notation) of conservation laws due to the Ar-
chimedes force caused by the change in the tube
of gas flow: pVa, (p is the gas pressure, a, is its
volume fraction). To eliminate this difficulty in
the schemes, which require divergent notation
of discrete conservation laws, an artificial tech-
nique is used: the variable pVa, is transposed to
the right-hand side of the conservation laws and
united with the source terms (interphase interac-
tions) [17].

The objectives of this article include a detailed
numerical analysis between a shock wave and a
gas suspension layer of uneven width taking in-
to account relaxation processes, as well as test-
ing the capabilities of the hybrid large-particle
method [20, 27] in terms of solving this class of
problems.
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Mathematical model and calculation method

Consider conservation laws of a calorically
perfect gas and solid incompressible particles in
the frame of multi-fluid dynamics [28] formulat-
ed as [20]:

op,
P v.(ov)=0
8t+ (p,v,)=0,

0
a(plvl)""v(plvl"l)"‘ o,Vp = _Fua
(1

0
5(p2v2) +V(p,v,v,)+a,Vp = F,

0
E(pzez ) +V- (pzezvz) =0,

0
5(p1E1 +p,K, ) +

+V-(pEvV, +p,K,V,)+
+ V-[p(oclv1 + %Vz):l =-0,,

p,=pa, (i=1,2), a,+a,=1,
Elzel+vf/2, K2:V§/2,
E, =K, +e,,

where V is the gradient operator; o, p,, kg/m’,
v, m/s, E, e, J/kg, p, Pa, are the volume frac-
tion, reduced density, velocity vector, total and
inner energy of /" phase unit mass, gas pressure;
FH, N/M3, is the viscous component of the inter-
phase interaction force; O, W-m=, is the gas-par-
ticles heat transfer power per unit volume; ¢, s, is
the time; here and elsewhere, subscripts 1 and 2
refer respectively to the parameters of the carrier
and dispersion phases, and the superscripts de-
noted by a circle refers to the true values of the
density.

Equations of state of the calorically perfect gas
and incompressible solid particles are the closing
relation for system (1):

p :(Y1 _l)p;ela e=cT,

e, =c,T,, {yl,cv,cz,pz} = const,

where T', T, K, are the temperatures of the car-
rier phase and the particles; y,, ¢ , J/(kg'K), is the
ratio of specific heats and specific heat of the gas
at constant volume; c,, J/(kg'K) is the specific
heat of the particles.

Force and thermal interphase interactions Fu,
Q, are determined using criterion relations [28].

For the calculations, we used the hybrid
large-particle method of the second order of ac-
curacy in space and time [27]. We used two ap-
proaches to regularize the numerical solution. At
the first stage of the algorithm, we added artificial
dissipation with nonlinear Christensen type cor-
rection into the scheme. In contrast to the linear or
quadratic artificial viscosity, the proposed numer-
ical viscosity does not reduce the order of approx-
imation and becomes zero in arbitrary resolution
grids for smooth solutions. Based on the obtained
preliminary values of the required functions, at the
second stage, there were fluxes forming by means
of hybridization: a quasilinear combination of the
central and upwind approximations weighted by a
limiter. At the same time, discrete analogs of the
conservation laws remain true. We increased the
order of accuracy with respect to time using the
Runge — Kutta method with two stages. We ap-
plied an non-iterations scheme to calculate the
interphase interactions without splitting them in-
to gas-dynamic and relaxation stages by means of
linearization and implicitly taking into account
the linear part of the source terms.

The method has several positive computa-
tional properties including K-stability [ 18] (inde-
pendence of the time step on the size of the com-
putational grid and intensity of the interphase
interactions). The scheme is non-dissipative for
smooth solutions, demonstrates monotonici-
ty and high resolution for structurally complex
flows. The algorithm is distinguished by univer-
sality of solving an extended class of problems
with dominating convection of both hyperbolic
and composite types [20, 27].

The time step is determined from the Courant
— Friedrichs — Lewy condition for “pure” gas:

h

™ =CFL p
max(|v1,n
Vn

)2
+a)
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where CFL is the fixed Courant number, a* is son-
ic speed through the gas phase in point (xn i )

Problem statement

Flat shock tube 7 is filled with nonturbulent
air 2. Inside the shock tube, there is a layer of gas
suspension 3 with cylindrical convex 4 or a con-
cave 5 with diameter D = 5 cm (Fig. 1). A shock
wave 6 of constant intensity is moving from left
to right with the Mach number M = 1.22. We
consider variants of the problems with cylindrical
curvature of the gas suspension layer on its left (at
x = 3D) or right (at x = 4D) boundary (Fig. 1,a
and b, respectively).

At the initial instant, the shock front is located
in plane x = 1.5D. At ¢ = 0, the gas suspension
layer is a still mixture of air (y, = 1.4) and mono-
dispersed incompressible spherical particles with
the density p;, = 2500 kg/m?, volume fraction
a, = 0.001 and specific heat ¢, = 710 J/(km'K)
in the conditions of thermodynamical equilib-
rium (7, = T, = 293,23 K) and at the pressure
p =101325 Pa.

We set boundary reflection conditions at the
walls and soft boundary conditions of the con-
tinuation of the solution at the input (at x = 0)
and the output (at x = 9D) from the domain of
computation. To exclude (minimize) the influ-
ence of the boundedness of the computational
domain on the solution in the neighborhood of
the right boundary 8.5D < x < 9D (Fig. 1), we
used an increasing step grid. The problems were
solved numerically using the hybrid large-particle

method with the Courant number CFL = 0.4 up
to the line of symmetry at a uniformly spaced grid
with the step 2/D = 0.0025. For homogeneity of
the algorithm in the domain of the “pure” gas,
volume concentration of particles is taken to be
negligible (o, = 10~"7).

Numerical results and discussion

Interaction between the passing shock wave
and the limited gas suspension layer with curved
boundaries is accompanied by a number of non-
linear physical phenomena: breakdown of a dis-
continuity at the media interface, their deforma-
tion, development of instability and formation of
vortex structures.

Depending on the difference in the effective
acoustic impedance

OR = p.a,. —p_a.

(plus on the right and minus on the left) from the
gas- suspension contact (in this expression

a=\/p/[(p1 +p2)0t1]

is the effective speed of sound of the mixture of
gas / and particles 2), there two configurations
manifesting: with two shock waves at 6R > 0 or
a passing shock wave and a rarefaction wave at
3R < 0.

For all variants of the problem under consid-
eration, at the left (L) and the right (R) bounda-
ries of the layer, the R values amount to:

a) 9D b) 9D

{ 4
I )
47 \5 ) A 577 N4 ﬁ/

Qe T\ L. _ <« d _ N D I/ A I A 1
2 S 5 2 S
— ~ ) — - N
2 l 3 2 Y,

1.5D 15D 1D 05D 1.5D 15D 1D 4 705D

Fig. 1. Computational schemes of the problems with left (a)
or right (b) boundary curvature of the gas suspension layer
1 — flat shock tube filled with nonturbulent air (2); 3 — gas suspension layer;
4 — cylindrical convex; 5 — concave; 6 — shock wave of constant intensity
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SR, =238.423kg/(m’ -s),
SR, =-238.423kg/(m’-s).

The physical cause of the instability and vortex
formation at the contact interface is baroclinic
instability, which is incongruence of the density
and pressure gradients. Indeed, in a one-veloci-
ty approximation, at the initial point of time the
vorticity variable

o=Vxv=0,

while a transfer equation for the vorticity has the
form

Consequently, if £ > 0, in case of different-
ly-directed gradients of density and pressure
(VpxVp # 0), there is a vortex motion of the
gas-particles mixture appearing in the neigh-
borhood of curved contact boundaries.

Another considerable factor is connected with
the nonequilibrium of the gas suspension dynam-
ics (a difference in the velocities and tempera-
tures of the gas and the particles), which is char-
acterized by dimensionless time of the dynamic
7™, 2" and thermal 71", ") phase relaxations
[18]:

70— 1 p;dz_h

_ ~w _ 1 pyd” @
" 18pa, D’

T 18pa, D’

2 o o
—(7) _ d p1Cp h —(7) _ d2p26‘2 @
' 4ne, D7 4ha, D

where d is the particle diameter, a,, is the initial
speed of sound in the carrier phase.

Numerical scenarios of dust layer dynamics
for a fine particles suspension. Let us consider in
detail the indicated scenarios for fine particles of
d = 0.1 um diameter and a dust layer with a cy-
lindrical concave or a thickening of the layer at

the left (Fig. 2) or the right (Fig. 3) boundary.
The flows are visualized in the form of numerical
schlieren images of the gradient function of the
reduced density of the mixture s(Vp) [29]. The
results are presented for four successive charac-
teristic moments in time: breakdown of a dis-
continuity at the left boundary of the suspension
(Fig. 2, a, e and Fig. 3, a, e), shock wave passing
inside the suspension (Fig. 2, b, fand Fig. 3, b, f),
shock-wave refraction at the right boundary (Fig.
2, ¢, g and Fig. 3, ¢, g) and development of an
instability along with vortex motion at the media
interface (Fig. 2, d, h and Fig. 3, d, h). Axial and
transverse coordinates are based on the diame-
ter D of the initial layer curvature: x' = x/D and
y' = y/D. The time is calculated in the dimen-
sionless form: 7 = a, #/D.

The beginning of the interaction of the prima-
ry shock wave s, is accompanied by a breakdown
of a discontinuity on straight (Fig. 3) or curved
(Fig. 2) surfaces of the dust layer c,. Since the
difference in the effective acoustic impedance
OR, =238.423 kg/(m™s), i.e. is greater than zero,
the reflection takes place in a form of a straight
s, (Fig. 3, a, e) or curved s, —s; (Fig. 2, a, e)
shock wave. On interaction with the inhomoge-
neity, a rarefaction wave r, (Fig. 2, a) or a convex
shock wave (Fig. 2, e) is forming. In the case of a
concave on the left (Fig. 2, a), there is a passing
shock wave s, forming along with von Neumann’s
double refraction, or a disc s, in case of the layer
thickening (Fig. 2, e).

In successive moments of time, the curved
shock wave s, —s, moves inside the two-phase
medium layer (Fig. 2, b, f), and when it is run-
ning over the right boundary c,, it breaks down
into a passing shock wave s, and a reflected rare-
faction wave 7, in the opposite direction (Fig. 2,
¢, g). The splitting character of the shock wave
s, through the layer in the case of the cylindri-
cal concave (Fig. 3, ¢) or the focusing effect /' of
the transverse shock waves s, reflecting from the
symmetry line (Fig. 3, g) serve as the distinctive
features of the breakdown of the discontinuity at
the right curved boundary.

For the concave/convex layer cases, the vector
product of the gradients of mixture density and
pressure VpxVp has opposite directions, which
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Fig. 2. Interaction of a shock wave with a concave (a — d) or a convex (e — &) at the left boundary
of a gas suspension layer (d = 0.1 um). Numerical schlieren images of the gradient function
of the mixture density are presented in successive moments of time:

1.51 (a), 1.85 (b), 2.54 (¢), 13.73 (d), 1.17 (e), 1.85 (f); 3.09 (g), 13.73 (h).

Grid size above the symmetry line 3600 x 356; N is von Neumann’s double refraction; ¢, ¢, — are left and

right surfaces of dustu; s, s,,5, 55, 53, 5, are shock waves; r,, r, are rarefaction waves; v are vortices

3 5 3
0.8[Ts, =
0.4}
y'0
—0.4|| @ r,
0.8 4
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0.4
y'O ¢
—04|| ¢
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0—().5::1
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Fig. 3. Diagrams similar to those in Fig. 2, but for the right boundary of the gas suspension layer;
in addition, numerical schlieren images of the gradient function of the mixture density
are presented partially in other successive moments of time:
1.72 (a); 2.40 (b); 2.75 (¢); 13.73 (d); 1.72 (e), 3.09 (f); 3.78 (g); 13.73 (h).

F is the focusing effect of transverse shock waves; s, v'are separated vortices
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Fig. 4. Trajectories of the left and the right boundaries of the gas suspension layer
(the solid and dashed lines, respectively) along the symmetry line (y'=0),
as well as on the shock tube wall (y'=0,89) (the densely dotted and dashdotted lines, respectively)
for the concave/convex cases of the respective left (@ and b) and right (c and d) boundaries

causes the formation of differently-directed vor-
tices (Fig. 2 and 3, ¢, g). Subsequently, there are
mushroom-shaped (Fig. 2, #) and ring-shaped
(Fig. 3, d) vortex structures ¢. Note the emer-
gence of small separated vortices in the gas phase
peripherally down the stream (Fig. 3, d) or in the
neighborhood of the symmetry line (Fig. 3, /).

Dynamics of the layer for the variants of the
problems under consideration is shown in Fig. 4
in a form of a trajectory of set point at the in-
terface of the media. The agreed notations are
as follows: solid and dashed lines correspond to
the trajectories of the left and the right bound-
aries along the symmetry line (at y'=0), while
densely dotted and dashdotted curves show the
time changes of the positions of the left and the
right contact surfaces on the shock tube wall
(at y'=0,89).

The dust layer boundaries are deformed with
compression along the symmetry line for the
variant of concave interaction on the left (Fig.
4, a), while the cylindrical convex, on the con-
trary, leads to a delay of the contact surface in
the center of the shock tube from the peripheral
movement of the suspension (Fig. 4, b). In case
of the initial curvature of the right edge of the gas
suspension layer, we can observe the characteris-
tic points trajectories intersecting (Fig. 4, ¢ and
d). For instance, the right boundary of the layer
in the neighborhood of the wall (the dashdotted
line) eventually falls back (Fig. 4, ¢) or goes ahead
of (Fig. 4, d) the positions of the layer boundaries

along the symmetry line (the solid and dashed
lines).

The scenarios of interest occur for fine gas
suspension particles, which have short equaliza-
tion period in terms of velocity and phase tem-
perature, i.e.

TM10* =2.551,310* =5.302;
7M10* =8.303, 710 =0.277,

while the relaxation zones are subgrid.

Numerical scenarios of dust layer dynamics for
a suspension of larger particles. Let us now con-
sider the interaction of a shock wave with a gas
suspension layer of particles with the diameter of
d = 10 um on the example the problem with the
initial width reduction (concave) at the left sur-
face.

The calculation results in the successive mo-
ments of time are presented in Fig. 5 as numerical
schlieren images and as the mixture density dis-
tributions based on its value after the shock wave
p'=p/p,-

Due to significant phase relaxation time equal
to

T =2.551, 5 =5.302;

71 =8.303, 7" =0.277,

the gas suspension layer dynamics have a num-
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Fig. 5. Interaction of a shock wave with a concave on the left boundary of the gas suspension layer
(d = 10 um). Numerical schlieren images of the gradient function of the mixture density (a — d)
and the relative density profiles of the mixture (e — /) at the symmetry line (solid curves)
and on the wall (dashed lines) are presented in successive dimensionless moments of time:
1.51 (a, e), 1.85 (b, /), 2.54 (c, g), 13.73 (d, h)

ber of significant features. When a shock wave s
strikes the left boundary of the disperse medium,
there forms a passing shock wave s, of decreasing
intensity and a reflected weak compressive shock
wave s..

Since the gas carrier phase is ahead of the dis-
perse particles driven by it, the initial separation
of the media splits into two contact discontinui-
ties. The first one is a jump in porosity, and the
second one is contact discontinuity in the gas
phase ¢ (Fig. 5, a, band e, f). A similar situation
also occurs at the right gas suspension boundary
with the media interface ¢, and the interface sur-
face of the gases ¢, (Fig. 5, cand g).

The interfacial friction and heat transfer are
considerable factors affecting the suppression of
small vortices. Bu the end of computations, the
layer is deforming with significant compression
along the symmetry line (Fig. 5, g) and generates
a large ring-shaped gas-dispersion vortex struc-
ture (Fig. 5, d).
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Conclusion

We used the method of numerical modeling to
study the behavior of the interaction between a
shock wave running over a gas suspension layer
with curved boundaries. Depending on the dif-
ference in the effective acoustic impedance, there
are two types of discontinuity breakdown man-
ifesting at the interface of the media: two shock
waves or a rarefaction wave and a shock wave. The
presence of a convex or a concave in the gas sus-
pension layer generates two-dimensional effects
of von Neumann double refraction, focusing or
divergence of the passing shock wave. The in-
congruence of the density and pressure gradients
causes an instability to form at the gas-suspension
interface and generates mushroom-shaped and
ring-shaped vortex structures. The nonequilibri-
um factor of the flow at increasing size of disperse
particles adds considerable features: a shock wave
moves through the gas suspension layer with de-
creasing intensity, while the initial separation of
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the media splits into two contact discontinuities:
a jump in porosity and a contact discontinuity in
the gas phase.

Simulation of physical processes >

The results of the numerical modeling proved
reliability, stability and high resolution capacity
of the hybrid large-particle method.
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Introduction

Various types of gyroscopes find their appli-
cation in modern guidance, position control and
stabilization systems. Gyroscopes are employed
in shipbuilding, air- and spacecraft industries, as
well as rocket engineering. Production of Cori-
olis vibratory gyroscopes (CVGSs) is a promising
direction of gyroscopic technology develop-
ment. New generations of optic, vibratory, wave
solid-state and other gyroscopes are taking over
the traditional gyroscopic devices [1, 2]. Manu-
facture and application of the new types of gy-
roscopes are associated with the need for minia-
turization alongside with meeting the accuracy,
reliability and service life requirements.

Effect of inertia of elastic waves is the corner-
stone of modern CVGs operation [3]. When the
object with a CVG installed rotates, the device
registers the standing wave precession emerging
due to constant oscillations of the sensory organ
— resonator. Measuring the angular displacement
of the wave makes it possible to calculate the angu-
lar velocity in inertial space used in production of
angular velocity and displacement sensors [4]. The
CVG design often includes thin cylindrical and
hemispherical resonators, which are classic shells
with mode shapes convenient for application.

We further consider a hemispherical reso-
nator design (Fig. 1), its primary geometrical
parameters, as well as the properties of its mate-
rial (Table 1).

Resonator Q-factor is one of the main proper-
ties characterizing the device operation. There-
fore, low viscosity materials are used for the pro-
duction of resonators. Fused quartz is a material
with one of the lowest levels of viscosity. For in-
stance, metals have the respective parameter at a
2—3 orders higher level, thus producing resona-
tors with inferior performance specifications [4],
and, consequently, fail to provide high accuracy.
Note that fused quartz possesses the same isotro-
py of elastic characteristics, which is essential for
the material of CVG sensory organs. We selected
the values of physical and mechanical character-
istics of fused quartz taken for the calculations
presented in the article in compliance with the
state standard GOST 15130-86.

There are strict accuracy requirements im-
posed upon gyroscopic systems, particularly
on CVGs. Currently, due to rather high devel-
opment of electronic devices, the factors defin-
ing the accuracy of a CVG are geometrical and
physical properties of its elastic element (the
resonator), which are obtained in the process
of its production. In other words, the accura-
cy parameters of CVGs are most influenced by
various errors resulting from the production of
the elastic element (circumferentially varying
thickness, out-of-roundness, surface roughness,
circumferentially varying thickness of the me-
tallic film, etc.), as well as by imperfection of the
physical characteristics of the material applied

Table 1

Main characteristics of the hemispherical resonator

Material Fused quartz KU-1
Elastic modulus, GPa 73.6
Poisson’s ratio 0.17
Density, kg/m? 2210
Outer radius of hemisphere, mm 15.25
Wall thickness of hemisphere, mm 0.90
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Fig. 1. Geometrical model
of the hemispherical resonator:
1 — thin hemispherical shell, 2 — stem

(anisoelasticity, anisodamping, inhomogeneous
density, internal defects, etc.). The indicated
imperfections cause the effect of eigenfrequen-
cies and modes split in the resonator due to its
axial symmetry perturbation. The effect mani-
fests itself in the non-ideal resonator spectrum
obtaining two closely spaced frequencies instead
of one with two close eigenmodes excitation,
which leads to a change in the operation regime
of the device. With its operation frequency split-
ting, the resonator Q-factor decreases, which
leads to a drift of the gyroscope, and conse-
quently, to a drop of the CVG accuracy charac-
teristics. To estimate the influence of the errors
and defects of the CVG manufacturing process
on its operating frequency split value, the design
stage includes various mathematical methods,
one of them being the finite element method
(FEM).

Many works are devoted to the approaches of
calculating the eigenvalues of thin shells of differ-
ent shape, as well as to the studies on the eigen-
frequency split (see, for example, articles [5—8]
and thesis [11]). Along with the widespread ana-
Iytical calculations, the authors of the mentioned
sources also use FEM. For instance, paper [8]
reports good, compared to the analytical meth-
ods, agreement of the results obtained via FEM.
Noteworthy is that the listed works, with the ex-
ception of [11], do not mention the resonator
eigenfrequency split caused by the application
of FEM itself and apparently attributable to the
error in the method of calculating the eigenfre-
quencies (it is the block Lanczos method [9, 10]

in the present paper) and imperfection of the FE
mesh. We will further denote this split as “math-
ematical”.

Out of all considered papers, thesis [11] pro-
vides the most detailed study of the resonator fre-
quency split using FEM. The author notes that
it is impossible to divide the “mathematical” (in
[11] referred to as “parasitic”) split from the one
caused by manufacturing defects and proposes to
minimize the value of the “mathematical” split
by means of constructing a finite element mesh
according to the author’s methodology. Howev-
er, just like the other indicated works, the thesis
pays insufficient attention to the influence of the
phase angle between the harmonics of various
defects while investigating their simultancous
impact on the resonator frequency split. Note-
worthy, the authors often describe a change in
the wall thickness of the resonator as harmonic
function with respect to the middle surface, while
technologically, in the manufacturing process,
the outside surface of the resonator is usually of
better quality than that of the inside one. There-
fore, describing the change of the thickness via
a circumferential harmonic function with respect
to coordinate surface of the resonator formed by
the outside radius of the hemisphere is of certain
interest as well.

The purpose of the present paper is to pro-
duce a finite-element model (FEM model) of the
CVG resonator designed to determine the values
of the operating eigenfrequency of the resonator
with sufficient accuracy and verify a possibility
of taking into account circumferentially varying
thickness of the resonator wall in the frequency
split calculations.

To build a FEM model, we used ANSYS Me-
chanical software [12]. In this paper, we consid-
ered two separate modeling problems:

calculation of the exact value of the operating
eigenfrequency of the resonator;

estimation of the influence of various factors
on the resonator operating eigenfrequency split,
for example, circumferentially varying thickness.

Problem statement

The performed study originated from a prob-
Iem of calculating the oscillation eigenfrequen-
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cies of a thin hemispherical shell. It is appropriate
to apply Hamilton’s variational principle [13]:

ol =

ZBJ.ZL(%,...,qn, Gys--rq,s t)dt =0,

where 0/ is the change in the desired functional,
L=T-— W (T, W are kinetic energy of the studied
elementary volume of the shell and potential en-
ergy of elastic strains respectively).

