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Аннотация. В статье представлено экспериментальное доказательство возможности 
реализовать рельефно-фазовую запись голографической информации с помощью 
оптической схемы регистрации во встречных пучках. Ранее это было сделано только 
для позитивных фоторезистов, имеющих чувствительность на три порядка ниже, чем у 
галоидосеребряной фотоэмульсии, обладающей над ними и другими преимуществами. 
Экспериментально показано, что ключевыми операциями фотохимической обработки 
галоидосеребряных фотоэмульсий являются коротковолновое УФ-облучение 
фотопластинок ртутной лампой (λ < 250 нм) и их последующее кратковременное (10 с) 
травление в ледяной уксусной кислоте. Проанализированы механизмы формирования 
поверхностного рельефа в разных диапазонах регистрируемых пространственных частот 
и показаны существенные позитивные отличия свойств рельефно-фазовых структур на 
галоидосеребряных фотоэмульсиях от аналогов, записанных на фоторезисте.
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Abstract. The article presents an experimental proof that it is possible to implement re-
lief-phase recording of holographic information using an optical registration scheme in coun-
ter-propagating beams. Previously, this was done only for positive photoresists having a sen-
sitivity three orders of magnitude lower than that of silver-halide photographic emulsion with 
other advantages. It has been experimentally shown that the key operations of photochemical 
processing of silver halide photographic emulsions are short-wavelength UV irradiation of 
photographic plates with a mercury lamp (λ < 250 nm) and their subsequent short-term (10 s) 
etching in glacial acetic acid. The mechanisms of surface relief formation in different ranges of 
recorded spatial frequencies were analyzed, and significant positive differences in the proper-
ties of relief-phase structures on silver halide photographic emulsions were shown compared to 
their counterparts recorded on photoresist.

Keywords: counter-directional scheme, diffraction efficiency, silver halide photoemulsion, 
holographic grating, surface relief

For citation: Gulyaev S. N., Ganzherli N. M., Ilyushina D. A., Maurer I. A, Formation 
features of holographic structures recorded in a counter-directional optical scheme on the pho-
toemulsion exposed to short-wave UV radiation, St. Petersburg State Polytechnical University 
Journal. Physics and Mathematics. 18 (4) (2025) 151–166. DOI: https://doi.org/10.18721/
JPM.18411

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.
org/licenses/by-nc/4.0/)

Введение

Голографическая схема записи во встречных пучках (контрнаправленная схема) была 
предложена Ю. Н. Денисюком в 1962 году [1]. Такая схема регистрации голограмм широ-
ко используется в изобразительной голографии для получения трехмерных изображений 
реальных объектов. Голографические структуры, полученные этим методом, являются 
отражающими и, в случае плоских объектного и опорного пучков, представляют собой 
набор параллельных плоскостей (штрихов), связанных с вариациями показателя прелом-
ления внутри светочувствительной среды (рис. 1, а).

Рис. 1. Оптические схемы регистрации трехмерных изображений объекта: 
контрнаправленная (a) и схема в сходящихся лазерных пучках (b); 

dint, dsurf – периоды внутренней голографической структуры (HS) 
и HS на ее поверхности, соответственно

a) b)

Период внутренней голографической структуры dint слабо зависит от углов падения 
опорного и объектного пучков света на записывающую среду и примерно равен половине 
длины волны света λ в светочувствительной среде dint = λ/2n0 (n0 – средний показатель 
преломления светочувствительной среды). Поскольку штрихи внутренней структуры вы-
ходят на поверхность под косым углом (см. рис. 1, a), период голографической структу-
ры на поверхности светочувствительной среды dsurf существенно отличается по величине 
от периода внутренней структуры dint. Например, в контрнаправленной схеме записи на  
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рис. 2, a лазерный пучок (объектный) является обращенным по отношению к падающему 
(опорному) пучку. В данном случае пространственный период решетки на поверхности 
можно варьировать в широких пределах за счет изменения наклона штрихов решетки 
внутри фотоматериала согласно формуле

dsurf = λ/(2cosθ0).                                               (1)

При этом пространственная частота голографической структуры на поверхности со-
ставляет νsurf = 1/dsurf и изменяется в диапазоне 0 – 3175 мм–1 (рис. 2, b) в зависимости от 
угла поворота фотопластинки θ0, которая помещается перед зеркалом (рис. 2, a). График 
на рис. 2, b соответствует случаю, когда при голографической регистрации используется 
гелий-неоновый лазер с длиной волны λ = 0,63 мкм.

a) b)

Рис. 2. Возможность варьирования поверхностной пространственной 
частоты SF ν: a – контрнаправленная схема установки; b – зависимость этой 

частоты от угла поворота фотопластинки θ0. 
1 – фотопластинка; 2 – диафрагма, 3 – зеркало, 4 – угол поворота фотопластинки

