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Original article
DOI: https://doi.org/10.18721/JPM.15101

DIELECTRIC PROPERTIES
OF THE POTASSIUM NITRATE - CAESIUM NITRATE
FERROELECTRIC COMPOSITE

S. V. Baryshnikov ', A. Yu. Milinskiy ', E. V. Stukova ?°%, A. A. Zeeva *
! Blagoveshchensk State Pedagogical University, Blagoveshchensk, Russia;
2 Amur State University, Blagoveshchensk, Russia
B lenast@bk.ru

Abstract: Some samples of the (KNO,),_ /(CsNO,) composite with different x values have
been prepared, and their temperature dependences of the differential thermal analysis signal, of
the dielectric constant, and the amplitude of the third harmonic (to find an existence domain
of the polar phase) were studied. The sample surfaces were investigated by scanning electron
microscopy. An increase in the proportion of CsNO, was revealed to lead to a decrease in
the coefficient of nonlinearity of the composite and to narrowing of the existence domain’s
temperature range of the KNO, ferroelectric phase III. Also it was found that the composite
properties nonlinearity at x beyond 0.5 was determined by the CsNO, properties.

Keywords: composite, ferroelectric, permittivity, third harmonic coefficient, phase transition

Citation: Baryshnikov S. V., Milinskiy A. Yu., Stukova E. V., Zeeva A. A., Dielectric
properties of the potassium nitrate — caesium nitrate ferroelectric composite, St. Petersburg
Polytechnical State University Journal. Physics and Mathematics. 15 (1) (2022) 7—15. DOI:
https://doi.org/10.18721/JPM.15101
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OUSNEKTPUYECKUE CBOUCTBA
CETHETO3/NEKTPUYECKOIo KOMIMO3UTA
HUTPAT KAJIUA - HUTPAT LLE3UA

C. B. bapviwHukoB8 ', A. 0. MunuHckuii ', E. B. CmykoBa * 2, A. A. 3eeBa ?
1 BnaroBeLIEHCKNIA rOCy1apCTBEHHbIN NefarorMyeckuin yHmBepeuTeT, r. bnaroseleHck, Poccus;
2 AMYPCKMI rocyaapCTBEHHbIV YHUBEPCUTET, . bnaroselleHck, Poccus;

Hlenast@bk.ru

Annoramua. Msrorosnensl o6pasubl  kommosuta (KNO,),_/(CsNO,), u m1a Hux
HUCCJIEOBaHbl TEeMIMeEepaTypHble 3aBUCUMOCTU CUTHajla Aud@epeHIInaTbHOro TEPMUUYECKOTO
aHalIu3a, OUAJIEKTPUYECKOW TMPOHUIIAEMOCTH W aMIUIMTYABl TpEeTbeli TapMOHUWKHU (IS
oInpenesieHnsT 001aCcTU CyLIeCTBOBaHUS MosipHON a3bl). [ToBepXxHOCTU 00pa310B U3yYaIUCh
METOIIOM PAaCTPOBOM 3JCKTPOHHOU MUKpocKomnu. OOHApyXeHO, UYTO YBEJIWYCHUE TOJIU
CsNO, npuBOIWUT KaK K YMEHBLIIEHUIO KO3(P(PUIMEHTa HETMHEHHOCTH KOMITO3UTA, TaK U K
CYXEHMIO TeMIlepaTypHoii obysactu cymectBoBanug 111 cerHeTosnekTpuueckoii ¢pa3bl HUTpaTa
Kajaus. YCTAaHOBJIEHO, YTO MPU 3HAUYEHUSIX X cBbilie 0,5 HEJIMHEIHOCTh CBOMCTB KOMIO3UTA
(KNO,),_ /(CsNO,) onpenenserca xapakrepuctukamu CsNO.,.

KioueBbie cjI0Ba: KOMIIO3UT, CETHETORJIEKTPUK, IUIJICKTpUUECcKass IIPOHUIIAEMOCTD,
KO3(ULIMEHT TpeTheil TapMOHUKHU, (ha30BbIi MEPEXOI

Jlna matapoanmst: bapeimaukos C. B., Mumuackmit A. F0., CtykoBa E. B., 3eeBa A.
A. IusyieKTpUuecKre CBOMCTBA CETHETORJEKTPUUECKOTO KOMITO3UTa HUTPAT KaJIUsl — HUTPAT
ue3ust // Hayuno-texuunuyeckue Begomoct CIIOITIY. dusuko-matematuueckue Hayku. 2022.
T. 15. Ne 1. C. 7—15. DOI: https://doi.org/10.18721/ JPM.15101

CraTbsl OTKPHITOrO nocTyma, pacrnpoctpansiemass o juiieHsnu CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/)
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Introduction

Potassium nitrate (KNO,) is characterized by a rectangular hysteresis loop, low dielectric
losses and relatively high spontaneous polarization, making this material promising for non-
volatile memory cells [1]. The polar phase in potassium nitrate is only stable under cooling
from 397 to 373 K. The ferroelectric state of this compound is metastable, allowing to adjust
its temperature range by modifying different external factors. Previous studies confirmed this
possibility by synthesizing solid solutions and composite, based on potassium nitrate [2—5]. For
example, it was found for ferroelectric (KNO,) /(BaTiO,), [2] and (KNO,), /(KNbO,) [3]
composites that the temperature range, where the ferroelectric phase of potassium nitrate ex-
isted, extended, which could be explained by dipole-dipole interaction of particles. In addition,
the ferroelectric phase in KNO,, contained in the composites, can be affected by the volume
fraction of inclusion particles, their sizes, spontaneous polarization, etc. An expansion of the
domain where the ferroelectric phase exists in KNO, was also observed upon doping with so-
dium ions (Na*) [4, 5].

In this paper we consider the influence of inclusion particles of cesium nitrate (CsNO,) on
the formation of the ferroelectric state in potassium nitrate (KNO,) making up the (KNO,) _/
(CsNO,) composite.

Samples and experimental procedure

KNO, has an orthorhombic space group Pmcn [6] (phase 1) at about 300 K. Potassium nitrate
undergoes a transition to trigonal structure R3m (phase I) upon cooling to 401 K. Phases I and
II are paraelectric. The ferroelectric trigonal phase III of potassium nitrate only emerges upon
cooling in the range of 397—373 K. The maximum value of spontaneous polarization in the fer-
roelectric phase is 8—10 pnC/cm?[6]. The temperature range where the ferroelectric phase exists in
potassium nitrate depends on the maximum heating temperature and the cooling rate [7, 8]. For
example, the polar phase range is 22—24 degrees for a polycrystalline KNO, sample heated to 473
K with a cooling rate of 1—2 K/min.

Cesium nitrate (CsNO,) has trigonal symmetry at about 300 K. The cesium atoms form a
pseudocubic sublattice with nine pseudocubes per unit cell. The crystal structure of the low-
temperature phase was determined to be polar trigonal [9] with spontaneous polarization P, equal
to 1—2 pK/cm? (at 410—420 K) [10]. CsNO, has a cubic structure above the Curie temperature
(T. =427 K).

CWe used KNO, and CsNO, powders to obtain (KNO,),_ /(CsNO,) composites. The average
particle size in the powders was 5—10 um. The volume fraction of cesium nitrate in the composm
ites was x = 0, 0.1, 0.2, 0.3, and 0.5. Powders of potassium and cesium nitrates were mixed in
an agate mortar for about 30 min. The obtained powders were then pressed at 8-10° kg/cm? to
produce disk-shaped samples 10 mm in diameter and 1.5 mm thick.

TM-1000_2980

Fig. 1. Surface micrograph of (KNO,), ./(CsNO,),, composite
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An E7-25 meter was used to study the dielectric properties. In-Ga paste was applied as
electrodes. The temperature was measured by a TC-6621 thermocouple calibrator with a type
K thermocouple. The (KNO,),_/(CsNO,) composites were measured by nonlinear dielectric
spectroscopy in accordance with the technique, described in [11, 12]. To determine the region of
polar phase existence, the third-harmonic coefficient y, = U, /U was used.

A Linseis STA PT 600 was used for differential thermal analy51s of (DTA) of (KNO,),_ /(CsNO,)_
composites. The temperature was varied at a rate of about 1 K/min during measurements of the
DTA signal. The temperature range in the studies covered the phase transitions in KNO, and
CsNO,. To remove adsorbed water, the samples were heated at 420 K for 30 min before the
measurements.

Experimental results and discussion

As follows from the data obtained by DTA and scanning electron microscopy (SEM), mixing
of the KNO, and CsNO, components does not produce solid solutions. The polar particles of
cesium nitrate in the (KNO,),_ /(CsNO,) composite are grouped together and form agglomerates
(Fig. 1), while the DTA curves exhibit superposition of phase transitions in KNO, and CsNO,
nitrates (Fig. 2).

7M
0 ‘ ‘ N

320 340 360 380

400 420 440 T,K

Fig. 2. Signals obtained for the (KNO,) ./(CsNO,),, composite
by differential thermal analysis (DTA) upon heating (/) and cooling (2) of the sample

g Vi %0
18 4 r2.7

350 360 370 380 390 400 410 420 430 T1,K

Fig. 3. Temperature dependences of dielectric constant ¢’ (at a frequency of 2 kHz)
and third-harmonic coefficient y, (at an electric field strength of 25 V/mm) for KNO,;
The data were obtained upon heating (filled symbols) and cooling (empty symbols)
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The experimental results, obtained by measuring the temperature dependences of the relative
permittivity ¢'(7) and the third-harmonic coefficient vy, (7) for polycrystalline potassium nitrate,
are shown in Fig. 3. As the sample is cooled from 453 K, two anomalies are observed on the ¢'(7)
curve. At T'= 401 K, KNO, transfers from trigonal paraelectric phase I to trigonal ferroelectric
phase III, and at T = 377 K, it transfers from phase III to paraelectric orthorhombic phase 11I.

Analyzing the v, (T) and &'(T) dependences (see Fig. 3), we can see that the polar phase in
potassium nitrate, emerging upon cooling, lies within the temperature range of 24 K, which cor-
responds to the data, known from the literature [6]. The third-harmonic coefficient y, for KNO,
takes a maximum value of about 2.4% at an electric field strength £ = 25 V/mm and of about
4.7% at E= 53 V/mm.

Fig. 4 shows the ¢'(7) and v, (7) dependences for cesium nitrate. As evident from the analysis of
these results, the ferroelectric phase is observed in CsNO, below 427 K, which is confirmed by the
v,,(T) temperature dependence. However, the maximum value of y, (7) at £= 25 V/mm is about
1.2%, which is explained by the low spontaneous polarization of the CsNO, compound [10].

For (KNO3)(H)/ (CsNO,) composite samples with increasing x, a decrease in the effective per-
mittivity ¢’ is observed due to the emergence of the interlayer polarization. The temperature of phase
transitions somewhat decreases. (Fig. 5). The dielectric loss tangent tgd in the ferroelectric phase
with 7= 391 K at a frequency of 20 kHz equals ~0.11 for KNO,; ~0.35 for (KNO,) ,/(CsNO,), ,;
~0.60 for (KNO,),./(CsNO,), ,; ~0.51 for (KNO,),./(CsNO,), ; ~0.06 for pure CsNO,.

g' Y3 Y%

50 1 r2.0

45 ~
40 A
35 1

r 18

r 1.6

30 4
25

r1.2

r 1.0
r0.8

r 0.6

r 0.4

0 T T T T T 02
330 350 370 390 410 430 T,K

Fig. 4. Temperature dependences of dielectric constant ¢’ (at a frequency of 2 kHz)
and third-harmonic coefficient y, (at an electric field strength of 25 V/mm) for CsNO,
The data were obtained upon heating (filled symbols) and cooling (empty symbols)

45

320 340 360 380 400 420 40 T,K

Fig. 5. Temperature dependences of permittivity ¢’ upon heating (filled symbols)
and cooling (empty symbols) of KNO, (1), (KNO,),,/(CsNO,),, (2)
and (KNO,) ,/(CsNO,),, (3) composites at a frequency of 20 kHz
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Fig. 6 shows the temperature evolution of y, in (KNO,) 1./ (CsNO,) composite samples with
different values of x (CsNO, content). As follows from the graphs, the third-harmonic coefficient
decreases with increasing x from 4.7% for pure KNO,to 0.41% for the (KNO,) ./(CsNO,)  , com-
posite, while the temperature range of the ferroelectric phase for KNO, is narrowed down from
24 to 12 K, respectively. If x = 0.5 (Fig. 7), a phase transition is observed at 396 K under heating
and at 380 K upon cooling. The ferroelectric phase is no longer detected on the v, (7) curve in
potassium nitrate upon cooling, and the y, maxima have smaller values than in pure KNO, or
CsNO, compounds.

The results obtained can be interpreted by referring to [2, 3], where it was shown that adding
titanates [2] and niobates [3] with large spontaneous polarization to potassium nitrate leads to
expansion in the temperature range of phase IIlI corresponding to the ferroelectric state. The
degree of mutual influence of the composite components depends on the values of spontaneous
polarization, permittivity, and also on the volume ratio of these components.

V3er Yo
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4.5 A
4.0
3.5
3.0 4
2.5 A
2.0
1.5 A

320 330 340 350 360 370 380 390 400 410 420 430 T,K
Fig. 6. Temperature dependence of the third-harmonic coefficient y,

in (KNO3)(H)/(CSNO3)X composite at x = 0.0 (7); 0.1 (2); 0.2 (3); 0.3 (4 upoLﬁ cooling;
the electric field strength is 25 V/mm

35 + r2.0
30 A
25 A
20 4
r0.8
r 0.6

r 0.4

0.2

0 T T T T T T T T 0.0
300 320 340 360 380 400 420 440 460 T,K

Fig. 7. Temperature dependences of ¢’ at a frequency of 20 kHz and y, upon heating
(filled symbols) and cooling (empty symbols) in the (KNO,), 5/(CsNO )o.s composite
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Our findings indicate that adding cesium nitrate, which has small spontaneous polarization,
to potassium nitrate during the making of the (KNO,), /(CsNO,) composite material results in
destabilizing the ferroelectric state of (KNQO,). Similar narrowing of the temperature range where
the polar state exists was also observed for solid solutions of Rb K,  NO, [15]. It was found in this
study that spontaneous polarization of the Rb K, NO, solid solutions decreased within increas-
ing content of rubidium ions, and the ferroelectric state disappeared upon reaching the fraction
x > 0.5. The cooperative behavior of particles during the III — I phase transition was reported
in [14] for granular and powder potassium nitrates. This narrowed the temperature range where
phase III was stable. Individual KNO, particles behaved like separate ferroelectric domains, so
that a phase transition in each particle occurred independently of the expected Curie temperature.
KNO, particles in close contact exhibited a trend towards cooperative behavior (as a single large
ferroelectric domain), towards making more pronounced phase transitions characteristic of single
crystals. Adding silicon carbide powder (SiC), which is not a ferroelectric compound, to KNO,
powder caused the disappearance of the III — I phase transition in the KNO, powder, this is
explained by a decrease in the interaction between potassium nitrate particles.

Conclusion

To summarize, if the temperature range of the ferroelectric phase is observed to expand in
composites based on potassium nitrate, obtained by adding ferroelectrics with large spontaneous
polarization, adding ferroelectrics with a smaller spontaneous polarization than that of KNO,
tends to destabilize its polar state.
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Introduction

As increasingly efficient computational resources become available, global hybrid eddy-re-
solving approaches combining the Reynolds-averaged Navier—Stokes equations (RANS) and the
Large Eddy Simulation (LES) methods are gaining widespread popularity for simulation of tur-
bulent flows. Some of the most successful are the methods of the DES family (Detached Eddy
Simulation), using a standard semi-empirical turbulence model in RANS subdomains of the flow
including the attached boundary layers, and a derived subgrid-scale model in the LES-subdomains
including the flow recirculation zones. Switching between RANS and LES is performed dynami-
cally during the solution based on the local flow characteristics and the computational mesh. The
general consensus [1] is that Delayed Detached Eddy Simulation (DDES) is the method from this
family best suited for solving applied problems [2].

Since the Shear Stress Transport (SST) model [3] is considered one of the best, if not the best
semi-empirical turbulence model, the methods based on it may prove more accurate than those
based on other models. However, the semi-empirical models used to construct hybrid approaches
including the SST model typically do not include mechanisms for describing the laminar-turbulent
transition in the boundary layer. This can decrease the computational accuracy, since the entire
length of the boundary layer is not turbulent in most flows. The turbulent region is generally
preceded by a laminar region of some extent, which can significantly affect the overall charac-
teristics of the flow. This effect appears not only at moderate but also at high Reynolds numbers,
especially upon separation from a smooth surface. A classic example of the transition effect on
separation flow is the drag crisis in bluff bodies, described in detail by Loitsyansky [4]. The crisis
is that vortex shedding occurs until the attached boundary layer separates as the Reynolds number
increases, which leads to a shift in the separation point and a sharp drop in the drag coefficient.

Thus, the accuracy of hybrid approaches can be improved in some cases by using RANS models
capable of accounting for the laminar-turbulent transition (so-called transition models) as a basis.