We can write the kinetic and potential energy
expressions in the general form as

T :%l‘szdc,

1
4 ZEJ-(GIISII 1+ 08, 053855 +

c

16,8, 70383 10,3855 )dca

where p, kg/cm?, is the material density; V, m/
s?, is the absolute velocity vector of an arbitrary
point of the elastic body; ¢, ©,,, c,,, Pa, are
normal stresses of the specified element of the
elasticbody; ¢ |, €,,, &, are the respective normal
strains; 6,,, 6,,, G,,, Pa, are shear stresses of the
specified element of the elastic body; € ,, € ,, €,
are the respective shear strains; o, m?, is the vol-
ume of the specified element of the elastic body.
The expressions for 7" and W applicable to the
calculations of the resonator eigenfrequency can
be found in a number of works; however, the ex-
pressions can differ in the fact that either stress or
strain tensor components are neglected in them.
Thus, in this work, in order to compare the expect-
ed frequency values obtained via FEM, we used
the expressions in the formulation of the thin shell
theory presented, in particular, in book [14]:
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where /4, m, is the thickness of the hemispherical
shell; 4,, A, are Lamé parameters; v is Poisson’s
ratio of the material; £, MPa, is the elastic mod-
ulus of the material; €, €, are parameters char-
acterizing tensile strain of the mid-surface; k , k
are parameters characterizing bending strain of
the mid-surface; ®, T are parameters character-
izing shear and torsional strains respectively; 0,
¢, deg, — zenith and azimuth angles respectively.

The use of the Ritz method [15] reduces the
eigenfrequencies problem to the algebraic eigen-
value problem:

(A—XZB)Czo,

where A, B are matrices connected with the ki-
netic and potential matrices, as well as with the
coordinate functions; C is a column-vector of
unknown coefficients; A is a column-vector of
the eigenfrequencies values.

It is important to note that the relations in the
shells theory formulation specified above comply
with the main assumptions of the Kirchhoff —
Love theory of thin shells [16]:

plane section normal to the mid-surface re-
mains normal to the mid-surface after deformation;

normal stress along the axis normal to the mid-
surface is not considered due to its smallness;

the thickness of the shell does not change dur-
ing a deformation.

In addition, the calculation implies an as-
sumption of small strains and, respectively, of ne-
glecting the geometrical non-linearity.

The problem statement will further include
not only Solid type elements, but also the Shell
type elements. Modeling Shell type elements
in ANSYS software also entails the abovemen-
tioned Kirchhoff — Love assumptions, with the
exception of the first one. In this case, a defor-
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mation-related change in the angle between the
plane section and the mid-surface is admissible.
This formulation corresponds to the Mindlin —
Reissner shell variant [17], which is better known
as Timoshenko shell in Russian literature [18].

Selection of optimal resonator FE models

The operation of the resonator is character-
ized by the numerical value of the operating ei-
genfrequency and the respective mode shape.
The values of the eigenfrequency and the mode
shape are defined by the following factors:

Dimensions of the resonator (radius and
thickness of the hemisphere);

dimensions and mounting mode of the stem;

physical and mechanical properties of the se-
lected material.

Traditionally, the CVG operation is based on
coupled vibrations in two gyroscopically con-
nected elliptical modes corresponding to its op-
erating frequency [4, 19] (Fig. 2).

Nonideality of the geometrical parameters of
the resonator entails a perturbation of the axial
symmetry, which causes the splitting effect of its
oscillation eigenfrequencies. The effect manifests
itself in the non-ideal resonator spectrum ob-
taining two closely spaced frequencies instead of
one with two close eigenmodes excitation, which
leads to a change in the operation regime of the
device and to an unacceptable reduction in ac-
curacy [7]. Therefore, the developed FE model
needs to possess an appropriate sensitivity level

to register the frequencies split corresponding to
its admissible value for the product under study.
In other words, to estimate the resonator charac-
teristics which influence the accuracy parameters
of CVG, we need to pay attention not only to
finding the exact value of the oscillation eigenfre-
quency of the selected design, but more so to the
dependence on the variation of its studied devia-
tions from the ideal system.

Because of this, we propose applying various
models to solve two separate problems: to find the
exact operating eigenfrequency of the resonator
oscillations and to determine how circumferen-
tially varying thickness influence the frequency
split value.

The required accuracy of the estimated ei-
genfrequency value (for the first problem) and
the value of the frequency split depending on the
defect dimensions (for the second problem) can
serve as the criteria defining the quality of the
developed models. Let us note that the accuracy
of determining the eigenfrequency value of up
to 1 Hz is sufficient for the primary analysis. We
took the admissible error of the split calculation
(for the second problem) equal to 1-10~* Hz,
which is one order higher than the admissible
value of frequency split for fused quarz hemi-
spherical resonators after balancing.

Since we can use various types elements to
build FE models, we compared the models built
with some types of Shell and Solid elements. The
objective was to find an optimal balance between

Fig. 2. Elliptical mode shape of the resonator corresponding to its operating frequency (two planes
demonstrated, the second one illustrating the deviation from the circular mode shape in the oscillations plane)
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the labor cost of the computation and its accuracy.

First model (FEM I). The hemisphere was
meshed into SHELLI181 type elements, i.e. into
shell elements of the st order, which had 4 nodes
with six degrees of freedom in each (linear transla-
tions in three axes and rotation about these axes);

Second model (FEM II). The hemisphere was
meshed into SHELL281 type elements, i.e. into
shell elements of the 2" order, which had 8 nodes
with six degrees of freedom in each (linear transla-
tions in three axes and rotation about these axes);

Third model (FEM III). The hemisphere was
meshed into SOLID186 type elements, i.e. in-
to solid elements of the 2" order, which had 20
nodes with three degrees of freedom in each (lin-
ear translations in three axes);

Fourth model (FEM 1IV). The hemisphere was
divided into SOLIDI187 type elements, i.e. in-
to solid elements of the 2" order, which had 10
nodes with three degrees of freedom in each (lin-
ear translations in three axes).

To improve the accuracy of the obtained re-
sults, we needed to meshed the initial geometry
of the object into a regular finite-element mesh.
Such a mesh is distinguished by its structured
nature and the order of the predominantly regu-
lar-shaped elements used.

In all for FE models, we meshed the stem us-
ing SOLID185 elements of the 1% order to reduce
the computational time, as the degree of meshing
the resonator stem has no influence of the val-
ues of its eigenfrequencies corresponding to the
second (elliptical) mode shape. We meshed the
rounding area from the stem to the hemisphere
using SOLID186 elements (Fig. 3). We should
note that the absence of the indicated influence is
due to the stem design, in particular, to its diam-
eter and length. The chosen design parameters
provide sufficient offset of the resonator frequen-
cies caused by the bend of the stem from the op-
erating elliptical frequency. In case of near values
of the indicated frequencies, there may be nega-
tive effects considered in paper [20].

In the course of the calculations aimed at ob-
taining the model of the desired accuracy and
minimal computational time, we set the minimal
necessary number of the elements and nodes of
the hemisphere. In case of shell models, the size
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Fig. 3. Finite element mesh of rounding area
(a) and resonator stem (b, ¢). Meshing into
SOLID186 and SOLID185 elements respectively;
b, ¢ — the stem and its longitudinal section

of hemisphere elements varied in the range from
0.9000 to 0.1125 mm. The mesh of SHELL281
finite elements is shown in Fig. 4, a, b.

When studying the stress-strain state of the
shell or plate type structural elements using
SOLID type finite elements, to obtain accept-
able result, we need to provide sufficient number
of elements over the thickness in the FE model.
Therefore, this paper considers different options
of the model with the number of the elements
over the thickness ranging from one to eight.
Fig. 4, ¢, d shows an example of meshing the
hemisphere into SOLID186 elements.

Fig. 5, 6 shows dependences of the resonator
eigenfrequency values on the number of nodes
employed in the models. The obtained diagrams
help determine the optimal number of nodes
which provide the value of A, the change on the
value of the obtained solution with the growing
number of nodes, less than 0.01%.

Analysis of the diagrams in Fig. 5 correspond-
ing to the models with shell elements allows us
to conclude that the value of the eigenfrequency
sets at the level of 4808—4809 Hz. The diagrams
are given for the model with the mid-surface as a
reference plane. In FEM 1, A = 0.005 %, while
in FEM II, I A =0.006 %. The difference of the
obtained frequency values between two models
reaches no more than 0.6 Hz. We can see here,
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a) b)
c) d)

Fig. 4. Meshing of hemisphere (a, c) and its cross-section (b, d)
into SHELL281 (a, b) and SOLID186 (c, d) elements
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Fig. 5. Computational diagrams of resonator eigenfrequencies dependences on the number
of nodes applied in FEM I (SHELL281) (a) and FEM 11 (SHELLI181) ()
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Fig. 6. Computational dependences similar to the ones in Fig. 5,
but for FEM 111 (SOLID186) (¢) and FEM IV (SOLID187) (b)

that the use of the 2™ orderelements (SHELL281)
is preferable, as we need only 50 thousand nodes
for the steady-state solution in this case, while no
less than 83 thousand nodes are required for the
1% order elements.

Note that convergence of the results to the
steady-state value of eigenfrequency in the
models using shell elements occurs from differ-
ent directions (from the highest/lowest value to
the steady-state value). The problem with the
SHELLI181 type elements converges to a steady-
state solution from the greater values, which
corresponds to the classical behavior of the nu-
merical problem convergence diagrams. How-
ever, the use of SHELL281 elements produces
a reverse effect. This is probably due to the ap-
plied type of the contact interaction (SHELL-
SOLID) of the hemisphere and the stem. The
bodies contact along a line, which leads to local
loading along the faces of solid elements. More-
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over, if we exclude the stem from the model and
apply a boundary condition like a fixed support
along the corresponding face of the hemisphere,
we can observe the “stiff” characteristic of the di-
agram for SHELL281 element as well.

Analysis of the solid model diagrams (Fig. 6)
shows that the desired eigenfrequency value re-
mains constant starting from a certain level of the
model discretization. The difference of the ob-
tained frequency values between SOLID186 and
SOLID187 elements is no more than 0.6 Hz. The
values of A, obtained from mesh convergence,
were 0.0002 % in both FEM III and FEM IV.
However, to obtain the results close in accuracy,
we required 1.5 times more FEM nodes in case
of SOLID187 elements. Because of this, it is fea-
sible to apply SOLID186 for computations. In
general, we can conclude that meshing into four
elements over the thickness of the hemisphere
wall is optimal for the eigenfrequencies analysis
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providing the accuracy of up to 0.1 Hz. Note that
for the primary estimate of the eigenfrequency
values (up to 1 Hz accuracy), it is sufficient to
divide the hemisphere thickness only into two
elements. The difference from the steady-state
solution in this case is 0.44 Hz.

Results of the operating resonator
eigenfrequency calculations

Simultaneously with the finite elements meth-
ods, for a comparison we performed an analytical
calculation using the simplified expressions for
a hemisphere shell obtained by Rayleigh [21],
and the Goldenweiser’s thin shells theory [22]
with specifications as to the tensile property of
the mid-surface. The results of all the obtained
values of the eigenfrequency in the second mode
shape are given in Table 2.

Note that in the present paper, when compar-
ing the obtained data, we took the result of the
steady-state calculation using solid elements as
the exact solution. This is due to the fact that the
solid element models imply solving the elastici-
ty theory problem without any simplifications.
In addition, the accuracy of the result is defined
by the degree of the model discretization and the
mathematical error of the very method of solving
the eigenvalues problem.

As we can see from Table 2, the result of de-
termining the eigenfrequency of the resonator
obtained using the considered shell and solid fi-
nite elements models shows comparable values.
Moreover, among the calculation results ob-
tained using analytical methods, the Goldenwei-
ser’s value is the most accurate one.

In the course of solving the second problem

set above, i.e. to determine the split of the res-
onator eigenfrequencies, we used SHELL281
(FEM I) type elements to analyze the influence
of circumferentially varying thickness on the
dynamic behavior of the resonator. The use of
shell elements allows us to set the change in the
thickness of the hemisphere quite easily with no
changes of its geometry, as well as to reduce the
estimated time while saving the sufficient accu-
racy of the calculations.

Influence of defects on the value
of the operating resonator frequency split

Features of introducing various defects into the
resonator FEM. To determine the split of the op-
erating frequency of the resonator in the presence
of any defect, we need to introduce a distribution
function of this defect into the model. In a re-
al resonator, the distribution of such defects as
circumferentially varying thickness and inhomo-
geneous density over the azimuth or zenith an-
gle is random. However, researchers often use a
harmonic dependence of the defect distribution
in modeling as the simplest in respect of calcu-
lations:

x(o)=x,+X -sin(mo+),

where x, m, is the nominal value of the param-
eter (hemisphere thickness, material density); X,
m, is the amplitude; m is the number of the de-
fect harmonic; a, 3, deg, are the initial angle and
phase respectively.

The number of the harmonic is chosen arbi-
trarily depending on the simulated defect func-
tion; nonetheless, let us note that the fourth

Table 2

Values of the operating eigenfrequency of the resonator oscillations
(second mode) calculated via different methods

Calculation method Frequency, Hz
Rayleigh 5277.60
Goldenweiser’s thin shells 4814.20
Finite elements

SHELL type 4809.02
SOLID type 4809.08
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Fig. 7. Estimated dependence of the total operating frequency split
of the resonator on phase angle of the defect function

harmonic has the most influence on the split of
resonator frequency, which corresponds to the
elliptical mode shape. Sources [3, 19] describe
the reason of the indicated influence in detail.
At the same time, the harmonics different from
the fourth one have one order less impact. Thus,
to model the worst case of a defect affecting the
frequency split, it is expedient to use the fourth
harmonic of the defect distribution.

As it was mentioned before, when we employ
FEM, a “mathematical” split occurs even in
ideal geometry. It is important to note, that this
“mathematical” split is a measurable (calculat-
ing) variable. The main reason of its emergence
is the non-ideality of the finite element mesh.
Therefore, when we are solving the eigenfre-
quency problem in the resonator model and in-
troduce a defect x(a), we obtain a certain total
split, with the “mathematical” split being one of
its components.

Based on the assumption that the operating
eigenfrequency under study is elliptical, and con-
sequently, corresponds to the second harmonic,
the “mathematical” split is represented in the
form of the second harmonic as a component of
the total split. Given the above, to determine the
value of the split components, we need to find the
phase shift of the harmonics with respect to each
other. Note that if the harmonics representing the
“mathematical” split and the defect distribution
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coincide, the total split is a sum of the values of
the split of both of the defects, while in case of the
antiphase, it a difference thereof. The indicated
feature is apparent, for example, if we introduce
the fourth harmonic of the defect with a change
in the initial phase angle from 0° to 90° (Fig. 7).

In this figure, we plotted the total split value
>Af along the vertical axis and the phase angle
B along the horizontal axis. The phase angle of
the extremums depends on the built mesh and is
preserved with the change in the amplitude and
the nature of the defect (the defect is caused by
the manufacturing errors or heterogeneity of the
material).

Calculation of the split value when adding a
defect into the resonator FEM. One of the fac-
tors defining the eigenfrequency split effect in
the resonator is mass unbalance of the sensory
organ. In a real hemispherical resonator, the un-
balanced mass is continuously distributed across
the whole shell, which in case of excitation caus-
es oscillations of its center of mass and leads to
the split of the frequencies and reduction in the
Q-factor due to the oscillation energies dissipa-
tion in supports. The mass unbalance itself is due
to the above mentioned geometrical and physical
errors, including circumferentially varying thick-
ness and inhomogeneous density. Since applying
FE models leads to emergence of the “mathe-
matical” split, to calculate the component of the
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introduced circumferentially varying thickness,
we have to find the value of such split as well. It is
possible, if we use a harmonic function as a defect
(circumferentially varying thickness) distribution
function:

h(o)=hy+X,-sin(mo+p),

where £, m, is the nominal thickness of the
resonator wall, X, m, is a half of the value of
circumferentially varying thickness, o, deg, is
an angular coordinate corresponding to the az-
imuth angle.

In this paper, to solve the problem of finding
the resonator eigenvalues be means of ANSYS,
the split of the operating frequency can be deter-
mined via the difference between two near fre-
quencies corresponding to the elliptical mode
shape. The calculation results in a certain total
split of various defects, if they are introduced into
the resonator FEM. In case of “ideal” geometry
(absence of defects), the total split is equal to the
“mathematical” split:

yar=af, = 12—,

where Afm , Hz, is the “mathematical” split; f,§2> ,
flgl) , Hz, are the highest and lowest values of the
eigenvalues defining the split.

If we introduce an additional defect into con-
sideration, for example, circumferentially vary-
ing thickness, then the total split is determined as

A =i =1 =
=Af, ~sin(2oc1 +[31)+Afh -sin(moc2 +B2),

where Af,, Hz, is the split cause by circumferen-
tially varying thickness; a,, B, deg, are the angles
and phases defining the defect distribution with
respect to the azimuth angle.

The above relations show that unambiguous
determination Af, required knowing the initial
angles and phases of the harmonics correspond-
ing to the defects. If we bear this in mind and
use two extremal values of the total split value
(when finding the harmonics in phase and an-
tiphase), then we can compile a simple system of

two equations allowing us to determine the splits
from each defect:

{ZAfmax =Af, + A,
A=A, A

To automate the calculation of two extremal
values of the total split in ANSYS, we can denote
and as parameters, thus producing a diagram
similar to the one presented in Fig. 7. Note that
the found angle and phase corresponding to the
“mathematical” split are maintained in the mod-
el even after a change in characteristics describ-
ing other defects, which excludes the need for ad-
ditional calculation to provide the search for the
extremal values of the total split. Therefore, using
the block Lanczos method in ANSYS software al-
lows us to determine the value of the split caused
by circumferentially varying thickness by means
of accounting for the “mathematical” split.

As an example of using the presented meth-
odology of calculations, for the hemispherical
resonator of the given design, we obtained nu-
merical values of the splits caused by circumfer-
entially varying thickness and inhomogeneous
density (Table 1). Each effect was considered
separately. The value of thickness variations
amounted to 6 um, the density of the fused
quartz was ranging within 2200—2220 kg/cm?.
The defects function is represented in a form of
the fourth harmonic.

As a result, the obtained values are limited
by the applied method of numerical calculation
and simplifications accepted in the mathematical
model of the shell for the SHELL281 type finite
elements.

In the process of the study, we noted a num-
ber of features. For example, when adding a
density defect into the FEM, we established that
the value of the “mathematical” split changes
in proportion to the average arithmetical value
of frequencies f1§1) and flgz) , which allows cal-
culating the “mathematical” split value not on-
ly in the course of the computations, when the
harmonics are in phase/antiphase. This does not
eliminate the need for finding the extremal val-
ues of the total split for a newly developed FEM.
At the same time, we do not observe any similar
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Table 3

Results of calculating the operating resonator frequency split

Set defect function Split, Hz
p(a):2210+10-sin4a 7.7193
h(a)=9-10"+3-10"° -sin4o 6.4881

dependence for a change, for example, in the
thickness of the hemisphere or the elastic mod-
ulus of the material. Thus, seeking the depend-
ence of the split on the defects changing the
generated stiffness matrix of the FEM requires
finding the new value of the “mathematical”
split at each change as well.

Conclusion

The presented research produced finite el-
ement models (FEMs) including various types
of elements, which can be used in the studies of
resonator operation dynamics. We established
that to determine the eigenfrequencies of a hem-
ispherical resonator with elliptical oscillations,
the use of SHELL281 elements is preferable, as
it provides an optimal computational time/accu-
racy ratio. In addition, FEMs using the indicated
elements and the methods described and test-
ed in this paper are handy in the studies on the

influence various defects exert on the resonator
operation.

Sensitivity of shell elements to the circumfer-
entially varying thickness is apparently limited by
the error of the numerical calculation method;
its estimation transcends the scope of this article.
The described methodology allows studying a
frequency split caused by the uneven distribution
of the material properties (density, elastic modu-
lus, Poisson’s ratio), as well as circumferential-
ly varying thickness of the inside, outside, and
middle surface of the hemisphere using standard
functions of the ANSYS Mechanical software
package.

The paper notes the importance of taking in-
to account the phase of the functions describing
the defects distribution due to the presence of the
“mathematical” split in any FEM caused by the
calculation method error and asymmetry of the
finite element mesh.
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The paper is devoted to the problem of the copper-64 isotope production engineering that is
important for application in the nuclear medicine. The production is carried out by proton irradiation
of a nickel target (a natural mixture of isotopes). For this purpose, the energy dependence of the
protons-nickel target interaction cross-sections, protons with initial kinetic energies of 10—15 MeV in
this case, has been analyzed. Besides, the half-lives of the resulting isotopes were considered. Based on
the analysis, the optimal conditions (the proton beam energy and the waiting time after irradiation) for
obtaining the **Cu isotope from natural nickel were found. It was established that under conditions close
to ideal, it could be expected that **Cu radionuclide purity would be very high and reach at least 99 %.
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Cratbst IOCBsIIIIeHA MTPo0JIeMe Pa3pabOTKM TEXHOJIOIMH IMoydeHus n3orona *Cu, BaXHOIO s
MPUMEHEHUS B SIAEPHON MeUIIMHE, TTYTEM LIMKJIOTPOHHOI0 00Jy4YeHUs MPOTOHAMU MUILIEHU U3 MIPU-
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U3 HUKeJs (MpUpojHasi cMech M3oTornoB). KpoMe Toro, paccMOTpeHbl BETUUYMHBI MEPUOJOB MOIY-
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Introduction

It is well known that the ®*Cu isotope un-
dergoes radioactive transformation as a result
of three processes: positron and electron decay,
and electron capture. This isotope emits *, -
particles (their energies are 0.65 and 0.57 MeV,
respectively, and the yields are 17.6 and 38.5%)
with a half-life of 12.7 h. It plays an important
role among bifunctional radioisotopes for both
positron emission tomography (PET) and ra-
dionuclide therapy. The half-life of ®Cu allows
producing this isotope at regional or national
cyclotron facilities, distributing it to local nucle-
ar medicine departments with a loss of no more
than one (approximately) half-life [1, 2].

Furthermore, the half-life of the *Cu isotope
is compatible with the time scales required for
administering a radiopharmaceutical (containing
a molecular carrier: peptides, antibodies, nano-
particles, etc.), so that it is subsequently distrib-
uted and accumulated over the patient's body.

The *Cu isotope is better suited for high-res-
olution PET imaging than for therapy due to its
low average energy of B* particles (278 keV) and
very low intensity of accompanying gamma radi-
ation (1345.77 keV, with the yield of 0.475%). At
the same time, its average energy of 3~ particles
is convenient for radionuclide therapy of small
tumors [1, 2].

The *“Cu isotope has numerous advantages
over such PET isotopes as '*F (its half-life is 7, n=
= 109.8 min) and ''C (7, »» = 20.4 min) currently
used in clinical practice. Since the half-lives of
both '¥F and ''C are relatively short, these iso-
topes are usually prepared at cyclotrons located
near clinics.