3 4

2

1

В идеализированной голографической структуре, записанной в контрнаправлен-
ной схеме (рис. 3, a), поверхностный период не может реализоваться, и вся структу-
ра является чисто объемной, работающей на отражение. Однако в реальных условиях 
эксперимента, например, при голографической регистрации в галоидосеребряной фо-
тоэмульсии (англ. silver halide photoemulsion (SHP)), искажения внутренней структу-
ры штрихов серебряного (Ag-) изображения у поверхности светочувствительной среды  
(рис. 3, b) могут привести к существованию поверхностной решетки с оптическими свой-
ствами, которые существенно отличаются от дифракционных свойств внутренней объем-
ной решетки. Формирование поверхностной решетки может быть результатом изменения 
формы штрихов решетки вследствие неоднородности процессов фотохимической обра-
ботки по толщине SHP. Дополнительным фактором, способствующим возникновению 
поверхностной голографической структуры, может быть появление периодического по-
верхностного рельефа (рис. 3, c), что связано с объемом, занимаемым зернами серебра в 
проявленном фотоматериале, а также с переменной задубленностью (структурированно-
стью) поверхностного слоя желатина [2]. Создать поверхностный рельеф можно и прину-
дительно: путем внешнего избирательного воздействия на желатин светочувствительного 
слоя, например, коротковолновым ультрафиолетовым излучением [3].

В экспериментальных условиях особенно важно целенаправленно формировать по-
верхностную структуру в виде рельефа при одновременном устранении поглощающей 
внутренней решетки, так как это позволяет получать голографические пространственно- 
периодические структуры с высокой эффективностью и малой угловой селективностью, 
что востребовано для ряда технологических применений в оптике (рис. 3, d). Впервые 
такая методика была реализована в работе [4], где были использованы тонкие слои по-
зитивного фоторезиста. В таком светочувствительном материале участки, наиболее засве-
ченные видимым светом, разрушаются в процессе проявления и растворяются в трави-
теле (рис. 4, а). Штрихи внутренней решетки, изображенные на рис. 4, а, соответствуют 
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узловым плоскостям с наименьшей интенсивностью при экспонировании фоторезиста 
когерентным светом аргонового лазера с длиной волны 488 нм. Расстояние h от конца 
одного из штрихов внутренней структуры, выходящего на поверхность, до ближайшего 
штриха, находящегося ниже по нормали к поверхности, практически не изменяется при 
варьировании поверхностной пространственной частоты. Этот параметр определяет мак-
симальную глубину травления hetch. При создании рельефа с пилообразным профилем 
указанная глубина, составляющая около 0,22 мкм (рис. 4, b) после металлизации поверх-
ности, оказывается достаточной для формирования высокоэффективных отражательных 
решеток с углом блеска, до сих пор широко применяющихся в спектроскопии [5].

Рис. 3. Формы реализации поверхностной структуры голограммы 
для галоидосеребряной фотоэмульсии (SHP): 

a – идеализированная голографическая структура; b – искажение внутренней структуры 
штрихов Ag-изображения у поверхности светочувствительной среды; 

с – появление периодического поверхностного рельефа; 
d – голографическая пространственно-периодическая структура с высокой 

эффективностью и малой угловой селективностью

a) b)

Рис. 4. Влияние травления позитивного фоторезиста на его свойства: a – образование рельефно-
фазовой поверхностной структуры; b – зависимость глубины травления hetch от поверхностной 

пространственной частоты ν

a) b)

c) d)
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Цели и задачи исследования

В голографии широко используются желатиносодержашие светочувствительные сре-
ды: галоидосеребряная фотоэмульсия и бихромированный желатин.  Воздействие УФ- 
излучения ближнего диапазона (λ = 315 – 400 нм) позволяет реализовать на этих сре-
дах, сочетающихся с бихроматами, разнообразные поверхностные и объемные голо-
графические структуры за счет сшивания желатиновых макромолекул, как было про-
демонстрировано, например, в работе [6]. По мере уменьшения длины волны квантов  
(λ ≤ 250 – 270 нм) характер воздействия УФ-излучения меняется на противоположный. 
Поглощение высокоэнергетичных фотонов вызывает разрыв химических связей в основ-
ных цепях макромолекул желатина (фотолиз, фотодеградация) в отсутствие всяких вне-
сенных сенсибилизаторов, в том числе и бихроматов. Для желатиносодержащих светочув-
ствительных сред в режиме записи в сходящихся пучках (см. рис. 1, b) были разработаны 
методы формирования поверхностного рельефа, использующие воздействие коротковол-
нового УФ-излучения на желатин и последующее травление его участков, подвергшихся 
наибольшему фотолизу [7].

Главными технологическими стадиями фотохимической обработки, ответственными за 
процессы формирования поверхностного рельефа, являются следующие этапы.

На первом этапе после экспонирования фотопластинки обычное фотографическое про-
явление и фиксирование создают первичную голографическую структуру в виде черно- 
белого Ag-изображения интерференционных полос.