To date, a large number of transition models have been formulated. Most of them are based
on solving differential equations for transport of auxiliary quantities, such as the intermittency v,
the critical Reynolds number Re,, the laminar kinetic energy k, or others. Notably, the existing
transition models are still far from perfect, while the SST y-Re, model [5] is regarded as the most
accurate, yielding acceptable accuracy for predicting the transition position in diverse types of
flows. Four differential equations are solved within this model (two for turbulence characteristics
k and o, as well as two for auxiliary quantities, the intermittence y and the critical Reynolds num-
ber Re,). Although the SST y-Re, model offers superior accuracy compared to the standard SST
model, as it is capable of describing the transition by different scenarios, it carries higher compu-
tational costs necessary to obtain a convergent solution, and in fact sometimes the convergence of
the iterative process cannot be achieved at all [6, 7]. These problems are not a specific drawback
of the y-Re, model: they are also characteristic of other, less accurate differential transition mod-
els. Interestingly, these drawbacks are, so to speak, inherited by hybrid eddy-resolving approaches
based on differential transition models as standard RANS models. The same as in the case of
RANS, this can lead to computational problems manifesting as the lack of iterative convergence
at each time step and increased computational time.

Recently, more and more efforts have been made to develop algebraic transition models, which
allow to avoid solving additional differential equations for transition characteristics. These models
seem very promising, since they are simpler to use than differential models, provide better con-
vergence and take a relatively small number of additional computations compared to the standard
turbulence models on which they are based. Therefore, as algebraic transition models show po-
tential for hybrid approaches, we have concentrated on this subject in the study.

We propose a new hybrid DDES SST KD method combining an algebraic transition model
and the transport equations for k£ and ® as a basis (this approach has been formulated for the
first time). The proposed approach comprises the DDES method combined with the shear-layer-
adapted (ASLA) subgrid length scale, allowing to accelerate the transition to resolved turbulent
structures in the separated shear layers, and the SST model complemented with algebraic relations
for determining the position of the laminar-turbulent transition from the Kubacki—Dick (KD)
k- model. Since the ratios of the KD model given in the original study [8] were formulated for
Wilcox’s k- turbulence model [9], they were modified considerably to be used together with
the SST model (for details, see the section ‘Formulation of the proposed method’ below). The

18



4 Simulation of Physical Processes

advantages of the approach proposed over the original DDES SST method are illustrated by com-
putational problems on the drag crisis for flow around a sphere and a circular cylinder.

The model and the method were implemented within the framework of the NTS (Numerical
Turbulence Simulation), an in-house finite-volume code [10] using the Rogers—Kwak flux-
difference splitting [11] to solve incompressible equations of motion, combining a flux-difference
splitting scheme for vectors of gas-dynamic flows and the Yanenko—Chorin method for intro-
ducing artificial compressibility [12]. The NTS code runs on structured multi-block overset grids
(Chimera technique), allowing to adopt schemes with increased approximation order and simu-
late flows with complex geometry.

The method for approximating non-viscous components of flux vectors in transport equations
plays the central role in computations using hybrid RANS-LES approaches. This method de-
termines the dissipative properties of the scheme, which have different requirements in different
regions of the flow: the scheme must ensure the stability of the solution in the RANS subdomain,
while low-dissipation schemes capable of resolving small-scale turbulence should be introduced
in LES subdomains. This study has adopted a hybrid scheme for this purpose [13], functioning
as a 3-order upwind-biased scheme in the RANS-subdomains and a 4"-order central-difference
scheme in the LES-subdomains of the flow.

Formulation of the proposed method

SST KD algebraic transition model. This model is based on modified transport equations for
turbulence of the SST model [3]:

ok 0(uk) R 0 Ok
—+———==yF +(1-y)P, B ok+—|(v+o,Vv,)— |,
at aX_k Y k ( y) sep B an ( cSk t) xk
(M
0
G0 310) _p gy 0l (yiow) 22 41 p) S Ok 00
ox, ox, ox, ox, o Ox, Ox,

where k, m?s72, is the turbulent kinetic energy; o, s™', is the specific dissipation rate; v, m?s™!, is
the kinematic viscosity; v, m*s™', is the turbulent viscosity; #,, m's™, are the velocity components;
X,, m, are the coordinate components; ¢, s, is the time. The explanation for the quantities P,, P
. . sep
will be given below (see Eqgs. (8) and (11)).
The function F| is found by the expression

Jk  500v 2k
)dvzv(

F = tanh(argf ) , arg, =min {max[ﬁ*mdw Cod? Vk) . (Vm)]’ (2)

where d_ is the distance to the wall, and the constants of the SST model have the following values:
o, =Fo, + (1 - K )sz, c,,=0.85,0,,=1.0,

c,=Fo,, +(1 —Fl)cwz, c, =050, =0.856,
B=FB,+ (1 - K )Bz, B, =0.075,B, =0.0828,

B =0.09,0=B/p —o,1*/\B".

Egs. (1) have three differences from the equations of the original SST model; these differ-
ences were introduced so that the model could be used together with the KD transition model,
where the turbulent viscosity v, is divided into two components: small-scale v_and large-scale v,
Therefore,

3)

V, =V +v,. 4)

and v, = a k /max[a ®,F,S], v, = ak/max[aw,F,S];
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here
Cev Q)
ks = fssk; klzk_ks;fss:exp(_(%] Ja (5
k
CSS:CS(1.0+CAfW\|/);fWzl—tanh( J;
C,vo
6
_o(s-0) ©
y =tanh| ———~ |,
C,(Bo)
F, = tanh(argﬁ), arg, = max(2x/%/(0.09o;)dw), SOOV/(de(o)). (7)

(S, Q are the magnitudes of the strain and swirl velocity tensors, respectively).

The differences mentioned above consist in the following.

1. Generation of turbulent kinetic energy P, is calculated using small-scale viscosity and
kinetic energy:

P = mln(—u "ou, [ox,,10-P kco) (8)
%k 8, —2v,S,. )

2. The generative term in Eq. (1) for k is multiplied by the intermittency factor y:
B —E. (10)

3. The transition to turbulence in the separated laminar boundary layer is described by in-
troducing an additional term (1 — y)P to Eq. (1) for k, where the quantity P, e’ borrowed in a
simplified form from the differential model [14], is calculated by the following formulas:

P,=C,F VS (11)

sep

2
F,, —mm(max(ziz —1.0,0.0]1.0} R, = dWS. (12)
24, v

The intermittency factor included in the model is determined by the following expression:

¥ =min| max k -1.0,0.0 [,1.0 |. (13)
vAyQ

The main difference between the algebraic relations used in the proposed method and the origi-
nal KD model [8] consists in changing the criterion in Egs. (5) for /¢ and (13) for intermittency 1.
Furthermore, the model constants were optimized for problems on the transition boundary layer
with a T3C-series pressure gradient [15]:

A4 =13, C;=20, C,=1.0, C, =100, C, =5.0,
C,, =20, 4,=550.0, a,=031 a,=045.

(14)
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The SST KD model constructed was tested in RANS simulations for 2D problems, where the
laminar-turbulent transition plays a major role, confirming that the model proposed yields signifi-
cantly better accuracy than the original KD k-o model [§].

DDES SST KD method. The proposed algebraic model of the SST KD transition was combined
with the DDES method [2] to make up a basis for the DDES SST KD method, intended for
computing separated flows in the presence of a laminar-turbulent transition in the attached
boundary layer. The proposed method uses the DDES version introducing a shear-layer-adapted
subgrid length scale (DDES ASLA [16]). This modification of the subgrid scale is aimed at
accelerating the transition to well-developed three-dimensional turbulence in the initial regions
of the shear layers and allows significantly increasing the simulation accuracy for separated flows
without increasing the computational mesh and, as a result, the computational costs.

The transition model was additionally modified to function within the eddy-resolving method,
restricting the transition model outside the boundary layer:

y=1.0for F, <0.9, (15)

where F| is the function of the SST model (see Eq. (2)).

Application of the developed approach to predicting the drag crisis

Drag resistance for flow around a cylinder. We consider unsteady cross-flow of incompressible
fluid around a circular cylinder in the range of Reynolds numbers from 5.0-10* to 1.2-10°; the
number is constructed from the diameter D. of the cylinder and the freestream velocity U
(Re = D.U/v).

This interval completely covers the drag crisis, which is observed within the range
1.3-10° < Re < 10-5.0° [17].

The computational domain is a cylinder with
Table 1  a radius of 25D, where D, is the diameter of the
Boundary conditions for turbulence streamlined cylinder, centered at (x, y) = (0.0, 0.0).

characteristics in the problem on flow The length of the computational domain in the
around a cylinder transverse direction zis L. = 5 D, which is greater
. o than the quantity .0, commonly used in such com-
Re, 10 v/ Tu, % putations (see, for example, [18, 19]), and should
5.0 0.30 0.40 not adversely affect the result.
Because the SST model assumes that the turbu-
8.0 0.30 0.55 lent kinetic energy decreases (dissipates) in homo-
10 0.36 0.60 geneous turbulent flow, generally, so that the tur-
: : bulent characteristics in the vicinity of the stream-
13 0.45 0.64 lined body correspond to certain required values,
the boundary conditions for the equations of the
17 0.56 0.73 turbulence model have to be adjusted. Such values
20 0.65 0.77 can be obtained at the inlet to the computational
domain from the analytical solution to the equa-
25 0.79 0.95 tions of the SST model in homogeneous flow by
30 0.94 1.00 the following formulas:
40 1.25 1.02 i
kch(Bercl) B, (16)
50 1.55 1.15
70 2.16 1.35 1
90 2.75 1.55 AT (17
120 3.65 1.70 where x is the coordinate along the flow in free

Notations: Re is the Reynolds number, v,is the ~ stream; c,, ¢, are the integration constants obtained
turbulent viscosity, v is the kinematic viscosity, ~ from boundary values; the values of constants f
Tu is the turbulent intensity. and B" are given above.
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The equations do not have a finite analyt-
ical solution for sufficiently large longitudinal
dimensions of the computational domain. In
such cases, the turbulence characteristics are
‘frozen’ to a certain point upstream of the
body, then ‘released’ and dissipated to the re-
quired values.

The turbulent intensity Tu = 0.45%
(Tu = 100[(2/3)P,]11/2/U,) is generated in this
problem in the vicinity of the cylinder’s mid-
dle section, the turbulence characteristics were
frozen to the section x = 2-D_and their in-
let values were calculated by Eqgs. (16), (17)
(Table 1).

Constant pressure was given at the outlet
boundary, and no-slip and impermeability
conditions u, = v = w_= 0 were imposed
on the cylinder surface. Standard conditions
for the SST model were imposed for turbulent
characteristics on the wall:

20
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Fig. 1. Three blocks of the computational meshes
(shown in different colors) in the problem of flow
around a circular cylinder (section z = 0)

6v
BA

where A, is the size of the first near-wall spacing of the mesh.

Finally, periodic boundary conditions were imposed in the transverse direction.

The computational meshes consisted of three blocks (Fig. 1). The first block contained a refined
mesh for computing high gradients of the quantities near the cylinder surface, the second one
was refined for computing the wake behind the cylinder. The third block contained unperturbed
homogeneous flow without unsteady fluctuations and the coarsest mesh.

A total of three meshes were constructed for computations with different ranges of Reynolds
numbers, characterized by the magnitude of the first near-wall spacing: I, 11, and III (Table 2).

The time step Af was equal to 5-107* D /U, maintaining the value of the Courant—Friedrichs—
Lewy (CFL) criterion below unity in the separation zone in the cylinder wake. The solution was
averaged after the flow was stabilized over time intervals of about 50-D /U,.

Fig. 2 compares the simulated dependences obtained for the drag coefficient C,= F /[(5/2)pU;]
(F_is the drag force acting on the cylinder, p is the density) versus the Reynolds number with the
experimental data [20—26].

k =0, ®

w w

=10

Table 2
Parameters of computational meshes in the problem on flow around a cylinder
Block size
# | Re range. 10° Total number
of cells
Block 1 Block 2 Block 3
| 5.0-20 512x161x60 200%x184%256 131x101%52 56,270,732
II 25-60 512x191x560 | 200x184x256 131x101%52 64,872,332
111 70-120 512x221%x560 | 200x184%256 131x101%52 73,473,932
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Fig. 2. Simulated curves (solid lines) of the drag coefficient
in a circular cylinder as a function of the Reynolds number
compared with the experimental data (symbols) [20—26]

This flow clearly confirms the advantage of the proposed hybrid method over the original
DDES SST approach. Evidently, the computed drag coefficients obtained by the transition
model turn out to be closer to the experimental values. However, complete agreement with
the experimental data could not be achieved; in particular, the decrease in the computed
drag coefficient in the vicinity of the critical Reynolds number is much slower than in the
experimental dependences. The reasons for this behavior require further study and are beyond
the scope of our paper.

Drag crisis for flow around a sphere. We consider unsteady cross-flow of incompressible
fluid around a sphere in the range of Reynolds numbers from 5.0-10* to 4.0-10%; the number is
constructed from the diameter D, of the sphere and the freestream velocity U, (Re = D U,/v)

The computational domain is a sphere with a radius of 20D_. The boundary conditions were
imposed similarly to the solution of the problem on the flow around a cylinder. The only difference
was in the inlet values chosen for the turbulence characteristics: they were tailored to provide a
turbulence intensity of 0.45% in the vicinity of the sphere’s middle section (Table 3).

The computational mesh consisted of six blocks
Table 3 (Fig. 3). Blocks from 1 to 3 were adjacent to the
Boundary conditions for turbulence surface of the sphere and are characterized by small

characteristics in the problem mesh spacings (514 cells per sphere circumference),

on flow around a sphere while the mesh spacings were about 3 times

] o larger in the outer blocks (4 to 6). Blocks 1 and

Re, 10 v/v Tu, % 4 have a cylindrical shape and are characterized

5.0 0.35 1.2 by axial symmetry relative to the axis x (Fig. 3,b).

The remaining mesh blocks have the shape of a

10 0.70 1.2 truncated pyramid, allowing to avoid unreasonable

20 1.40 1.4 clustering in the vicinity of the symmetry axis of
the 1% and 4™ blocks (Fig. 4).

40 2.8 1.6 The mesh spacings were refined to the sur-

60 49 17 face of the sphere and in the vicinity of the wake.

; ; The same as in the solution to the problem on

100 7.0 1.9 flow around a cylinder, we constructed a series

of meshes for computations at different Reynolds

The notations are identical to those given in numbers, varying by the first near-wall spacing.

Table 1 The total number of cells in the mesh was about

16 million. A series of preliminary computations

carried out by the DDES SST and DDES SST KD methods at Re = 1.0-10° indicate that refining

the mesh by 1.5 times in each direction (this mesh contains is about 46 million cells) does not
change the time-averaged solution.
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Fig. 3. Blocks of computational meshes (numbered and marked by different colors) for the problem
on flow around a sphere. The figure shows sections z = 0 (a, b) and x = 0 (¢, d); b, d are enlarged
images of the middle sections in graphs a and ¢, respectively

Fig. 4. Computational meshes in sections x = 0 (a) and z = 0 (b) for the problem on flow around a sphere.
Surface meshes are projected on the corresponding sections
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Fig. 5. Simulated curves (solid lines) of the sphere’s drag coefficient
as a function of the Reynolds number compared with the experimental data
(symbols) [27—28] and empirical correlations [29]

The time step was taken equal to At = 10-57°D /U, providing, the same as in the problem of
the cylinder, the value of the Courant number CFL < 1 in the separation zone behind the sphere.
Additional computations confirmed that refining the time step does not change the time-averaged
solution. The solution was averaged after the flow was stabilized over time intervals of about
50-D/U,.

Fig. ’ 5 compares the simulated dependences obtained for the drag coefficient
C,= F/[(1/2)pU} -(4/1)nD?] versus the Reynolds number with the experimental data (F, is the
drag force acting on the sphere).

The computational results were compared with the experimental data presented in [27—28]
and empirical correlations in [29].

First of all, we should note that the proposed method considerably improves the computational
accuracy for all the values of the Reynolds number considered. The original DDES SST method
predicts virtually no decrease in the drag coefficient associated with the drag crisis as the Reynolds
number increases in the range 1-10° < Re < 10-4°, while the proposed method offers a qualita-
tive description. At the same time, the computational results obtained by the proposed method
differed somewhat from the experimental data, which is primarily manifested (the same as in the
problem of on flow around a cylinder), in a slower decrease in the computed drag coefficient in
the vicinity of the critical value of the Reynolds number.

Conclusion

We have proposed a new global hybrid eddy-resolving approach intended for computing
separated flows with a transition in the attached boundary layer. The approach is based on the
transition model we have formulated, based on the semi-empirical SST turbulence model and the
k- KD algebraic transition model.