The *Cu isotope can be produced in the re-
actor by either the thermal neutron capture re-
action *Cu(n,y)**Cu or the fast neutron reac-
tion 64Zn(n,y)**Cu. However, the yields of the
reactions producing *Cu in a nuclear reactor
are low [3].

It should be noted that two cyclotron methods
are currently used to produce **Cu isotope. One
of them uses the *Ni isotope as a target, and the
other the ®Zn isotope.

Producing the ®Cu isotope by the
8Zn(p,an)**Cu reaction using protons provides

certain benefits, since in this case it is possible to
simultaneously produce the

Ga(®*Zn(p,2n)*’Ga)
and
#Cu(®Zn(p,on)**Cu),

isotopes used in medicine from the same target
[5].

However, this method comes with several
drawbacks:

firstly, a cyclotron with a higher energy of
30 MeV is required;

secondly, complex radiochemical separation
iS necessary;

thirdly, production of the isotopes generates
highly contaminated waste from several radionu-
clide impurities;

fourthly, the yield of *Cu isotopes is small,
since the reaction cross section is low (about
20 mb at a proton energy of 30 MeV) |5, 6].

As noted above, *Cu isotope can be obtained
by the *Ni(p,n)**Cu reaction with both natural
and nickel targets enriched with the *Ni isotope,
using protons with a relatively low energy, 10 MeV
(this is considerably below 30 MeV). The draw-
back of using a **Ni-enriched target is that the *Ni
isotope is very expensive [4].

Relatively cheap targets made of natural nick-
el seem to be more attractive, but the disadvan-
tage in this case is that the content of the *Ni
isotope in the target is low, and, consequently,
the production efficiency is insufficiently high;
moreover, large amounts of other impurities are
generated during irradiation, so complex chem-
ical procedures are required for separating these
impurities and isolating *Cu [5].

However, these difficulties can be largely over-
come by selecting the correct initial proton ener-
gy corresponding to the maximum cross section
for the #Ni(p,n)**Cu reaction (647 mb at an en-
ergy of 10.5 MeV [11]) and optimizing the wait-
ing time after irradiation.

The goal of this study consists in analysis and
optimization of producing the *Cu isotope from
natural nickel using protons with energies of
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10 — 15 MeV at the MGC-20 cyclotron at Peter
the Great St. Petersburg Polytechnic University.

Method for analyzing the yield of isotopes
in a nickel target (natural mixture)
irradiated with a proton beam
at energies of 10—15 MeV

As noted above, a proton beam with energies
of 10 — 15 MeV can be used to obtain the *Cu
isotope. The target is a natural mixture of nickel
isotopes: *Ni (68%), ““Ni (26%), *'Ni (1.14%),
02Ni (3.71%) u ®*Ni (0.926%) [7].

Protons with energies of 10—15 MeV can in-
duce various nuclear reactions in the target on
different isotopes of nickel, generating different
isotopes as by-products that can interfere with
the process of separating the *Cu isotope from
the resulting isotope mixture, and determining
the amount of **Cu produced by spectroscopic
methods.

It follows from the above that it is useful to
know the total yield of each isotope produced in
different reactions (see Table 1) and compare it
with the yield of the *Cu isotope. The isotopes
produced in the target through irradiating a nat-
ural mixture of nickel isotopes with protons are
given in Table 1 [8 — 12].

Isotope yields for a natural mixture of nickel
isotopes irradiated by protons can be determined
accounting for the energy losses to excitation and
ionization for protons passing through the target

material [13]:
dx 1)

_A4n nZ?( € ’ In 2m B’
mc’ B\ 4ng, I ’

where —dE/dx, MeV/cm, are specific ionization
losses (x is the proton penetration depth); z is the
charge number of the bombarding particle; m , g,
is the electron mass; e, Cl, is the electron charge;
¢, cm/s, is the speed of light; [ is the ratio of the
speed of the bombarding particle to the speed
of light (B = v/c); I, eV, is the mean ionization
potential; g, F/m, is the electrical constant; n,
cm™3, is the electron concentration of the target,
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N,, 1/mol, is the Avogadro constant; p, g/ m’,
is the target density; Z is the charge number of
the target; A is the atomic mass; M , g/mol, is the
molar mass.

The mean ionization potential of nickel is,
like the mean ionization potential for other ele-
ments, /=328 £ 10 eV [14].

Eq. (1) is simplified in the nonrelativistic case
[? << 1, where the proton is a bombarding parti-

cle (z=1):
dx ?)
_ 144pZz* h{zn%}
AE I |

The solution to Eq. (2) gives the dependence
E(x) for the mean proton energy £ on their pen-
etration depth x.

The production of all isotopes at different
depths in the target is found by the following for-
mula [15]:

a, _
d
. g (3)
(2 Ju-esn(-trateo)

where N, cm™, is the number of atoms of type i
of the radioisotope produced; J, A, is the cyclo-
tron current; n fis the concentration of nickel iso-
tope nuclei in natural nickel; A, s7!, is the decay
constant of the radionuclide produced; ¢ _, s, is
the target irradiation time.

Integrating distribution (3) from zero to tar-
get thickness T, we obtain the dependence for the
radioisotopes produced in target on thickness 1:

¢ dN,
N, (~, =|dx{—=".
I(T tmd) _([ x{ dx}

The decrease in proton flux with depth, as well
as other processes removing protons from the
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Table 1
Characteristics of isotopes produced in the target
made of natural mixture of nickel isotopes irradiated
with protons p as a result of nuclear reactions [8 — 12]
, mb, at
Isotope Half-life Nuclear the? oI 4
reaction Me 15MeV | 10 MeV
»Co 17.5h SNi(p,a) 1.36 35.7 8.7
SNi(p,2p) 8.3
$Ni(p, p +1n)*Ni— Co 12.3
Ni(p, 0.3
SCo | 271.74 days Nip.e) 149.3 49
SNi(p, n + o) 8.2
Ni(p, 2n + ) 18.9
3Ni(p,d) 10.0
*Ni(p, 0.7
$Co | 70.86 days Nip.c) 0.88 0.78
O2Ni(p,a + n) 10.3
BNi(p, p + 12.4
Ni 35.6h p, p+ n) 8.8 -
*Ni(p,d) 10.1
0Cu 23.7 min #Ni(p,n) 7.0 58.8 79.8
“Ni(p, 3.1
“ICy 33h ipm) 186 472
2Ni(p,2n) 13.0
2Cu 9.67 min 82Ni(p,n) 5.0 359.3 498.9
%4Cu 12.7h Ni(p,n) 2.5 206.0 647.0

Notations: E, is the threshold reaction energy, c is the reaction cross section (for two values of the initial

kinetic energy of the proton beam).

beam can be neglected in this case.

Egs. (2), (4) and the values of the reaction
cross section ¢ (see Table 1) were used to de-
termine the activity of each isotope for protons
with initial kinetic energies of 15 (Fig. 1, a,b)
and 10 MeV (Fig. 1, c,d), cyclotron current of
2 pA, and a target made of natural nickel. Fig. 1
shows the computational results for the activity
of the *Co and **Cu isotopes for targets of vari-
ous thicknesses and various irradiation times.

Considering Fig. 1, we can see that a suffi-
cient target thickness for an initial proton en-
ergy of 15 MeV is 400 um: the dependence of
the activity accumulated on the target thickness
disappears at this value. This value is 200 um for
an initial energy of 10 MeV.

The activity of each isotope after the end of
irradiation and after different waiting times was
calculated by the equation

A, = 4, exp(—ht), (5)

where 4, s7', is the isotope activity at ¢ = 0; 4,
s~!, is the isotope activity after waiting time ¢, s; A,
s7!, is the isotope decay constant.

The computed activities and ratios of the ac-
tivities of the produced isotopes to the activities
of the **Cu isotope produced for different waiting
times after the end of irradiation are given in Ta-
ble 2 (target irradiation time is 1.5 h, £ =15 and
10 MeV, cyclotron current is 2 pA).

After the nickel target (natural mixture of
isotopes) was irradiated, the *Cu isotope had
to be separated from the target. This is typically
achieved by the well-known method of ion-ex-
change chromatography with a resin column
(Dowex1-8X [1] or AG1-X8 [16]). Since some
radioisotopes with a short half-life are produced
in the target during irradiation (see Table 1), it is
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Comparison of the activity values of isotopes produced in the target
made of a natural mixture of nickel isotopes irradiated with protons as a result of nuclear reactions

Table 2

Activity 4,, s
Isotope (Ratio 4, / A4, 64Cu)
t=0 | 9.67min | =237min| ~33h | ~127h | =175h | ~=50h
Initial kinetic energy of proton beam: 15 MeV
5Co 2.5:107 24100 | 24.107 | 2.1-10 1.5-10 12:10" | 3.4-10°
(2.3) (2.4) (2.5) (2.3) (2.8) (2.85) (4.8)
a0 23-10° 229996 229990 | 229919 229698 | 229572 | 229781
? (0.02) (0.02) (0.02) | (0.02) (0.04) | (0.05) | (032)
. 17500 17498 17497 17476 17409 17375 17147
° (0,002) | (0.002) | (0.002) | (0.001) (0.003) | (0.004) (0.02)
N 415-10° | 413699 | 413819 | 389166 | 324061 | 295139 156722
(0.04) (0.04) (0.038) (0.04) (0.06) (0.07) (0.22)
oy 6.0-10° 4.5-10° 3.0-10° 1.8-10° B B B
(54.5) (45.0) (28.0) (0.19)
S0y 3.7-10 3.5-10 3.4-10 1.8-10 2.5-10° 9.3-10° 1024
(3.4) (3.5) (3.2) (1.9) (0.5) (0.2) (0.001)
oCy 5.7-10° 2.8-10° 1.0-10° B B B B
(51.8) (28) (9.3)
sy 1.1-107 1.09-10" | 1.07-10 9.1-107 5.4-10° 42-10° 7.0-10°
(1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)
Initial kinetic energy of proton beam: 10 MeV
5Co 24-10° | 24-10° | 23-10° 2.1-10° 1.5-10° 1.2:10° 3.3-10°
(0.30) (0.32) (0.30) (0.30) (0.40) (0.40) (0.66)
Ca 12500 12499 12499 12495 12483 12476 12433
(0.001) | (0.001) (0.001) (0.001) (0.003) | (0.004) (0.02)
. 5500 5499 5499 5492 5471 5460 5389
° (0.0007) | (0.0007) | (0.0007) | (0.0008) | (0.001) (0.001) (0.01)
S0y 1.8-10° 1.3-10° 9.0-10 55-10° - - -
(24.0) (17.5) (12.3) (0.08)
oo 22-107 | 2.1:107 2.0-10’ 1.1-10 1.5-10° 5.5-10° 609
! (2.90) (2.83) (2.74) (1.70) (0.4) (0.2) (0.001)
0y 2.9-10° 1.4-10° 53-10 - - - -
(38.6) (19.0) (7.3)
. 75:10° | 74.10° | 73-10° | 63:10° | 3.7-10° | 28-10° | 05:10°
! (1.0) (1.0) (1.0) (1.0) (1.0) (1.0) (1.0)

Notes. 1. The values are given for the activities A, of the isotopes produced, as well as the ratios of 4, to the corresponding
activities of the **Cu isotope produced (in brackets)) for different waiting times # after the end of irradiation. 2. The target
irradiation time was 1.5 h, the cyclotron current was 2 pA. 3. Dashes indicate that the activity of the isotope is below 1
decay per second.
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Fig. 1. Dependences of accumulated activity of >*Co (a,c) and %Cu (b,d) radioisotopes
on the thickness of natural nickel target for protons with an initial kinetic energy of 15 MeV (a,b)
and 10 M3B (c,d), for different irradiation times, h: 0.5 (7), 1.0 (2), 1.5 (3).
The lines correspond to the dependence curves, and the bands to measurement uncertainty
(associated with the errors in finding the reaction cross section)

preferable to wait 12—17 h before chromatogra-
phy (as follows from the data in Table 2) in order to
reduce the activity of the ®°Cu and ®*Cu isotopes.
This gives a reduction of the activity by more than
1 million times. The chemical separation process
takes about 20 h on average. As follows from the
data in Table 2, a very high radionuclide purity of
the “Cu isotope can be achieved, at least 99%,
if it is completely separated (ideal case) from the
nickel and cobalt isotopes).

Conclusion

The technology for producing the *Cu iso-
tope has been analyzed, which has important
applications in nuclear medicine, by cyclotron
irradiation of a target made of natural nickel with

protons (the initial kinetic energy of the proton
beam is 10 and 15 MeV, the cyclotron current is
2 pA) for different irradiation times. It is estab-
lished that the radionuclide purity of the *Cu
isotope can be expected to be very high, reaching
at least 99%, under conditions close to ideal (if
nickel and cobalt isotopes are completely sepa-
rated from the required copper isotope).
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Introduction

Since the second half of the last decade of
the 20" century, the AdS/CFT correspondence
[1] between string theory in anti-de Sitter (AdS)
space-time and conformal field theories (CFTs)
in physical space-time has been a very active and
interesting field of study. Among other things,
the wealth of this correspondence stands in the
possibility to perform calculations between op-
posite coupling regimes, strongly coupled the-
ories can be mapped into weakly coupled ones
and vice versa. CFTs are defined as scale in-
variant theories, so it is impossible to applicate
the AdS/CFT correspondence to the quantum
chromodynamics (QCD) itself directly.

It is worth noting that this is because the cou-
pling constants change with the renormalization
scale i in QCD that we get the condition under
which perturbation theory is valid [2].

Nevertheless, in the strong coupling regime
of QCD, the couplings appear to be approx-
imately constant. This is the basis for a light-
front holography, an approximation of the AdS/
CFT to QCD quantized on the light front (light-
front AdS/QCD) [3] that has shown the ability
to find analytic solutions in the non-perturba-
tive regime of QCD, like improving predictions
of hadron masses and structure properties (see
e.g. Ref. [4]).

In this work, we are particularly interested
in the fact that light-front AdS/QCD predicts
a general form of two particle bound state wave
function inside nucleons which cannot be de-
rived simply from valence quarks [4, 5]. This
has led to considerable progress in nucleon an-
alytical results considering valence diquarks in
their structure, just as light-front wave functions
QCD matched with soft-wall AdS/QCD predic-
tions [6 — 8].

Another recent result contemplates the scale
evolution of the parton distribution functions
(PDFs) for a quark-diquark nucleon model us-
ing scale-dependent parameters following the
DGLAP (Dokshitzer — Gribov — Lipatov —
Altarelli — Parisi) evolution [5], that are consist-
ent with the quark counting rule and Drell — Yan
— West relation [9, 10]. Based on these last two
results, we have fitted the PDF parameters of the
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quark-diquark nucleon model to the available
data from NNPDF2.3 QCD + QED NNLO
[11] for u and d quarks, in order to get the un-
polarized PDFs for the spin-0 (ud),, spin-1 (ud),
and spin-1 (uu), diquarks. With such parameters
available, the diquark PDFs can be used to sim-
ulations of proton (and neutron) collisions with
participating diquarks.

To consider proton collisions based on a nu-
cleon model with diquark structures inside, it
is useful to inspect the properties of the parton
model.

The parton model

The cross section for proton-proton colli-
sions can be expressed by the so called improved
parton model formula [12]:

Or.p) T deldxzfil (xp}l)sz (xz,p) X
i,J

) (1)
X G;’j (xlpl’xZPZ’(xs (M)’u)a

where the scripts 1 and 2 are labels to incoming
proton beams carried momentum P.

In this scenario, the incoming proton beam
is equivalent to a beam made of constituent par-
tons. Typically, these partons are taken as the
massless-pointlike elementary particles, quarks
and gluons [12], with longitudinal momentum
distribution characterized by the parton distri-
bution functions f(x, p).

This means, given some proton with momen-
tum P, the probability to find in such parton i
with momentum between xP and (x + dx)P is
precisely dxf(x, p) being dependent as well of
the renormalization scale L.

While  representsthe parton cross sections,
which can be computed with perturbative QCD
(pQCD) for sufficiently small running coupling
a () [2].

However, due to the fact that partons cannot
be observed as free particles, the PDFs cannot
be calculated using pQCD. Nowadays, the sim-
plest way to obtain PDFs is fitting observables
to experimental data, among other phenomeno-
logical tools (see e.g. Refs. [13, 14]).

Nevertheless, in order to work with a parton
model using constituent diquarks, we must ex-
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pand this picture beyond quarks and gluons. As
we mentioned above, recent results from soft-
wall AdS/QCD [4, 7] have shown a phenomeno-
logical approach to reproduce unpolarized PDFs
of quark-diquark nucleons [5].

In the next section we show how this phe-
nomenological approach has been constructed
to finally obtain our parameters that allow us to
exhibit our diquark PDFs.

The soft-wall light front AdS/QCD
quark-diquark nucleon model

In this section we intend to outline how to ob-
tain the PDF of a quark-diquark nucleon model
using soft-wall light front holographic QCD (for
a more detailed analysis see Ref. [5] and its refer-
ences, from where this section is heavily based).

To construct such a PDF model, it is assumed
that a virtual incoming photon interacts with a
massless-valence quark. The other two valence
quarks are then forming a spectator diquark. In
this way, it is ensured that this model is in ac-
cordance with the traditional quark-interacting
frameworks, from where it is possible to build re-
liable properties for the nucleon model, so for di-
quarks. The diquarks can have then either spin-0
(scalar diquark) or spin-1 (vector diquark).

The nucleon state is represented by a spin-fla-
vor SU (4) symmetry. This implies that the possi-
ble states are the isoscalar-scalar diquark singlet
state, the isoscalar-vector diquark state and the
isovector-vector diquark state. Shortly, the di-
quark can be either scalar or axial-vector.

For the proton state we can write it as

|Pit) = C|uS®) +CyJud’) +

+Cyy|dd'y ®

where, following the original notation in Ref. [5],
S and A represent the scalar and vector diquark
having isospin at their superscript; the subscripts
in the coefficients denote the isoscalar-scalar
(S), the isoscalar-vector state (V) and the isovec-
tor-vector state (V).

For the neutron, the state is given by the iso-
spin symmetry u < d.

Without losing the generality of the model, we

will take the case for the proton, which is what we
care about in this work.

Using the light-cone convention x* = x° £ x°
[15] it is convenient to choose a frame where the
proton transverse momentum vanishes, denoted

as
2
PE(P+,%,0L],

where M is the proton mass.
So the momentum of the struck quark can be
taken as
2 2
P+ p + |pl|
? +

p= xP

] 8
and the diquark

P, =((1-x)P",P;,-p, ).

We can interpret from this notation that x =
= p*/P* is the longitudinal momentum fraction
carried by the struck quark.

Now, we can express the two particle Fock-
state expansion.

For total angular momentum projection J* =
= +1/2 with spin-0 diquark is given by

+ dxdzp
S =I = X
|u > 2(211:)3\/x(1—x)
+(u 1 .
X|:W+( )(xapj_) +5S;SP 9pJ_>+ (3)

+y=" (x,p.)

1 .
_ES;SP ,pLﬂ,

A sisP.p, )

where

is the two-particle state having struck quark of
helicity kq and a scalar diquark having helicity
KS = 5 (spin-0 singlet diquark helicity is denoted
by s to distinguish from triplet diquark).

While, the spin-1 diquark state is given by the
following expression [16]:
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|
dxd’p

| 2(22) Jx(1-2)
[voten)

+%+l;xP*,pl>+

+ Wir(:) (xapl)

1 +
—5+1;xP ,pl>+

(4)

+(v 1 +
+W;£) )(xapj_) +307xP apj_>+

+y ) (x,p,)

1 +
_EO;XP ,pl> +

1 .
+5—1;xP ,pl>+

1 .
—~—LaP ,plﬂ

where |7» q?» 3SP.p L> represents a two-particle

+ wf&v)(x,pL)

+Wt(7)( apL)

state with a quark of helicity kq =+— andavec-

tor diquark of helicity A = £1,0 (triplet). Here
v =u, d is a flavor index.

The light-front (LF) wave functions with
spin-0 diquark state, \vi(”) at the initial scale

for J = iz are given by expressions [8]:
1 (xp,) =Nl (x.p,),
1
J=+5: v (x,pl (5)
+
[ o ),
v, (x.p, )=
L (=)
J=—g =Ny T e (py). (6
\I]:(u)(xapJ_)ZNS(Pgu)(xapJ_)'

In a Verly similar way, for vector diquarks
with J =+ — the LF wave functions \|!+(+ ) at the

initial scale p, can be written as

90

v (xp,)=

+v v 2 v
\V—Jr)(xapL):Nl E(PE )(xapL)a
+v v 1 v

J:+%: vl (ps) = N5\ 20 (xp.).
v (7
\V—(())(x’pj_)

v (xp,)=0,
i_V)(xapJ_) = 07
\V;&V)(xapi) =0,
\V:E:’)(x’pi) =0,
v (x,p,)=
y 1 1 _ 2 y

_3
—_
>
=
}7
~

) 2
v (xp,)=N, \Ecp

v (xp,)=
(e
3 xM

The LF wave functions (pgv) (i =1, 2) are the
twist-3 LF wave functions. These functions can
be derived in light-front QCD and in soft-wall
AdS/QCD [4, 17 — 19, 6].

In Ref. [7] a generalized form to (pf.v) was
proposed by matching the electromagnetic form
factors of the nucleon in soft-wall AdS/QCD and
light-front QCD, getting that

J(p( '(x.p.)-
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Table 1

The fitted parameters for nucleon valence u and d quarks at the initial scale p, [5]

Value
Parameter

u d
a 0.280 + 0.001 0.5850 + 0,0003
by 0.1716 £ 0.0051 | 0.7000 % 0.0002
a) 0.84 +0.02 0.9434:00017
by 0.2284 + 0.0035 0.6400° 5652
& 1.0 1.0

Notation:v=u,d— quarks, while a;, b a; b, , & — parameters defined in Eq. (9).

) _4n log(l/x) PR
¢ (x,p,)= <\ (=n) x (1-x)" x
. )
X eXp —Svp—lz—log(l/xz) 5
2" (1-x)

where K« is a scale parameter coming from the
soft-wall AdS/QCD model.

With this information, it is possible to write
the Dirac and Pauli form factors for spin-1/2
composite particle systems [20].

In Ref. [21] it was found, by fitting the pro-
ton form factors from the soft-wall AdS/QCD
model with experimental data [22 — 26], that
the best agreement if given with k = 0.4066 GeV.
Furthermore, in Ref. [5] the flavor form factors
for u and d in this light-front diquark model was
fitted with experimental data [27, 28], obtaining
the value of the parameters afv) and bl.(v) at the
initial scale p; (see Table 1).

In the same way, using the Sachs form factors,
the coefficients for the quark-diquark nucleon
state (2) were obtained in Ref. [5]:

C2=13872, C}=0.6128, C?, =1.0.