Второй этап связан с избирательным дублением фотоэмульсионного слоя преимуще-
ственно в местах наибольшей плотности Ag-изображения за счет дубящего отбеливания 
фотопластинок в отбеливателях, содержащих бихроматы. Последующее фиксирование в 
растворе тиосульфата натрия Na2S2O3 позволяет полностью удалить Ag-изображение из 
фотоэмульсионного слоя. Таким образом, в результате второго главного этапа фотохими-
ческой обработки создается голографическая структура, в которой степень задубленности 
желатина периодически изменяется в соответствии с зарегистрированной интерферен-
ционной картиной. Такая структура является эффективным модулятором воздействия 
коротковолнового УФ-излучения на желатин при облучении фотопластин ртутно-квар-
цевой лампой. Более задубленные (упрочненные, сшитые) участки в бóльшей степени 
сопротивляются разрушающему действию высокоэнергетичных квантов УФ-излучения с 
длиной волны менее 250 нм из-за большого количества поперечных связей между макро-
молекулами желатина. Поэтому соседние, менее задубленные участки с разрушенными 
фрагментированными макромолекулами желатина, на третьем (главном) этапе обработки 
легко растворяются в подходящем растворителе, например, в воде или ледяной уксусной 
кислоте CH3COOH [7]. Таким образом, при травлении можно получить глубокий рельеф 
с горбами, совпадающими с наиболее упрочненными (задубленными) участками, и сфор-
мировать высокоэффективную рельефно-фазовую голографическую структуру, работаю-
щую на пропускание.

В отличие от фоторезистов, обработка которых после экспонирования когерентным 
светом ограничивается только травлением с минимальным набуханием слоя, фотохими-
ческая обработка SHP включает два первых главных этапа, в течение которых фотослой 
погружается в водные растворы и поэтому испытывает очень сильное набухание.

На третьем (главном) этапе обработки фотоэмульсии применяются, однако, методы 
[7], позволяющие свести степень набухания желатинового слоя к минимуму. Для этого, 
во-первых, используют в качестве травителя ледяную уксусную кислоту вместо воды, и, 
во-вторых, снижают время травления до 10 с. Поэтому описанный выше метод обработ-
ки SHP [7] в какой-то мере подобен методам обработки позитивных фоторезистов [8].  
С другой стороны, светочувствительность SHP превышает светочувствительность фоторе-
зистов почти в тысячу раз, что предопределяет удобство применения этих фотоматериалов 
в голографии.

В связи с вышеизложенным возник интерес к изучению возможности использовать 
SHP для регистрации рельефно-фазовых голографических структур не только для схе-
мы записи в сходящихся пучках, но и для контрнаправленной схемы. Предварительные 
результаты таких исследований представлены в наших работах [9, 10].
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Методика экспериментальных исследований

Для регистрации голографических решеток была использована оптическая схема, опи-
санная выше (см. рис. 2, a), в которой отраженный от зеркала лазерный пучок (объект-
ный) является обращенным по отношению к падающему пучку (опорному), а простран-
ственная частота решетки устанавливается регулировкой угла поворота фотопластинки 
θ0, в соответствии с графиком на рис. 2, b. В экспериментах в основном использовались 
фотопластинки ПФГ-01, а в некоторых случаях – фотоматериал ПФГ-03М, имеющий 
меньший контраст первичного серебряного изображения.

Таблица  1

Голографический процесс регистрации рельефно-фазовых решеток 
по контрнаправленной схеме

Этап технологии Производимая операция Методическое средство

I. Экспонирование 
фотопластинок лазерным 
излучением

Образование латентного Ag-изображения 
интерференционных полос (косых 
плоскостей пучностей внутри SHP)

Фотоматериал ПФГ-01 
(ПФГ-03М), He-Ne лазер 

(10 мВт)

II. Проявление 
фотопластинок (4 мин)

Образование первичной голографической 
структуры в виде Ag-изображения 
интерференционных полос

Контрастный проявитель
D-19 Kodak

III. Фиксирование Удаление галоидов серебра из фотослоя Фиксаж на основе Na2S2O3

IV. Сушка Обезвоживание SHP Воздушная среда

V. Дубящее отбеливание

Избирательное дубление желатина в местах 
наибольшей плотности Ag-изображения 
(создание поперечных связей между 
макромолекулами с помощью ионов Cr3+)

Отбеливатель типа R-10 
с бихроматом аммония 

(NH4)2Cr2O7

VI. Фиксирование Удаление солей серебра из фотослоя Фиксаж на основе Na2S2O3

VII. Осветление
Удаление окрашивающих соединений 
Cr из SHP-слоя. Завершение процессов 
задубливания желатина

2%-й раствор Na2SO3

VIII. Сушка Обезвоживание SHP Воздушная среда

IX. Коротковолновое  
УФ-облучение образцов  
(25 мин)

Фотодеградация желатина в наименее 
задубленных местах фотослоя

Ртутно-кварцевая лампа 
ДРТ-230 (мощность 230 Вт)

X. Кратковременное 
травление (10 с)

Вытравливание фотодеградированных 
участков желатина, образование 
поверхностной рельефной структуры 
голограммы

CH3COOH либо 
CH3COOH + изопропанол 

(C3H8O)

XI. Удаление CH3COOH  
и сушка

Быстрое прерывание операции травления 
желатина и удаление остаточных реагентов 
с поверхности фотослоя

Ванны изопропанола 
(C3H8O) + сушка в 
воздушной струе

В табл. 1 представлены основные стадии голографического процесса, где приведены 
полная фотохимическая обработка образцов, суть проводимых операций и методические 
средства их осуществления.