The advantages of the proposed approach over the original DDES SST method were illustrated
by test problems on flow around a cylinder and a sphere in a wide range of Reynolds numbers.
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Introduction

The procedure for thermal polarization of glass in an electric field is commonly referred to as
thermal poling. This procedure consists of heating a glass plate about 1 mm thick (placed between
two metal electrodes or other Class 1 conductors) to a temperature sufficient for activating
pronounced conductivity, subsequently applying a DC potential of the order of several hundred
volts to the electrodes. The heating temperature for standard soda lime glasses is 250—300 °C,
which is significantly lower than the glass transition temperature equal to approximately 550 °C.
As the electric field forces the most mobile, positively charged cations (alkali metal ions) to drift
from the surface into the bulk of the plate, the composition and structure of the subanodic region
of the glass are modified, and a layer of negative space charge appears, generating a strong electric
field [1—3].

It is well known that the electric field exerts a considerable influence on the thermodynamics
and kinetics of such processes in nanocrystals as phase separation, nucleation and growth, which
may serve to either enhance or inhibit crystallization [4—7], in particular by altering the crystalline
motifs of the glass [8]. Several papers reported on the surface crystallization of glasses observed under
poling and subsequent heat treatment at temperatures above the glass transition: crystallization of
barium titanate (BaTiO,) in BaO-TiO,-TeO, system glasses [9], as well as crystobalite (SiO,) [10],
monoclinic dicalcium silicate (B-Ca,SiO,) and diopside (CaMgSi,O,) in silicate glasses [11, 12].
Crystallization of anatase (TiO,) was also detected in K,0-TiO,-SiO, system glass under poling
below the glass transition temperature but without the additional heat treatment [13] commonly
used to produce crystalline nuclei in the glasses [14].

The goal of this study consisted in detailed analysis of the evolution of crystalline structures in
K,0-TiO,-Si0, system glass under poling using a patterned anode at a heating temperature below
the glass transition.

Patterned electrodes providing local crystallization of glass under poling offer an alternative to
the laser irradiation method generally used to induce local crystallization. We selected a coin to
illustrate local crystallization for a surface relief of an imprinted electrode with a rather complex
structure.

Crystallization was analyzed by Raman spectroscopy (RS) using a spectrometer equipped
with a confocal microscope; the morphology of the glass surface was studied with a mechanical
profilometer.

Experimental

The experiment was performed with 4 mm thick plates of commercial LF9 glass with a glass
transition temperature ]; = 485 °C and the composition given in Table.

Table

Composition of the glasses used in the experiment

Chemical composition, mol%
SiO, | TiO, KO | ALO, | BO, | As O,
61.80 | 16.63 | 16.33 | 2.06 3.00 0.18

The anode electrode was a coin 16 mm in diameter with a relief height on the surface of the
pattern equal to 15 pm. Poling for 60 min was carried out in air at a DC voltage of 850 V and
a temperature of 440 °C. The charge that passed through the sample during poling amounted to
3.7 C. The RS spectra were excited with a continuous laser operating at 532 nm and recorded
using a Witec Alpha 300R spectrometer equipped with a confocal microscope. The morphology
of the sample surface was analyzed with a mechanical Ambios XP-1 Stilus Profiler.

Results and discussion

Fig. 1,a shows an optical image for a fragment of the coin imprinted on the glass subjected to
poling. The imprint mirrors the pattern on the coin (digits ‘2006’); the glass remains transparent
in the regions where it contacts the protrusions on the coin surface and outside the coin, while
the surface becomes frosted in other regions under the coin.

32



Atom Physics and Physics of Clusters and Nanostructures

b)

EEE———
40 pm

Fig. 1. Optical images of coin fragments imprinted on glass
subjected to poling; data are presented in different scales:

Fig 1,b corresponds to a fragment of glass surface
near the digit ‘0’, marked by the square in Fig. 1,a.

The white line between the frosted (/) and transparent (2)

regions corresponds to the scan line (see Figs. 2—4);
the arrow indicates the transition region between [/ and 2

Fig 1,b corresponds to a fragment of glass surface near the digit ‘0’, marked by the square in
Fig. 1.a. Fig. 1.b also shows a transition region containing optical inhomogeneities.

_ 4000

Intensity, a.u
N
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Fig. 2 shows the RS spectra measured in the
frosted (/) and transparent (2) regions (non-
contacting and contacting, respectively, see
Fig. 1,b).

Spectrum 2 in Fig. 2 is typical for potassium
titanosilicate glasses and contains the following

1500 2000 2500 broad bands, cm™':

250-350, 450-550, 700-800,
900-1000, 950-1050;

among these, the bands at 450—550,

950—1050 cm™' correspond to Si—O bonds,

1000

Raman shift, cm”

2000 3000 4000 and the rest to Ti—O bonds. The bands at

1 700—800 and 900—1000 cm™' are associated
with octahedral and tetrahedral coordination of
titanium ions, respectively [15]. Spectrum 7 in

Fig. 2. RS spectra measured in the frosted (/) Fig. 2 contains several narrow lines belonging

and transparent (2) regions of poled glass to nanocrystalline TiO,, as well as one line of

(see Fig. 1,b): an unidentified impurity phase (labeled by a
peaks of nanocrystalline anatase (A) and lines question mark) and lines of trace species (see
of atmospheric gases (in the inset) are visible the inset in Fig. 2) [16, 17]. The positions

of the lines corresponding to nanocrystalline

anatase on the frequency scale and their widths depend on the average size of nanocrystals as
well as on the mechanical stresses in the glass [16].
Notably, monocrystalline anatase has six Raman-active fundamentals, cm™' [17]:

144 (Eg), 197 (Eg), 399 (Blg), 516 (Alg), 519 (Blg) and 639 (Eg).
The position of the most intense spectral line of anatase (144 cm™') and its width (15 cm™),

which depends on the size of the structure where Raman scattering occurs, can be used to
estimate the average size of nanocrystals (without taking into account the mechanical stresses) [16].
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According to the estimates in [16], the position of the line equal to 150 cm™ corresponds to an
average nanocrystal size of 7—10 nm for a spectral width of 15 cm™'. In our case, we can assume
that the size of the nanocrystals lies in approximately the same range.

Analyzing the RS spectra in Fig. 3, obtained by scanning the surface along the straight line
between the regions / and 2 (see Fig. 1,b), we can conclude that crystallization occurs before the
edge of the digit ‘0’ (including the transition region), where the crystalline phase is represented by
TiO,; after this border is crossed, the glass does not contain signs of crystallization. Notably, no
crystallization is observed outside the coin. Surface morphology studies indicate that the transition
region forms along the edges of each imprinted digit and consists of protrusions several tens of
micrometers wide and several micrometers high.

Fig. 4 shows as an example a profile of the glass surface in the transition region at the border
of the digit 0 obtained by a mechanical profiler. Evidently, the transition region is a protrusion
about 45 um wide and 1.5 um high in this case. Our experiments have revealed that neither a relief
nor a crystalline phase are produced under heat treatment in the same mode and using a coin but
without applying an electric field.

Intensity

500 1000 1500 2000 2500 3000 3500

Raman shift, cm”

Fig. 3. RS spectra in poled glass for surface scans
along a straight line between regions / and 2 (see Fig. 1,b).
Scanning step and range are shown
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Fig. 4. Surface profile of poled glass in the transition region at the borders
of the digit ‘0’ (see Fig. 1,b), obtained with a mechanical profiler
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We can offer the following explanation for the results obtained. The electric field is applied
to the entire region under the coin (electrode) during poling, reaching the highest values in
the region where the electrode directly contacts the glass. Alkaline ions from the near-surface
region migrate deep into the glass, so that the composition of the glass changes: instead of al-
kaline ions drifting deeper under the influence of an electric field, hydronium ions (H,0") are
injected into the glass from the ambient. Interestingly, hydronium penetrates the region where
the electrode contacts the glass less effectively than the region outside the contact. As alkaline
ions are removed from the near-surface layer, the ternary K,0—TiO,—SiO, system observed
near the glass transition is transformed into a binary TiO,—SiO, system falling into the region
of metastable liquid-liquid phase separation (LLPS). It is known that the region below the
liquidus occupies almost the entire range of the compositions in the TiO,—SiO, system [18],
so that introducing even a small amount of titanium oxide into the silicate system triggers the
metastable LLPS. Phase separation into silicon and titanium oxides, as well as crystallization
of the latter follow the mechanism of diffusion-controlled phase decomposition within the
metastable LLPS region. The crystallization process is affected not only by temperature but
also by the molar ratio of the oxides (the higher the silicon oxide content, the higher the re-
quired temperature) [19, 20].

In this case, a third parameter, namely, the electric field strength, is added to temperature
and molar ratio of oxides. As already noted, the electric field can both enhance and inhibit
the phase separation and crystallization processes [4—7]. These processes are enhanced in the
TiO,—Si0, system, and the viscosity of the glass is reduced, which may lead to a decrease in the
crystallization temperature. Crystallization is likely preceded by LLPS because the surface be-
comes frosted and starts to scatter light strongly. Strong scattering is due to the large difference
in refractive indices between the SiO, (n = 1.46) and TiO, (n = 2.55) phases.

In this case, TiO, develops under poling at 440 °C, while it only appears at temperatures
above 600 °C under thermal annealing of binary TiO —SiO,__glasses (x = 0.20—0.65) and films
of similar composition (x = 0.15—0.90) [19, 20]. The question here is why crystallization is
observed at the glass-air interface and is absent at the glass-anode interface. We believe that
the difference in the kinetics of ion diffusion at these interfaces plays a central role in this case,
because, as it is easier for hydronium to penetrate the glass-air interface, this largely serves to
reduce the glass transition temperature, which promotes crystallization. Therefore, the glass
does not have sufficient time to crystallize in the experimental conditions due to the low crys-
tallization rate in the region where it contacts the electrode. Our experiments indicate that if
the temperature is increased to 460 °C (instead of 440 °C) with the same poling voltage and du-
ration, crystallization extends to the entire region under the coin; this confirms the role played
by the kinetic factor in the crystallization process.

Now let us discuss the hypothetical mechanism causing protrusions to appear on the surface
of the glass near the interface with the region where it contacts the electrode. The protrusions
forming point to a local increase in the glass volume of glass within the given region. The increase
in the glass volume is observed as ions with a smaller radius are replaced by ions with a larger
radius, for example, during ion exchange, when sodium ions are replaced by potassium ions
[21] or during hydrothermal treatment of glass, when vapor bubbles are formed in it [22—24].

It was established in [22—24] that the glass transition temperature T of the glasses subjected
to hydrothermal treatment is highly dependent on the water content and can decrease to 0.8 T
at 1-2 wt.% H,0 and to 0. ST at 10 wt.% (the temperature T is measured in °C). This, in turn
leads to a decrease in the crystalhzatlon temperature and a decrease in the viscosity of the glass,
additionally affecting the phase separation of vapor [25].

Water vapor bubbles appear in the glasses prepared by the hydrothermal method under
annealing at a temperature above the glass transition (as already noted above), and the vol-
ume of the glass increases substantially as a result (glass foaming). Therefore, hydrothermal
treatment can be used to synthesize porous glasses (see [26] and references therein). Water
can also condense in the near-surface region of the glass under poling. The negatively charged
non-bridging oxygen atoms O~, remaining after potassium cations escape, react with H,O" to
produce water:

~Si-0+ H,0" — ~Si-OH + H,0.
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Replacing potassium cations with hydronium ions cannot lead to an increase in the volume
of the glass because of the slight difference in their ionic radii; however, if the glass transition
temperature decreases due to increased water content accompanying the penetration of hydronium
and turns out to be below the poling temperature, regions with high hydronium contents may
favor the generation of vapor bubbles. Since the electric field reaches maximum strength along the
perimeter of the electrode relief (edge effect), bubble generation is the most effective along the
perimeters of the digits. The most likely reason why protrusions appear on the glass is that vapor
bubbles are generated along the borders of the digits.

Thus, a considerable decrease in the glass crystallization temperature with TiO, evolving in the
near-surface region of the glass under poling can be explained by the effects of the electric field
and the water formed in the glass on the thermodynamics and kinetics of crystallization, while the
process itself can be characterized as surface crystallization in the electric field.

Conclusion

Considering the poling of K,0—TiO,—SiO, glasses at temperatures below the glass transition
of the material with the initial composition and using a patterned anode (imprint), we have
discovered that crystalline structures from anatase (TiO,) nanocrystals, mirroring the pattern on
the anode, develop on the surface of the glass. Protrusions appear at the interface between non-
crystalline and crystalline regions.

Our findings may be of interest to researchers in the structures with photocatalytic properties
and coatings with anatase nanocrystals on the surfaces of titanosilicate glasses.
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Introduction

This paper addresses a problem from the theory of integral geometry on obtaining information
about the integrand function from a certain set of integrals over this function. Such a general
statement includes many particular cases. The most well-known are the problems on inverting
the ray transform and the Radon transform. Aside from purely academic interest, the findings of
studies on such problems have major practical implications. The best-known applied example is
the mathematical formulation of X-ray tomography theory. In this regard, it is notable that many
probing problems are specifically reduced to the problems of integral geometry.

While we do not claim to provide an exhaustive overview of the topic, we draw attention
to studies of such renowned scholars in this field as Johann Radon [1], Richard Courant [2],
Fritz John [3], and Israel Gelfand [4]. Furthermore, the circle of mathematicians surrounding
Lavrentyev contributed significantly to resolving these issues in connection with inverse problems
of mathematical physics [5].

Research in this direction is ongoing, even though comparatively fewer studies have been
published in recent years. Notable examples include [6—14]. The bulk of the results on this topic
attempt to determine the entire integrand; this means that rather stringent constraints have to
be introduced, limiting potential wider applications. In addition, the integrand may depend on
a large number of variables in some important applied problems, making it impossible to find
this entire expression from the available information. This is the case, for example, in X-ray
tomography, if the effect of particle scattering in the material scanned is fully taken into account.
For this reason, the problem statement has to be modified, e.g., only the discontinuity surfaces
of the integrand are regarded as the desired object. Notably, the information about such surfaces
provides a satisfactory representation of the medium examined in imaging problems. In particular,
these data serve as the main characteristics in X-ray tomography. It bears mentioning that this
approach to the problems of X-ray tomography was taken earlier, for example, in [15—17], where
integration was carried out along one-dimensional manifolds, while the desired object in our study
is the discontinuity surface for the case of integration along two-dimensional manifolds. To the
best of our knowledge, no other authors have discussed similar problems.

Definitions and problem statement

We adopted the following notation: E? is the three-dimensional Euclidean space with the coor-
dinate system Ox x,x,, corresponding to the orthonormal basis e, e,, e,; Q is a unit sphere in E,

:1},

®=o(0,y) = (sinBcosy,sinOsiny,cos0),

123’

o-|

0, y are the spherical angles; L(x,») is the ray emanating from point x € E? in the direction o,
L(x,0) = {y: y = x + to, t > 0}; const is a positive number; A _is the Laplace operator with respect
to the variable x

For any open set 7'c E3, C%(7) is a set of bounded functions defined in 7, continuous together
with all its partial derivatives up to and including the kth order; 07 is the boundary of the set T.

We consider a bounded domain G _in space E°, containing the pairwise disjoint domains G,
(i=1, 2,..., p), such that the equality G, = G is satisfied for their union G,. We assume that each
set dG, (i =1, 2,..., p) is a continuous two dlmensmnal surface. EV1dently, G, = 0dG, U...U aG
Let us assume that the system of sets {G}, (i = ., p) is generally convex in the followmg
sense: for any point x € E3 and for all o € Q, the ray L(x ®) crosses the boundary 9 G, of set G,
in no more than a finite number of points. For convenience of notation, let us assume that the
system of sets G, (i = 1, 2,..., p) is supplemented by an unbounded domaln G = E3\G. Let us
call the point z € d G, contact if it is boundary for two and only two sets G and G so that 1 <},
[ < p + 1. Moreover, 1t is assumed that the set of contact points is dense in aq,.

Consider a famlly of functions F(x,y) and f(y), x, y € E3, satisfying the 1nequa11ties:

|F(x,u) -F (x,v)| <
)~ f()|<

3.
, x,u,veE’;

, u,veG,.
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In this case, the function F{(x,y) belongs to the class C* (E* x E?), and f{y) equals zero outside
the domain G. Apparently, such functions f{y) have finite boundary values at points y = z, 7€ 9G,
which we denote below as [f(2)], i.e., Ay) — [A2)], y € G, y — z. The magnitude of the discon-
tinuity (jump) of the function f{y) at the contact point y = z is the difference

[f(z)]j’l :[f(z)]j—[f(z)]l, z€0G,,z€0G,1<I<j<p+l.

Definition. 7The function I(x,0) given by the equality

I o) )= [ Fnf(»doxek 0e, (1)

(y—x,0)=0

is called the generalized Radon transform of the function f(y).

We should clarify that the first-kind surface integral in Eq. (1) is taken over a plane normal to
the vector o and passing through the point x.

If F(x,y) = 1, the set of values of the function /(x,o) and the set of values of the classical Radon
transform coincide. Broadly speaking, there are several different definitions of generalized Radon
transforms. Our case is peculiar in that discontinuous integrands are used, depending not only on
integration variables but also on additional variables.

We have been unable to uncover any equivalents for this definition in the literature. Let us
prove that it is correct. Consider an orthogonal transformation of 4 to E3 that has the property

Ao =", o= (sinBcosy,sinOsiny,cos0), o =e;,0 =(0,0,1).