Besides, the normalized constants M were
found to be

N =2.0191, N =32050, NI =5.9423,
N™ =0.9895, N’ =1.1616.

Quark-diquark unpolarized PDF evolution

The unpolarized parton distribution function

is defined as [8, 5]:
j Z__ox x
2(2m) P

><<P;S‘\|7(V)(0)y+\v(v)(2_)‘P§S > eye0?

1

2

ip'z
2

f(V)(xalvlo)
(10)

which depends only on the light-cone momen-
tum fraction x = p*/P* where the proton state
|P;S> with spin S'is given as in Eq. (2).

Indeed, " is the light-cone representation of
the usual y* matrix, detailed definition is found
in Ref. [15].

The leading order QCD evolution of the un-
polarized PDF is given as the standard DGLAP
expansion [29, 30, 5]:

1
J‘dxx"f(x,u) =
0

)

&%];&)‘:‘:dxx”f(x,uo),

(11

=n

where the anomalous dimension is determined by

o, (1

n+l
1

—425 (12)

k=1

2

O = 2C,|3+—=——
Vs CF[+(n+1)(n+2)

and the running coupling constant is given as
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o, (p)=—F"—. (13)
)

In this work we take C, = 4/3, B, = 9 and
AQCD =0.226 GeV.

The initial scale in most of the works on which
ours is based is taken to be p, = 0.313 GeV since
it is a value available for pion phenomenology.

Thus, the light-front diquark unpolarized

PDFs at scale p are given by [5]:

S (x0) = N3 (w)

LT
X| ——x 1-
{5“ (n) (

+ x2a§(p)—2 (1 _ x)2b§'(u)+3 y

x)%f‘(u)“ "
(14)

(5 () M im(1/x) |

The parameters a,, b’, 8" are now depen-

dent on the scale p such that the relation (11)
holds, i. e. [5],

(16)

a, (af)) P
B () 1( j

(18)
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where the quantities 4 ( u) and b’ (u) are de-
fined as

2 Y‘f{,i
T (n)= oc;[,[uzﬁn.f {111 [“—J} |,A=1,2 (19)
0
forII=A4, B.

The a'(pn) and b'(p) are the parameters
given in Table 1. It should be noted that the pa-
rameter 6" tends to unity while u — .

In order to find the evolution parameters
oy, By Yyps and &Y it is useful to write the fla-
vor decomposed PDFs f“(x, p) and f“(x, p). It
was well discussed in Ref. [8] that for the rela-
tion between quark flavors and diquark states
should have a linear behavior with free coeffi-
cients to be determinate with experimental da-
ta. Indeed, in the same way the proton state (2)
has to be consistent with the real world under
the same coefficients C, C ) and C,,, which was
how the flavored form factors were decomposed
from the diquarks, and such parameters founded
in Ref. [5].

So, the flavor decomposed PDFs are given as

()= CrY () + G (xp),  (20)

1 (x,u):CﬁVf(W)(x,p). (21)
Then, the flavored PDF f¥(x, ) in the light-

front quark-diquark model can be written as

[ (xp)=

1 x2af(u)(1_x)2b1“(u)+1 "

8" (m)

+ x2a§(u)72 (1 _ x)Zb}'(p)—*—?) %

— N(V)

(22)

2
K

(5 () (1) |

X
where

N(zl) — [C;N? + C]% (%Néu)Z +§N1(M)2jj (23)

and



N = [CiV GN&"’Z +§Nf”’>2j} 4)

for u and d quarks respectively.

In this work, we have followed the fashion of
Ref. [5] and we have obtained the values of the
evolution parameters by fitting the flavor PDFs
(22) with data from NNPDF2.3 QCD + QED
NNLO [11].

The fit was performed in gnuplot [31], an open
source plotting tool using non-linear least-square
theory, taking first a /¥ depending on parameters
IT; (1) then getting the evolution parameters OLVI—U,
Bvl‘[,i’ le‘[,i and &".

The unpolarized PDF data was fitted for 100
equal-spaced data points for different x < (0, 1)
and u?>=2,4,8, 16, 32, 64, 128, 256 GeV>.

The fitted parameters for oy, By, vy, are
shown in Table 2 while the fitted &" being shown
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in Table 3.

In appendix 4 we show the different fits per-
formed for the scales mentioned above.

With this data applied to the PDFs (14) and
(15), we have drawn the functions x-f(x) of the
isoscalar-scalar diquark and isovector-vector
diquark for energy scales p*> = 10, 10%, 10° and
10* GeV? shown in Fig. 1, a, b, ¢, d respectively.
The smooth bands show the case of the scalar
diquark, while the checkered bands are for the
mentioned vector diquark. It is important to
note that

1w [ 2 w2 a2
—N, " +=N,;"" =N,
3 0 3 1 N
from values reported in Ref. [5], so the behav-
ior of the /' (isoscalar-scalar) curve and the /"
(isoscalar-vector) one is very similar.

Table 2
PDF evolution parameters with 95% confidence bounds
I (1) o By v; (do.f
A —-0.196314 + 0.002266 —-0.197209 £ 0,010210 0.927163 £ 0.036270 0.09
By 6.48940 £+ 0.04592 0.161127 +0.006494 —0.910813 £ 0.021850 0.17
A —0.441651 £ 0,002674 | —0.0389503 £+ 0,0058020 | 0.306214 +0.019020 0.995
B} 2.58149 +£0.26410 —0.0548368 + 0.0780600 | —0.807298 £+ 0,277900 1.54
Ald —-0.119059 + 0.002517 —0.124819 + 0.018800 0.952914 £ 0.060100 0.27
Bld 12.84810 +£0.09134 0.0976609 £+ 0.006134 -0.80035 +0.01510 0.53
Aj —0.514816 = 0.000724 —0.001555+0.001244 0.171831 + 0.003307 0.41
Bzd 1.10727 £ 0.00703 0.0844447 + 0.005591 -0.57190 £ 0.01486 0.03
Table 3
PDF evolution parameters 8, andd, forv=u, d
5'() N 3 x/d.o.f
o 0.035074 = 0.03009 0.48314 +0.06732 10.50
o 0.406762 + 0.007024 0.46990 + 0.01275 3.79

Footnote:in Tabs. 2 and 3 the data was used from NNPDF2.3 QCD+QED NNLO [11].
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Fig. 1. Graphs of the x:f(x) functions (diquark PDFs)
at different scale energies 2, (GeV)% 10 (a), 10% (b), 10° (c), 10* (d).
The cases of the scalar ud, (gray bands) and vector uu, (black ones) diquarks are shown

Conclusions

The soft-wall light front AdS/QCD has al-
lowed us to construct parton distribution func-
tions (PDFs) for diquarks in agreement with the
data obtained for quarks phenomenologically. We
have particularly taken data from NNPDF2.3
QCD+QED NNLO [11], but the model can be
adapted to desired experimental data with u and
d quark PDF information.

Although the uncertainties for the values in
IT! (1) reported here should be still improved, an
acceptable fit for the functions (14) and (15) is
shown in our parameters in Tabs. 2 and 3 looking
aty’/do.f.

In general terms, the behavior of diquark
PDEFs observed in Figs. 1 reveals a similarity to
the quark PDFs. Such behavior goes in the sense
that as the energy scale increases, a shift tox =0
of the peak of the functions is visible; as well as,
while x approaches 1, xf tends to vanish expo-
nentially. This fact can be compared with the re-
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sults in Ref. [5], where using the same model with
NNPDF21(NNLO) [32] data were fitted the u
and d quark PDFs.

The phenomenological diquark PDFs re-
ported here are intended to be tested within the
framework of particle collisions.

Especially for us, it is expected to study the
effect in the production of hadrons in collision
simulations of the AdS/QCD quark-diquark nu-
cleon model taking into account participant di-
quarks in hard processes.
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Appendix

Parameter fitting for PDF evolution
from NNPDF2.3 QCD+QED NNLO

The scale evolution of 4 and B’ is parame-
terized by o, B; and y;. While 9" is paramete-
rized by 8, and J;, f(x, p) is given by Eq. (22)
along with Egs. (16) — (19). The f{x, n) function
depending on the parameters A, B, and &' are
fitted at 8 different energy scales p* in Table 4
for u quark, while the fitted parameters for d
quark are given in Table 5.
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Each %° / d.o.f was evaluated for 100 equal-
ly-spaced points for different x € (0, 1). The fit-
ting of the parameters at > = 2, 4, 8, 16, 32,
64, 128 and 256 GeV? are shown in Fig. 2 and 3.
The data points are extracted from NNPDF2.3
QCD + QED NNLO [11]. It should be noted
that the y° / d.o.f values show that the un-
certainty ranges found with the fit are over-
estimated, this is because for this first instance,
uncertainties were not taken from the PDF data
of Ref. [11]. An improvement in this fact is ex-
pected for future works.

a) b)
8¢ 26 : | | 8" 24
2.4 - 22 -
22 . 2.0 i
2.0 B 1.8 B
1.8 = 1.6 -
L6 Fitted parameters —— 1 14 Fitted parameters —— |
L4 6 fgr dquark 12k e} tgr u quark
1‘2 | 1 I I I 1.0 1 | I I I
0 50 100 150 200 250 300 0 50 100 150 200 250 300
uz, G€V2 HZ’ GEVZ
Fig. 2. Plots of 8“ (a) and 3¢ (b) parameters vs. energy scales obtained by fitting
the data of Table 3 through varying evolution parameters d, and 8, or u (@) and d (b) quarks
Table 4
Fitting of the PDF f,(x) at various energy scales for the u quark
u’,GeV? A B! A B! 5" x*/d.o.f
0.133482+ | 9.88657+ | —0.398994+ | 2.50897+ | 1.16148+
2.0 +0.027630 | +£0.57650 | +0.008142 | +0.82540 | =+0.04635 | 2-15238¢-06
20206116+ | 597471+ | —0.463197+ | 1.64702+ | 139743+
4.0 +0.014570 | +0.18860 | +0.004770 | +0.29730 | =+0.03360 | 27301906
0257193+ | 4.63066+ | —0.508357+ | 1.28388+ | 1.60899+
8.0 +0.006954 | +0.06874 | +0.002519 | +0.10670 | =+0.02080 | 0-44055¢-07
0294376+ | 3.97296+ | —0.542694+ | 1.01137+ | 1.80059+
16.0 +0.002982 | +0.02359 | +0.001198 | +0.03058 | =+0.01118 | 122395¢-07
0316551+ | 3.63544+ | —0.567223+ | 0.774017+ | 1.94722+
32.0 +0.003503 | +0.02254 | +0.001527 | £0.020070 | =+0.01540 | 1-77367e—07
20325091+ | 3.45959+ | 0.582866+ | 0.620872+ | 2.03299+
64.0 10.005228 | +0.02855 | +0.002362 | +0.018460 | +0.02475 | +29130e-07
0325202+ | 336176+ | —0.592571+ | 0.504157+ | 2.07403+
128.0 10.006335 | +0.03040 | +0.002883 | £0.019470 | =0.03057 | /-16693¢—06
0324260+ | 3.28934+ | —0.600304+ | 0.504157+ | 2.10605+
2560 1 10.006969 | +0.04935 | +0.003162 | +0.019470 | +0.03384 | 6:94007¢—06
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Fig. 3.

Y2, GeV?

Y2, Gev?

Plots of 4" (a), B (b), 4% (c), B: (d), A" (e), B (f) and 4 (h) parameters vs. energy scales

obtained by fitting the data of Tabs. 4, 5 through using Eq. (19) and varying
evolution parameters af;;, By;; and v, for u (a — d) and d (e — h) quarks
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Table 5
Fitting of the PDF f,(x) at various scales for the d quark
u’,GeV? A’ B¢ Al B! &¢ x*/d.o.f
o | 007268645 | 1811530+ | 0486242+ | 143562+ | 1388050+ | | suu7oe o6
- +0.0088830 | +0.19740 | +0.001573 | +0.08108 | +0.008694 | -
40 “0.142581% | 1107900+ | ~0.543380= | 1.01348= | 1.612030= | | oroc o
- +0.008094 | +0.11820 | +0.001465 | =0.04888 | +0.009794 | !
%0 “0.189572+ | 8.65931% | -0.582432+ | 0.860135% | L79567% | | 3ecaie o
- 10.007766 | +0.09223 | +0.001427 | +0.037990 | +0.01090 | -
0224539+ | 7.42345+ | —0.611889+ | 0.778533% | 1.95505+
16.0 10.007578 | +0.07912 | +0.001410 | +0.032410 | +0.01194 | 1-29922¢-06
0251850 | 6.67682+ | —0.635289+ | 0.729967+ | 2.09703%
32.0 +0.007459 | +0.07126 | +0.001402 | +0.028960 | =0.01291 | !-24493¢-06
0274124+ | 617642+ | —0.654558+ | 0.697843+ | 2.22594+
64.0 +0.007376 | +0.06598 | +0.001398 | +0.026600 | =0.01381 | !-19305¢-06
0292732+ | 5.81723+ | —0.654558+ | 0.675414+ | 2.34434+
128.0 +0.007316 | +0.06219 | +0.001398 | +0.024860 | +0.01466 | !-14381e-06
0308610+ | 5.54758+ | —0.684823+ | 0.659191+ | 2.45415+
256.0 +0.007272 | +0.05934 | +0.001397 | +0.023530 | =+0.01547 | 1-09728¢-06

Secrearia Nacional de Ciencia y Tecnologia of Guatemala FINDECYT/EDUCA CTi 02-2019.

REFERENCES

1. Maldacena J.M., The large N limit of su-
perconformal field theories and supergravity, Adv.
Theor. Math. Phys. 2 (2) (1998) 231-252.

2. Peskin ML.LE., Schroeder D.V., An introduc-
tion to quantum field theory, Addison-Wesley Pub.
Co., Reading, USA, 1995.

3. De Teramond G.F., Brodsky S.J., Light-front
holography: A first approximation to QCD, Phys.
Rev. Lett. 102 (8) (2009) 081601.

4. Brodsky S.J., de Teramond G.F., Light-front
dynamics and AdS/QCD correspondence: The pi-
on form factor in the space- and time-like regions,
Phys. Rev. D. 77 (5) (2008) 056007.

5. Maji T., Chakrabarti D., Light front quark-
diquark model for the nucleons, Phys. Rev. D. 94
(9) (2016) 094020.

6. Gutsche T., Lyubovitskij V.E., Schmidt I.,
Vega A., Nucleon resonances in AdS/QCD, Phys.
Rev. D. 87 (1) (2013) 016917.

7. Gutsche T., Lyubovitskij V.E., Schmidt I.,
Vega A., Light-front quark model consistent with
Drell—Yan—West duality and quark counting rules,
Phys. Rev. D. 89 (5) (2014) 054033 [Erratum: Phys.

Rev. D. 92 (1) (2015) 019902].

8. Bacchetta A., Conti F., Radici M., Trans-
verse-momentum distributions in a diquark specta-
tor model, Phys. Rev. D. 78 (7) (2008) 074010.

9. Drell S.D., Yan T.M., Connection of elastic
electromagnetic nucleon form-factors at large Q?
and deep inelastic structure functions near thresh-
old, Phys. Rev. Lett. 24 (4) (1970) 181—185.

10. West G.B., Phenomenological model for the
electromagnetic structure of the proton, Phys. Rev.
Lett. 24 (21) (1970) 1206—1209.

11. Ball R.D., Bertone V., Carrazza S., et al.,
Parton distributions with QED corrections, Nucl.
Phys. B. 877 (2) (2013) 290—320.

12. Nason P., Introduction to perturbative
QCD, Lecture notes for the 11th Jorge Andre Swie-
ca Summer School on Particle and Fields, January
14—27, 2001, Campos do Jordao, SP, Brazil (2002)
409—486.

13. Pumplin J., Stump D.R., Huston J., et al.,
New generation of parton distributions with uncer-
tainties from global QCD analysis, JHEP. 2002 (7)
(2002) 12.

97



4 St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 14 (2) 2021

14. Ball R.D., Bertone V., Carrazza S., et al.,
Parton distributions for the LHC run II, JHEP.
2015 (4) (2015) 40.

15. Lepage G.P., Brodsky S.J., Exclusive pro-
cesses in perturbative quantum chromodynamics,
Phys. Rev. D. 22 (9) (1980) 2157.

16. Ellis J.R., Hwang D. S., Kotzinian A., Sivers
asymmetries for inclusive pion and kaon produc-
tion in deep-inelastic scattering, Phys. Rev. D. 80
(7) (2009). 074033.

17. Brodsky S.J., Cao F.-G., de Teramond G.F.,
Meson transition form factors in light-front holo-
graphic QCD, Phys. Rev. D. 84 (7) (2011) 075012.

18. Abidin Z., Carlson C.E., Nucleon electro-
magnetic and gravitational form factors from ho-
lography, Phys. Rev. D. 79 (11) (2009) 115003.

19. Gutsche T., Lyubovitskij V.E., Schmidt I.,
Vega A., Chiral symmetry breaking and meson wave
functions in soft-wall AdS/QCD, Phys. Rev. D. 87
(5) (2013) 056001.

20. Brodsky S.J., Drell S.D., The anomalous
magnetic moment and limits on fermion substruc-
ture, Phys. Rev. D. 22 (8) (1980) 2236.

21. Chakrabarti D., Mondal C., Generalized
parton distributions for the proton in AdS/QCD,
Phys. Rev. D. 88 (7) (2013) 073006.

22. Gayou O., Wijesooriya K., Afanasev A., et
al., Measurements of the elastic electromagnetic
form-factor ratio ”,,GE,,/GM,, via polarization trans-
fer, Phys. Rev. C. 64 (3) (2001) 038202.

23. Gayou O., Aniol K.A., Averett T., et al., Mea-
surement of G, /G, in ep — ep to Q> = 5.6 GeV?,
Phys. Rev. Lett. 88 (9) (2002) 092301.

24. Arrington J., Melnitchouk W., Tjon J.A.,

Received 15.05.2021, accepted 27.05.2021.

Global analysis of proton elastic form factor data
with two-photon exchange corrections, Phys. Rev.
C. 76 (3) (2007) 035205.

25. Punjabi V., Perdrisat C.F., Aniol K.A.,
et al., Proton elastic form-factor ratios to Q> =
= 3.5 GeV? by polarization transfer, Phys. Rev. C.
71 (5) (2005) 055202 [Erratum: Phys. Rev. C. 71 (6)
(2005) 069902].

26. Puckett A.J.R., Brash E.J., Jones M.K., et
al., Recoil polarization measurements of the proton
electromagnetic form factor ratio Q> = 8.5 GeV?,
Phys. Rev. Lett. 104 (24) (2010) 242301.

27. Cates G.D., de Jager C.W., Riordan S.,
Wojtsekhowski B., Flavor decomposition of the
elastic nucleon electromagnetic form factors, Phys.
Rev. Lett. 106 (25) (2011) 252003.

28. Diehl M., Kroll P., Nucleon form factors,
generalized parton distributions and quark angular
momentum, Eur. Phys. J. C. 73 (4) (2013) 2397.

29. Altarelli G., Parisi G., Asymptotic freedom
in parton language, Nucl. Phys. B. 126 (2) (1977)
298—318.

30. Broniowski W., Arriola E.R., Golec-Biernat
K., Generalized parton distributions of the pion
in chiral quark models and their QCD evolution,
Phys. Rev. D. 77 (3) (2008) 034023.

31. Williams T., Kelley C., gnuplot 5.4. An in-
teractive plotting program. Version 5.4. December,
2020, www.gnuplot.sourceforge.net. Accessed Feb-
ruary 28, 2021.

32. Del Debbio L., Forte S., Latorre J.I., et
al., Neural network determination of parton dis-
tributions: the nonsinglet case, JHEP. 2007 (3)
(2007) 39.

THE AUTHORS

RODRIGUEZ-AGUILAR Benjamin
Peter the Great St. Petersburg Polytechnic University

29 Politechnicheskaya St., St. Petersburg, 195251, Russian Federation

rodrigesagilar.l@edu.spbstu.ru

BERDNIKOY Yaroslav A.
Peter the Great St. Petersburg Polytechnic University

29 Politechnicheskaya St., St. Petersburg, 195251, Russian Federation

berdnikov@spbstu.ru

98



Nuclear physics
u r physi >

CINMUCOK JIUTEPATYPbI

1. Maldacena J.M. The large N limit of super-
conformal field theories and supergravity // Ad-
vances in Theoretical and Mathematical Physics.
1998. Vol. 2. No. 2. Pp. 231-252.

2. Peskin M.E., Schroeder D.V. An introduc-
tion to quantum field theory. Reading, USA: Addi-
son-Wesley Pub. Co., 1995. 842 p.

3. De Teramond G.F., Brodsky S.J. Light-front
holography: A first approximation to QCD //
Physical Review Letters. 2009. Vol. 102. No. 8.
P. 081601.

4. Brodsky S.J., de Teramond G.F. Light-front
dynamics and AdS/QCD correspondence: The pi-
on form factor in the space- and time-like regions //
Physical Review. D. 2008. Vol. 77. No. 5. P. 056007.

5. Maji T., Chakrabarti D. Light front quark-
diquark model for the nucleons // Physical Review.
D. 2016. Vol. 94. No. 9. P. 094020.

6. Gutsche T., Lyubovitskij V.E., Schmidt I.,
Vega A. Nucleon resonances in AdS/QCD // Phys-
ical Review. D. 2013. Vol. 87. No. 1. P. 016917.

7. Gutsche T., Lyubovitskij V.E., Schmidt I.,
Vega A. Light-front quark model consistent with
Drell — Yan — West duality and quark counting
rules // Physical Review. D. 2014. Vol. 89. No. 5.
P. 054033 [Erratum: Physical Review. D. 2015.
Vol. 92. No. 1. P. 019902].

8. Bacchetta A., Conti F., Radici M. Trans-
verse-momentum distributions in a diquark spec-
tator model // Physical Review. D. 2008. Vol. 78.
No. 7. P. 074010.

9. Drell S.D., Yan T.M. Connection of elastic
electromagnetic nucleon form-factors at large Q?
and deep inelastic structure functions near thresh-
old // Physical Review Letters. 1970. Vol. 24. No.
4. Pp. 181—185.

10. West G.B. Phenomenological model for
the electromagnetic structure of the proton //
Physical Review Letters. 1970. Vol. 24. No. 21.
Pp. 1206—1209.

11. Ball R.D., Bertone V., Carrazza S., Del
Debbio L., Forte S., Guffanti A., Hartland N.P.,
Rojo J. Parton distributions with QED correc-
tions // Nuclear Physics. B. 2013. Vol. 877. No. 2.
Pp. 290-320.

12. Nason P. Introduction to perturbative QCD

// Lecture notes for the 11th Jorge Andre Swieca
Summer School on Particle and Fields. January 14
— 27, 2001, Campos do Jordao, SP, Brazil. 2002.
Pp. 409—486.