Таким образом, общей задачей фотохимической обработки фотопластинок была ини-
циация поверхностной решетки с одновременным уничтожением внутренней голографи-
ческой структуры. Основным исследуемым параметром эксперимента служила дифрак-
ционная эффективность (DE) голографических решеток, определяемая как отношение 
интенсивности пучка, дифрагированного в плюс-первый порядок к интенсивности па-
дающего пучка для решетки, работающей на пропускание, при оптимальном значении 



157

Физическая оптика

угла падения. Длина волны считывающего излучения так же, как и при регистрации, 
составляла 0,63 мкм.

Величина DE могла измеряться после IV (DE первичной амплитудной голографиче-
ской структуры), VIII (DE рельефно-фазовой голограммы после избирательного дубления 
и удаления солей серебра из желатинового слоя) и XI (DE указанной голограммы после 
УФ-облучения и травления) этапов обработки (см. табл. 1). Также у образцов с первичны-
ми амплитудными голографическими структурами измеряли оптическую плотность (она 
определяется как десятичный логарифм отношения интенсивности света, прошедшего 
через образец, к интенсивности падающего пучка).

Для измерения интенсивности лазерного излучения использовалась микросхема OPT-
101 (Texas Instruments). Профили поверхностных рельефов голографических решеток ис-
следовались на микроинтерферометре Линника МИИ-4. Высота (глубина) поверхностно-
го рельефа h определялась как перепад между горбами и впадинами. С помощью фотогра-
фий, сделанных в дальней зоне, и измерений DE в разных порядках дифракции изучались 
дифракционные спектры образцов.

Экспериментальные результаты и их обсуждение

Дифракционная эффективность голографических структур и параметры регистрации. 
Измерение DE образцов голографических решеток на разных поверхностных простран-
ственных частотах ν выявило особенности поведения светочувствительной среды, подвер-
гнутой сложной многошаговой обработке. На рис. 5 представлены зависимости достиг-
нутых величин DE голографических решеток от времени экспонирования t фотопласти-
нок лазерным светом для широкого диапазона пространственных частот: 36 – 730 мм–1. 
Измерения DE производились на разных этапах фотохимической обработки, указанных 
в предыдущем разделе.

Рис. 5. Зависимости DE от времени экспонирования t лазерным излучением образцов 
голографических решеток в порядке возрастания поверхностных пространственных частот на 

разных этапах обработки фотопластинок ПФГ-01 (см. табл. 1): 
1 – DE первичной амплитудной голограммы после IV этапа; 2 – DE рельефно-фазовой голограммы 
после VIII этапа (удаления внутренней структуры); 3 – DE рельефно-фазовой голограммы после полной 

обработки (XI этап)
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Как видно на рис. 5, максимальная DE у первичных амплитудных голографических 
структур равна примерно 2% (кривые 1). Таким образом, реализация поверхностной 
структуры проявляется уже на стадии формирования Ag-изображения после этапов про-
явления и фиксирования. Максимальная DE в данном случае практически не зависит 
от пространственной частоты, поскольку фотоматериал ПФГ-01 обладает в отношении 
регистрации амплитудного Ag-изображения высокой разрешающей способностью, пре-
вышающей величину 1000 мм–1.

В отношении максимальной DE рельефно-фазовых голограмм, измеренной до  
(кривые 2) и после (кривые 3) УФ-облучения образцов от ртутной лампы и травления, 
можно отметить следующее:

1) максимальные значения DE рельефно-фазовых голограмм, подвергавшихся полной 
процедуре обработки, соответствуют средним значениям оптической плотности первич-
ных амплитудных структур, лежащим в пределах около D = 0,6 – 1,5;

2) в области сравнительно низких пространственных частот (ν < 100 мм–1) максималь-
ные значения DE образцов, не подвергавшихся и подвергавшихся УФ-облучению и по-
следующему травлению в ледяной уксусной кислоте, практически совпадают;

3) по мере роста пространственной частоты, в области ν > 100 мм–1, быстро возрастает 
разница между максимальными значениями DE для зависимостей 2 и 3 на рис. 5. В то 
же время величина DE для необлученных образцов стремится к нулю (DEmax ≤ 0,2 % при  
ν > 727 мм–1), DEmax образцов, подвергнутых УФ-облучению и протравленных в ледяной 
уксусной кислоте, стремится к значению DEmax ≈ 8 %;

4) последнее обстоятельство может быть охарактеризовано с помощью коэффициента 
усиления дифракционной эффективности K, который равен отношению максималь-
ного значения DE после воздействия на фотопластинки УФ-излучения и травления в 
CH3COOH к значению DE до применения операций облучения и травления при одном и 
том же времени экспонирования когерентным излучением t. Значение K для DEmax при-
водится на каждом графике рис. 5;