This transformation can be obtained by sequentially performing two rotations: the first is the
rotation around the axis Ox, by the angle y, the second is around the axis Ox, by the angle 6.
It is easy to verify that the matrix A of the transformation 4 and the matrix A~! of the trans-
formation A™' take the following form:
cosOcosy cosOsiny —sin
A=| -—siny cosy 0o |

sinfcosy sinOsiny cosO

cosOcosy —siny sinBcosy
A7 =| cosOsiny cosy sin®siny |.

—sin0 0 cos0

Let us describe the set of vectors w from the sphere Q, orthogonal to the vector w. To do this,
we apply the transformation A~' with the property @ = A 'o" to horizontal vectors (cos o, sin a, 0).
As a result, we obtain:

W(O, Y, OL) = (cos 0 cosycosa —sinysina,cos0sinycosa +cosysina,—sinOcos oc). (2)

We introduce the polar coordinate system (r,a), centered at point x, in the plane passing
through the point x and normal to the vector o. Then, moving on to integration in polar coordi-
nates, equality (1) is rewritten in the following form:

271 o

(x,0)(f)= J.J‘rF X, X+rw 6,y,(x))f(x+rw(e,y,oc))drda. )

We consider the function
g(x,r,@,y,a) = rF(x,x+rw(G,y,oc))f(x+rw(9,y,oc)),
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which, for any fixed values of x, 0, y, has no more than a finite number of discontinuities with respect
to the variable r for any given a, which is provided by the generalized convexity condition. Thus, the
integrand in equality (3) is continuous almost everywhere in the integration domain, which ensures
the existence of the integral. The constraints on the integral follow from the constraints on the do-
main G and the functions F, f. Following the above steps in the reverse order, that is, from equality
(3) to equality (1), we confirm that the definition of the generalized Radon transform is correct.

Now let us prove the continuity of function /(x,w)(f). We fix an arbitrary point (x,®), so that
{x,0}, o, = o(6,,y,) is a sequence of points converging to (x,w).

We consider the functions

o (r,a) = rF(xk,xk +rw(6k,yk,a))f(xk +rw(6k,yk,oc)),
x(r,o)= rF(x,x+rw(G,y,a))f(x+rw(6,y,(x)).

Imposing the condition of generalized convexity again, we establish that y,(r,0) tends to the
function y(r,a) for almost all », a. Therefore, according to the Lebesgue theorem, we allow a pass
to the limit under the integral sign, i.e.,

21 o 21 o

I(x,0,)(f)= J-‘[xk (r,o0)drda.— '”x(r,oc)drdazl(x,co)(f),

which in fact implies continuity of the function /(x,®)(f).

Let us formulate the following problem of integral geometry.

Problem of the unknown boundary. The set d G, can be found from Eq. (1), if only the values of
the following function are known:

I(x,oa)(f),er3,cer.

Evidently, while a family of integrals is given in this problem, it is required to find a set of
potential discontinuity points of an unknown integrand. This statement of the problem elaborates
on our previous papers; the difference lies in the dimension of the integration set and in the fact
that the domain G is not assumed to be known in this case. We should note that the range of
problems dealing with the search for unknown boundaries is fairly extensive, covering diverse
areas of mathematics. The earliest statement is perhaps the well-known Stefan problem.

Construction of the algorithm for solving the problem
Consider the following function:

J0,p)f)= [ Fxy)f(3)d,0,xeE,0eQ,-n< p<tx. @

(y,)=p

The integral here is taken over a plane orthogonal to vector @ and deviating from the origin
by p. If F(x,y) = 1, then J(x,0,p)(f) is independent of x and coincides with the traditional Radon
transform, which we denote as R(w,p)(f). It is easy to see that the functions /(x,®)(f) and J(x,w®,p)
(f) are related by the equality

J(x,0,x-0)(f) = 1(x,0)(f),

i.e., they coincide if we assume that p = x-o.

It follows then that the functions J(x,0,p)(f), R(w,p)(f) are continuous because the function
I(x,0)(f) is continuous. Notice also that any transformation R(w,p)(%) is also continuous if the
function A(y) satisfies the same conditions as the function f(y), i.e.,

|h(u) - h(v)| < const |u -V

,u,veG,i=1,..,p,h(y)=0,ye G,
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Let us prove one useful property for the Radon transform of the function 4(y). Here we use a
small excerpt of the proof for some assumption from monograph [3], which we summarize to the
case of a discontinuous integrand A(y).

Consider the integral

H(x) = [ [ )|y = x,0)dody.

We need the following known, easily verifiable equations:

A, y—x|=2|y—x|71,J-|§-(;)|d(;):2n|§ ,E€E’,
Q

(5)
A, j Mozy = —47h(x).
Gl _x|
Using the first two formulas in (5) to transform the integral H(x), we obtain:
h
A H (x) = 4x 2 4, 6)
G |y - |

The same relation can be expressed in terms of the Radon transforms by changing the order of
integration and using the Fubini theorem:

H(x):Ijh(y)|(y—x)-w|dydco:jI|p| j h(y)dycsdpd(n:jI|p|R(co,p+x-oa)(h)dde),
QG Q-  (y-x)o=p Q-—»
Consider the expression

AH) = [A, [|pR(@, p+x- 0)(h)dpdo. (7)

—0

We transform the inner integral in Eq. (7), using the property R(w,h)(h) = R(—w,—h)(h):

A, I |p[R(w, p+x-0)(h)dp =

+00 X 8
=A{I (p—x-0)R(®, p+x-0)(h)dp- j (p—x~u))R(0),p+x~(o)(h)dp:| = ®)
= 2R((o,x~(o)(h).
It follows then that
A H(x)=2 J’ R(o,x-0)(h)do.
Q

Comparing the obtained equality with equality (6), we derive the formula
JR(m,x-m)(h)dm:2andy. 9)
Q G |y -X
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Notice that integration in equality (9) is carried out over the variables y, o, while the variable x
remains unchanged. This allows to assume that x here is a parameter expanding the range of ap-
plication for Eq. (9). Namely, given a fixed value of x, we can regard the product F(x,y)f(h) as
some function A(y) and assume that

R(o,x-0)(h)=I(x,0)(f).

Then it follows from equality (9) that

[1(x.0)(f)do=2n j% (10)

Applying the Laplace operator to equality (10), we obtain:

ijl(x,oa)(f)dm:

(x X)f(y) G- F(x DI (1D

To transform the first term in the right-hand side of equality (11), we select the integral, where
only the denominator |y — x|! is differentiated, and, using for it the last equality in relations (5),
we obtain the representation:

2mA, Md — 8 F (x,x) £ () + D, ().

|y =1

Here, the function @ (x) is a linear combination of the integrals over the variable y of functions

B(x,y)f(y)|y—x|ﬁq,oc:1,2, B(x,y)eCO (E3><E3),

i.e., potential-like integrals with a weak singularity.
The general properties of such integrals imply continuity and boundedness of @ (x). Clearly,
by virtue of inequality

|F(x,u)—F(x,v)|_ , x,u,veE’,

the second term in the right-hand side of Eq. (11), denoted by ®,(x), is also a combination of
potential-like integrals with a weak singularity and a continuous bounded function.
These considerations lead to the following formula:

Ax£1(x,0))(f)d(o=—8n2F(x,x)f(x)+<I>(x), (12)

where @(x) = @ (x) + @,(x).

Equality (12) serves as a basis for constructing an algorithm for solving the problem, comprising
the following steps.

Step 1. Integrate the known function /(x,®) over ® € Q.

Step 2. Apply the Laplace operatqr A _to the resulting expression.

Step 3. Analyze the function A Tl (x 03)( f )dco and indicate its discontinuity points that

Q

coincide with the discontinuity points of the function f{x).
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Comment on the algorithm presented. The left-hand side of Eq. (12) is known from the problem
statement, and the right-hand side has first-kind discontinuities only at contact points z € d G|,
provided that F(x,x) # 0, x € E3, [f(Z)],-,/ # 0, which we assume to be satisfied. Thus, we find a set
of all contact points in dG, and, by virtue of its density in d G, determine this entire set.

Note that Eq. (12) for the case F(x,y) = 1, f{y) € C' (E%) coincides with the known formula for
inversion of the classical Radon transform [3]. The result we obtained therefore in a sense builds
on the result above. Comparing the algorithm that we obtained with other algorithms, we can
see that the integrands are assumed to be smooth in all known formulas for the inverse Radon
transform so that it is possible to differentiate them. If we attempt to apply such algorithms to
discontinuous functions (e.g., meaning differentiation in a generalized sense), new terms such as
the §-function appear, with unforeseen complications for further analysis.

Particular case

Let us consider the case when the given object is a ball with a unit radius (1.0) centered at the
origin, containing an inhomogeneity, namely a ball 0.5 in radius also centered at the origin. Therefore,

G={xeE x|k}, G=G,UG,,
G ={xeB|x|<0.5}, G,={xeE’:05<x|<1}.
For the sake of simplicity, let us assume that F(x,y) = 1, and the function f is piecewise
constant:

fi,1x]<0.5,

X)=
S {fZ,O.S < x|<1.

It is evident that all the requirements of this problem are satisfied, including the condition of
generalized convexity for the discontinuity surface.

Then the integral over the plane, i.e., I(x,»), takes the following form:

[ foydo=

(y-x,0)=0

f,(0.25—(o-x)*) +0.757f,,| ®-x|< 0.5,
nf,(1-(®-x)*),0.5< o-x|<1.
Next, we integrate it over a unit sphere. For this purpose, we adopt a spherical coordinate

system and divide the integration into two parts, so that the planes intersect the domains G, and
G, in one part, and only the set G, in the other. As a result, we obtain the equality

2
4025 +0.75 f, 2 |3x| ), x]< 0.5,

Il(x,w)dm: ,
o 4n2(f2—f2|x| +2(f1_f2)}0.5<|x|<1.
3 3x|

We calculate the Laplacian of this integral:

—87° £, x|< 0.5,

ijl(x,m)dwz{ (13)

81’ £,,0.5<| x|<1.

Evidently, the latter expression is a discontinuous function if f, # f,, and the desired surface is
a sphere with a radius of 0.5 centered at the origin.

The outcome is consistent with the conclusions of the general theory, which indirectly supports
our assumptions.
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Conclusion

The study we have carried out is theoretical in nature, confirming that an unknown boundary
can in fact be found, which can be a useful tool for developing the theory on scanning various media
by physical signals. We intend to discuss the numerical implementations of the algorithm in our
future research. Since it is important to adopt the weakest constraints possible for wider practical
applications, we allowed for a case of a discontinuous integrand in the generalized Radon transform,
depending on multiple variables. Unfortunately, we are still forced to confine our analysis to the
condition of generalized convexity for discontinuity surfaces. The results obtained can serve for
further relaxing the constraints and increasing the efficiency of the developed algorithm.
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AnHoramua. C 1eibl0  OOBSICHEHMSI TIPUPOIBl AaHOMAJbHOIO pa3orpeBa IBUIEBBIX
YacTUIl B IUIa3MeHHO-ITbUIEBEIX cTpyKTypax (ITIIC) Ha ocHOBe WHEPTHHIX Ta30B, B paboTe
HUCCIEAYIOTCS 3KCIIEPUMEHTAIBHO W TEOPETUUECKM KWHeTmdeckue xapakrepuctuku I[1I1C.
Jns MHXEKTUPOBAHMS IIbLJIEBOTO KOMIIOHEHTA IIPUMEHSJICS KOHTEHMHEp C 4YacTULaMu
MOJUAMCIIEPCHBIX MaTepHaIOB Pa3HOI MPUPOAbI (OKCUI aTIOMMHMS U IIUHK). Busyanuszauus
u MoHuUTOpUHT noBeneHus ITI1C, a Takke M3MepeHUe MapaMeTPOB IIa3Mbl OCYILECTBIISLIIUCH
C  TIOMOLIBIO  CHEUMAJIBHO  CO3JAaHHOTO  MPOrpaMMHO-amIlapaTHOTO  KOMILIeKca.
DKCIMEPUMEHTAIBHO OIIpeaeIeHbB CKOPOCTH WM TEeMITEpaTyphl Pa3IMUYHBIX ITHUIEBBIX YaCTHUI]
B 3aBHCHUMOCTH OT YCJIOBUI pa3psima. AHAJIW3 ITOJYUeHHBIX PE3YIbTATOB IO3BOJIMI BBISIBUTH
0COOEHHOCTH IIPOLIECCOB U IIPEMIOXUTh OObSICHEHME MeXaHM3Ma pa3orpeBa U AUCCUIIALIUU
DHEPIUU YacTUll B ynopsaodeHHoi u xaotuueckoii I1T1C.
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Introduction

Dusty plasma is an example of an open non-equilibrium system where a self-assembly process
occurs, with dissipative structures emerging [1]. Massive dust particles in weakly ionized
plasma effectively dissipate their kinetic energy due to collisions with neutral atoms at a rate v,
so they are assumed to be in equilibrium with the atomic component and their temperature 7, is
equal to the atom temperature 7, (7, = 300 K = 0.026 eV). The mean particle velocity v, reaches
about 0.5 mm/s at a mass m = 0.1 pg in real experiments. At the same time, the kinetic energy
of the dust component particle is about 10 aJ (107"7J), which corresponds to a temperature of
the order of 10° 7). The mechanisms behind abnormal heating of the dust component have been
linked to stochastic fluctuations in the particle charge [2, 3]. Estimates of 7, values obtained by
the formulas given in monograph [4] do not correspond to our experimental data (see the results
below), so the true nature of dust particle heating in plasma-dust structures (PDS) is yet to be
established definitively.

The goal of this study consisted in describing the behavior of plasma-dust structures, proposing
an explanation for the nature of abnormal heating of dust particles in such structures.

Experimental

A plasma crystal setup, described in our earlier study [5], was used for the experiment. A glass
discharge tube with a radius of 1.5 cm where the glow discharge plasma was induced and the
PDS was generated was filled with the working gas (helium, neon or argon) under a pressure of
0.15 to 3.0 Torr and at a discharge current of 0.1—3.0 mA. A container with particles of different
polydisperse materials was used to inject the dust component:

aluminum oxide Al,O, with mean radius ¢ = 23 ym and mass m =~ 0.20 pg;

polydisperse zinc Zn with mean radius ¢ = 28 um and m = 0.65 ng;

same material (Zn), but with ¢ = 8§ pm and m = 0.015 pg.

The dust structure was visualized with a DTL-316 pulsed semiconductor laser (working wave-
length A = 532 nm) and a set of lenses producing a laser sheet; the PDS can be observed in the
light scattered by this sheet.

The hardware and software system for video images included a Hispec 1 high-speed video
camera and the Hispec Control software; the system provided real-time recording for 1 min at
different speeds (from 25 to 1500 fps). The experimental setup was assembled so that the electrical
characteristics of plasma and the pressure of the plasma-forming gas could be monitored simulta-
neously. The plasma parameters (electron temperature, charge carrier density) were measured by
an automated system for recording the probe characteristics.

Fig. 1 shows the trajectories of zinc particles for discharge in neon under a pressure p = 1 Torr,
at a discharge current /= 1.5 mA and at different camera speeds.

a) b)

Y, pm Y, pm
;‘ 80

80 i g }mg 3_,
ol A TN F ol AL
40 o et 40 I\/g:?
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0- f_ 0- J_f_
75 100 125 X, pm 75 100 125 X, pm

Fig. 1. Trajectories of zinc dust particles in neon,
obtained at two camera speeds, fps: 1500 (a) and 250 (b);
pressure p = 1 Torr, discharge current / = 1.5 mA
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Fig. 2. Experimental dependences of mean velocity
on the discharge current for Al O, particles in neon at various
neon pressures p, Torr: 0.3 (7), 0.6 (2) and 0.9 (3)

Particle velocity is determined by the ratio of the distance between two positions of the
particle to the time interval equal to the inverse frame rate »n of video recording. The error in
determining the velocity first decreases with increasing frame rate #, and then starts to increase
as the distance traveled by the particle between the frames becomes comparable to its size.
The optimal range of the high-speed camera’s frame rates was determined experimentally and
amounted to 250—500 fps [5]; this was based on the results of particle velocity measurements
for PDS in the ‘liquid’ phase including particles levitating in argon, neon or helium plasma.
The confidence interval for the mean velocity v,, determined through a series of measurements,
amounted to 90%.

Fig. 2 shows the typical dependences of the mean velocity on the discharge current for alumi-
num oxide particles in neon at different pressures.