13. Pumplin J., Stump D.R., Huston J., Lai
H.L., Nadolsky P.M., Tung W.K. New generation of
parton distributions with uncertainties from global
QCD analysis // Journal of High Energy Physics.
2002. Vol. 2002. No. 7. P. 12.

14. Ball R.D., Bertone V., Carrazza S., Deans
C.S., Del Debbio L., Forte S., Guffanti A., Hart-
land N.P., Latorre J.I., Rojo J., Ubiali M. Parton
distributions for the LHC run II // Journal of High
Energy Physics. 2015. Vol. 2015. No. 4. P. 40.

15. Lepage G.P., Brodsky S.J. Exclusive pro-
cesses in perturbative quantum chromodynamics //
Physical Review. D. 1980. Vol. 22. No. 9. P. 2157.

16. Ellis J.R., Hwang D.S., Kotzinian A. Sivers
asymmetries for inclusive pion and kaon produc-
tion in deep-inelastic scattering // Physical Review.
D. 2009. Vol. 80. No. 7. P. 074033.

17. Brodsky S.J., Cao F.-G., de Teramond G.F.
Meson transition form factors in light-front holo-
graphic QCD // Physical Review. D. 2011. Vol. 84.
No. 7. P. 075012.

18. Abidin Z., Carlson C.E. Nucleon electro-
magnetic and gravitational form factors from ho-
lography // Physical Review. D. 2009. Vol. 79.
No. 11. P. 115003.

19. Gutsche T., Lyubovitskij V.E., Schmidt I.,
Vega A. Chiral symmetry breaking and meson wave
functions in soft-wall AdS/QCD // Physical Re-
view. D. 2013. Vol. 87. No. 5. P. 056001.

20. Brodsky S.J., Drell S.D. The anomalous
magnetic moment and limits on fermion substruc-
ture // Physical Review. D. 1980. Vol. 22. No. 9.
P. 2236.

21. Chakrabarti D., Mondal C. Generalized
parton distributions for the proton in AdS/QCD //
Physical Review. D. 2013. Vol. 88. No. 7. P. 073006.

22. Gayou O., Wijesooriya K., Afanasev A., et
al. Measurements of the elastic electromagnetic
form-factor ratio quEP/GMp via polarization trans-
fer // Physical Review. C. 2001. Vol. 64. No. 3.
P. 038202.

23. Gayou O., Aniol K.A., Averett T., et al. Meas-

99



4 St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 14 (2) 2021

urement of G,,/G, inep —epto 0*=5.6 GeV?//
Physical Review Letters. 2002. Vol. 88. No. 9.
P. 092301.

24. Arrington J., Melnitchouk W., Tjon J.A.
Global analysis of proton elastic form factor data
with two-photon exchange corrections // Physical
Review. C. 2007. Vol. 76. No. 3. P. 035205.

25. Punjabi V., Perdrisat C.F., Aniol K.A., et al.
Proton elastic form-factor ratios to Q*> = 3.5 GeV?
by polarization transfer // Physical Review. C.
2005. Vol. 71. No. 5. P. 055202 [Erratum: Physical
Review. C. 2005. Vol. 71. No. 6. P. 069902].

26. Puckett A.J.R., Brash E.J., Jones M.K., et
al. Recoil polarization measurements of the proton
electromagnetic form factor ratio Q> = 8.5 GeV? //
Physical Review Letters. 2010. Vol. 104. No. 24.
P. 242301.

27. Cates G.D., de Jager C.W., Riordan S.,
Wojtsekhowski B. Flavor decomposition of the elas-
tic nucleon electromagnetic form factors // Physical
Review Letters. 2011. Vol. 106. No. 25. P. 252003.

28. Diehl M., Kroll P. Nucleon form factors,
generalized parton distributions and quark angular
momentum // European Physical Journal. C. 2013.
Vol. 73. No. 4. P. 2397.

29. Altarelli G., Parisi G. Asymptotic freedom
in parton language // Nuclear Physics. B. 1977.
Vol. 126. No. 2. Pp. 298—318.

30. Broniowski W., Arriola E.R., Golec-Bier-
nat K. Generalized parton distributions of the pi-
on in chiral quark models and their QCD evolu-
tion // Physical Review. D. 2008. Vol. 77. No. 3.
P. 034023.

31. Williams T., Kelley C. gnuplot 5.4. An in-
teractive plotting program. Version 5.4. December,
2020 // www.gnuplot.sourceforge.net. Accessed
February 28, 2021.

32. Del Debbio L., Forte S., Latorre J.I., Pic-
cione A., J. Rojo J. Neural network determination
of parton distributions: the nonsinglet case // Jour-
nal of High Energy Physics. 2007. Vol. 2007. No. 3.
P. 39.

Cmambs nocmynuaa 6 pedaxyuio 15.05.2021, npunama k nybauxayuu 27.05.2021.

CBEAEHUA Ob ABTOPAX

POIAPUTEC-ATJIAP benmkamun — cmydenm maeucmpamypsl Boicuieit urnyicenepro-gusuueckoi

wrxoavl Cankm-Ilemepoypeckoeo noaumexuuueckoeo yuusepcumema Ilempa Beauxoeo, Canxm-Ilemepbype,

Poccuiickas @edepayus.

195251, Poccmiickas @enepamus, T. Cankr-IletepOypr, [TomTexHnaeckas yi., 29

rodrigesagilar.l@edu.spbstu.ru

BEPIHUKOB fpocaas AnekcaHapoBud — 0oKmMop (pu3uko-mamemamu4ecKux Hayk, npogeccop Boicuieil

uHycenepHo-gpusuueckoll wikoav. Cankm-Ilemepbypeckoeo noaumexuuueckoeo ynueepcumema Ilempa Beaukoeo,

Canxkm-Ilemep6ype, Poccuiickas Pedepayus.

195251, Poccmiickas @enepamnus, T. Cankr-IletepOypr, [TommTexHndeckas yi., 29

berdnikov@spbstu.ru

© CaHkT-MNeTepbyprckuii MoNMTEXHUYECKUI yHUBepcuTeT MeTpa Benukoro, 2021

100



\

Radiophysics

DOI: 10.18721/IPM.14209
UDC 535.3, 535-15, 535.417

AN ANALYSIS OF CORRECTIONS
TO THE PROPAGATION CONSTANTS OF A MULTIMODE
PARABOLIC OPTICAL FIBER UNDER BENDING

A.A. Markvart, L.B. Liokumovich, N.A. Ushakov

Peter the Great St. Petersburg Polytechnic University,
St. Petersburg, Russian Federation

The goal of our work was to study a circularly bent, weakly guiding, multimode optical fiber with
a parabolic refractive index profile. With this in mind, the second-order corrections to propagation
constants of longitudinally perturbed arbitrary dielectric waveguide’s modes were found using the
perturbation theory. Based on that general result, a simple analytic equation describing the corrections
to the propagation constants of the modes in the bent parabolic optical fiber was derived. It was shown
that the increments of squares of mode propagation constants were the same for all modes. Moreover,
the increments of mode propagation constants’ differences in the bent fiber were proportional to those
in the straight fiber. The proportionality coefficient was independent of the mode number. The obtained
results are of high importance for development of optical fiber sensors, in which fiber bending is possible.

Keywords: fiber, curvature, graded index, bent waveguide, perturbation analysis, propagation constant

Citation: Markvart A.A., Liokumovich L.B., Ushakov N.A., An analysis of corrections to the
propagation constants of a multimode parabolic optical fiber under bending, St. Petersburg Polytech-
nical State University Journal. Physics and Mathematics. 14 (2) (2021) 101—113. DOI: 10.18721/
JPM.14209

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/
licenses/by-nc/4.0/)

AHAJIU3 NOMPABOK K MOCTOAHHbIM
PACINTPOCTPAHEHUA B UBOTHYTOM MHOITroMo10BOM
NMAPABOJIMYECKOM ONTUYECKOM BOJIOKHE

A.A. Mapkeapr, J1.b. Jinokymoeuu, H.A. Yimakor

CaHkT-MeTepbyprckuii NONUTEXHUYECKUI YHUBEpcUTET MeTpa Bennkoro,
CaHkT-MeTepbypr, Poccuiickas deaepaums

Pabora mocBsieHa ucclieIOBAaHUIO paBHOMEPHO U30THYTOTO CJIa0OHAIPaBJISIONIeT0 ONTHYECKOTO
MHOTOMOJIOBOI'O BOJIOKHA C IMapadoIndyecKuM mpoduiiem rmokasatess npeiomiaeHus. B pamkax ¢op-
MaJlu3Ma MaJibIX BO3MYIIEHUI 3anucaHa ¢opMyJia AJisl OMPaBOK BTOPOro MOpsiiKa MajOCTH K IO-
CTOSIHHBIM PacIpOCTpaHEHUsI MOJi PABHOMEPHO BO3MYIIIEHHOIO AU3JIEKTPUUYECKOro BoJHOBOAa. Ha
9TOI OCHOBE MOJIyYeHO MPOCTOE aHATUTUYECKOE BhIpaskeHUe IS TTIOMPABOK K TTOCTOSTHHBIM PacIipo-
CTpaHEHUsI MOJI MU30THYTOTO MapadoiMuecKoro MHOTOMO0BOTO BoloKHa. [Toka3zaHo, 4To MonpaBKu
K KBajipaTaM MOCTOSTHHBIX PAaCIIpOCTPaHEHUSI MOJI OMHAKOBHI 1T BceX Mojl. [1pu 3TOM TOTNpaBKu K
Pa3HOCTHU MOCTOSTHHBIX PACIIPOCTPaHEHUST MO/l B M30THYTOM BOJIOKHE MPOMOPIMOHAIbHBI PA3HOCTU
MOCTOSIHHBIX PACTIPOCTPAHEHUsT MOJ TTPSIMOJIMHEHOTO BOJIOKHA ¢ KOA(DDULIMEHTOM, He 3aBUCSIIIUM
OT HOMEepOB MoJ. Pe3ynbrar 0co0eHHO BaXKeH JJisl aHalu3a UHTepHEPOMETPUUECKUX ONTOBOJIOKOH-
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Introduction

The fiber in any extended fiber optic paths
has some degree of bending. This is undesirable
in some systems, for instance, leading to optical
losses in communication devices. Conversely, the
operating principles of other types of systems are
actually based on bending, for example, in opti-
cal modulators [1], multiplexers [2], splitters [3];
bending can also be measured using fiber optic
sensors. In particular, fiber optic sensors allow
tracking the state of buildings, structures and me-
chanical assemblies [4 — 6], monitoring human
health [7 — 9] by monitoring the bending of the
fiber; such sensors are used to fabricate medical
devices [10], equipment in robotics [11], and for
other purposes.

In view of the above, it is essential to develop
an array of convenient analytical tools making it
possible to calculate the effect of fiber bending on
the parameters of light propagation in it. Recent
studies have focused closely on analytical [12,
13] and numerical [14, 15] calculations of opti-
cal losses in bent fibers. However, the change in
phase progression or propagation constants (PC)
of the waveguide modes of optical fiber under
bending is an equally important factor. For ex-
ample, this change plays a decisive role in inter-
ferometric fiber optic sensors, where the interfer-
ence signal directly depends on the difference in
propagation constants (PCD) of the interfering
modes [16 — 26]. Even though this issue is crucial
for fiber optic bending sensors, scarce attention
has been given in the literature to calculation of
the corrections to mode PC under fiber bending,
in particular, for the most common fiber with
a parabolic refractive index. The well-known
studies calculating the changes in the phase pro-
gression or propagation constants of waveguide
modes under fiber bending [27 — 33] have failed
to yield simple expressions for the corrections to
the PC and PCD of the modes in a parabolic fib-
er. A general expression was introduced in [34]
for the changes in the mode PC for the case of
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uniform fiber perturbation, obtained from a sys-
tem of differential equations for coupled modes.
However, this expression does not allow formu-
lating an explicit analytical expression for the
case of a parabolic fiber, which would be conven-
ient for computational estimates. Appendix 1 of
this study contains this expression and its brief
analysis.

The goal of this paper consists in analyzing the
propagation constants and their difference for the
case of a weakly guiding multimode optical fib-
er with a parabolic refractive index profile, uni-
formly bent in a circle.

In view of the goal set, we first derived a gen-
eral formula for calculating the corrections to the
PC of the modes of a dielectric waveguide uni-
formly perturbed along the axis (the method of
small perturbations was used); the case of a para-
bolic optical fiber was analyzed in detail based on
this formula.

Calculation of corrections
to the PC of the m™ mode
of a perturbed dielectric waveguide

To apply the method of small perturbations
to solving the problem, we rely on the approach
used in monograph [35] for obtaining a first-or-
der correction to the PC of the modes of a per-
turbed waveguide. We are going to establish below
that the first-order correction vanishes in the case
of uniform bending of the fiber. For this reason,
we determined a correction for the second-order
mode PC to account for the bending.

Based on this approach, let us formulate the
statement of a specific problem. Suppose an un-
perturbed dielectric waveguide has a relative per-
mittivity profile

& (r.90)=n; (r,9),

where n, is the refractive index profile; r, ¢ are
the coordinates in a cylindrical coordinate sys-
tem where the axis z coincides with the fiber axis.
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If perturbation that is uniform along the axis
is introduced, the relative permittivity profile of
the perturbed waveguide can be written in the
form

e(r,0)=g,(r,0)+Ae(r,0). (1)

Let the unperturbed modes have the form

E =E, (r,(P)GXP[i(COf—BmZ)]’

m=0,1,2,..., @

where the transverse mode functions E (7, ¢)
satisfy the unperturbed wave equation

[V} +k’e, |-E,(r.0)=B,’E, (r.9). (3)

Here we omitted the term V(V-E], ), which
is justified for linearly polarized modes of optical
fiber [36].

These modes are mutually orthogonal and
satisfy the following orthogonality condition:

[E,-Eds=N,3, (4)

Consider the influence from the perturbation
of relative permittivity Ag(r, @), which is small
compared with the magnitude of &(r, ¢). Let us
assume that such a small perturbation only caus-
es small changes in mode functions and propaga-
tion constants.

Let the mode functions change by SEm(l), and
the squares of the propagation constants by
SBfn(l). In this case, the wave equation takes the
form

[Vf +hkje, + k02A8] , (Em i SEm(l)) _
- (Bmz + SBfn(l))'(Em N SEm(l) ) (5)

If we neglect the second-order terms
As-SEm(l) and SBfn(l) 8Em(1) and use relation
(3), Eq. (5) can be written in a simpler form:

[V} +k’e, |-3E," +k’Ac K, =

=p,2-oE," +8p2" ©)
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To solve this equation, we expand SEm(l) in

terms of the unperturbed mode functions:

= Z amlEl 4 (7)
where a, are constant coefficients.
Substltutlng expression (7) for SE into

Eq. (6) and using (3), we obtain the followmg re-
lation:

Zaml (Bzz -B,’ )'Ez =
= (8B." -

If relation (8) is scalarly multiplied by the
complex conjugate quantity E:n and this product
is integrated over the entire transverse plane, then
the expression on the left-hand side will be equal
to zero by virtue of orthogonality relation (4).
Thus, we have the following expression:

zAa) E, . ®

JE. (o8-

Since SB,Z” is a constant, it follows from ex-
pression (9) that

2Ag) E dS=0. (9)

k' [E;,-AcE,dS
~ .

m

5p;," = (10)

This expression gives the first-order correc-
tion to the square of the propagation constant
B2. Since the correction to the PC square is
small, we can write the actual correction to the
PC [35]:

5B, =8p;, /2B,
As a result, we obtain the following expression:

k [E;,-AcE,dS
2,N

To calculate the coefficients aml a_(m # 1),
we scalarly multiply the left and right-hand sides
of Eq. (8) by E,, (m # I) and integrate over the
entire transverse plane. Then the following ex-
pression can be written:

5B = (11)
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I
P [E,-Ac-Ejds
ml P 2 m’ i ’
(Bm - Bz )N 1 12
[ #m. (12)
Thus, we obtained (with an accuracy up to
notations) expressions for the first-order correc-
tion to the PC and coefficients a (m # [), simi-
lar to those given in monograph [35], except for
the normalization parameter N, introduced.
Similarly, we derive the second-order correc-
tions to the mode PC. For this purpose, we con-
sider the wave equation in the form

(V7 +kie, +; Ae | x
x(Em +8E, " +3E ) =
= (B, +0B;" +8p," )
x (Em +8E, " +3E ),

(13)

where SES) , SBi(z) are the second-order correc-
tions to the mode function and the PC square,
respectively.

If we use relation (3) and further assumptions,
such as neglecting the third and fourth-order
terms and taking (6) as an initial approximation,
Eq. (13) can be reduced to the following form:

[V +kg, |-0E, ) +k’AedE," =

B2SE, M 1+ 5p2SE © 1+ 5B | (1

To solve this equation, we expand SEm(z) in
terms of the unperturbed mode functions:

SEm(z) = melEl') (15)
1

where b are constant coefficients.

Substituting expressions (7) for SEm(l) and
(15) for 8E ) into Eq. (14), and using (3), we
obtain the following relation:

zbml(Blz _Bfn).El +

(16)
+kyAe) a,E, =
l
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= 8Bfn(l)zamlE‘l + SBrzn(Z) ’ Em (16)
i

If this ratio is scalarly multiplied by E’ and
integrated over the entire transverse plane, then
the first term on the left-hand side and all terms of
the sum, except for the term with / = m, are equal
to zero by virtue of orthogonality relation (4).

If we also use expression (10), then we can
write the following ratio:

k> a, |E;-Ae-E,dS =
i

-kja,,[E,-Ac-E,dS+ (17)

+8p2OIN |

Then, keeping in mind that the first term on
the right-hand side of this expression is mutual-
ly canceled out with the summation term / = m
in its left-hand side, and using expression (12),
the second-order correction to the PC square of
the m™ mode can be written in the following form
in the case when the waveguide is perturbed uni-
formly along the axis:

8[3;(2) = Z(BIZ _Brzn)amlalm’ (18)
I#m
or
k4
5, = TETATES
D A
(19)

x|[E, -Ac-Ejds]

Given that SBfn(z) is the correction to the PC
square, and the actual correction to the PC is

5B =5p2 /28,

we obtain the following expression:

k4
5B, = : x
;mm (B, B} ) N,.N,

N 2
x|[E, -As-Ejds]

(20)

Expressions (19) and (20) are the desired ex-
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pressions for the second-order correction to the
PC of the optical fiber mode.

Notably, expressions (19) and (20) hold true
for any dielectric waveguides where the term
V(V E;n) can be neglected in formulating the
wave equation.

Appendix 2 of this paper compares Eq. (20)
with the formula obtained by the approach used
in [34].

Case of uniform bending of optical fiber
with a parabolic refractive index profile

Expressions (11) and (20) describe the gen-
eral form of corrections to the mode PC under
perturbation of the dielectric waveguide. Let us
consider their specific form for the case of a uni-
formly bent parabolic fiber.

The relative permittivity profile of parabolic
optical fiber is described by the following expres-
sion:

e(r)=n*(r)=

i {1 20-(r*1d*), r<a,
1-2A,

1)

r>a,

where a is the radius of the core; n, is the max-
imum value of the refractive index in the cross
section; A is the relative difference of refractive
indices,

A:(nf—nzz)/an2

(n, is the refractive index in the cladding region).

The eigenmodes are described as linearly po-
larized LPlp—modes within the model of weakly
guiding fiber with an unlimited parabolic profile
[37]. The scalar component of the mode has the
form

E, =E,(r, (p)exp[ (O)t B,z )], (22)

where E b (r, @) are the scalar transverse mode
functions, / is the azimuthal order of the mode,
and the index p is the radial order of the mode.

Transverse mode functions are given by the
following expressions:

Radiophysi
adiophysics

E, (r.¢)= \P(r)-(;(:;:pp], 23)
¥(r)= (\/E%J[ g (2—2j exp|:—w—2:| (24)

Here L(ql) are the generalized Laguerre poly-
nomials of order / and degree ¢ (¢ =p — 1); they
have the form

w5116

—o\g—~V

(25)

The parameter w gives the boundaries where
the field exists in the radial direction and is de-
fined by the following expression:

2a
w= |———. (26)
mk,N2-A
The propagation constant B of the LP -

mode, taking into account expressmn (26) and
the data from monograph [37], is found by the
expression

4
Blp anko\/l—v(zp'i'l—l). (27)
To calculate the corrections to the PC of the
LPlp -mode, we use the normalized mode func-
tions:

E
E, L (28)

N T T
JI E,E,dS

In this case, the normalization parameter
Nlp introduced in condition (4) is equal to unity.
Then relations (10), (11), (19), and (20) can be
rewritten in the following form:

5B} = ks [ B,y - Ae- E, ,\dS, (29)
S = T j E,y-Ae-E dS, (30
Ip
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4
6 2 (2) — kO
KRN

2 €2y
x( E,\ -Aa-EnuNdS) ,
k4
B = —— 0 x
y lp#npn 2sz (Blzp - Bi”)
(32)

<([ By -Ae-E,dS)

The following common approach can be ap-
plied to analyze the bending of a fiber with the
radius R (see Figure) [37]: instead of a fiber uni-
formly bent around the circumference of the fib-
er, we introduce an equivalent straight fiber with
a relative dielectric permittivity profile (7, @) of
the form (1). In this case, g (r, @) is the relative
permittivity profile of an unbent straight fiber,
and the perturbation Ag(r, ¢) is described by the
expression

_ 2nlrcos@
—

Ae (33)

In this case, the distributions of the trans-
verse fields coincide for the bent and equivalent
straight fibers [37].

on¥

Within the framework of the model for the
equivalent straight fiber, the first-order correc-
tion to the PC of the LPlp -mode for bent fiber can
be obtained by substituting expression (33) into
expression (30). However, it is easy to prove that
it is equal to zero due to the antisymmetric nature
of the perturbation. Therefore, it is insufficient to
confine the consideration with only the first cor-
rection in the bending case.

Substituting expression (33) into expression
(31), we obtain a second-order correction to the
PC square of the LPIP -mode:

4 4
s =y Mmooy

2 2 2 lp,ml;
lp#np (Blp - Bmu )R

here we have introduced the following notation
for the integral characterizing the relationship
between the LPlp—mode and the LPw—mode:

Ly = _[,[Ele ¥ cos Q- E, ydrde.  (35)

This integral can be calculated explicitly for
all combinations of LPlp—modes [37]. The follow-
ing integrals (35) are nonzero in this case:

1. Integral characterizing the relationship of
the LPlp—mode with the LPM’p—mode, ie.,

Schematic diagrams for bending analysis for fiber with the radius R: a, b are the bent
and equivalent straight fiber; ¢, d are the profiles of relative permittivity for fibers a and b, respectively
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3 p+l
Ip(I+1)p _E 5,

; (36)

2. Integral characterizing the relationship of

the LPlp—mode with the LPHW+1 -mode, i.e.,
_wlp.
Dy =55 37)

3. Integral characterizing the relationship of

the LP -mode with the LP, | —mode i.e.,
w |[p+l-1
[ _ = 9 (38)
lp,(l l)p 2 6171
4. Integral characterizing the relationship of
the LP -mode with the LP, , ~ -mode, i.e.,
I _v lp=l 39
Ip(I+1)(p-1) — E 5, > (39)

at the same time, 6,= 1if /=0, and 6,= 2if /0.