5) обнаружена особенность, отличающая процедуру обработки зарегистрированных по 
контрнаправленной схеме решеток от аналогичной процедуры, применяемой для реше-
ток, записанных в сходящихся пучках. Особенность состоит в том, что при регистра-
ции голографических структур на фотоматериале ПФГ-01 по схеме в сходящихся пучках 
обеспечиваются существенные значения коэффициента усиления K = 200 – 500 на про-
странственной частоте ν = 1200 мм–1, если в качестве травителя использовать 50%-й рас-
твор ледяной уксусной кислоты CH3COOH в изопропаноле C3H8O [9]. В то же время при 
записи по контрнаправленной схеме на высоких пространственных частотах, превышаю-
щих 500 мм–1, более или менее значительные величины DE и K для образцов, прошедших 
полную обработку, достигаются только при использовании в качестве травителя ледя-
ной уксусной кислоты, не разбавленной изопропанолом. Это обстоятельство отражено в  
табл. 2, где величины DEmax и K представлены как функции от концентрации травящего 
раствора ледяной уксусной кислоты CH3COOH в изопропаноле C3H8O.

Профили поверхностного рельефа и дифракционные спектры голографических струк-
тур. Существенную информацию о характере голографических структур, прошедших пол-
ную обработку, включающую УФ-облучение и травление, несут угловые зависимости DE 
образцов. Так, например, для образца с пространственной частотой около 900 мм–1 полу-
ширина угловой зависимости DE составляет приблизительно 40°, что, согласно теории 
Когельника, соответствует толщине дифрагирующей структуры менее 1 мкм. Эта величи-
на составляет незначительную долю от полной толщины фотоэмульсии ПФГ-01, равной 
6 – 7 мкм. С учетом этого обстоятельства, а также ввиду того, что внутренняя структура 
в значительной степени была нивелирована после операции VI (см. табл. 1), мы были 
вправе рассматривать полученные структуры как чисто фазовые тонкие рельефные голо-
граммы (это подтвердилось в ходе дальнейших исследований).

С помощью микроинтерферометра Линника МИИ-4 мы способны получать отчетли-
вые профили поверхностного рельефа во всем диапазоне исследуемых пространствен-
ных частот. Важно отметить, что абсолютные значения высоты пространственного рель-
ефа hmax резко возрастают при уменьшении пространственной частоты ниже 150 мм–1. 
При этом операции УФ-облучения и травления практически не приводят к увеличению  
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Таблица  2

Зависимость параметров образцов рельефно-фазовых голографических 
решеток от технологии обработки фотослоев

ν, мм–1 Концентрация раствора CH3COOH  
в изопропаноле C3H8O, % DEmax, % Значение K

566 25 0,65 3,8
550 50 0,47 6,7
551 50 0,74 2,1
551 50 1,13 2,2
566 100 5,20 403
639 100 7,90 285
727 100 8,05 > 402

Обозначения : ν – регистрируемая пространственная частота; DEmax – максималь-
но достигнутая величина дифракционной эффективности, K – коэффициент усиле-
ния DEmax.

высоты поверхностного рельефа (рис. 6). Таким образом, на низких пространственных 
частотах рельеф формируется уже в результате водной обработки образцов, и вклад за-
ключительных операций УФ-облучения и травления незначителен.

Рис. 6. Вид интерферограмм поверхностного рельефа образца (ν = 100 мм–1): значения высоты 
пространственного рельефа hmax = 0,87 мкм (a) и 0,94 мкм (b) до (a) и после (b) УФ-облучения 

и травления, т. е. после VIII и XI операций обработки (см. табл. 1)

a) b)

Большие значения высоты поверхностного рельефа (hmax ≈ 1 мкм), достигнутые на 
низких пространственных частотах (ν ≤ 100 мм–1), сопоставимы со значениями глубины 
поверхностного рельефа, получаемыми для чисто рельефных голограмм, которые реги-
стрируются в оптической схеме со сходящимися пучками [2, 3]. Это обстоятельство резко 
отличает результаты, достигнутые для галоидосеребряной фотоэмульсии, от таковых, по-
лучаемых для позитивных фоторезистов, у которых hmax не превышает 0,22 мкм [4].

Резкое возрастание глубины поверхностного рельефа при понижении пространствен-
ной частоты регистрируемых голографических решеток подтверждается фактом перерас-
пределения световой энергии в дифракционных спектрах (порядках дифракции). При 
понижении пространственной частоты, в области значений около 212 мм–1 наблюдается 
выравнивание интенсивностей нулевого и первых порядков дифракции (рис. 7, а).

Рис. 7. Фотографии дифракционных спектров образцов при нормальном падении освещающего 
лазерного пучка для значений пространственных частот ν = 212 мм–1 (a) и 100 мм–1 (b). 