Analysis of the experimental data obtained for the mean particle velocity v, and the velocity-
related temperature 7, = myv2/3k (k is the Boltzmann constant) shows that they weakly depend
on current and are governed by pressure. In addition to the particle velocity measurements,
experiments were conducted to find the distances r,between the particles depending on the
discharge conditions. The following approximate formulas hold true in the given range of
discharge conditions:

m,v,
Va ®V &, szz)&: dopo ’"d~’"o(1+ul) (1)
\ p p 3k p \/po

where v, mm/s, is the velocity at p = p,= 0.3 Torr; T}, K, is the corresponding temperature;
I, mA, is the current.
The quantities v, , and the constant u depend on the type of gas and the characteristics of the

particles. For example, they take the following values for PDS in Ne—ALO,:
v, = 0.44 mm/s, 7,= 9.4 -10° K, r,= 130 pm, p= 0.38.
The pressure determines the effective electron temperature 7, and the discharge current

determines the electron density #,. The lighter the plasma-forming gas, the smaller the value of r,.
For example, the following dependence is observed for p = 0.6 Torr:

Gas r, Hum
Al i, 330
Ne e, 200
He....ooovoveeee. 140

This may be due to the difference in electron temperatures 7 at the same pressures and cur-
rents. In particular, the following relationship is observed at /= I mA, pR= 0.9 Torrcm (R, cm,
is the tube radius):
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_
I
Gas T,eV
Al 1.4
Ne .o, 2.8
He..oovvrreveeee 3.7

Indeed, according to Eq. (10) (see below), the charge ratio |Z| for particles of the same size
for different Ar : Ne : He gases is defined as 1.0 : 2.0 : 2.6, which correlates well with the ratio
for the inverse distances (r,)~' between the particles: 1.0 : 1.7 : 2.3.

The distribution of velocity projections along the horizontal axis (Ox) and along the vertical
axis (Oy), determined both for an individual dust particle and for their ensemble, corresponds to
a normal distribution, which is consistent with the results obtained in [6].

Determination of dust particle velocity and temperature

The distribution function (DF) along the components of dust particle velocity is approximated
by a Maxwellian DF [7]:

f(v,)= \Eexp{—ﬁv?}, )

where § = m /2kT,; T are the temperatures of dust particles in the vertical (i = y) and horizontal
(i = x) planes; m, is the mass of dust particles.
Then we obtain the following expression for 7, (K):

T __ M (ﬂjz
“emk\ 2 )

or T, [K] = 1.3:10" m Av?, (3)

where Av, is the DF width at half-maximum; m, is measured in kg, and Av,in mm/s.

We analyze the experimental data, for example, for the discharge in argon with Al O, dust
particles with a mass m,= 0.2 pg, for p = 0.6 Torr, /= 0.6 mA, obtaining that Av_= 0.35 mm/s,
Av, = 0.53 mm/s. Calculation by Eq. (2) gives the temperature values along the axes x and y:

T,=32:10°K=27eViT, =7310°K =63 eV.

Thus, the DF of dust particles is anisotropic.
The chaotic velocity of the dust component v, is related to the temperature of the dust particles
as

m,v2[2=3T,/2,

where T, = 2T, + Tdy)/3.
Then the temperature 7, (K) of the dust particles follows the expression

T,=24-10"m,v 2, 4)
where m, is expressed in kg, and v, in mm/s.

Equation of the energy balance and temperature of the dust particles

To establish the mechanism by which dust particles are heated to temperatures at about a
few tens of electron volts and are subsequently cooled, we should consider the equation for
particle motion:

md%:eZdE—mdvdau+fr, (5)
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where eZ, is the charge of the dust particle; u is the instantaneous velocity of the particle; v, is the
rate of momentum transfer for collisions between the particle and the atoms; E is the local strength
of the electric field; f is a random Langevin force due to collisions with atoms, ions and electrons.

The momentum transfer rate v, given the Knudsen number Kn = % /a >> 1 (i, is the mean
free path of the atom, a is the particle radius) for free molecular flow is expressed as follows [4]:

8v2my a’n,T,
da >
3 myv,

(6)

or
v, = 1.16:10"a (p/m )( m /T )",

where a, m, is the dust particle radius; p, Torr, is the pressure, m,, kg, is the dust particle mass, m ,
u, is the atomic mass in the plasma-forming gas; v, = T'/m is the thermal velocity of atoms;
y is the accommodation coefficient characterizing the collisions between the atoms and the dust
particle, 1< y < 1.39 (y = 1.2 in the calculation formula).

Multiplying Eq. (5) by u and averaging it over an ensemble of dust particles within a unit
volume, we obtain:

n iM:@g«:yzvmnd@Md (uf)). %)

where the last term after averaging is substituted by zero (because there is no correlation between f.
and w); j,is the current density of dust particles; E is the local strength of the electric field near the
particle; n,is the density of dust particles; (j E) = W, is the power spectral density generated by the
discharge and spent on heating dust particles with the averaging condition imposed not only over
the ensemble, but also over time, since the quantities j, and E fluctuate around the average values.

Bearing in mind that (%) = v3, as well as the relationship between the temperature and velocity
of dust particles, we obtain an equation for the dust particle temperature:

dT, 2w
—d 4oy T =—42,
dt @ 3k ®)

Solving this equation with the initial condition 7,= T, we obtain a time dependence (7 is the
time) for the dust particle temperature:

/4
T, =T, exp{—Zvdat}+ﬁ(l—exp{—2vdat}). )
d " da

The dust component is heated in a characteristic time © ~ (2v,)”' to the temperature deter-
mined by the multiplier W,/3n v, k. In view of expression (1), the dependence of W, on pressure
takes the form W, ~ 1/p¥2, which approximately corresponds to the experimental data (see Table).
The quantity W, can be estimated from the values of experimentally measured temperatures. In
our case, it depends on the pressure and current, amounting to about W, ~ 107" W/cm?®, which
is significantly less than the power density dissipated in the discharge (1073 W/cm?). The source
of dust particle heating W, = (j E) is related to their temperature 7, by the ratio W, /3ny, kT,
Energy dissipation of dust particles occurs upon braking due to collision with gas atoms.

Table shows the experimental and calculated data we obtained for the Ne—AlL O, PDS under
various pressures at the discharge current / = 0.6 mA. The given characteristics of the PDS are
necessary to substantiate the conclusions formulated. The particle charge, measured in elementary
charges, is determined by the balance of ion and electron fluxes in plasma, taking into account
the emission processes on the surface [8]:
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=
I

|Z |_4n80a
| 2
e

Ty (t,)=694alm, (t,), (10)

e

where 1, is the normalized electron temperature (t, = 7,/T); n,, is the dimensionless potential of
the particle depending on t; the quantity a is expressed in pm, 7 in eV. As the temperature 7,
increases, the potential n,, decreases, so that n, 7T, =~ const [9].

The value of Z, calculated taking into account the uncertainty in the properties of the particle
surface (degree of roughness, types of emission), yields |Z| = (3 & 0.6)10* (in elementary charge units).

We describe the PDS using the nonideality parameter of the system, equal to the ratio of the
electrostatic interaction energy between particles to their kinetic energy, i.e., I' = (eZ)*/r, T, If
p = 0.3 Torr, we obtain a value of I' = 100; melting of the lower PDS section is observed visually
in this case. The critical parameter of nonideality I',, corresponding to the phase equilibrium at
r/A, = 1, equals ' ,= 106 [1] (A, is the Debye shielding radius). If I" < r, the plasma-dust system
is a liquid; as the pressure increases, the melting stops, and the magnitude of T exceeds T, (see the
corresponding row in Table), while the PDS is formed as a crystal (in our case, this is a phase
with a body-centered cubic lattice (bcc)).

Table
Experimental and calculated characteristics
of the Ne—AL O, plasma-dust structure
Parameter Value for pressure p, Torr Calculation formula
0.3 0.6 0.9 (or experiment)
T,eV 34 2.8 2.5 Experiment/calculation (see [10])
v, mm/s 0.44 0.35 0.25 Experiment
T,10°K 940 590 300 T,=3mpy *k
270 193 155 Calculation (see [4])
r,pm 160 225 280 Experiment
n, 10°cm™ 2.44 0.88 0.46 n,=10%/r}
r ~ 100 ~ 120 ~ 180 I'=(eZ)*/r T (for estimate)
W,10" W-cm™ 2.28 1.03 0.41 W,=3ny kT,
7, um 22.0 17.5 12.5 r =3kT Ja
E, W/cm 3.67 2.92 2.09 E,=ar/elZ)|
J, 107" A-cm™ 0.62 0.35 0.196 J,=WJE,
rir, 0.14 0.08 0.045 Lindemann criterion

Notations: T, T, are the effective electron temperature and dust particle (DP) temperature,
respectively; v,, r, are the mean DP velocity and the distance between the particles; n, is the DP density;
r.is the mean-squared displacement of DP from the equilibrium position in a conditional crystal lattice;
I is the nonideality parameter of the system; W,is the power density released in the discharge and spent
on heating dust particles; E, is the mean strength of the electric field; j, is DP current density; m , eZ, are
the DP mass and charge; v, is the rate of DP collisions with neutral atoms; o is the elasticity coefficient;
k is the Boltzmann constant.

Note. The discharge current is /= 0.6 mA for all data.
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Table lists, among other parameters, the values of 7, which we found by calculation using the
formulas given in [4]; they are considerably different from our results (given in the row above).
Thus, the power of the DP heating source associated with the fluctuation of particle charge induced
by the discrete charging current [4], is clearly insufficient for the observed heating of particles.

Consider the quantity W, = (j E). The current density of dust particles j, is induced by ele-
mentary currents eZ,v /r, near the sites of the crystal lattice. Averaging within a unit volume, we
obtain an estimate of the maximum characteristic density of dust particle current: ;™ ~ eZn v,
The minimum field strength corresponding to W, is equal to ™" ~ W /jme

A more accurate value of the field strength near the lattice site can be estimated using
the electrostatic oscillation frequency o,. For particles of different materials and sizes in the
neon discharge for o, ~ 1/Vm, ~10—80 s™" and then the coefficient of elasticity is equal to
o= wzm, ~ (8£2)107% kg/s?. The elastic force acting on the particle allows to estimate the field
strength by the formula E = ar/elZ], where r is the radial coordinate.

The potential ¢ at the distance » from the particle is determined by the expression:

(p:—IErdr:och/2e|Zd|.

Assuming the thermodynamic equilibrium of the dust component and using the theorem on
the uniform distribution of kinetic energy over degrees of freedom, we obtain:

e|Z,|(0) = a(r*)/2=3kT, 2,

r=\(r?) = kT, Ja. (11)

For example, if 7, = 9.4-10° K, we obtain r, = 22 ym, which corresponds to the observed de-
viations of particles from the equilibrium position (see Fig. 1). The physical meaning of the quan-
tity », becomes clear from expression (11): this is the mean-squared displacement of a particle
from the equilibrium position in a conditional crystal lattice. Table gives the values of r and the
corresponding averaged values of £, = ar /e|Z]| and j, =W /E,, providing the required value W,
According to the Lindemann criterion for a melting crystal [4], r./r,> 0.15, which is close to our
results: r,/r, = 0.14.

Thus, the heating source of dust particles is only partially related to their charge fluctuation
induced by discrete charging current [2]. This dust particle in lattice site loses the equilibrium po-
sition due to the random collisions with gas atoms and because of the force action of the nearest
dust particles in constant Brownian motion. The potential energy upon displacement from the
lattice site increases by an average of ar?/2, which is converted into kinetic energy of directed
motion 3kT /2.

Conclusion

We have considered the kinetic characteristics of plasma-dust structures (PDS) both
experimentally, using high-speed video recording, and theoretically. We determined the
velocities and temperatures of dust particles depending on the discharge conditions. Good
agreement between theoretical and experimental results was obtained. We have proposed a
scenario for the mechanism behind heating and dissipation of particle energy in ordered and
chaotic plasma-dust structures.
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Abstract: Studies of the fracturing surfaces on foreign material as a model object that binds
a component to bone tissue have been carried out. Metal and ceramic brackets were used
during operation. Brackets were fixed using the same materials under the identical conditions,
according to the standard direct fixing procedure. Areas of the bone surfaces were investigated
(when brackets removed) with the aid of scanning atomic force microscopy (AFM). The stud-
ied roughness was digitized owing to the ‘analysis’ microscope option. As a result, the average
value of the fracture surface roughness was found (when removed) to be 241 nm for the metal
bracket systems and 156 nm for the ceramic ones. Ultimately, the difference was more than one
and a half. This is useful in practical medicine when choosing a bracket system.
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Annoranusa. [TpoBeneHbl MCCIeqOBaHUS TTOBEPXHOCTH pa3pbiBa Ha MOJEILHOM OOBEKTE —
WHOPOJHOM Marepuasie, KOTOPBIi CBSI3bIBAET KOMIIOHEHT C KOCTHOHW TKaHblo. B mporecce
paboTbl KMCIIOJIL30BAHBI MeTa/UIMYeCKUME U KepaMuueckue OpekeTbl. {DUKcUpOBaHUE
OpEKETOB IIPOBEICHO B MAECHTUYHBIX YCIOBUSIX C MCIIOJIb30BaHMEM OIMHAKOBBIX MaTepUAaIOB
MO0 CTaHAAPTHOMY IIPSIMOMY MeTOAy (UKCcalUMU. YJYacTKUM ITIOBEPXHOCTHM KOCTHON TKaHU
WUCCIIeNOBaIN TIPU CHSITUM OpekeTa, C IOMOIIbI0 METOJa aTOMHO-CWJIOBOM MMKPOCKOIUU
(ACM). bnaromapst NpuMEHEHUIO OTIIMU «aHAJIU3», UMEIOIICHCS Y CKAaHUPYIOIIEro 30HI0BOTO
MMKpPOCKOTIa, IIePOXOBATOCTh MCCIEAYyEeMbIX MOBEPXHOCTEl Oblia mepeBeneHa B HU(POBYIO
XapaKTEepUCTUKY. YCTaHOBIIEHO, YTO CPeAHEee 3HAUCHNE IIePOXOBATOCTH ITOBEPXHOCTH Pa3phiBa
(TIpu CHITUM) IJISI METaJUTMYECKOIl OpeKeT-CUCTeMbl COCTaBUIO0 241 HM, a Ijisl KepaMUIeCKOM
— 156 HM, 4TO yKa3bIBaeT Ha OoJjice YeM ITOJyTOpOKpaTHoe pasanuue. I1oydeHHbI pe3yabTaT
MOXKET OBITh TTOJIE3€H B MPAKTUYECKON MEAULIMHE TP BBIOOPE OPEKET-CUCTEMBI.
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Introduction

Physical materials science has been central to the advances made in the medical industry.
There is a known problem with compatibility between living tissues and foreign materials, for
example, in the case of bone and joint replacement [1—7] or mounting of bracket systems.
This aspect is important for multilayer structures comprising bone tissue, binder, and metal or
ceramics. A wide range of orthodontic appliances are available; in particular, both removable and
fixed appliances are used for bite correction and teeth alignment [8—11]. Edgewise brackets are
a type of fixed appliance popular in the orthodontics market. Removing these brackets carries a
risk that tooth enamel can be damaged and subsequently crack. Studying the bond strengths and
adhesive remnants underneath orthodontic brackets is of interest for orthodontic practitioners; the
remnants can have damaging effects if the patient consumes any chemicals [12].

However, we have been unable to uncover any studies on the topology of the fracture surface,
which should serve as an evaluative criterion. This aspect of the problem makes it possible to
predict the effectiveness of certain technological approaches.

The goal of this study consists in exploring the characteristics of the fracture surfaces in metal
and ceramic brackets.

Experimental samples and procedures

The behavior of the surface fractures was analyzed for two bracket systems manufactured by
3M Unitek (USA): metal Victory Series™ and ceramic Clarity™. We prepared a small sample of
human tooth specimens, unaffected by caries and extracted for orthodontic (retained, dystopic)
or periodontal reasons.

The specimens were prepared as follows. The surfaces of all teeth were rinsed under running
water, cleaned of plaque with circular brushes and polishing paste (Detartrine, Septodont). The
specimens prepared were stored in normal saline (0.9% sodium chloride solution) prior to the
study. Brackets were attached in accordance with the standard protocol. The dental specimens were
etched with 37% orthophosphoric acid gel (TRAVEX-37, Omega) for 30 s. The treated arca was
then sprayed with large amounts of water to remove the gel, and dried until the enamel reached a
semi-dry chalky state.

The TRANSBOND XT (3M Unitek) primer
was applied to the enamel and the bracket
base. The primer was cured with a LED lamp
emitting at 400—500 nm (UV range) for 40 s.
A TRANSBOND XT (3M Unitek) light-curing
adhesive was then applied to the bracket base,

I excess material was removed, and the bracket
was attached to the surface of the tooth. Next,
first the mesial and then the distal surface of
the bracket was light-cured (for 10 s in both

2 cases). Both brackets (metal and ceramic) were
simultaneously attached to one tooth. The
system was removed after 7 days using specialized

3 atraumatic forceps. Atomic force microscopy
(AFM) was then used to analyze sections of

Fig. 1. Tooth specimen (2) mounted on stage (3) the surface in each tooth. Fig. 1 shows tooth

of the scanner and cantilever (/) of the scanning specimen 2 mounted on stage 3. As cantilever /
probe microscope moves along the fracture surface considered, its
profile is recorded, with a raster image generated.

The scanning probe microscope has a function for analysis, allowing to extract the numerical
values for the measured roughness of the given surface.