The remaining modes turned out to be unre-
lated to the LPZP -mode. We should note that all
coupled modes differ by unity in their composite
mode numberm =2p +[— 1.

Thus, the absolute value of the difference be-
tween the PC squares of the coupled modes does
not depend on the values of / and p and follows
the expression

_4

nu| 2"
w

B, - (40)

Therefore, the factor in front of the integral in
expression (34) can be simplified and taken out-
side the sum sign (accounting for the plus or mi-
nus signs). Then expression (34) can be rewritten
as follows:

N 40,2

8 2 01

Py R (41)
2 2 2 2

X(Izp,(m) L, oy ™ Loty = Ly )

By enumerating all possible combinations of
the indices / and p, it is easy to prove that the

Radiophysi
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expression in brackets in relation (41) is equal
to w?/4 regardless of the values of the indices
and the orientation of the mode function LPlp
(cos(lo) orsin(/g)).

Thus, the desired increment of the propaga-
tion constant square of the LPlp—mode in a par-
abolic optical fiber takes on a relatively simple
form:

2 2(2) g”fW4 02”1202
8Blp ZSBIp 4R2 = 2AR2 (42)

and, importantly, does not depend on the mode
number.

The actual increment of the PC 561
= SB,p / 2B, is written as

2.2 2
kyn;a

"B AT (43)

8Blp

Now we can proceed to calculating the differ-
ence

ABZnnu Blp Bnu

that is the difference in the mode propagation
constants under fiber bending, which is impor-
tant for calculations of interferometric sensors:

b
ABlp,nu -
_ap - fama g
lpmp 4.A 'BZDB;HRZ lpmp>

(44)

where ABZU,W , AB, . are the mode PCD of bent
and straight fibers, respectively.
The resulting expression can be simplified

taking into account that 3,3, ~ kon! :
2
A - 45)
Blpnu Blpnu 4A-R2 : (

Thus, the change in mode PCD in a bent par-
abolic optical fiber is proportional to the mode
PCD in a straight fiber AB; . With the pro-
portionality coefficient az/(4A) independent of
mode numbers. It is important for assessing the
efficiency of fiber optic sensors that detect bend-
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ing to obtain an estimate of the sensitivity of the
change in mode PCD to the inverse square of the
bending radius, which, according to expression
(45), has the form

b
o(AB},. ) _a AB -

T (1) 4A
ﬁ(sz

It should be borne in mind that both the the-
oretical formulas (22) — (27) for the mode func-
tions and the mode PC of a parabolic fiber, and
the formulas (42) — (46) that we derived for the
corrections to the PC and PCD of the mode were
obtained in the approximation of an unlimited
parabolic profile of the fiber's refractive index.
For this reason, strictly speaking, they cannot be
used to describe the behavior of modes close to
cutoff, whose field appears to largely extend be-
yond the fiber core.

The elasto-optical effect should be taken in-
to account in the formulation of expression (33)
for the perturbed profile of relative permittivity
to use the expressions obtained for analysis of
real fibers. The following approach can be used
for approximate account of this effect: the real
curvature radius of the bend is replaced with an
effective one, for example, R o 1.27 R for glass
fiber [30].

(46)

Conclusion

To analyze the influence of bending of a par-
abolic multimode fiber on the propagation con-
stants of the modes and their differences, we have
obtained analytical expressions for second-order
corrections using the method of small perturba-
tions. We have established that the increments to
the squares of mode propagation constants are
the same for all modes. Furthermore, we have
confirmed that the change in the difference be-
tween the mode propagation constants in a bent
fiber is proportional to the difference in the mode
propagation constants in a straight fiber with a
proportionality factor that does not depend on
the mode numbers. In this case, the magnitude
of the changes depends on the ratio between the
radius of the fiber core and the relative difference
between the refractive indices of the core and the
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cladding. The result obtained has major impor-
tance for developing interferometric fiber optic
sensors with fiber bending detection, as well as
in analysis of phase effects in fiber optic systems
with multimode fibers. The generalized expres-
sion derived for the second-order correction (20)
to the mode propagation constant presents inter-
est not only for analysis of optical fibers but also
arbitrary dielectric waveguides with uniform per-
turbation.

Appendix 1

Known estimate of the correction to the PC
of the mth mode of optical fiber with
a parabolic profile under uniform perturbation

The influence of fiber bending on the PC
of fiber modes is analyzed in [34] but since the
first-order correction vanishes in the perturba-
tion method, the authors suggested using, in-
stead of the perturbation method, a more specific
approach to analyzing the system of differential
equations of coupled modes.

As a result, the following estimate for the PC
increment was obtained in [34]:

_Z Klelm
9
1 Bm _Bl

where 83 is the correction to the PC of an m™
mode due to fiber perturbation leading to mode
coupling; B is the PC of an m™ mode without
perturbation; Kk, is the coupling coefficient be-
tween the m'" and #n'" mode.

The expression for the coupling coefficients
can be found, for example, in [36, 37]:

o, = (A1)

(r,0)-Ag(r,0)x

ot = 2Bm

A2
x E (r,9)-rdrde, (A2)

where k is the wavenumber; Ag(r, @) is the per-
turbation of the profile of the relative permit-
tivity of the fiber, in particular, under bending;
E _(r, @) is the normalized mode function; r, ¢
are the coordinates in a cylindrical coordinate
system where the z axis coincides with the fiber
axis. In this case, the mode functions satisfy the
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|
normalization condition:
“-E;Nrdrd(p =1.

If we substitute the expression (A2) to (Al),
we can obtain an estimate for the increment of
the mode PC:

k4
op = 0 X
P = 225 5 (5. =5

x(IIEmN -As-ElNrdrd(p)z.

(A3)

(A4)

In the case of an optical parabolic fiber in
the formalism LPlp , the mode PC can be found
using expression (27). The integrals in estimate
(A4) for the given fiber are also known (see Eqgs.
(35) — (39)). However, the expression obtained
based on (A4) still remains cumbersome, com-
plicating analysis of the physical meaning.

Appendix 2

Comparison of expressions for the PC
increment under fiber bending

Let us compare expression (20) that we ob-
tained to expression (A4). Notice that estimate
(20) differs from estimate (A4) in the denomi-
nator of the factor in front of the integral. The
denominator in expression (20) can be written in
the following form:

28,,(B;, —B7 ) =28, (B, +B,) (B, —B,)-
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For a weakly guiding optical fiber, when the
relative difference in refractive indices tends to
zero, B, = B, therefore the following relation
holds true:

2B, (Bm +Bl)(Bm _Bz) ~48,B, (Bm _Bl)

and the formulas converge asymptotically.

However, Eq. (20) seems to be more appropri-
ate for use for three reasons:

firstly, it was obtained by method of small per-
turbations generally accepted for such analysis,
yielding simple and understandable approxima-
tions; on the contrary, a number of approxima-
tions made in [34] do not allow clearly assessing
the order of smallness of the correction to the PC
and the conditions for the applicability of the ob-
tained estimate;

secondly, we obtained a simple and convenient
expression for the PC increments under bending
of a parabolic fiber from Eq. (20), while expres-
sion (A4) is a complex sum where the PC has to
be written out for all modes associated with the
calculated one;

thirdly, the expression that we obtained al-
lowed drawing important physical conclusions
about the increment of the mode PC under bend-
ing (they are discussed in Conclusion), while it is
difficult to draw such conclusions based on ex-
pression (A4).

The study was financially supported by the Russian
Foundation for Basic Research as part of Scientific
Project no. 19-31-27001.

REFERENCES

1. Bosch M., Liakatas I., Jiager M., et al., Poly-
mer based electro-optic inline fiber modulator,
Ferroelectrics. 223 (1) (1999) 405—412.

2. Diemeer J., Spiekman L.H., Ramsamoedj R.,
Smit M.K., Polymeric phased array wavelength
multiplexer operating around 1550 nm, Electron.
Lett. 32 (12) (1996) 1132—1133.

3. Li X.-Y., Sun B., Yu Y.-Y., He K.-P., Bend-
ing dual-core photonic crystal fiber coupler, Optik
(Stuttg.). 125 (21) (2014) 6478—6482.

4. Inaudi D., Vurpillot S., Casanova N., Kronen-
berg P., Structural monitoring by curvature analy-
sis using interferometric fiber optic sensors, Smart
Mater. Struct. 7 (2) (1998) 199—208.

5. Liu M.Y., Zhou Sh.-G., Song H., et al., A
novel fibre Bragg grating curvature sensor for struc-
ture deformation monitoring, Metrol. Meas. Syst.
25 (3) (2018) 577-587.

6. Zhi G., Di H., Wind speed monitoring system
based on optical fiber curvature sensor, Opt. Fiber

109



4 St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 14 (2) 2021

Technol. 62 (March) (2021) 102467.

7. Ushakov N., Markvart A., Kulik D., Lioku-
movich L., Comparison of pulse wave signal mon-
itoring techniques with different fiber-optic in-
terferometric sensing elements, Photonics. 8 (5)
(2021) 142.

8. Li X., Liu D., Kumar R., et al., A simple op-
tical fiber interferometer based breathing sensor,
Meas. Sci. Technol. 28 (3) (2017) 035105.

9. Irawati N., Hatta A.M., Yhuwana Y.G.Y., Se-
kartedjo, Heart rate monitoring sensor based on
singlemode-multimode-singlemode fiber, Photonic
Sensors. 10 (2) (2020) 186—193.

10. Novais S., Silva S.0., Frazao O., Curvature
detection in a medical needle using a Fabry-Perot
cavity as an intensity sensor, Measurement. 151
(February) (2020). 107160.

11. He Y., Zhang X., Zhu L., et al., Curvature
and force measurement of soft manipulator based
on stretchable helical optic fibre, Opt. Fiber Tech-
nol. 53 (December) (2019) 102010.

12. Savovi¢ S., Djordjevich A., Savovi¢ 1., Theore-
tical investigation of bending loss in step-index plas-
tic optical fibers, Opt. Commun. 475 (15 November)
(2020) 126200.

13. Marcuse D., Field deformation and loss
caused by curvature of optical fibers, J. Opt. Soc.
Am. 66 (4) (1976) 311—-320.

14. Schermer R., Cole M., Improved bend loss
formula verified for optical fiber by simulation
and experiment, IEEE J. Quant. Electron. 43 (10)
(2007) 899—909.

15. Velamuri A.V., Patel K., Sharma 1., et al., In-
vestigation of planar and helical bend losses in single-
and few-mode optical fibers, J. Light. Technol. 37 (14)
(2019) 3544—3556.

16. Silva S., Frazio O., Viegas J., et al., Tem-
perature and strain-independent curvature sensor
based on a singlemode/multimode fiber optic struc-
ture, Meas. Sci. Technol. 22 (8) (2011) 085201.

17. Wu Q., Semenova Y., Wang P., et al.,
Experimental demonstration of a simple displace-
ment sensor based on a bent single-mode-mul-
timode-single-mode fiber structure, Meas. Sci.
Technol. 22 (2) (2011) 025203.

18. Yang B., Niu Y., Yang B., et al., High sen-
sitivity curvature sensor with intensity demod-
ulation based on single-mode-tapered multi-

110

mode-single-mode fiber, IEEE Sens. J. 18 (3)
(2018) 1094—1099.

19. Su J., Dong X., Lu C., Property of bent few-
mode fiber and its application in displacement sen-
sor, IEEE Photonics Technol. Lett. 28 (13) (2016)
1387—1390.

20. Ivanov O.V., Mode interaction in a struc-
ture based on optical fiber with depressed inner
cladding, J. Commun. Technol. Electron. 63 (10)
(2018) 1143—1151.

21. Chen J., Lu P., Liu D., et al., Optical fib-
er curvature sensor based on few mode fiber, Optik
(Stuttg.). 125 (17) (2014) 4776—4778.

22. Dong S., Pu S., Huang J., Highly sensi-
tive curvature sensor based on singlemode-multi-
mode-singlemode fiber structures, J. Optoelectron.
Adv. Mater. 16 (11—12) (2014) 1247—1251.

23. Gong Y., Zhao T., Rao Y.-J. Wu Y., All-
fiber curvature sensor based on multimode inter-
ference, IEEE Photonics Technol. Lett. 23 (11)
(2011) 679—681.

24. Tian K., Xin Y., Yang W., et al., A curva-
ture sensor based on twisted single-mode-multi-
mode-single-mode hybrid optical fiber structure, J.
Light. Technol. 35 (9) (2017) 1725—1731.

25. Petrov A.V., Chapalo I.E., Bisyarin M.A.,
Kotov O.I., Intermodal fiber interferometer with
frequency scanning laser for sensor application,
Applied Optics. 59 (33) (2020) 10422—10431.

26. Kosareva L.I., Kotov O.I., Liokumovich
L.B., et al., Two mechanisms of phase modulation
in multimode fiber-optic interferometers, Tech.
Phys. Lett. 26 (1) (2000) 70—74.

27. Oksanen M.I., Perturbational analysis of
curved anisotropic optical fibers, J. Opt. Soc. Am.
A. 6(2) (1989) 180—189.

28. Shemirani M.B., Mao W., Panicker R.A.,
Kahn J.M., Errata to “Principal modes in graded-
index multimode fiber in presence of spatial- and
polarization-mode coupling”, J. Light. Technol. 29
(12) (2011) 1900—1900.

29. Garth S.J., Modes and propagation con-
stants on bent depressed inner cladding optical fib-
ers, J. Light. Technol. 7 (12) (1989) 1889—1894.

30. Schermer R.T., Mode scalability in bent opti-
cal fibers, Opt. Express. 15 (24) (2007) 15674—15701.

31. Garth S.J., Modes on a bent optical wave-
guide, IEEE Proc. J.: Optoelectronics. 134 (4)



\

(1987) 221—229.

32. Kumar A., Goyal 1.C., Ghatak A K., Effect
of curvature on dispersion in multimode parabolic
index fibres, Opt. Acta: Internat. J. Opt. 22 (11)
(1975) 947—953.

33. Malik D.P.S., Gupta A., Ghatak A.K.,
Propagation of a Gaussian beam through a circu-
larly curved selfoc fiber, Appl. Opt. 12 (12) (1973)
2923-2926.

Received 14.05.2021, accepted 18.05.2021.

Radiophysi
adiophysics

34. Taylor H., Bending effects in optical fibers, J.
Light. Technol. 2 (5) (1984) 617—628.

35. Yariv A., Yeh P., Optical waves in crystals.
Willey, New York, 1984.

36. Yariv A., Yeh P., Photonics: optical electron-
ics in modern communications. Oxford University
Press, New York, 2007.

37. Unger H.-G., Planar optical waveguides
and fibres. Clarendon Press, Oxford, 1977.

THE AUTHORS

MARKVART Aleksandr A.
Peter the Great St. Petersburg Polytechnic University

29 Politechnicheskaya St., St. Petersburg, 195251, Russian Federation

markvart _aa@spbstu.ru

LIOKUMOVICH Leonid B.
Peter the Great St. Petersburg Polytechnic University

29 Politechnicheskaya St., St. Petersburg, 195251, Russian Federation

leonid@spbstu.ru

USHAKOY Nikolai A.
Peter the Great St. Petersburg Polytechnic University

29 Politechnicheskaya St., St. Petersburg, 195251, Russian Federation

n.ushakoff@spbstu.ru

CINMUCOK JIUTEPATYPbI

1. Bosch M., Liakatas I., Jiger M., Bosshard
Ch., Giinter P. Polymer based electro-optic inline
fiber modulator // Ferroelectrics. 1999. Vol. 223.
No. 1. Pp. 405—412.

2. Diemeer J., Spiekman L.H., Ramsamoedj R.,
Smit M.K. Polymeric phased array wavelength mul-
tiplexer operating around 1550 nm // Electronics
Letters. 1996. Vol. 32. No. 12. Pp. 1132—1133.

3. Li X.-Y., Sun B., Yu Y.-Y., He K.-P. Bending
dual-core photonic crystal fiber coupler // Optik
(Stuttgart). 2014. Vol. 125. No. 21. Pp. 6478—6482.

4. Inaudi D., Vurpillot S., Casanova N., Kro-
nenberg P. Structural monitoring by curvature
analysis using interferometric fiber optic sensors //
Smart Materials and Structures. 1998. Vol. 7. No. 2.
Pp. 199-208.

5. Liu M..Y., Zhou Sh.-G., Song H., Zhou W.-J.,
Zhang X. A novel fibre Bragg grating curvature sen-
sor for structure deformation monitoring // Me-
trology and Measurement Systems. 2018. Vol. 25.
No. 3. Pp. 577-587.

6. Zhi G., Di H. Wind speed monitoring system
based on optical fiber curvature sensor // Optical
Fiber Technology. 2021. Vol. 62. March. P. 102467.

7. Ushakov N., Markvart A., Kulik D., Lioku-
movich L. Comparison of pulse wave signal mon-
itoring techniques with different fiber-optic inter-
ferometric sensing elements // Photonics. 2021.
Vol. 8. No. 5. P. 142.

8. Li X., Liu D., Kumar R., Ng W.P., Fu Y.-q.,
Yuan J., Yu Ch. A simple optical fiber interferome-
ter based breathing sensor // Measurement Science

111



4 St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 14 (2) 2021

and Technology. 2017. Vol. 28. No. 3. P. 035105.

9. Irawati N., Hatta A.M., Yhuwana Y.G.Y.,
Sekartedjo. Heart rate monitoring sensor based on
singlemode-multimode-singlemode fiber // Pho-
tonic Sensors. 2020. Vol. 10. No. 2. Pp. 186—193.

10. Novais S., Silva S.0., Frazdao O. Curvature
detection in a medical needle using a Fabry-Perot
cavity as an intensity sensor // Measurement. 2020.
Vol. 151. February. P. 107160.

11. He Y., Zhang X., Zhu L., Sun G., Lou X.,
Dong M. Curvature and force measurement of soft
manipulator based on stretchable helical optic fibre
// Optical Fiber Technology. 2019. Vol. 53. Decem-
ber. P. 102010.

12. Savovi¢ S., Djordjevich A., Savovié¢ I. The-
oretical investigation of bending loss in step-index
plastic optical fibers // Optics Communications.
2020. Vol. 475. 15 November. P. 126200.

13. Marcuse D. Field deformation and loss
caused by curvature of optical fibers // Journal of
the Optical Society of America. 1976. Vol. 66. No. 4.
Pp. 311-320.

14. Schermer R., Cole M. Improved bend loss
formula verified for optical fiber by simulation and
experiment // IEEE Journal of Quantum Electron-
ics. 2007. Vol. 43. No. 10. Pp. 899—909.

15. Velamuri A.V., Patel K., Sharma 1., Gupta
S.S, Gaikwad S., Krishnamurthy P.K. Investigation
of planar and helical bend losses in single- and few-
mode optical fibers // Journal of Lightwave Tech-
nology. 2019. Vol. 37. No. 14. Pp. 3544—-3556.

16. Silva S., Frazao O., Viegas J., Ferreira L.A.,
Araujo F.M., Malcata F.X., Santos J.L. Tempera-
ture and strain-independent curvature sensor based
on a singlemode/multimode fiber optic structure
// Measurement Science and Technology. 2011.
Vol. 22. No. 8. P. 085201.

17. Wu Q., Semenova Y., Wang P., Hatta A.M.,
Farrell G. Experimental demonstration of a sim-
ple displacement sensor based on a bent single-
mode-multimode-single-mode  fiber structure
// Measurement Science and Technology. 2011.
Vol. 22. No. 2. P. 025203.

18. Yang B., Niu Y., Yang B., Hu Y., Dai L., Yin
Y., Ding M. High sensitivity curvature sensor with
intensity demodulation based on single-mode-
tapered multimode-single-mode fiber // IEEE Sen-
sors Journal. 2018. Vol. 18. No. 3. Pp. 1094—1099.

112

19. Su J., Dong X., Lu C. Property of bent few-
mode fiber and its application in displacement sen-
sor // IEEE Photonics Technology Letters. 2016.
Vol. 28. No. 13. Pp. 1387—1390.

20. Ivanov O.V. Mode interaction in a structure
based on optical fiber with depressed inner cladding
// Journal of Communications Technology and
Electronics. 2018. Vol. 63. No. 10. Pp. 1143—1151.

21. Chen J., Lu P., Liu D., Zhang J., Wang Sh.,
Chen D. Optical fiber curvature sensor based on
few mode fiber // Optik (Stuttgart). 2014. Vol. 125.
No. 17. Pp. 4776—4778.

22. Dong S., Pu S., Huang J. Highly sensi-
tive curvature sensor based on singlemode-mul-
timode-singlemode fiber structures // Journal of
Optoelectronics and Advanced Materials. 2014.
Vol. 16. No. 11—-12. Pp. 1247—1251.

23. Gong Y., Zhao T., Rao Y.-J., Wu Y. All-
fiber curvature sensor based on multimode interfer-
ence // IEEE Photonics Technology Letters. 2011.
Vol. 23. No. 11. Pp. 679—-681.

24. Tian K., Xin Y., Yang W., Geng T., Ren J.,
Fan Y.-X., Farrell G., Lewis E., Wang P. A curva-
ture sensor based on twisted single-mode-multi-
mode-single-mode hybrid optical fiber structure
// Journal of Lightwave Technology. 2017. Vol. 35.
No. 9. Pp. 1725—1731.

25. Petrov A.V., Chapalo 1.E., Bisyarin M.A.,
Kotov O.I. Intermodal fiber interferometer with
frequency scanning laser for sensor applica-
tion // Applied Optics. 2020. Vol. 59. No. 33.
Pp. 10422—10431.

26. Kocapesa JI.!., Koros O.H., JInokymoBry
JI.b., Mapkos C.H., Measenes A.B., Hukoiaen
B.M. JIBa mexaHu3ma Momyssuuu ¢a3bl B MHO-
TOMOJIOBBIX BOJIOKOHHBIX UWHTepdepomeTpax //
IMTucema B 2KypHan texHudyeckoit ¢pusuku. 2000.
T. 26. Ne 2. C. 53-58.

27. Oksanen M.I. Perturbational analysis of
curved anisotropic optical fibers // Journal of the
Optical Society of America. A. 1989. Vol. 6. No. 2.
Pp. 180—189.

28. Shemirani M.B., Mao W., Panicker R.A.,
Kahn J.M. Errata to “Principal modes in graded-
index multimode fiber in presence of spatial-
and polarization-mode coupling” // Journal of
Lightwave Technology. 2011. Vol. 29. No. 12.
Pp. 1900—1900.



\

Radiophysi
adiophysics

29. Garth S.J. Modes and propagation constants
on bent depressed inner cladding optical fibers
// Journal of Lightwave Technology. 1989. Vol. 7.
No. 12. Pp. 1889—1894.