Числа над световыми пятнами показывают значения DE (в %)

a) b)
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Дальнейшее увеличение глубины поверхностного рельефа на сравнительно низ-
ких пространственных частотах значительно снижает долю нерассеянного света (нуле-
вой порядок) и приводит к перекачке световой энергии в высшие порядки дифракции  
(рис. 7, b). Наименьшая доля интенсивности энергии нулевого порядка на простран-
ственной частоте 100 мм–1 составляет 1 – 3 %.

Дифракционные спектры для пространственных частот 100 и 212 мм–1 (см. рис. 7), а 
также интерферограммы (см. рис. 6) показывают, что профили поверхностного рельефа 
в этой области пространственных частот носят симметричный квазисинусоидальный ха-
рактер. Эксперименты показали, что это обстоятельство справедливо и в области более 
высоких пространственных частот. В качестве примера на рис. 8 приведена интерферо-
грамма профиля поверхностного рельефа на пространственной частоте ν = 550 мм–1 для 
фотоматериала ПФГ-03М.

Рис. 8. Интерферограмма профиля рельефа
для пространственной частоты ν = 550 мм–1

(фотоматериал ПФГ-03М)

Симметризация профиля поверхностно-
го рельефа в широкой области простран-
ственных частот – это характерная черта 
галоидосеребряной фотоэмульсии (SHP), 
отличающей ее свойства от свойств пози-
тивных фоторезистов, которые используют-
ся для формирования асимметричных пи-
лообразных рельефов при голографической 
регистрации в контрнаправленной схеме. 
Только при очень низких пространствен-
ных частотах, в диапазоне 30 – 40 мм–1, уда-
лось зафиксировать у некоторых образцов 
асимметричный пилообразный профиль 

рельефа (рис. 9, а), который приводил к асимметричному распределению интенсивности 
света в дифракционном спектре (см. рис. 9, b).

Квазисинусоидальный характер профиля поверхностного рельефа практически во всей 
области пространственных частот подтверждается непосредственными вычислениями DE 
по процедурам теории тонких голограмм в широко известном приближении Рамана – 
Ната. Например, для сравнительно высокой пространственной частоты 550 мм–1 и фо-
томатериала ПФГ-03М профили поверхностного рельефа можно измерить согласно ин-
терференционной картине на рис. 8. Значения высоты рельефа h для каждой конкретной 
точки образца заметно разнятся, поэтому вычисление этой величины производилось по 
результатам восьми измерений для смежных горбов и впадин. Полученное среднее значе-
ние глубины рельефа h оказалось равным 0,067 мкм. Согласно теории тонких рельефных 
голограмм, DE для 1-го порядка дифракции описывается в случае синусоидальной формы 
рельефа следующей формулой:

a) b)

Рис. 9. Пример интерферограммы пилообразного профиля рельефа для низкой пространственной 
частоты (ν = 36,4 мм–1) (a), фотография дифракционного спектра с номерами порядков 
дифракции и распределение относительной интенсивности света по порядкам дифракции (b)

Diffraction order number
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где J1 – функция Бесселя первого рода первого порядка; λ – длина волны лазерного из-
лучения, λ = 0,63 мкм; h – высота поверхностного рельефа; n0 – средний показатель пре-
ломления желатина, n0 = 1,53.

Для высоты рельефа h = 0,067 мкм, DE, вычисленная по формуле (2), должна состав-
лять 0,78%; из этого следует, что полученные экспериментальные значения DE, лежащие 
в диапазоне 0,70 – 0,74 %, а также соответствующие расчетные значения совпадают с 
точностью примерно 10 %. Отсюда можно сделать вывод, что дифракция света на образце 
обусловлена поверхностной рельефной структурой.

Аналогичные результаты были получены для основного фотоматериала ПФГ-01, ко-
торый использовался в данной работе, и для более низкой пространственной частоты  
ν = 212 мм–1, когда значения высоты рельефа увеличились более чем в 6 раз, по сравнению 
с предыдущим случаем. На этот раз значения высоты рельефа h и DE измерялись в трех 
точках образца: A, B и C, удаленных друг от друга на значительные расстояния (табл. 3).

Анализ данных, приведенных в табл. 3, позволяет заключить, что экспериментально 
измеренные значения DE хорошо соответствуют теоретическим, вычисленным по фор-
муле (2).

                                           Таблица  3

Сравнение экспериментальных и расчетных значений DE

Точка 
измерения h, мкм

Значение DE, %

Экспериментальное Расчетное 
(см. ф-лу (2))

A 0,42 22,43

19,9 – 23,7
B 0,46 25,21

C 0,36 17,95

Среднее 
значение 0,41 21,86

Как было отмечено выше, максимальная DE образцов на фотоматериале ПФГ-01, про-
шедших полную обработку в области высоких пространственных частот (свыше 500 мм–1), 
стремится к значению около 8% (см. рис. 5). Согласно теории тонких пропускающих 
голограмм с синусоидальным профилем рельефа, для этого случая имеется возможность 
рассчитать значение глубины поверхностного рельефа h с помощью формулы (2). При 
этом получается значение h ≈ 0,22 мкм, примерно совпадающее с оцененной макси-
мальной глубиной рельефа для контрнаправленной схемы голографической записи при 
использовании позитивных фоторезистов.