Results and discussion

The results of the above measurement procedure are shown in Fig. 2—4. After scanning the
fracture surfaces in the binding system of the multilayer structure (dental enamel — adhesive system
— bracket), we carried out comparative analysis of the scans along two orthogonal directions. All
figures below show the scan lines of the cantilever along which roughness was measured.
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a) b)

Fig. 4. 3D raster images of surfaces obtained after removal
of metal (@) and ceramic (b) brackets

Table

Measurement results for average roughness of the fracture surface
for removal of two types of brackets

Sample Average surface roughness, nm
number Metal bracket Ceramic bracket

1 253.6 212.0

2 232.8 155.8

3 255.7 140.0

4 391.6 74.79

5 180.5 138.2

6 228.9 190.9

7 180.4 143.4

450
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Average 1'01.121]11&83..1}111
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Fig. 5. Diagram for average roughnesses of dental surfaces after removal
of metal (M) and ceramic (C) bracket systems. Specimen numbers are plotted
on the horizontal axis (see Table)
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Scanning was carried out for lines /—6 shown in Figs. 2, a, b and 3, a, b. Height differences of
about 200 nm were detected along one profile. In particular, we discovered by scanning along the
selected direction of profile 7 that a jump in height y in the range of 0.63—0.84 (Fig. 2, ¢) occurs
at the coordinate x = 0.036. As seen in Fig. 3, ¢, scanning along profile 4, we observed a jump in
height y in the range of 0.16—0.43 at the coordinate x = 0.037.

Furthermore, Fig. 4, a,b shows the surface reliefs (in Cartesian coordinates) obtained after
removing metal (4,a) and ceramic (4,b) brackets.

Table shows the average roughnesses of the fracture surface for metal and ceramic brackets. Fig.
5 shows a diagram for the average roughness of the tooth surface, revealing significant variations
in this characteristic. We observed irregularities (peaks and valleys) from 575.8 to —836.0 nm.

Comparative analysis of the results given in Table indicates that the average roughnesses of
fracture surfaces in tooth enamel lie in the range from 180.4 to 212.0 nm for ceramic brackets
and from 143.4 to 253.6 nm for metal ones. The integral result for the average roughness of
the fracture surface amounts to an even greater difference: in the range from 74.79—212.0 nm
for ceramic and 143.4—391.6 nm for metal. Given the same material and attachment method,
removing the metal bracket system yields a roughness whose values exceed those for the ceramic
system by more than 1.5 times. Expressed numerically, the degree to which the roughness is
developed reflects the strength of the adhesion process in three-layer composites.

Conclusion

The difference in the structures and materials used, the sequence of steps and methods for
attaching the brackets at both the preparatory and main stages of the procedure has allowed to
formulate the proposals for improving the technologies adopted in dental practice. The findings
outlined in this paper can be useful in practical medicine for choosing the bracket system.
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Introduction

The transcription process resulting in gene expression by DNA-dependent RNA polymerase
(RNAP) has been considered in a huge number of studies, most of them performed using
classical biochemical methods. These methods only offer limited possibilities for obtaining
detailed characteristics of the given process. Furthermore, crucial data is provided in structure
studies focused on bacterial RNAP—DNA complexes using cryoelectron microscopy, nuclear
magnetic resonance spectroscopy and X-ray crystallography. While these methods yield essential
data on some of the longest-lived states of these complexes, less details can be uncovered about
the intermediate, short-lived states governing the dynamics of the process.

As a matter of fact, unambiguous data on these dynamics can only be obtained by single-
molecule techniques allowing to monitor the mechanistic changes of individual molecules in
real time, without averaging over an ensemble of particles. The most commonly used single-
molecule techniques are optical or magnetic tweezers and single-molecule Forster resonance
energy transfer (smFRET).

The number of studies incorporating these methods to gain detailed insights into the
dynamics of transcriptional elongation has increased dramatically in the last 10—15 years [1—4].
The results indicated that various conformational states of RNAP (whose lifetimes differ by
several orders of magnitude) evolve throughout the complex structural transformations during
the single transcription steps — a nucleotide addition cycle, each corresponding in length to
progression of RNA-polymerase by one base pair.

Here we employ acoustic force spectroscopy technique for single-molecule research of
transcription elongation; the advantage of this approach is that data on the dynamics of several
RNAP molecules can be extracted simultaneously. Since this method is relatively new, we
focused on its capabilities and the particulars of the technique developed based on the method.

Here we perform new data characterizing the dynamic pattern of bacterial RNAP transcription
under specific conditions.

Acoustic force spectroscopy for transcription analysis

The method of acoustic force spectroscopy (AFS) was first presented in late 2014 [3].
The studies were run on a specially made Lumicks setup including a customized microfluidic
chip, an inverted microscope, and a camera. The microfluidic chip used in the experiments
is a chamber bounded by two glass plates with fluid in between. Applying a voltage to a piezo
element attached to this chip generates a plane acoustic wave acting on polymer microspheres;
their displacements were tracked with an inverted microscope and camera. DNA molecules are
tethered between the surface of the cover glass and the microspheres (Fig. 1). A force of an
acoustic nature acts on the microspheres.

PE %
G
tF
SCM
DNA >4 RNAP
RNA/
!
RMS

G

Fig. 1. The configuration of the AFS experiment:
piezo element PE; glass G; streptavidin-coated microsphere SCM and reference microsphere RMS;
DNA, RNA; biotin-modified RNAP; transcription direction TD; applied force F
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The acoustic wave propagating inside the chip generates the force acting on the microspheres:

1-k" p -1
F=-VV|——Fk p*——— v, 1
{ 4 P 2 P } (1)

where V, m3, is the volume of the microsphere; p, Pa, is acoustic pressure; v, m/s, is the speed of
sound; p*= pp/ p, is the density ratio between the microsphere and the medium; k" = kp/km is the
ratio of elasticity coefficients between the microsphere and the medium.

The magnitude of the force F (see Fig. 1) depends on the size of the microsphere, the
frequency of the acoustic wave and its amplitude, which in turn depends on the voltage applied
to the piezo element [3].

The forces applied in the method generally range from units to tens and even hundreds of
piconewtons, which underlies its potential for studies of biological objects [5].

While the AFS method itself has a simple design, the experiments performed needed a lengthy
and complicated protocol.

A DNA molecule should be obtained at the preparation stage before the experiment; this
molecule is subsequently tethered to one of the surfaces of the microfluidic chip. To achieve this,
the DNA and the surface are modified, respectively, with digoxigenin and anti-Dig antibodies,
compounds forming a chemical bond during interaction. It can be seen from Fig. 1 that RNA
polymerase must be chemically bound to the microsphere in order to conduct the experiment. For
these purposes RNAP modified by biotin is used. Thus, biotinylated RNAP is strongly binding to
the streptavidin covered microspheres [6].

The transcription cycle performed by RNA polymerase (regardless of cell type) includes three
stages: initiation, elongation, and termination. During initiation, RNAP binds to the promoter
sequence, with the bound double-stranded DNA melting as a result and open RNAP—DNA
complexes forming. The elongation stage when RNA molecules are actively synthesized follows
next. RNAP moves along the DNA in leaps, this enzyme can stop either temporarily (i.e., pause)
or permanently (i.e., arrest) during elongation. Moreover, RNA synthesis can be terminated in
response to regulatory events from protein factors and/or signals encoded in DNA and RNA [7, §].

AFS allows to simultaneously track the dynamics for several RNAP molecules moving along
the DNA, which is an advantage over other single-molecule methods where only the position of
a one RNAP molecule can be detected in real time [9, 10].

Elongation profiles demonstrate the dynamic characteristics of a single RNAP, such as
instantaneous (between pauses) and average rate, the presence of arrests/pauses and their duration.
The profiles are the graphical interpretation for the characteristic motion of single polymerases
responsible for transcriptional elongation, presented as the time dependence of the transcribed
DNA length (in nanometers or nucleotides) on time (seconds).

2000 4
1500

1000 +

500

Number of transcribed nucleotides

T T T T
0 20 40 60 80
Time (s)

Fig. 2. Representative elongation profiles for three individual RNAPs
under conditions without the influence of chemical agents
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Algorithm for processing the elongation profiles

A typical shape of the elongation profiles for three single RNA polymerases in the absence of
any chemical agents affecting transcription is shown in Fig. 2.

A median filter with a window of several seconds is used to process the obtained data, and a
Savitzky—Golay filter is applied for repeated smoothing [11]. Transcription rate thresholds and
all-time intervals where the velocities falling below the threshold value are regarded as pauses
are given. These pauses are sorted into 'long' ones, lasting over 20 s, and 'short' ones, lasting
from 2.5 to 20 s [12, 13]. The resolution of the setup does not allow to determine pauses shorter
than 2.5 s. The threshold value is chosen to equal 0.5 o, where o is the standard deviation
from the mean, obtained from the Gaussian distribution for instantaneous rates. The Gaussian
function f{x) has the form

ey

oV2T

The values extracted are averaged over the entire ensemble of pauses and are represented as
(mean * standard error of the mean (sem)). The Mann—Whitney test is used as a criterion for
statistical significance. The distribution of instant velocities is generated by processing with the
selected rate threshold.

In the general case, the velocity distribution contains signals corresponding to the derivatives
of noise and useful signal. The noise component is determined by the parameters of the
experimental setup, and its spectrum corresponds to the distribution of derivatives for those
sections of the elongation profile where the polymerase progression is stopped, i.e., when
it dwells in paused states. The noise derivative has a symmetrical distribution with respect
to zero rate; its contribution can be considered using the negative part of the distribution,
which is not superimposed by the useful signal. Since the positive values of the noise signal
are equal in magnitude to its negative values, the true distribution of instant velocities can
be obtained by subtracting the absolute values of the noise signal from the total transcription
rate distribution. This method was previously successfully applied in [14, 15]. Fig. 3,a shows a
histogram for one of the obtained elongation profiles with a pronounced bimodal distribution
for the example described. Expansion of this distribution using Gaussian functions allows
isolating the distribution near zero (red curve) corresponding to the noise component of the
signal, and the true instant transcription velocity (green curve).

The parameters of the instantaneous transcription rate can be determined more precisely using
the noise subtraction procedure described above.
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Fig. 3. Histograms of instant transcription rate distributions before (a) and after (b) subtracting the
absolute values of the noise component from the signal and approximation by the Gaussian function
(green curves correspond to the instantaneous rate, red to the noise component)
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Fig. 3,b shows the approximation of the transcription rate distribution by the Gaussian
function after subtracting the noise signal. As evident from the approximation results, the value of
instantaneous transcription rate extracted by this procedure is higher and likely closer to the true
values of instant transcription rate in polymerase.

After these measures are performed for each elongation profile obtained, the data for all
profiles corresponding to the specific experimental conditions are averaged and represented as
(mean value = sem).

The value of the average transcription velocity for each RNA polymerase is equal to the ratio
of the path traveled by the polymerase (the elongation profile length) to the total travel time. The
obtained values are averaged over the entire ensemble of velocities for each of the experimental
conditions and are represented as (mean value * sem). The Mann—Whitney test is used as a
criterion for statistical significance.

Effect of magnesium ions on transcription parameters

To assess the effect of magnesium ions on the transcription process, we compared the parameters
of elongation profiles measured at MgCl, concentrations equal to 1 and 10 mM. Representative
elongation profiles for single RNAPs at various magnesium concentrations are shown in Fig. 4.

The values of instant and average transcription velocities at a magnesium chloride concentration
of 10 mM, obtained after averaging over 28 elongation profiles (Fig. 5), turned out to be 20.5 =
0.9 and 17 £ 0.7 nucleotides per second (nt/s; mean value  sem).
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Fig. 4. Representative elongation profiles of instantaneous RNAPs
for MgCl, concentrations equal to 1 mM (blue curve) and 10 mM (red curve)
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Fig. 5. Diagram for values of instantancous (left) and average (right) transcription rates
for MgCl, concentrations of 10 mM (green bars) and 1 mM (blue bars).
The concentration of nucleoside triphosphates (NTP) is 1 mM
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The numerical values of these quantities practically coincide with the data obtained previously
[6, 16, 17]. Such close values of the average and instant velocities and a small number of short
pauses at a high concentration of magnesium ions indicate that RNA-polymerase is only
motionless for a small period compared to the time spent on transcribing a DNA sequence,
chosen equal to 500 nm * 10% in these experiments. Large pauses (longer than 20 s) are not
observed under these conditions, while a small number of short pauses (between 2.5 and 20 s)
were found using the processing protocol above. Fig. 6 shows the results extracted by processing
the entire data array, determining the average number of short pauses per one elongation
profile.
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Fig. 6. Diagram of the average number of short transcription pauses per elongation profile
for MgCl, concentrations of 10 mM (green bar) and 1 mM (blue bar).
The concentration of NTP is 1 mM

As seen from Fig. 4, the fundamental difference between the shape of elongation profile
at low (I mM of MgCl,) and high (10 mM of MgCl)) magnesium concentration is that it
takes much longer for polymerase to travel the same length of DNA. No pauses longer than
20 s are observed in this case, the same as with a high magnesium concentration. The values
of instantaneous and average rates, as well as the number of short pauses per one elongation
profile, calculated by the same protocols as for a high concentration of magnesium ions,
turned out to be 8.7 £ 0.9 and 6.3 £ 0.8 nt/s, respectively, as well as 23.6 £ 4 pauses (see
Fig. 6).

First, we should note that the results obtained for the slowing down rate of transcriptional
elongation with a decrease in the concentration of magnesium ions qualitatively agree with
the data of biochemical experiments. However, the data provided by ensemble methods could
not provide dynamic characteristics of potential processes affecting the value of the average
transcription velocity.

As follows from our findings, the decrease in the average transcription velocity with
decreasing concentration of magnesium ions is largely due to an increase in the number of
short pauses. A possible mechanism behind these pauses is associated with the mismatched
base composition within the active site of RNAP, necessary for the first stage of transcriptional
elongation. This composition must contain a nucleotide complementary to the corresponding
nucleotide of the template DNA strand and a magnesium ion. These components enter the
active site of the polymerase through a secondary channel as a result of diffusion. Access of
mismatched nucleotides to the active site of RNAP or the absence of magnesium ions within
the site induce short pauses when RNAP can delete the mismatch from the active site.

Assuming that a pause happens by this mechanism, it should be expected that the number
of cases with the absence of magnesium ions in the active site is greater at a low than at a high
MgCl, concentration in the transcription buffer, and, accordingly, more short pauses are also
observed at a low concentration, as confirmed by our study.
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Notably, the resolution of the AFS setup does not allow detecting pauses shorter than 2.5 s,
whose number is likely also significantly larger at low magnesium concentrations. In view of this,
it can be assumed that the value of the instant elongation velocity (i.e., the rate between pauses)
at a low concentration of magnesium ions is greater than the value obtained in this study by
calculating this rate between pauses longer than 2.5 s.

Conclusion

We have developed a technique for measuring the RNA-polymerase transcriptional elongation
profiles at the level of individual molecules by acoustic force spectroscopy (AFS), constructing an
algorithm for analyzing the data extracted. This technique was used to study such transcription
parameters as instant and average elongation velocities and the density of paused states of bacterial
RNA polymerase. Moreover, it was demonstrated the quantity dependence of these paused states
on the concentration of magnesium ions. The parameter values obtained made it possible to
draw conclusions about the possible mechanism behind the short pauses generated at the stage of
transcriptional elongation by bacterial RNAP.
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Introduction

The blood test is an essential tool in modern medical diagnostics, serving as a sensitive
method for monitoring the variation in health parameters. Furthermore, such characteristics of
blood cells as size, deformability and shape immediately affect the processes of gas exchange
in the tissues.

Measuring the optical characteristics of blood cells is crucial for developing new methods
to diagnose biological structures used in diverse biomedical applications [1, 2], for example,
for diagnosing blood conditions. Constructing suitable mathematical models describing the
propagation of light in biological tissues can contribute substantially to tackling this challenge.

Early diagnostics of platelet dysfunction (deviations in platelet size and shape, changes in
their aggregation properties) and related clotting disorders is important for identifying the risks of
diseases closely linked to such conditions. This primarily applies to coronary heart disease.

The absorption and scattering efficiency of laser radiation largely depends on activated platelets
prone to aggregation and thrombogenicity.

The process of erythrocyte aggregation, caused by natural damage in this case, can trigger
hypercoagulability by releasing erythrocytic coagulation factors into the blood.

Each specific disease accompanied by pathological aggregation of blood cells requires
comprehensive study to carefully select the most effective laboratory technique for monitoring
and analyzing this process. The main factors influencing such pathological processes and the
mechanisms behind them are impairments in the structure and function of erythrocytes, especially
their ability to aggregate.

The optical characteristics of blood are very sensitive to the aggregation parameters of such
cell types as erythrocytes and platelets; in particular, such processes affect the absorption and
scattering efficiency of laser radiation by blood.

Exploring the quantitative relationships between biological properties and optical characteristics
of biological particle aggregates is of immediate interest for advancing new approaches in optical
biopsy, optical tomography, analysis of photodynamic and photothermal destruction of tissues
and cells forming them. In particular, potential aggregation between the simulated particles should
be taken into account. This study reports on numerical simulation of multiple light scattering
by particle aggregates imitating the given biological structures, carried out for the first time to
quantitatively study the assembly of biological particles into aggregates.