30. Schermer R.T. Mode scalability in bent op-
tical fibers // Optics Express. 2007. Vol. 15. No. 24.
Pp. 15674—15701.

31. Garth S.J. Modes on a bent optical wave-
guide // IEEE Proceedings Journal: Optoelectronics.
1987. Vol. 134. No. 4. Pp. 221—-229.

32. Kumar A., Goyal I.C., Ghatak A.K. Effect of
curvature on dispersion in multimode parabolic in-
dex fibres // Optica Acta: International Journal of
Optics. 1975. Vol. 22. No. 11. Pp. 947—-953.

33. Malik D.P.S., Gupta A., Ghatak A.K. Prop-
agation of a Gaussian beam through a circularly
curved selfoc fiber // Applied Optics. 1973. Vol. 12.
No. 12. Pp. 2923—-2926.

34. Taylor H. Bending effects in optical fibers
// Journal of Lightwave Technology. 1984. Vol. 2.
No. 5. Pp. 617—628.

35. Yariv A., Yeh P. Optical waves in crystals.
New York: Willey, 1984. 589 p.

36. Yariv A., Yeh P. Photonics: optical electron-
ics in modern communications. New York: Oxford
University Press, 2007. 849 p.

37. Unger H.-G. Planar optical waveguides and
fibres. Oxford: Clarendon Press Oxford, 1977. 751 p.

Cmambs nocmynuaa 6 pedaxyuio 14.05.2021, npunsama k nybauxayuu 18.05.2021.

CBEAEHUA Ob ABTOPAX

MAPKBAPT Anekcanap AneKcaHapoBud — accucmenm Boicuieill wikonvt npukaadnoil uuku u KocmMu4eckux

mexuonoeutit Cankm-Ilemepbypeckoeo noaumexuuueckoeo ynusepcumema Ilempa Beauxoeo, Cankm-Ilemepoype,

Poccuiickas Pedepayus.

195251, Poccmiickas @Penepamnus, . CankT-Iletepoypr, [TomuTexumaeckas yi., 29

markvart_aa@spbstu.ru

JIMOKYMOBMNY Jleonun Bopucosud — doxkmop gusuxo-mamemamuueckux Hayk, npogeccop Boicuieil uiko-

/bl NPUKAAOHOU u3UKU U Kocmuueckux mexronozuiit Cankm-Ilemep6ypeckoeo noaumexHu4ecko2o yHugepcumema

Ilempa Beauxoeo, Cankm-Ilemep6ype, Poccuiickas Pedepayus.

195251, Poccmiickas @Penepamnus, T. CankT-Iletepoypr, [TomuTexumaeckas yi., 29

leonid@spbstu.ru

VIIIAKOB Hukouaii AlleKCAHAPOBHY — HAY4Hbl compyOHuK Boicuiell wkoavt npukaadnoi usuku u Koc-

muueckux mexnonoeuii Cankm-Ilemepbypeckoeo noaumexnuueckoeo ynusepcumema Ilempa Beaukxoeo, Cankm-

Tlemep6ype, Poccuiickas Dedepayus.

195251, Poccmiickas @Penepamnus, T. CankT-Iletepoypr, [TomuTexunaeckas yi., 29

n.ushakoff@spbstu.ru

© CaHkT-MNeTepbyprckuii MoNMTEXHUYECKUI YHUBepcuTeT MeTpa Benukoro, 2021

113



\

Theoretical physics

DOI: 10.18721/IPM.14210
UDC 530.12:517.988.38(075.8)

114

ABOUT THE PROPER TIME AND THE MASS OF THE UNIVERSE

N.N. Gorobey', A.S. Lukyanenko', A.V. Goltsev?

! Peter the Great St. Petersburg Polytechnic University,
St. Petersburg, Russian Federation;

2 Toffe Institute of the Russian Academy of Sciences,
St. Petersburg, Russian Federation

For a closed universe, a modification of the quantum gravity where the dynamics is reduced to
the motion in the orbit of a general covariance groups has been proposed. To connect these motion
parameters, namely, proper time and spatial shifts, to observations, classical equations of motion were
introduced into the quantum theory as additional conditions. The equations account for differential
conservation laws for additional dynamical variables, which form the spatial density of distribution and
motion of the universe's proper mass in the representation of Arnovitt, Deser and Misner (ADM). This
made it possible to determine the average values of the parameters of proper time and spatial shifts in
the evolutionary history of the universe. In order to preserve the homogeneity and isotropy of space, the
proper mass of the universe should next be set equal to zero. Nonzero values of its proper mass (mass
spectrum) were allowed in the operator canonical representation of the quantum gravity, which was also
introduced instead of the ADM representation.
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O COBCTBEHHOM BPEMEHU U MACCE BCEJIEHHOM
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Jlst cyyast 3aMKHYTOlM BeeneHHoit nmpeayioxkeHa MonuduKaius KBAaHTOBOM TeOPUU TpaBUTALIUH,
B KOTOPOI AMHAMMKa CBOAMUTCS K JBUKEHMIO MO OpOMTE IpyImn oOIleid KoBapuaHTHOCTU. UTOObI
CBSI3aTh C HAOJIIOICHUSIMU TTapaMETPhl 3TOTO IBUKEHUS, @ UMEHHO COOCTBEHHOE BpeMSI U MPOCTpaH-
CTBEHHBIE CIBUTHY, B KQUECTBE JOTIOJTHUTEJIbHBIX YCIOBUI B KBAHTOBYIO TEOPUIO BBOMSITCS KJlacCUye-
CKME YpaBHEHUs IBUKEHUS YKa3aHHBIX MapaMeTpoB. DTU ypaBHEHUs OTpaxkaroT nuddepeHiiaib-
HbI€ 3aKOHBI COXpaHEHMS TOTIOJIHUTEIBHBIX TMHAMUYECKUX TIePeMEHHBIX, KOTOPBIE B ITPEICTaBIeHUN
ApHoBurtrta, Jlesepa u MusHepa (AIIM) 006pa3yroT NpOCTPaHCTBEHHYIO IUIOTHOCTD pacIipeaeJeHUs 1
NBUXKEHMST COOCTBEHHOI Macchl BeenieHHoi. OnpeneneHbl cpegHue 3HaueHUs TapaMeTpoB COOCTBEH-
HOTO BPEMEHU U MPOCTPAHCTBEHHBIX CIBUIOB B UCTOPUM 3BodOLIMU BceeneHHoit. MHBapuaHTHOE
ornpeejeHre COOCTBEHHOI Macchl (CriekTpa Macc) chopMyIMpPOBaHO B ONTEPATOPHOM KAHOHUYECKOM
MpeCTaBICHUY TEOPUN IPaBUTAIIMU, KOTOPOE TaKXke BBOAUTCS BMeCTO npenacrapieHus AIIM.

KioueBbie ciioBa: BeesteHHast, coOCTBeHHOE BpeMsi, COOCTBeHHasl Macca, KBAHTOBaHUE, DPMUTOB
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Introduction

For a closed universecase, the following
Wheeler — DeWitt equation (a system of wave
equations) is the heart of quantum gravity:

H"Y =0. (1)

According to this equation, the wave func-
tion of the universe ¥ does not depend from any
external parameter of time. Albeit adopting this
concept, we, nonetheless, assume that time is re-
quired for interpretation and description of the
observation results, and thus it should be intro-
duced in the quantum cosmology as well. This
calls for a modification of the canonical proce-
dure for quantizing the theory.

This paper proposes a variant of such a modi-
fication in case of a closed universe, which allows
introducing the time parameter (parameters).
The modification is simultaneously a variant of
the quasiclassical approximation and presents no
changes into the dynamical content of the theory
at the classical level.

As a model for our constructions, let us con-
sider the mechanics of a relativistic particle. In
relativistic mechanics, mass particle Hamilto-
nian m is proportional to the Hamiltonian con-
straint, i.e.

h=NH,H =p*—m’c’, )
which expresses the known condition imposed
on a particle’s four-momentum.

We use a simplified notation for a four-vector
square p? = P'p,. Let us base our constructions
on the formal symmetry of relativistic mechanics:
the reparametrization-invariance of action which
has geometrical meaning of a particle’s world line
in Minkowski space. The arbitrary function N of
the parameter T on the world line provides this
invariance. This symmetry is the simplest analog
of the general covariance principle in Einstein’s

theory of gravity.

The most universal tool of quantizing covariant
theories is Batalin — Fradkin — Vilkovisky formal-
ism (BFV-formalism) which prescribes the way
to constructing Becchi — Rouet — Stora — Tyutin
propagator (BRST-propagator) [1, 2]. In the sim-
plest case of a relativistic particle, this formalism
gives a simple result as well: functional-integral
representation of the Green’s function for the
Klein — Gordon equation [3], which contains an
additional integral over particles proper time with-
in [0, o). This representation was first proposed by
V.A. Fock [4] and J. Schwinger [5]. The problem
of interpretation of this covariant quantum theo-
ry consists in the fact that proper time here is not
a parameter of the evolution, while the Green’s
function itself has no dynamical meaning. We ob-
tain the same result for homogenous models of the
universe in the quantum theory.

For the proper time in the quantum theory to
obtain the meaning of an evolution parameter,
we need additional constructions allowing proper
time integration in the propagator. The authors
of Ref. [6] propose a modification of the origi-
nal theory for the homogenous anisotropic model
of the universe which allows removing the prop-
er time integral without changing its dynamical
content at the classical level.

Let us conditionally divide the modification
into two stages. At the first one, the proper time
is introduced into the initial action of the clas-
sical theory as a new dynamical variable using a
relation

N =s. 3)

At the second stage, we add Euler — Lagrange
(EL) to the initial action for the new dynamical
variable as an additional condition. It is equiv-
alent to adding to the initial action its variation
generated by an infinitesimal shift of the proper
time:
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Os =—¢. 4)

In the simplest homogenous model of the uni-
verse [6], this EL equation is reduced to the law
of conservation of Hamiltonian constraint which
in the original theory was a consequence of equa-
tions of physical dynamical variables motion.
Such a modification obviously does not change
dynamical content at the classical level, but in
this case, it already leads to some additions.

Consider the consequences of the theory un-
der consideration on the example of relativistic
mechanics. As an initial system, let us take a
massless particle (m = 0 in relation (2)) with La-
grangian

1%
== (5)

2N

After two stages of modification move on to
the Lagrange function:

(6)

where the infinitesimal shift of the proper time
€ should also be considered as an independent
dynamical variable.

Pass on to the canonical form of the modified
theory. Its Hamiltonian equals zero as Lagrangi-
an (6) is a homogenous function of velocities of
the first order, while the constraint equation takes
the form

p.=E~\2E\p’. 0
where
1 %
P=—— 8
¢ 240 ®

is a canonical momentum conjugated to €.

Another canonical equation of motion is the
conservation law for the additional dynamical
variable P =0. Bearing in mind Eq. (7), this
means the conservation law of the initial theory
constraint. However, the particle’s mass can be
not equal to zero now, if we set
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P =2m’c’. 9)

Thus, the proposed modification leads to ap-
pearance of the additional parameter P_ in the
theory, which in this case serves as the constant
of motion. This could also be understood as an
expansion of the admissible initial values of the
particle’s velocity due to its “gained” mass. Note
that the initial constraint (2) is an invariant of the
Lorentz transformations acting in Minkowski
space and phase space of the relativistic particle.
The proper mass obtained in this construction is
an invariant as well.

There is another significant result of the
modification: a square root of the 4-momentum
square p, in Eq. (7). In the quantum theory, it is
a source of an additional conditional in the form
of 8, a function in the functional integral which
defines the proper time on the world line of the
particle as integral Eq. (8):

,/dxudx“
5= [F72— (10)
or,

This exact equation allows eliminating proper
time integration in the propagator for the relativ-
istic particle. A generalization of this modifica-
tion of the covariant quantum theory for a case of
a system with two Hamiltonian constraints and
two proper time parameters is considered in pa-
per [7].

In this paper, the authors proposed a modi-
fication of the gravity theory in the general case
of an inhomogeneous universe. It is based on
the representation of the action obtained by Ar-
novitt, Deser and Misner (ADM) [8, 9] using a
(3 + 1)-split of 4D-metric. A part of elements
of this metric (N, V), which are called succes-
sor and shift functions, play a role of Lagrange
multipliers in the canonical representation of
the ADM action. The modification of the the-
ory in this representation leads to occurrence
of additional dynamical variables, which form
scalar and vector densities with respect to trans-
formations of space coordinates. Similar to the
relativistic particle, they can be called density
and flux density distribution of the proper mass
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of the universe. Assumption of non-zero values
of these variables in the ADM representation
means a breach of homogeneity and isotropy
of the space. Generalization of the theory be
means of introducing invariant non-zero values
of the additional dynamical variables is possible
in the operator representation of gravitational
constraints [10], which is also considered in this
paper.

In the operator representation, additional var-
iables are invariants of 3D-diffeomorphisms and
form a spectrum of proper mode masses of the
universe.

Proper time and mass of the universe
in the ADM representation

The action of the gravity theory in ADM rep-
resentation obtained by means of (3 + 1)-split of
4D-metric has the form of [9]:

Loy = IthJ-Z\/Efx X

11
x| R+Trk? —(Tek )’ |, v
where
1 )
K, Zﬁ[viNk +V.N, _gik] (12)

is the tensor of the hypersurface extrinsic curva-
ture of the constant time ).

To simplify, we exclude the action of matter
fields from action (11). The addition of the mat-
ter does not change the main conclusions of the
article. Here, N, N, are successor and shift func-
tions which are the elements of the 4D-metric.
Time derivatives of these functions are absent
in the ADM action, so they play the role of La-
grange multipliers in the canonical representa-
tion of the action.

EL equations for N, N, are essentially classic
constraint equations expressed via time deriva-
tives from 3D-metric:

0/ spm
ON

- @[M(Tm)z —TrKZ] =0,

—H =
(13)

‘ (14)

=-2v, | Jg (g"K k") ]=0.

The Hamiltonian in the case of the closed
universe has the form of a linear combination
3
hyom = [ d*xN,IT¥, (15)
where IT* are ADM constraints expressed via ca-
nonical momenta

o :\/g(gikK_Kik)’

conjugated to 3D-metric elements.

Momentum quadratic Hamiltonian con-
straints are canonical generators of shifts normal
to the space cross-section ), while the linear
momentum constraints serve as canonical gener-
ators of 3D-space diffeomorphisms.

Here, we have no need for explicit form of
these constraints in the ADM representation.
Although, let us note that they form scalar and
vector densities with respect to transformations
of space coordinates on ). Further, we follow
general notations [11] sufficient for any covariant
theories. Summation over repeated indices im-
plies integration if the range of the possible index
values forms continuum.

In the gravity theory, the variation range of the
Latin index is as follows:

(16)

oa=(mx); p=0; i,xeX.

In these general notations, the infinitesimal
shifts of the proper (multipoint) time are united
with the infinitesimal space shifts on the hypersur-
face by means of a united symbol € , so that the
infinitesimal variations of the canonical variables
generated by these shifts are written in the form

Sqa :8b {qu>(pb}’
3P, =&, {Pus @y }-

The constraints form closed algebra with respect
to Poisson brackets, i.e.

(17)
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{04:0,} = Cpy @y (18)

and we will not need its structural functions in
the explicit form here as well.

Transformations (17) in this case act as sym-
metry transformations of the theory only in so
far as the action written in the canonical form

I1={dtL(g,4.%,)=

. (19)
= J.dt[pzqz _Ka(Pa]
is an invariant of the transformations with an
additional Lagrange multipliers transformation:
O, =€, -C, M€, (20)
Take Eq. (20) as the basis of our further con-

structs. Let us consider them as functional dif-
ferential equations in the form

82, (1) _
8s, (¢') -
d 21)
=3, ES(f —1")=Cpohy () (1-1)

with respect to Xa, and here, we assume them to
be functionals of the proper time s _parameters.
Solution to these equations at additional ini-
tial conditions XQ[O] = ( has the following form:
A, =8, (22)

It can be obtained using iterations in the
form of functional Taylor series, in which with

the accuracy of up to second order of smallness
with respect to s

Ab(x .= 81)11

1 , (23)
+§Cb,d,u,deb,sdsd -

1
- 5 ChaoSa T

We will also need a variation of Lagrange
multipliers (22) at the infinitesimal shift of the
proper time €, parameters:
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Sh, =& A, 45, e (24)
Os

d

Egs. (22) and (24) are a generalization of
Egs. (3) and (4) for the general case of an in-
homogeneous universe. Using an analogy with
relativistic mechanics, let us write Lagrange
function of the modified gravity theory at once
in the general case:

Z(qaq.asajagaé)=L(Qaq.’}\l(5,5.'))+

N OL(q,4,1(s,5))
o,

The peculiarities connected with the time
problem and possible solutions to it in the mod-
ified theory reveal themselves after a transition
to the canonical form of the action (25). Mod-
ified Lagrange function (25) is a homogenous
first order function of all generalized velocities.
For this reason, the Hamiltonian of the modi-
fied theory equals zero.

Taking this into account, we deviate here
from the standard formalism of covariant dy-
namics quantization in terms of the external
time parameter [1, 2]. Such a description re-
mains possible in the island universe model, the
energy of which is equal to zero, and the time is
measured in hours at infinity [12]. Instead, in
a closed universe, we can talk about symmetry
transformations or motion of general covariance
groups in the orbit generated by constraints,
while the parameters of this motion form the
proper (multipoint) time s_.

In the modified theory, this intrinsic dynam-
ics consists in the equations that determine the
canonical momenta conjugated to the proper
time:

(25)

Shy (5,5,6,8).

p, =L, 26)
o 0s,

These equations will play a role of constraints
in the modified theory after the transition to its
canonical form. For this purpose, we should ex-
clude all velocities from the right-hand side of
Eq. (26) by expressing them through the corre-
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sponding canonical momenta.

In the quantum theory, the constraints of Eq.
(26) transform into a system of self-consistent
wave equations of Schrodinger equation type

m@_‘P =hY
0s,,
for the universe wave function V.

The general covariance principle demands
excluding the dependence of the universe wave
function on the additional dynamical variables s .

Obtain the invariant propagator by addition-
al integration of solution to system (27) along
the whole orbit of the general covariance groups
with a simple measure:

Iz:desa‘P K

We will not develop the modified quantum
theory here, but focus on those aspects of the
canonical form of the classical theory, which
lead to eliminating the integrals in propagator
(28). One of such aspects is excluding the infin-
itesimal shift velocities of the proper time as
a result of which there are square roots in Eq.
(26) which are similar to those containgg, in
constraints Eq. (7). To exclude them, there are
equations determining the corresponding ca-
nonical conjugated momenta in the form

~ OL(q,4.%(s,5))
g, a}\‘d Aad

= APy

which we will further require in explicit form.

Egs. (29) allow obtaining a generalization of
simplest Eq. (10) for the proper time of the rela-
tivistic particle in a form of a system of equations
for the proper (multipoint) time of the universe.

Let us write off this system in explicit form
keeping in mind our agreement on the con-
densed Latin index:

27)

(28)

(29)

\/Nz TrK? (x)—(TrK (x ))J
JP Ao (¥)+R ()

=N(x),

(30)

Je(x)P, AL (x)=
=29, 2 (x) (" (x)K (x) - K* (x)) |

Here, successor and shift functions are deter-
mined by Egs. (22). Both sides of Egs. (30) and
(31) are homogenous functions of the first and
zero degrees of velocities, respectively. The inte-
grals of these equations define the proper time of
the universe as a trajectory function in its config-
uration space. This time also acts as a functional
of the additional dynamical variables P_, there-
fore, Egs. (30), (31) should be solved together
with their motion equations. They are obtained as
EL equations for infinitesimal shifts of the proper
time in the modified time and have the form

(1)

iP +PA Oy

dt w55 Os

=0. (32)

o

According to expressions (29), the additional
dynamical variables P_, as well as the constraints
in the ADM representation, form spatial densi-
ties. Permission of their non zero values violates
the covariance of the modified theory with re-
spect to 3D-diffeomorphisms. There is no breach
of the covariance, if we assume the additional
dynamical variables to be identically equal to
zero. Moreover, the result of the modification in
the form of the system of Egs. (30), (31) defin-
ing the proper time of the universe in the ADM
representation is maintained. The invariant defi-
nition of the proper time and mass of the uni-
verse can be achieved by using 3D-invariant rep-
resentation of the gravitational constraints.

Operator representation
of gravitational constraints

The 3D-invariant representation of the grav-
itational constraints is based on the operator
equality

1
H:D2+5A:O, (33)
which is equivalent to a complete set of gravi-
tational constraints in the ADM-representation
[9]. Here, D is the Dirac 3D-operator, while A

is Laplace — Beltrami 3D-operator in Dirac
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bispinor space at the compact space cross-sec-
tion Y with the given scalar product

Wp‘lfz J-\/_d XYY, (34)

Both operators A and D are Hermitian with
respect to product (34), their coefficients are the
essence of the function of canonical variables of
the gravitational field (g, , 7).

To introduce a new canonical representation,
let us consider the fact the proper functions of
the Hermitian operator H form a complete set
in Dirac bispinor space, while the necessary and
sufficient conditions of its equality to zero is the
equality to zero of all of its proper values defined
by a secular equation.

Hy, =hy,. (35)

In its turn, this means that the proper values
of H form closed algebra with respect to Poisson
brackets with the previous canonical variables:

sy} =

Operator Eq. (33) allows us to transform the
Hamiltonian of the gravity theory from the ini-
tial representation in the form of integral (15)
of the ADM local constraints distribution at the
space cross-section ) into a linear combination
of mode Hamiltonians:

C.h.

apy ™yt

(36)

h, =A,h, (g.m). 37)

Here, modes are understood as proper states
of the operator H.

Secular Eq. (35) can be represented in a ma-
trix form based on spectral decomposition for
each Hermitian and elliptical operator in equal-
ity (33).

Write the secular equation for the Dirac oper-
ator square:

Dy, =dy,. (38)

Assuming the set of proper functions y is
orthonormal, we will seek a solution to Eq. (35)
in a form of decomposition
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(39)

= Z c(xn\vn >
n

for the coefficients of which we obtain a system
of equations

2 A = (I

:(Wm’A\Ijn)'

d)cA

mn

(40)

Now, let us write the secular equation for the
Hermitian matrix A in the form:
P _— P
DAL =8 f (41)
and look for a solution to system (40) as a decom-
position

=>a,fl. (42)

P

Assuming again the set of vector-sequences
f.} orthonormal with respect to a common Her-
mitian scalar product in the space of sequences,
for the coefficients of this decomposition and the
proper values of operator H of interest, we obtain:

2ty frag, =(h+8, )ay,.  (43)

In this form, the system of equations defining
mode Hamiltonians of the universe ha, can be
useful, in particular, to formulate finite-dimen-
sional approximations. Thus, for a homogenous
universe, obviously, we have the sole mode with
Hamiltonian

h=d} -3, (44)
which coincides with the Hamiltonian of the ho-
mogenous anisotropic universe considered in pa-
per [6].