Таким образом, дифракционные свойства голографических структур, описанные в дан-
ном разделе, хорошо объясняются в рамках теории тонких голограмм в приближении 
Рамана – Ната.

Пространственно-частотные характеристики и механизмы
формирования поверхностного рельефа

На основе экспериментальных данных были построены пространственно-частотные 
характеристики, отражающие зависимости максимальной DE до и после УФ-облучения 
образцов (рис. 10, а) от пространственной частоты, а на рис. 10, b даны аналогичные за-
висимости для коэффициента усиления K. В данном случае значения K получаются путем 
деления значений DE кривой 2 на таковые кривой 1 (см. рис. 10, а).

Анализ данных на рис. 10, а позволяет отметить существенное различие пространственно- 
частотных характеристик рельефно-фазовых голографических структур, DE которых была 
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a) b)

Рис. 10. Зависимости максимальной DE образцов от пространственной частоты ν 
после VIII (кривая 1) и XI (кривая 2) этапов обработки (см. табл. 1) (a), 

а также коэффициент усиления K как функция пространственной частоты (b)

измерена на разных стадиях фотохимической обработки. Образцы, не подвергшиеся воз-
действию УФ-излучения и операции травления, испытывают сильное набухание в водных 
растворах вследствие водных этапов обработки (см. операции I – VII, табл. 1). Такое 
набухание в конечном итоге оказывает решающее действие на формирование поверхност-
ного рельефа при сушке (см. операцию VIII в табл. 1).

Для этих образцов единственным механизмом, ответственным за высокие значения 
DE, и, следовательно, большие глубины поверхностного рельефа на сравнительно низ-
ких пространственных частотах (ν < 150 мм–1), следует считать перетягивание объемов 
набухшего желатина в процессе сушки мокрого коллоида к наиболее задубленным участ-
кам, соответствующим местам наибольшей плотности Ag-изображения в первичной ам-
плитудной голограмме [2]. Механизм формирования поверхностного рельефа, связанный 
с возникновением сил натяжения в сохнущем коллоиде, как и в случае записи в сходя-
щихся пучках [3], при использовании контрнаправленной схемы регистрации оказался 
способным обеспечить большие глубины поверхностного рельефа (около 1 мкм) и мак-
симальную DE, равную 30 – 40%. Этот результат подтверждает предсказания теории тон-
ких голограмм для различных форм поверхностного рельефа на низких пространствен-
ных частотах. Описанный механизм характеризуется быстрым спадом пространственно- 
частотной характеристики на пространственных частотах свыше 100 мм–1, что вызыва-
ется действием сил поверхностного натяжения, сглаживающих поверхностный рельеф 
[11]. Согласно работе [11], силы поверхностного натяжения стремятся минимизировать 
площадь поверхности тела, поэтому увеличение площади поверхности высушенного фо-
тоэмульсионного слоя при повышении пространственной частоты и постоянной высоте 
поверхностного рельефа возможно только до достижения некоторой пороговой величины 
νthr. При достаточно большом значении пространственной частоты механические напря-
жения, вводимые поверхностным натяжением, преодолевают силы сцепления между мо-
лекулами желатины и способны частично сгладить поверхностный рельеф. Если считать, 
что при ν > νthr площадь S участка поверхностной голографической структуры остается по-
стоянной, то можно вычислить значение высоты h поверхностного рельефа на заданной 
пространственной частоте ν из равенства S(ν) = S(νthr), или иначе из уравнения

1

2 2 2 2

0

1 cos 2 const,h x dx
ν

ν + π ν πν ⋅ =∫                                 (3)

где x – пространственная координата на поверхности фотослоя, перпендикулярная штри-
хам решетки.

Рис. 11, а позволяет сравнить экспериментальную пространственно-частотную харак-
теристику (см. кривую 1 на рис. 10, а) с теоретической, рассчитанной на основе положе-
ний работы [11]. На первом этапе, с помощью формулы (2) определялась высота рельефа 



163

Физическая оптика

h для одной из точек на спаде экспериментальной пространственно-частотной характе-
ристики; при этом считалось, что форма профиля поверхностного рельефа – квазсину-
соидальная, согласно выкладкам предыдущего раздела. В частности, выбиралась точка, 
соответствующая пространственной частоте 212 мм−1. Далее, по-прежнему считая форму 
профиля поверхностного рельефа синусоидальной, мы вычисляли относительную пло-
щадь поверхности участка фотоэмульсионного слоя, являющуюся константой (const) в 
уравнении (3). Далее, если производить вычисления в обратном порядке по краткой схеме  
S = const → h → J(…) → η, то можно получить расчетные значения DE для всех про-
странственных частот. Хорошее совпадение экспериментальной пространственно- 
частотной характеристики с расчетной (см. рис. 11, а) подтверждает гипотезу о форми-
ровании рельефа за счет сил, возникающих при сушке мокрого набухшего коллоида –  
желатина.