Our goal was to describe in detail the newly developed mathematical model for interaction
of laser radiation with aggregates of biological structures with varying degree of complexity and
organization in different cell types, testing the model proposed in specific scenarios.

Solution of the light scattering problem for the case of particle aggregate

The phenomena of light scattering by particle aggregates (clusters, ensembles, etc.) even having
simple shapes can be rather difficult to interpret since these phenomena are governed by the
interactions of fields from all particles comprising the aggregate. It should be borne in mind that
each particle modifies the field not only in the vicinity of the others (multiple scattering), but also
due to far-field interference.

In general, multiple scattering should be accounted for by rigorous numerical methods. Some
of these methods explicitly take into account the interactions between particles [3] (like the
superposition T-matrix approach [4—6] and the discrete dipole approximation (DDA) [7]), while
others regard the aggregate as a cluster, i.e., a single particle of complex shape (like the finite-
difference time-domain method [8]).

Multiple scattering can be computed iteratively [9, 10], for example, by the successive order-
of-scattering technique, which is considered a special case of the superposition method.

Let us focus on the problem of multiple light scattering by an ensemble of particles imitating
blood cells that contain nuclei, plasma membranes and cytoplasm inherent to the given biological
structure, characterized by various geometric and optical parameters close to the simulated object.

The decomposition coefficients corresponding to the fields of incident light and light scattered
by the aggregate can be related by calculating the T-matrix for laser scattering by an aggregate
composed of multilayered particles within the strict theory of multiple light scattering. Since
multiple interactions within the aggregate components are taken into account, it can be concluded
that the scattered fields are connected.
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T-matrices are calculated in a local coordinate system associated with the center of the
corresponding particle for each of the aggregate particles, since they are independent of incident
radiation. We follow the standard representation of the electromagnetic field incident on the jth
particle as the sum of the initial incident field of the light wave and the field scattered by an ensemble
of other particles located in a medium with a refractive index »n, writing the expression [11]:

E,.()=E,(j))+ D E, .., )), (1)

I#j

where E_ (1)) is the sum of the fields scattered by the jth particle (we use /, j to denote the indices
to emphasize the transition from the /th to the jth coordinate system.

We apply the T-matrix to calculate the field scattered by the jth particle; it is included in this
equation as E_(/j). A local coordinate system associated with the jth particle was selected to
calculate the T-matrix.

Relying on the translational properties of vector spherical wave functions, we can further
transform the decompositions with respect to these functions from coordinate systems associated
with the jth particles to the coordinate system of the /th particle. As a result, we obtain a system

of linear algebraic equations (SLAE) for ﬁnding the coefficients of the light field scattered by an

ensemble of multilayered particles a/ , b/ -
(a] 1 [[ P ] . Z(A(z,() B, J:)j(a{ H
b’ g’ ) H\BWUj) AL )b
T/ =T/ +T/ T/ a,{lp 0 T 0 a'{lq
I b,{lq’ * b, 0
the expressions for the coefficients a b’ b’ given here are provided in [11, 12], while

the quantities A(/,j) and B(/,j) are deﬁned in [13q 14]

Problems on light scattering by dielectric objects imitating biological structures, in particular
blood cells, often entail solving the so-called ill-conditioned SLAE.

SLAE of the form (2) was solved via a stable algorithm of biconjugate gradients [15]. This
method is based on the conjugate gradient squared method and does not allow for unstable
behavior of the residual and accumulation of round-off errors.

Convergence to the required solution was substantially improved by using the algorithm for
solving preconditioned SLAE as an LU-decomposition [16].

Analyzing the graph in Fig. 1, showing the dependences of relative residual norm on the
iteration number for the method of preconditioned biconjugate gradients, we can conclude that
the method used clearly has satisfactory convergence.

104

Relative norm of the residual
3

Relative norm of the residual
=)

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7
Number of iterations Number of iterations

Fig. 1. Values of relative residual norm as a function of iteration number,
obtained by the method of preconditioned biconjugate gradients.
Case of 4 particles in a layer, spaced 2 um (@) and 1 pm (b) apart. Their parameters are given in Table
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Table
Computational parameter sets for the problem of particle aggregates
Particle parameter T ParIaImete|r Vallﬁe fo|r palrgcle —
Distance between particles is 2 um (Figs. 1,a and 2) and 1 um (Fig. 1,b)
Diameter, um 6.5 6.5 7.0 7.6
Diameter, um
particle nucleus 4.0 4.0 4.0 4.0
particle cytoplasm 5.0 6.0 6.5 6.5 _
Refractive index of nucleus 1.37
Refractive index of cytoplasm 1.00
Refractive index of plasma membrane 1.33
Distance between particles is 2 um (Fig. 3) and 1 um (Fig. 4)
Diameter, um 6.5 6.5 7.0 7.6 8.0
Diameter, um
particle nucleus 4.0 4.0 4.0 4.0 3.0
particle cytoplasm 5.0 6.0 6.5 6.5 4.0
Refractive index of nucleus 1.37
Refractive index of cytoplasm 1.00
Refractive index of plasma membrane 1.33
Distance between particles is 2 um (Fig. 5)
Diameter, um 6.6 6.6 7.1 7.7 8.1
Diameter, um
particle nucleus 4.0 4.0 4.0 4.0 3.0
particle cytoplasm 5.0 6.0 6.5 6.5 4.0
Refractive index of nucleus 1.37
Refractive index of cytoplasm 1.34
Refractive index of plasma membrane 1.33
Distance between particles is 2 um (Fig. 7)
Diameter, um 6.5 6.5 7.0 6.6 6.0
Refractive index of nucleus 1.37 1.33 1.33 1.37 1.37
Distance between particles is 1 um (Fig. 9)
Diameter, um 6.5 6.5 7.0 8.6 12.0
Refractive index of nucleus 1.37 1.33 1.33 1.37 1.37

We developed a software package for computing T-matrices, taking into account multiple
scattering for multilayered spherical structures. The T-matrix for spherical scatterers assumes a
diagonal shape [17].

The software we have developed was used for fairly detailed analysis of the spectral characteristics
of laser radiation (wavelength range from 400 to 650 nm) scattered by multilayered spherical particles.

Finding the numerical values of the coefficients @/ , b/ from expression (2), we can calculate
such physical quantities as the absorption cross section (C, ), scattering cross section (C_ ) and
extinction cross section (C, ), determined by the following procedure [18]:
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| -
vaca I/Vex
Cscat = I_t 4 Cext = I_t s Cabs = Cext - Cscat s (3)

where [, is the intensity of incident light,

VVscat = ISscat e, dA VVext - ISext ’ erdA; (4)
A A
here
Sscat 9%[ scat scat] S = _ER[EU]‘IC x Hsjcat + Es]cat X Hzitc] (5)
1 2n m
I/Vscat = EmJ‘ I[Escat(G)Hscat(q)) - Escal(d))Hscat(G) ]rz s eded¢’ (6)
00
1 o * * * * 2 .
W, = ESRJ‘ I[Emc(@Hscaz(e) - Einc(e)Hscat(d)) - Escat(e)Hinc(¢) + Escal(q))Hinc(e)]r sin0d0d¢, (7)
00
where
0 n o , 0 eimd)
Einc(G) = Zl Z Emn I:_lpmn\ljnrmn + qmn\llnnmn :IF’ (8)
0 n im
. ’ e
Ef”C(d)) = Zl Z Emn ':lqr(:m\Vntmn + pr(:m\llnnmn]ﬁ’ (9)
im(j)
Z”C(e) 0)“ zl Z E I:lpmn\Vn mn _an\vn mn:| kr > (10)
k eimd)
Hi’“’(‘b) 0)“ zl Z E I:lqmn\llnnmn +pmn\|jn mn:| k}" > (11)
n imé
c ey . e
Escat(e) = z Z Emn I:_la.rim nrmn _brim&nﬂ:mn]?’ (12)
n=l m=-n
0 n imd
AR i ! e
Eycat(q)) = z Z Errm I:_lbrim n Cmn _ar]nn nﬂ:mn] r s (13)
n=1 m=-n
o eimd)
VCLU(G) Z Z E I:lar]nnannmn +b]n :'F’ (14)
n=l m=—n
imd
i ) e
SC‘”(‘P) O\)},l Z] z E I:lbr{m nnmn _a.rim nrmn]ﬁ> (15)
the following notations are used here: vy (p) = pj (p), &,(p) = ph'’(p) are the Riccati—Bessel functions;
i"(2n+1) En m:. ; the quantities ¢° , p° are defined in [11].

Substituting the expressions for the quantities £ E H H ) E H

. inc(0)? inc(9)’ inc(0)? inc()? scat(0)° scat(9)? scat(0)?
H___ to Egs. (6) and (7), we obtain:
scat(d)

scat - Z Z (n+l)(2n+1)§ | mn | (16)
C., Z Z <n+1><2n+1)§ ; R(plal, +q b ). (17)
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Based on expressions (12) for the 6-component of the scattered radiation intensity, we obtain
2
' Escat(9)|

We have thus obtained the formulas for determining the dependences of the above spectral
characteristics on the wavelength of incident laser radiation (see Figs. 2—5).

We should note that the computations by the superposition T-matrix method in this paper
were based on the Finite Difference Time Domain (FDTD) approach. A mathematical approach
described in [12] was used for the problem on scattering by a multilayered sphere.

1 1

scat(0) =4;
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Fig. 2. Graphical representation of absorption cross sections (a), extinction cross section (b),
scattering cross section (c) and scattered light intensity as functions of laser radiation wavelength
incident at zero angle (d), for the given parameters of the problem
(4 particles in the layer, spaced 2 um apart, see Table)
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Fig. 3. Graphical representation of absorption cross sections (a), extinction cross section (b),
scattering cross section (c) and scattered light intensity as functions of laser radiation wavelength
incident at zero angle (d), for the given parameters of the problem
(5 particles in the layer, spaced 2 um apart, see Table)
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Determining the function for the size distribution of blood cells

The known variable (measured approximately) here is the intensity of light scattered by the
aggregate of multilayered particles /,, ()) imitating blood cells. Solving the problem should yield
the size distribution of blood cells.

In this case, the quantity 7, (A) is found through a model experiment to demonstrate the
capabilities of the method (see graphs in Fig. 2,d-5,d).

Adopting the standard approach for such cases, the problem posed can be described by a linear
Fredholm integral equation of the first kind, taking the following form:

pmax

du= [ I(p.Mu(p)dp=1 (1), (18)

pmin

where A is the integral operator; I(p,A) is the kernel of the integral equation; p is the equivalent
radius, p = ka (k is the magnitude of the wave vector, a is the particle radius); u(p) is the required
distribution of the cells over the sizes (equivalent radii); f{\) is the scattered light intensity by an
ensemble of multilayered spherical particles, found by the model experiment, f{}) = 1, (}).

This problem belongs to the class of so-called inverse ill-posed problems. The core of the in-
tegral equation /(p,\) is defined as the intensity of light scattered in the direction of the angle 6
selected in the experiment by a multilayered spherical particle. We assume that /(p,\) is a con-
tinuous function in a rectangle

Q=([c,d]x[a,b]) and f(A) € Ly, 4
where a=p ., b=p ., c=k ,d=)_.
Let u(p) be a smooth function, when instead of /. its approximate value f; is known, such that

If = £l q < 8. Then we select the solution space as U= W'!
Let functlon 1,(p,}) be given instead of function /(p,A), w!hde

”[(p,k) —1,(p, }\‘)”LZ(Q) </

then |4 — A |w}- 1,<h, where A, is the approximation for the integral operator A with an accuracy
h in the operator norm, which corresponds to the kernel 7,(p,A).

Notably, inversion of the operator A for the inverse problem (see expression (18)) is unstable
for space W‘ ” Then the Tikhonov regularization method can be used to numerically find the
distribution u(p)

Let us write the Tikhonov equation [19, 20]:

(A4, A4, +aCu” =4, f,
where A, is an operator from the space W 5 O the subspace L2 ap A is an operator from L
to W12[ 3l (conjugated to 4,); C is some operator whose matrix is deﬁned in monograph [20].
Notably, we assume in this statement that there is no information about the smoothness of the

exact solution; then we regard the operator 4, from the initial integral equation as acting from

Lm 5 tO LZIC a In this case, the smoothing functional takes the form

2[c,d|

—> min, (19)

Lote.ay

2
M Tul=|4u® - + ol
h S
LZ[L',d]

and the Tikhonov equation takes the form
(A4, A, +oEWu" =4, f,

where F is the unit operator.
The function u* minimizing the functional (19) depends on the value of the regularization
parameter a.
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Fig. 5. Graphical representation of absorption cross sections (a), extinction cross section (b),
scattering cross section (c¢) and scattered light intensity as functions of laser radiation wavelength
incident at zero angle (d), for the given parameters of the problem
(5 particles in the layer, spaced 2 um apart, see Table)

The regularization parameter providing optimal agreement between the experimental data and
a priori information is selected for this case by the following approaches: relative residual method,
quasi-optimality criterion, smoothing functional principle, L-curve method [19, 20]. The software
package we have developed in this study was used to select the regularization parameter automat-
ically by the predefined errors of both the integral equation kernel and the experimental data (see
Figs. 6 and 8 below).
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Results and discussion

The results obtained (see Fig. 2—5) confirm that the mathematical approach outlined in the
study and the software package we have developed here based on it allow detecting the aggregation
of simulated particles and their parameters, since varying the distance between the particles is
accompanied by not only variation in the numerical values of spectral characteristics but also in
the shape of the curves, as can be seen from the figures. We considered multiple light scattering
by an ensemble of spherical particles with inclusions of concentric spheres with different radii.

Figs. 2,d—5,d graphically represent the scattering intensities and scattering cross sections of
laser radiation as functions of radiation wavelength for different problem parameters (the param-
eters are summarized in Table).

It should be noted that the scattering cross section characterizes the efficiency of angle-re-
solved light scattering by a particle. In particular, the differences in both the scattering cross sec-
tions and its intensities for different biological substances follow from the difference in the sizes
of the blood cells themselves, as well as the variability in their internal structures.

To find the erythrocyte distribution function over the equivalent radii, we solved the problem
on mathematically describing the interaction of laser radiation with an aggregate consisting of
a finite number of particles, taking into account their structure and the effects of multiple light
scattering, as well as with the exactly given geometric and optical characteristics. Erythrocytes act
as model particles. It bears mentioning that simulating the erythrocyte as a homogeneous scat-
terer is fairly reasonable, as it lacks cellular organelles and has a thin cell membrane (with little
effect on light scattering). Some studies even generally assume the erythrocyte to be a structurally
homogeneous sphere [21, 22].

To illustrate the methods described above, let us first consider the size distributions of eryth-
rocytes used in medical practice [23]:

u(p) = A, -0, (20)

u(p) = Az_eBz(p—bz)z + 4, by Q1)

The normal distribution is described by a formula of the type (20) (4, = 1, B, = -3, b, = 3); the
bimodal distribution corresponds to a formula of the type (21), while the fraction of abnormally
large cells amounts to 30% (4, = 0.80, B, = -1.00, b, = 3.00, 4, = 0.25, B, = -2.30, b, = 5.0) [23].

We used different methods to select the regularization parameter o for the normal size distri-
bution of erythrocytes:

by the residual, where || Au* — f||/|| f|| = 3, the value of a = 0.00216 (Fig. 6,a);

by the quasi-optimality criterion, where ||au/dal|, the value of a = 1.1059-107° (Fig. 6,b);

by the L-curve criterion, where L* = Ig||Au* — f||, Ig||w*, the value of a = 2.7648-10-% (Fig. 6,¢);

by the smoothing functional principle, where (a|uw’|? + ||[Au* — fIP)/|If]?) = C&%, the value of
a = 0.00216 (Fig. 6,d).

The optimal value of the regularization parameter amounted to

a,,=0.002160 for h=0.11, 6 = 0.10.

Let us examine the graphs of the two functions in Fig. 7. The size distribution function (20) is
represented by a continuous curve, and the result of the numerical solution to the inverse problem
is represented by dotted curves with the noise level on the right side of Eq. (18) taken to equal 5%.
Evidently, the curves practically coincide. It is thus clear that the shape of particle size distribu-
tion defined by expression (20) was restored with high accuracy from numerical solution to the
problem of the form (18). Moreover, we can reasonably assume that the resulting distribution
curve is close to the standard Price—Jones curve characterizing the distribution of erythrocytes in
the blood of a healthy person [24].

The same as for the case of normal distribution, Fig. 8 illustrates the selection of the regular-
ization parameter o for the case of bimodal size distribution of erythrocytes. The following results
were obtained for the selection: by residual, o = 0.012805 (Fig. 8,a); by quasi-optimality criterion,
a = 1.311200-10"° (Fig. 8,b); by L-curve criterion, o = #10-3.27810 (Fig. 8,¢); by smoothing func-
tional principle, a = 0.00216 (Fig. 8,d).
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Fig. 6. Regularization parameter found by relative residual method (a), by quasi-optimality
criterion (b) and L-curve criterion (c), by smoothing functional principle (d).