Mode Hamiltonians of %  are invariants of
3D-transformations of the coordinates in the
space cross-section. Consequently, all variables
appearing in the constructs of the previous chap-
ter are also invariants. Mode parameters of the
proper time and the proper mass spectrum are
invariant as well from direct analogy of relativistic
mechanics. This allows us to consider the evolu-
tion of the universe in the modified quantum the-
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ory without violating the general covariance prin-
ciple even at non-zero values of the proper mass.
For the wave function of the universe origin, we
postulate the conditional principle of minimum
space energy defined by the functional

<lP0 |dl2 |lP0 >
W=>2+——+. (45)
(Wo[¥o)

Equal-zero Hamiltonian of the universe (37)
here serves as an additional condition, while the
wave function ¥ and Lagrange multipliers Xn are
the variational parameters. To calculate this ener-
gy defined by the elliptical operator dl2 , we take
its minimal proper value. Further, we solve the
system of wave equations (27) (written now in the
operator representation). The propagator (28)
obtained in this fashion has additional depend-
ence on the spectrum of invariant mode mass.
This, in turn, allows us to define observable mode
parameters of the proper time as average values of
the corresponding observables:

ol

These parameters of time or the correspond-
ing spatial scale, obviously, can be associated with
the hierarchy of the spatial structures emerging in
the process of the universe evolution. After calcu-
lating mean values (46), in the frame of the orig-
inal theory, the mode mass should be set equal to
zero. However, the general covariance principle
now does not exclude the non-zero values of
these parameters as well. The presence of absence
of the proper mass of the universe is a question
of observations and their interpretation we leave
open here.

The new canonical representation of the grav-
ity theory allows us to modify original Wheeler
— DeWitt form (1) as well. The system of local
(for each point of the space) wave equations su-
perimposed on the physical state of the universe
should now be replaced by non-local mode con-
ditions. In case of strict adherence to the conven-
tional formulation of the quantum constraints,
the operator representation leads to the following

(46)

system of wave equations for the physical state of
the universe V:
hW =0. (47)
Nonetheless, direct form of operator rep-
resentation (33) as a self-consistent definition
of the modes themselves with the wave equation
for the universe wave function in the frame of the
functional differential equation seems more nat-
ural:
Hy ¥, =0. (48)
In this formulation of the quantum cosmolo-
gy, the solutions should be grouped in sequenc-
es with increasing mode index o, which by that
takes the meaning of a quantum parameter of the

proper time in this sequence of the physical states
of the universe ¥ .

Conclusion

The absence of the traditional view of time
in the quantum cosmology is one of the con-
sequences of the general covariance principle,
which excludes any external numbering of the
universe structure. This means that the universe
evolution should be defined in the intrinsic terms.
In fact, the structure of the covariance group it-
self, after additional constructs, defines the in-
trinsic dynamics of the universe. The constructs
proposed in this paper are based on the structure
of the general covariance group in the canon-
ical ADM-representation obtained by means
of (3+1)-split of the time-space geometry. The
proper time and the spatial shifts as the natural
parameters of the symmetry transformations are
introduced in the initial action as independent
dynamical variables. In this case, the dynamics
of the closed universe is reduced to the motion
of the general covariance group in the orbit. In
quantum theory, such a motion is described by
a system of wave equations of Schrodinger type.
However, the general covariance principle de-
mands independence of the wave function on the
parameters of this motion: symmetry transfor-
mation. The independence is achieved by means
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of averaging the wave function on the symmetry
group orbit. The task of the second stage of modi-
fication consists in eliminating additional averag-
ing on the orbit using a correlation of the intrinsic
dynamics with the classical motion integrals. In
the original theory, these integrals play a role of
constraints, i.e. become zero due to the gener-
al covariance principle. In the modified theory,
these values can differ from zero and become
additional dynamical variables. Their motion is
described by EL equations for the parameters of
the general covariance transformations. Intro-
ducing additional dynamical variables associated
with the motion integrals in quantum theory is
a variant of the quasiclassical approximation. In
this case, the approximation requires no substan-
tiation by corresponding estimates. There is only
one requirement left, which is the compliance
with the observations. “Exact” quantum theory
in the absence of the time parameter has no con-

nection to the observations.

The additional dynamical parameters P_act
as observable ones in the modified theory. In the
ADM-representation, they form space distribu-
tion of the universe proper mass, as well as the
space-time shifts canonically subjugated to them.
For the latter, average (along the whole history
of the universe) values can be determined in the
original theory as well, where the universe proper
mass should be taken as equal to zero. Non-zero
proper mass of the universe (mass spectrum) is
admissible in the operator canonical representa-
tion of the gravity theory for a closed universe. In
this representation, the mass spectrum is associ-
ated with the hierarchy of the spatial structures
emerging in the process of the universe evolution.
The sequence of formation of the spatial struc-
tures of various scale itself may serve as a material
basis for the definition of the proper time of the
universe.
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Introduction

Special points (singularities/singular points)
of stress fields, which initiate the fracture pro-
cess, play an important role in linear fracture
mechanics, the results of which are based on the
equations of the linear elasticity theory. Tips of
cracks, sharp notches or inclusions in a materi-
al can serve as such singular points. A crack tip
located in a homogenous material has a classical
singularity, i.e. the singularity equals 0.5. In other
cases, generally speaking, singularity differs from
the indicated value. The singularity is determined
by finding the roots of transcendental character-
istic equations located in the range of (0, 1). A re-
view of the results associated with this statement
is presented in papers [1 — 3].

Among many problems of fracture mechan-
ics, a class of problems connected with the crack/
materials interface interaction attracts particular
attention. In plane and antiplane statements, this
class of problems was studied in papers [4 — 7].
There, the interface was taken to be straight-line.
Note that in these cases the classical Griffith —
Irwin fracture criteria is not applicable, as the
singularity in the crack tip differs from 0.5 and
thus we require other criteria approaches. A short
review of such approaches is given in article [8].

If the interface between the materials has a
breakpoint, then, as it is shown in [9], this point
in the antiplane problem is essentially singular. In
other words, in this case, the characteristic equa-
tion at some composition parameter values has
two different roots less than one and defining two
singular summands in the stress field asymptotic
behavior of the crack tip.

This paper studies a deflection of the initial-
ly straight interface crack from the straight-line
growth caused by piecewise-rectilinear interface
between two materials.

As the fracture criterion, we used Novozhilov’s
force criterion [10]. Based on the obtained exact
solution, the paper focuses on the possibility of
using the asymptotic behavior of stress field to
find the deflection angle and failure load, as well
as on the analysis of these fracture characteris-
tics dependences on the material composition
parameters. Paper [11] considered a similar prob-
lem in the plane statement. However, its results
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were based on applying asymptotic solutions and
the numerical finite element method.

Problem statement
and finding exact solution

Consider semi-infinite interface shear crack,
the tip of which coincides with the angular point
of two connected wedge-shaped regions €, and
Q, with corner angles o and (21 — ) respectively
(Fig. 1). The materials of the regions are consid-
ered homogenous and isotropic with shear mod-
uli p, and p,. Self-balanced concentrated forces
of T'value are applied to the crack ends at the dis-
tance of 7, from the tip. The contact at the inter-
face is assumed to be ideal.

Displacement and stress fields in each of the
regions are constructed in the form of Mellin in-
tegrals:

1 _
w, (r,e)zz—ijk(p,O)r Pdp,
L

(D
Tou (r,e):

1 .
=T (p,0)r " dp (k=1,2),

L

where the displacement and stress transformants
are determined as

W, (p,0)=4,(p)sin po+
+ B, (p)cos PO,
(2)
Toi (P,0) =, p[ 4, (p)cos pb -
- B, (p)sinpf)],

Here, r, 0 are polar coordinates.

Resulting from the regularity conditions of the
solution at » — 0 and » — oo, the contour of in-
tegration L is parallel to the imaginary axis in the
range of

—8, <Rep <3, (8,,8,>0).

Making functions (1) subject to the conditions
of the ideal contact at © = w — o and the con-
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Figure. 1. Semi-infinite interface crack, crack tip coinciding with the angular point of the materials interface:
W, i, — materials shear moduli in regions Q and Q ; o — corner angle of the region Q ;
T — self-balanced concentrated forces applied at the distance of 7, from the tip; », 0 — polar coordinates

ditions of crack ends loading at 6 = 7, we find
variables 4,(p) u B,(p), included in Eq. (2). As a
result, the stress representation has the form

p+l
T J-(Dk (p,e,u,m)(r_oj i

Feat = Tz, 5 A(p,a,m) r
(k=1,2) ®)
@, (p,6,a,m) =0, (p,o,m)sin pb+
4)

+ @y, (p,o,m)cos ph,

¢, (p.a,m)=sinmp—
—msin(n—a) pcos(2n—a) p,

(Plz(paOL,m)=mSin(n—a)psin(2n_a)p’

@, (p,0,m)=sinmp -

—mcosopsin(n—a)p,

)

P, (P, Ot,m) =—msinap sin(n—a)p,

A(p,o,m)=sin2mp—msin2(n—o) p.

Elastic properties of the composition are re-
flected in these formulas via one bielastic con-
stant

m:(lfh_“z)/(lh""“z)'

At all combinations of the materials shear
moduli, this variable satisfies an inequality |m| < 1.
If the inclusion material (region €2 ) is more rigid
than the matrix material, then 0 < m < 1; if not
(in case of a soft inclusion) the value of m belongs
to the range —1 < m < 0. Value m = 0 corresponds
to the homogenous medium, while values m = 1
define an ideally rigid inclusion and a wedge-
shaped notch.

The poles of the subintegral function in Eq.
(3) are defined by the roots of the characteristic
equation

A(p,a,B,m):O. (6)

Function (5) is an entire uneven function of
the integral of the integral transformation pa-
rameter p, which has no zeroes on the imaginary
axis except for the single zero p = 0. However,
according to Eq. (4) this point is a removable sin-
gularity. Therefore, the the contour of integration
L in Eq. (3) can be superposed onto the imagi-
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nary axis. We can show that Eq. (5) has no com-
plex zeroes belonging to the range of |[Re p| < 1.

Due to unevenness of function (5), each root
of Eq. (6) p_ < 0 has a respective root p, > 0, in
addition, p_ = —p . Since for the purpose of in-
vestigating stress singularity (3) in the crack tip,
we are only interested in the roots that do not
exceed one, let us consider the real roots of the
characteristic equation located in the range of (0,
1) for convenience.

Function (5) has the following property:

A(p,a,m)=A(p,2n—a,-m).

It follows from this, that it is sufficient to con-
sider such a system configuration that 0 < o < 7t at
positive and negative values of the bielastic con-
stant m.

A detailed analysis shows that in case of a more
rigid medium 1, when p, > p, and, consequently
m > 0, at 1/2 < o < 7 the characteristic equation
has one root p, € (1/4,1/2), while at 0 < a < /2
ithastwo: p € (1/4,1/2) and p, € (3/4, 1).

Ifm<0,ie. p <p,Eq.(6)at0<a<m/2 has
one root p, € (1/2, 3/4) generating a weak sin-
gularity A = 1 — p < 1/2 of stresses (3), while at
7/2 < a < w it has two roots in the range of (1/2, 1).

The case of o = 1/2 is singular, as with such
a geometry the characteristic equation has only
one root in the range of (0, 1) atany m € (-1, 1).
Moreover, the roots of Eq. (6) split into two sets,
because

A(p,m/2,m) =
=2(cos mp —m/2)sin mp.

The first positive zero of function cos mp —
— m/2 is a monotone decreasing variable of the
m parameter taking values equal to 2/3 at m = —1
andto 1/3atm=1.

Similar splitting of the roots in Eq. (6) is also
incident, for example, at o = /3 and o = 27t/3.

Fracture criterion

To calculate the stress in the composite medi-
um at 7 < r, let us close the contour of integra-
tion L in Eq. (3) on the left by a semicircle of long
radius and use the Cauchy theorem on residues in
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the poles of the subintegral function. As a result,
the stress in each of the regions has the form

Took =

Eiq)k _pn’e’a’m)(r_ojpnﬂ
n=l1 Al(pnaaam) r
(k=1,2).

o

(7

As the fracture criterion, we use the force cri-
terion proposed by V.V. Novozhilov [10], accord-
ing to which the fracture by crack growth occurs
when mean stress calculated at some distance
from its tip d reaches a critical value equal to the
shear strength of the material 7 :

dy

L J Tou (r,0)dr=1,.

k0

Tosk = (8)
This criterion in the plane and antiplane prob-
lems was applied, for example, in papers [8, 11, 12].
Using representation (7), for the mean stress
we obtain:

Tozk (9) =

SO ptana)
rn, 45 pA(p,.o,m) '

©)

Ty
Angles 0, (a, m) and 0, (a, m) defining the
growth direction of the crack are found from the
conditions of function (9) extremum in the re-
gions Q and Q.. Using Eq. (4) we can show that
the derivative 0@ /00 <0 atw —a <6 <mand
any permissible values of the parameter [m| < 1.
In other words, function Te.: (9) in the region
Q) is monotone decreasing and takes the larg-
est value at the boundary of 6 = 7 — o. Since the
crack cannot propagate in the region Q , we fur-
ther consider only the necessary condition of the
mean stress extremum Te:2 (9) in the region QZ:

0te:2(0)/00=0
at —t<f<m—a,

(10)

which due to inequality (9) has the form

= 6@, (-p,,0,0,m)/00 dZT"_l
L -0 (1
zl pA (p0m)  r; (1)

0
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Asymptotic approach

If Eq. (6) has only one positive root p, €0, 1),
then stress asymptote (7) at » — 0 is mononomial:

Tezz =

:Ed)z (—pl,e,(xjm)(r_ojplﬂ
r A(phoum) \r ,

(12)

and fracture condition (8) on beam 0 = 0, takes
the form

2_Tq)2 (—pl,ez,a,m)(ﬁjpl—l )

h plA'(plaa"m) n

(13)

= TcZ'

This formula is true at ant values of the
parameters o and m. When considering the case
of homogenous medium, let us set m = 0 in
equality (13) and, consequently, p, = 1/2, while
0, = 0. Then, using Egs. (4) and (5), for the rel-
ative critical distance d, we obtain the following
representation:

2
z:yz,yz:i[&(?} |

o T\ Tea

where v is the dimensionless geometric parame-
ter, K3(f) is the material fracture toughness in the
region €.

Note that the same representation for the
critical distance was obtained for a sharp notch
in papers [8, 13].

Equality (11) defining the crack deflection
angle 0, (a, m) in the considered case takes the
form

o0, (—p,,0,0,,m)
00

=0.

Then, using Eq. (4), for the deflection angle
we obtain the representation

62 =Larctg|:_wj|_ (14)
P (P21(p1’(x"m)

Therefore, we conclude that if we use mon-
onomial asymptote (12), the critical distance d,
exerts no influence on the deflection angle of the
crack.

Dependence of the deflection angle on the
parameters. Based on the properties of func-
tion (4) we can show that at m > 0 (u, > ) and
n/2 < o < m the angle 0, > 0 is in fact the mono-
tone increasing function of the parameter m. In
other words, the crack deflects in the direction of
the interface with the more rigid material. In the
limiting case, when the material in the region
is ideally rigid, i.e. m — 1, the deflection angle
62 = 1 — o. Moreover, at the considered values
of the parameters, the derivative 00,/0o. < 0 and,
consequently, the angle 0,, is a decreasing func-
tion of the parameter oo which approaches zero
at o — m. This corresponds to the growth of the
crack across the interface between two heteroge-
neous semiplanes.

If the material in the region €, is relatively
more rigid (m < 0) and 0 < a <m/2, then it fol-
lows from Eqs. (4) and (14) that 6, < 0. In this
case, the crack grows in the direction from the
interface. The greatest deflection of the crack in
the negative direction from the polar angle origin
occurs at m — —1. Due to the monotonicity of
the function of 0, with respect to the parameter o,
the deflection achieves its maximum at o = 7/2,
when 6, — —m/4 form — —1.

Note that dependence (14) has an especially
simple form, when o = n/2:

1 m
0, = —arctg ——,
P 4—7’)’!2

where p, is the first positive zero of the function
costp — m/2.

Using the obtained value of deflection angle
(14), from equality (13) we obtain critical load
causing the crack growth:

_ plA’(pl > Oy m) v
20, (-p,,0,,0,m)

21—
( pl)”otcz'

Bearing in mind that the critical loaf for the
semi-infinite crack in the homogenous material
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is defined by the formula 7, = 0,5myrt_, let us
introduce reduced critical load 7" into consider-
ation for the composition:
T n(pean)
I, mnd, (_pvezaaam)

1-2p,

(15)

At other values of the parameters, the charac-
teristic equation has two roots: p, and p, in the
range of (0, 1), and the stress asymptote contains
two singular summands:

1:922 =
=£|:(D2 (_plveaaam) (r_ojplﬂ n
7 A(p,o,m r
0 (p1 ) (16)
+<D2(—p2,8,a,m)[,,_ojpz+1
A'(p,,o,m) \r '

In this case the fracture condition has the form

2r o, (—pl,ez,oc,m) [dz ]pl_l +

o plA,(pl’a’m) Z
T
+(D2(—p2,92,0c,m)(d2] —c,.

plA'(pz,OL,m) Ty

N

At the same time, the critical distance is de-
fined by the formula

2
i, o (o).
r, 4y 3

If y << 1, 1o d,/r, ~ y* and, consequently, at
sufficiently small values of y we can use the result
obtained with the mononomial asymptote for the
critical distance.

The crack deflection angle 0, in this case is a
root of the equation

®y (pl )Sin pO+0, (pl )COS po+

A(p) :
A’(iz ) [(921 (pz)sm P9+

d PP
+@,,(p,)cos p26] (F—ZJ =0.

0

(18)
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In contrast to the mononomial asymptote,
here the angle 0, depends on the critical distance.

After finding the deflection angle using fracture
criterion (17), we calculate the critical load and
then its reduced value based on definition (15).

Numerical results and their discussion

Based on exact solution (7) and fracture cri-
terion (8), (9), using the same approach we find
that the relative critical distance satisfies the fol-
lowing equation

ﬁ = yarctg ﬁ,
5 \ %

while the reduced failure load is found on the ba-
sis of the formula

£

T =

1 iq)k (—pn,ez,a,m)(dk Jp,,l

:T[_'Y n=1 pnA’(pnaaam) Z

5 (19

In addition, the direction of the crack growth
is defined by the angle 0,, which is the root of
Eq. (11).

To estimate the accuracy of the asymptot-
ic approach, the author calculated the fracture
characteristics 0, and T * based on the exact
solution at different values of the parameters a,
m and vy. Fig. 2 shows the dependence of the
crack deflection angle 6, on the bielastic con-
stant m calculated on the basis of asymptote (14)
and the exact solution at a = w/2 and y = 0.25.
At these parameters values, the asymptote give
an upper bound of the deflection angle at m > 0
and the lower bound at m < 0. The highest error
of the asymptotic estimate equals 25.7% in case
of the soft material in the region €, and is ap-
proximately 69% in the case of a relatively rigid
material of this region. When the , region ma-
terial becomes more rigid (m — 1), the accuracy
of asymptotic Eq. (14) increases and the crack
grows in the neighborhood of the interface.

A similar situation also takes place at other
values of the parameters a, m and vy, including the
case of binomial asymptote (16), when the crack
deflection angle is defined as the root of Eq. (18).
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,degs
6, deg

Fig. 2. Dependences of the interface crack deflection angle 0, on the bielastic constant m obtained
on the basis of exact solution (/) and based on mononomial stress asymptote (2); a = n/2, y = 0.25
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Fig. 3. Dependence of the interface crack deflection 0, calculated on the basis of the exact solution
on the bielastic constant m > 0 at y = 0.1 and different values of the angle a: n/3 (1), n/2 (2), 2n/3 (3)

The only difference from the case of a. = 1t/2 con-
sists in the fact that the error of the asymptotic
approach considerably drops at negative values of
the bielastic constant.

The calculations show that the accuracy of
the deflection angle increases as the parameter
v grows for all possible values of o and m. Note
that accounting only for the first summand in
binomial asymptote (16) leads to extremely high
errors (more than 100%) when seeking the de-
flection angle and, consequently, is unacceptable.

Thus, the use of the stress field asymptotes in
the neighborhood of the crack tip at sufficiently
small values of the parameter y determines the
deflection angle of the crack well qualitatively,
but may result in significant inaccuracies in a
quantitative sense.

Fig. 3 indicates the dependence of the angle
0, calculated on the basis of the exact solution
in case of a relatively more rigid material of the
region €, at different values of its corner angle.
According to the conclusions of the asymptotic
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-0.5

0.0

Fig. 4. Dependence of the reduced failure load 77,
calculated on the basis of the exact solution on the bielastic constant m at o = 7/2
and different values of the parameter y: 0.10 (7), 0.25 (2), 0.50 (3)

approach, in this case, the crack deflects in the
direction of the interface between the materials,
while at m — 1 its growth occurs in the neighbor-
hood of this boundary. At m < 0 the difference
in the deflection angles for various values of the
angle o is insignificant (less than 6%) and the de-
pendence of 0, on m is close to curve 7 in Fig. 2.
The accuracy of the reduced failure load 7"
calculated on the basis of the asymptotes is rather
high and is within 5% at the values of y not ex-
ceeding 0.5 for all possible values of the variables
o and m. In addition, taking into account only
the singular terms of the stress fields define the
lower-bound estimate of the failure load. The ac-
curacy of this estimate increases as y drops. Fig. 4
presents the dependence of 7" calculated on the
basis of exact solution (19), at a = /2 and vari-
ous values of y. Similar dependences take place
for other values of o as well. The given curves
show that at m > 0 the value of the reduced load
is below one, while at m < 0 they exceed one.
This means that for the crack propagation in case
of a relatively rigid material 1, less force applied
to its ends is required compared to the case of a
homogenous medium. The situation of a softer
material in the region € is reversed: the forces
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needed to be applied to the ends of the cracks to
cause its growth in the composite medium exceed
the forces applied in the homogenous case.

Conclusion

Based on the Novozhilov’s force criterion
(fracture criterion), we obtained asymptotic and
exact relations for the characteristics of an inter-
face crack fracture the tip of which coincides with
the angular point of the materials interface. The
fracture characteristics include such macroscop-
ic parameters of the material as fracture tough-
ness and shear strength. The asymptotic formulas
for sufficiently small values of the dimensionless
geometric parameter y provide a qualitatively
accurate upper and lower bound estimates for
the deflection angle of the initially straight-line
interface crack. The crack deflects in the direc-
tion of the interface with the more rigid material
and in the opposite direction in case of the softer
material. However, in the quantitative sense, the
asymptotic formulas produce considerable in-
accuracies. Nonetheless, the critical load values
calculated with the use of the asymptotic formu-
las possess sufficient accuracy and can be applied
to estimate these loads.
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