a) b)

Рис. 11. Экспериментальные (сплошные цветные линии) и теоретические (пунктирные 
черные линии) пространственно-частотные характеристики DE образцов на разных стадиях: 
до операций УФ-облучения и травления (a), а также после полной обработки, включающей 

указанные операции (b)

После проведения заключительных операций УФ-облучения и травления в ледяной 
уксусной кислоте, начинает действовать совершенно иной механизм формирования по-
верхностного рельефа, связанный с вытравливанием фотодеградировавших участков же-
латина. Прежде всего, это проявляется на зависимости коэффициента усиления K от 
пространственной частоты (см. рис. 10, b). Из этого графика следует, что новый механизм 
образования рельефа начинает превалировать над прежним на частотах свыше 200 мм–1, 
достигая значений K порядка нескольких сотен. Преобладание нового механизма связано 
с тем, что удалось свести к минимуму вредное действие сил поверхностного натяжения, 
сглаживающее поверхностный рельеф на высоких пространственных частотах. С этой це-
лью были приняты специальные меры, позволившие снизить степень набухания желатина 
на стадии окончательной обработки (травление), в соответствии с работой [12]. В качестве 
растворителя была выбрана ледяная уксусная кислота, вызывающая меньшее набухание 
желатина, чем вода, а время травления было уменьшено до 10 с. Теоретические поло-
жения, развитые для описания пространственно-частотной характеристики образцов, не 
прошедших полной обработки после операций УФ-облучения и травления, становятся 
неприменимыми (см. рис. 11, b), поскольку теоретическая кривая существенно откло-
няется от экспериментальной, будучи рассчитана, как и ранее, с помощью уравнения 
(3) на основе исходной пространственной частоты 212 мм–1. Реальная пространственно- 
частотная характеристика образцов, прошедших полную обработку, простирается значи-
тельно дальше в область высоких пространственных частот.

Заключение

Характерной особенностью голографической структуры, записанной в контрна-
правленной оптической схеме, является выход на поверхность штрихов (плоскостей)  
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внутренней решетки под косым углом. Для фоторезистов это приводит к тому, что глу-
бина травления hetch ≈ 0,21 – 0,22 мкм (см. рис. 4, b) не зависит от регистрируемой про-
странственной частоты и форма рельефа пилообразна и асимметрична (см. рис. 4, а). 
Если сравнивать галоидосеребряные фотоэмульсии (SHP) с фоторезистами, то можно 
найти как сходство, так и существенные различия в свойствах голографических структур, 
записанных в контрнаправленной схеме. Различия состоят как в большой разнице между 
значениями толщины (SHP – около 7 мкм, а слои фоторезистов – менее 1 мкм), так и в 
существенно большей подверженности SHP сильному набуханию при обработке. 

На низких пространственных частотах в образовании поверхностного рельефа при-
нимает участие значительная часть толщины SHP. Совокупное действие сил натяжения 
внутри фотоэмульсионного слоя и сил поверхностного натяжения симметризует профиль 
поверхностного рельефа и позволяет получать большие значения hmax (около 1 мкм), ко-
торые сопоставимы со значениями hmax для рельефно-фазовых голограмм на SHP, ре-
гистрируемых в сходящихся пучках [3]. Такая ситуация схематично демонстрируется на 
рис. 3, c, на котором внутренняя косоугольная голографическая структура выпрямляется 
на поверхности и рельеф приобретает квазисинусоидальный характер. Асимметричный 
характер рельефа, присущий фоторезистам, для SHP был получен только на некоторых 
образцах со сверхнизкой пространственной частотой (ν < 40 мм−1) и является скорее ис-
ключением, чем правилом. На высоких пространственных частотах (ν > 500 мм−1) высота 
поверхностного рельефа h, вычисленная через DE, стремится к величине 0,22 мкм, т. е. к 
значению глубины травления hetch, характерному для фоторезистов. Это обусловлено чи-
сто поверхностным механизмом формирования рельефа, связанного с быстрым поглоще-
нием коротковолнового УФ-излучения в желатине и коротким временем травления, ког-
да внутренняя голографическая структура не затронута последними стадиями обработки. 
Однако и в этом случае, в отличие от фоторезистов, для SHP происходит симметризация 
поверхностного рельефа, по всей видимости, за счет остаточного набухания желатина.

Таким образом, в работе показано, что включение в процедуру обработки фотопласти-
нок ПФГ-01 операции облучения фотоэмульсии коротковолновым УФ-излучением зна-
чительно расширяет область регистрируемых пространственных частот, в которой можно 
получать значимые величины DE пропускающих голографических решеток. Достигнутые 
глубины поверхностного рельефа вполне достаточны для создания высокоэффективных 
рельефно-фазовых голографических структур, работающих на пропускание в области 
низких пространственных частот. На более высоких пространственных частотах голо-
графические структуры, записанные в контрнаправленной оптической схеме, могут быть 
эффективно использованы на отражение после металлизации поверхности.
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