Case of normal size distribution of the particles.

The final optimal value of the required parameter is given in the text

u, u

Fig. 7. Computed functions u(p) (see Eq. (20), black solid curve)
and u* (p) (numerical solution of the inverse problem, colored curve)
for distributions of 5 particles over the equivalent radii p;
particles are spaced 2 pm apart (see Table)

The optimal value of the regularization parameter amounted to
0, 0.012805 for 2=0.11, 6 =0.10.

Let us now consider the computational data presented in Fig. 9. A predetermined asymmetric
bimodal size distribution (21) is shown by a continuous line. Such a distribution simulates the
presence of fractions of normal and abnormally large erythrocytes.

The numerical solution of the problem allowed to reconstruct the intensities of both peaks on

the particle size distribution with a high degree of accuracy (the peaks correspond to the fractions
of typical and abnormally large cells).
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The solution obtained by minimization corresponds to the model dependences predetermined
for different types of distributions with an acceptable degree of accuracy. The error estimate that
we obtained gives a satisfactory representation of the noise level in the right-hand side.

Thus, we have conclusively proved that a priori information about the smoothness and
finiteness of the solution can be used to accurately reconstruct the distribution of erythrocytes
over the equivalent radii and determine the variations in their width, which has major practical
implications for modern medicine [25].

The mathematical model developed can serve for determining the size distribution function for

particles imitating blood cells in vitro.
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Fig. 8. Regularization parameter found by relative residual method (a), by quasi-optimality
criterion (b) and L-curve criterion (c), by smoothing functional principle (d).
Case of bimodal size distribution of the particles.
The final optimal value of the required parameter is given in the text
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Fig. 9. Computed functions u(p) (see Eq. (21), gray solid curve) and u* (p)
(numerical solution of the inverse problem, colored curve) for distributions of 5 particles
along the equivalent radii p;
particles are spaced 1 pm apart (see Table)



4 Biophysics and Medical Physics >

Conclusion

Let us now summarize our key findings.

1. We have constructed a conceptually new model suitable for predicting the spectral
characteristics in aggregates of spherical particles with a complex structure. The model can be used
in vitro and takes a self-consistent approach to describing multiple light scattering by biological
structures.

2. The model proposed can successfully yield the spectral distributions of optical parameters
in a biological medium, which vary depending on different factors and induce fluctuations in the
function and morphology of biological tissues (for example, aggregation of blood cells).

3. Effective software has been developed based on the given mathematical model, allowing to
extract the size distributions of blood cells from the experimental data.

4. The results provided by the model show good sensitivity to fluctuations in the geometric
characteristics of blood cell nucleus and plasma membrane. Such sensitivity allows to examine the
physiological processes occurring in the body: for example, as the refractive index of the medium
is increased by 0.34 (and, accordingly, the diameter of the simulated particles by 0.1 pm), the
spectral characteristics of these particles change significantly (see the curves in Figs. 3 and 5). We
should note that the changes in the size of the cell nucleus are often associated with the changes
in metabolism in the human body induced by cell damage or physiological dysfunction.

The type of simulation outlined in this paper can be used to diagnose various conditions. For
example, it is argued in [26] that the variations in the refractive index of the medium in the cell
nucleus point to an initiating division process (mitosis), while [27] has established that the nucleus
of a cancer cell exhibits internal structural changes compared to normal cells, associated with the
geometric characteristics of the object considered.

The mathematical model constructed and the software based on it allow finding and analyzing
the spectral characteristics for the optical parameters of the biological medium, in particular
accounting for dynamics.

5. The new mathematical model provides a means for finding the particle distribution function
over the equivalent radii for spherical particles with different structures, changing their geometric
and optical characteristics, taking into account multiple scattering, which has major implications
for medical practice.

An important result achieved in this study is that we developed a software package for
computing light scattering by an aggregate whose structure includes layered spherical particles,
additionally offering the options for accurately reconstructing the distribution of erythrocytes
over the equivalent radii and measuring the variation in the width of such distributions. The
software is valuable as an effective flexible tool for practitioners in biomedical optics; the optical
characteristics and sizes of the biostructure considered can be tailored to record the dependences
between them via a single automated setup.

The functions offered by the software package make it possible to collect a database for particles
with different optical and geometric characteristics. This means that in the future, we will be able
to comprehensively investigate the correlations between the optical characteristics and parameters
of the biological substances simulated and their biological properties.

Data on the tendency towards aggregation in blood cells should open new avenues for qualitative
assessment of changes in aggregation/disaggregation interactions accounting for the dynamics of
the corresponding indicators.
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Introduction

Large-scale studies have been carried out on acceleration of charged particles by interaction
with the plasma of short laser pulses at high intensities of the order of 1022 W/cm? [1, 2]. For
example, the question on the dynamics of a charged particle in the field of a monochromatic
wave was raised as early as in the first half of the 20th century. A solution from the quantum
standpoint was offered by Wolkow [3], the classical statement was later obtained independently
by Frenkel [4], as well as by Landau and Lifshitz [5]. Thus, modifications were introduced to the
problem over time. The solution for the equation of motion of an elementary particle in the field
of a plane monochromatic wave was obtained in [6]. The more complicated particular cases when
the laser emits a frequency or amplitude-modulated electromagnetic wave were further discussed
in [7—9]. The effect from an externally applied constant magnetic field on such systems is also of
considerable interest. Our studies [10—12] consider this specific issue.

The significance of our earlier and present studies is in the mathematical interpretation of this
interaction, providing a description of the phenomenon using the parameters of electromagnetic
radiation for the kinetic energy of the elementary particle. Particles with comparatively low energy
characteristics find application in electron microscopy imaging, removal of malignant (cancer)
cells and bacteria, X-ray generation. Particles with high energies above 1 MeV are interesting
for studies into the structure of microobjects (clusters, atomic nuclei), the nature of fundamental
forces, and other problems. Findings in this field therefore have major practical implications.

Attention should be paid to the simple frequency spectrum of the electromagnetic wave (EMW),
assumed in [8, 9, 12], describing this electromagnetic wave as single-tone amplitude-modulated.

Our study differs from these works in that it considers the case when an amplitude-modulated
EMW has a complex frequency spectrum, i.e., the analysis concerns a multitonal amplitude-
modulated EMW most commonly found in applied problems, which also emphasizes the practical
value of our results [13].

Our goal consisted in establishing the influence of a constant magnetic field on the dynamics
and energy characteristics of a charged particle moving in the electromagnetic field of a multitonal
amplitude-modulated wave.

Problem statement

The problem is formulated similarly to [12], accounting for the multitonal behavior of the EMW.
Amplitude modulation consists in varying such a parameter of the EMW as its amplitude over time.
It is assumed that the amplitude b of the electromagnetic wave varies by the following harmonic law:

i=1

b(§)=b0l[0+iSAMcosd~)ij, (1)

Fig. 1. Frequency spectrum of multitonal
amplitude-modulated electromagnetic wave:
A, o are its amplitude and carrier frequency, o,is the modulation frequency
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where & is the spatio-temporal variable, £ = 1 — z/c (c is the speed of light); b, \/b2 + b2 o is
the parameter of the EMW carrier frequency; §,,, is the amplitude modulatron depth z 1 are the
index of the monochromatic wave and the number of waves; @ is the full phase of the modulated
EMW, @ = 0g + i, (w, s7', is the modulation frequency, (,is the initial phase of the amplitude-
modulated EMW).

The quantity 3,,, characterizes the degree to which the amplitude of the electromagnetic wave
varies provided that there is no overmodulation, 3,,, € [0,1].

If the axis z is directed along the propagation path of the wave, the mathematical representation
of the wave components can be written as follows:

1
E =H, =0, 0+28AM cos®, (cos D,

i==i

)
1
E,=-H, = fb, G+ZSAM cos®, sind,

E.=H_ =0,

where b, b are the semi-axes of the polarization ellipse, coinciding with the axes x and y, where
b, > b > 0 o is the carrier frequency of the EMW; f'is the polarization parameter, f = *1; the
upper srgn corresponds to the magnitude E of the rrght handed polarization, the lower sign to
left-handed polarization.

Now, in accordance with Eq. (2) and Fig. 1, we can determine the main difference between
multi—tone and single-tone AM of a wave. The structure of such a wave is a superposition 2/ + 1
of monochromatic waves, consisting of waves with a carrier frequency o and sideband frequencies
o — o,and o + o, located symmetrically from the wave. The amplitudes of the sideband frequen-
cies are equal and amount to b /2 of the carrier EWM amplitude. In the absence of overmodu-

lation (3,,, < 1), the oscillation amplrtude varies in the interval b = b /2 (15

AM — AM)'

Momentum and coordinates of a charged particle movm? in the electromagnetic
field of a multitonal AM wave and the constant uniform magnetic fiel

The two major parameters of a charged particle are found through solving the equation of
particle motion with mass m and charge ¢, taking the form

dp _ 1
o q(E +—[v, Hz]j, (3)

where p is the momentum of the particle, v is its velocity; E is the strength of the electrical com-
ponent of the EM field, H. = H + H (H is the strength of the magnetic component of the EM
field, H, is the strength of the constant magnetic field),

The solution to Eq. (3) takes the following form:

H,
px:—qb‘”‘ Gsm(l)+2n srnCD +q Dl
() i=—i
i#0

4

b H
py=$q % GcosCD+Zn cosCD . i)
) c

X+,
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where &)i = (1 + ocl.)coé +@, +iC,; @, is the initial phase of the carrier wave;
8AM

2(1+a,)

Notice that a substitution was introduced into the expression for the component p; we are

going to use this substitution in the calculations below.
Thus, the quantity g takes the following form:

q’c’ (b, b;,)

n, = ; 0, = o/o} y,, x,are the integration constants.

2_

7 (bOx bﬂzy) i (0+a, )4

o - ? cos 20,
g 497 (0* —o?) cos 4y’ = [(m-*-wl. )2 o =M, cos 2D, +
qo,c B
R (o) (b5, Jeosw+0,)-

—(co—(oc)(b()x J_rboy)cos(CI)—CDC)}L
1

R 49 w+(;)i
2ycw = (QH-(DI.) —(Di

i#0

n; X

x{[((o+(ol.)+coc](b0x$b0y)cos(<i)i+q)c)_ (5)

[(0+a)-0] b zb, Jeos(d, -0, )}

q’c L O+ o,

n; X

Zyzw(mz — ) S(o+o,) -o

i#0

x<{[(o(co+col.)+coﬂ(b§x+b02y)$2b0xb0yoac(2(o + mi)}cos(Q—&)i)_

[o(o+0) -0 )(2], -8, Jeos@+ ).

where h follows the expression

L/me = g’c’ 1
h:_< Yoy (mz—wf)zx
(0 +02) (4, + 15, 74t 00, ]+
qz I (co + o, )2 ©

> S, X

20" S+ o) -a?]

i#0

2.2
x{[(m+(oi)2+wf}(bozx+b§y)$4b0xb0y ((o +col.)coc}+R ZD‘>

c

(o, is the cyclotron frequency, , = gH /vy, y = mc(l — v /c)/NT — V-W, R is a constant deter-
mined by the initial conditions.

Now that we have obtained the necessary expressions for the particle momentum, let us
proceed to formulate the expressions for its coordinates.

For this purpose, we differentiate with respect to the variable &:
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where k is the magnitude of the wavevector, k = o/c.
We define the integration constants y, % by the following expressions:

b, . S cH my
xxz—h osin®, + Y 1, sin®, [-—L y +—1—,
0) —_— Y 2
=i Yo
i#0 1_72
gby, mv,,
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0
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Using Egs. (5), (7), (8), we obtain expressions for the coordinates x, y, z:
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where expression for z,, depending on the initial conditions, has the form:
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Energy characteristics of a charged particle in the electromagnetic field of
a multi-tone AM-wave and the constant uniform magnetic field

Obtaining the expressions for the momentum and coordinates of the particle moving in the
field, we can start to calculate the energy characteristics of the elementary particle in the field of
a multitonal AM wave and in the constant magnetic field; in this case, the initial phase should be
averaged, similar to [7]. The corresponding mathematical calculations are given below:

1 q' (2 2) 1 4 ZI: (1+ai)4 4l

Y=mc*( h+—— = G+ n;
< 2(1+h) yot T (1 —nz)z o [(1+oc,- ) —nzT
quz R20)2 2 _ 2 2 2
¥ czc[(“n) (b0 Fby, ) +(1=)" (b, 2By, ) ]+ (15)
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where ¥ = ¢ — mc? is the energy of the particle without taking into account its rest energy;
n = o /o is the ratio of the cyclotron to the carrier frequency of the wave.

The expression thus obtained characterizes the kinetic energy of the particle in the multitonal
AM wave field and in the constant magnetic field.

2
;X

Influence of a constant magnetic field on the energy
characteristics of a particle moving in the electromaﬁ}lletlc field
of a circularly and linearly polarized multitonal AM wave
with zero initial velocity

After we derive the expression for the average kinetic energy of the particle, we should estimate
the effect of the constant magnetic field on the energy characteristics of the particle moving in
the field of a multitonal AM wave with zero initial velocity. Consider two particular cases of wave
polarization: circular and linear. Then we have:

%=0¢mm=¢5=—%%,éﬂ»:émz—%@+ag%

If we substitute expressions (9)—(10) into Eq. (5), we obtain:

2 i (> (16)

R’ ! 141 Lo(1+a) +1
> B 02+Zﬂ-2 ? +n2262+z ( )2 nzzniz
B (-n)  Z|(+e) -]
(17)

+4n3 bOybOy 1 o + ZI: 1+a, 2

v [(1 +a, )2 - nzf |

Next, we assume that the multitonal AM wave has circular polarization; we then formulate the
following conditions:

for circular polarization, b, = boy = b/\2;

for right-handed polarization,
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Analyzing the obtained expressions, we can conclude that the kinetic energies of the particle
moving in the electromagnetic field of the multitonal AM wave with right-handed circular polar-
ization differ considerably from those corresponding to the wave with left-handed polarization.
According to the results presented in [8], such a difference is not observed in the absence of a
constant magnetic field (n = 0).

Now suppose that the particle travels in the electromagnetic field of a linearly polarized
multitonal AM wave, provided that the initial velocity of the particle equals zero. Then we can
formulate the following conditions:

for linear polarization, b, = b; b0y= 0;

1
‘szcz% o +Y m|+0+ H 02 -+
oy I (l—n)
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Fig. 2. Dependences of the difference ¥ on the magnitude of the magnetic field of multitonal
AM EMW with linear polarization (), right-handed (2) and left-handed (3) circular polarization;
2= 10" W-um*/cm?; o, = 1; 8,,, = 1

i
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Fig. 3. Dependences of the difference ¥ on the ratio of the carrier to modulation frequency
for the multitonal AM wave (the numbering of the curves is identical to that in Fig. 2);
2= 10" W-pm?/cm?; o, » 15 5,,, = 1
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Fig. 4. Dependences of the difference ¥ on the intensity for the multitonal
AM wave (the numbering of the curves is identical to that in Figs. 2 and 3);
o=1n>»13,, =1
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Fig. 5. Dependences of difference ¥ on the modulation depth for a multitonal
AM wave (the numbering of the curves is identical to that in Figs. 2—4);
2= 10" W-um?/cm?; o, = 1; 1 > 14,

After obtaining expressions (18)—(20), we proceed to estimate the effect of a constant uniform
magnetic field on the energy characteristics of the particle. Let us plot the dependence of ¥ on
n (Fig. 2).

Consider also the dependences of ¥ on the quantities o, /A%, 3,,, (Fig. 3—35).

We can conclude from analyzing all of these dependences that the greatest energy corresponds to
the case of particle motion in the wave field with right-handed circular polarization (‘I’”.ght), while the
smallest energy corresponds to left-handed circular polarization (¥, ). The energy of the particle mov-
ing in the field of a linearly polarized wave (¥, ) lies within the following range:

lin

\II <lPlin<\Il

left
Conclusion

right”

To conclude, let us summarize our main findings:

we have given an estimate for the influence of a constant magnetic field by constructing the
dependence of the particle’s differential energy (without taking into account its rest energy) on
the magnitude of the magnetic field;

we have obtained the dependences of energy ¥ on such parameters as o, A% §,,, in the pres-
ence of a magnetic field (n » 1).

Notably, if the magnetic field is weak or zeron « 1, 3,,, = 0), all equations take the form of ex-
pressions for plane monochromatic electromagnetic waves, given in [6]. On the other hand, as the
cyclotron frequency approaches the carrier one, the phenomenon of cyclotron self-resonance is ob-
served, first observed and described by Kolomenskii and Lebedev in [14], as well as (independently)

by Davydovskii [15]. Self-resonance is beyond the scope of this study, but a description of this
phenomenon can be found, for example, in [16—18].

Thus, this paper continues our earlier studies [12], focusing on the problem of the influence of
a constant magnetic field on the dynamics and energy characteristics of a charged particle in an
externally applied field of a multitonal amplitude-modulated electromagnetic wave.
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