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Аннотация. В статье представлена технология получения островковых пленок 
никеля на поверхности окисленных кремниевых подложек методом термического 
деветтинга (агломерации) сплошных покрытий. Вначале сплошные пленки никеля 
толщиной 5 нм наносились на подложки методом магнетронного напыления. Затем, 
без выноса на атмосферу, производился отжиг покрытий в вакууме при температуре 
450°С продолжительностью от 15 мин до 3 ч. Результатом этого было формирование 
на подложке изолированных металлических островков с поперечными размерами от 
единиц до десятков нанометров, в зависимости от времени отжига. Были определены 
электрические и термоэлектрические характеристики полученных островковых пленок. 
Попытки приготовления островковых пленок циркония с использованием той же 
методики не принесли успеха, так как технически реализуемая температура отжига 
650°С оказалась недостаточной для агломерации покрытий из этого материала.
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Abstract. The article presents a technique for fabricating nickel island films on oxidized 
silicon substrates by thermal dewetting of continuous coatings. First, continuous nickel films  
5 nm thick were deposited by magnetron sputtering. Then, without exposure to the atmosphere, 
the coatings were annealed in a vacuum at 450°C for 15–180 min. As a result, the formation 
of isolated metal islands was on the substrate with transverse dimensions from units to tens of 
nanometers, depending on the annealing time. The electrical and thermoelectrical characteris-
tics of the produced island films were determined. Attempts to prepare zirconium island films 
using the same technique were unsuccessful as the technically available annealing temperature 
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of 650°C proved insufficient for dewetting of coatings made of this material.
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Введение

Металлические наночастицы и кластеры находят все новые области применения в тех-
нике и медицине, благодаря своим уникальным свойствам [1 – 4]. Некоторые из их полез-
ных качеств достаточно хорошо известны: например, способность усиливать локальные 
поля оптических частот за счет локального плазмонного резонанса. Другие особенности 
наночастиц изучены в меньшей степени. Среди них можно выделить, в частности, спо-
собность к низковольтной эмиссии электронов [5 – 10], а также возможность достижения 
высокой эффективности термоэлектрического преобразования [11–14]. 

Островковую пленку проводящего материала на плохопроводящей подложке можно 
классифицировать как неупорядоченный массив наночастиц, обладающих многими свой-
ствами, присущими наночастицам. Это подтверждают результаты экспериментов по из-
учению эмиссионных свойств островковых пленок углерода и металлов на кремниевых 
подложках, проводившихся ранее в Санкт-Петербургском политехническом университете 
и продемонстрировавших способность таких пленок к низковольтной эмиссии электро-
нов [15 – 18]. Однако пленки металлов (Mo, Zr, Ni), которые использовались в работах 
[17, 18], изначально изготавливались сплошными и приобретали островковую структуру 
уже в ходе эмиссионных испытаний под действием факторов, связанных с отбором эмис-
сионного тока. Это затрудняет интерпретацию результатов проведенных исследований. 

Задача данной работы состояла в том, чтобы отработать технологию изготовления об-
разцов островковых пленок варьируемой морфологии для продолжения опытов. В каче-
стве материалов покрытий были выбраны цирконий и никель, пленки которых в работах 
[17, 18] показали способность эмитировать электроны. Преимущество циркония и нике-
ля перед молибденом, пленки которого показали наилучшую эмиссионную способность, 
состоит в более низкой температуре плавления, что упрощает технологию их термиче-
ской обработки. При этом для сохранения возможности сопоставления с данными работ  
[15 – 18] необходимо было использовать те же подложки: кремниевые пластины марки 
КДБ10 с сохраненным естественным оксидным слоем. 

Для получения островковых пленок выбранных металлов планировалось использовать 
явление агломерации сплошных тонких пленок металлов, нанесенных на несмачиваемые 
ими диэлектрические подложки, с формированием наноразмерных капель. В англоязыч-
ной литературе для такого процесса обычно употребляется термин “solid-state dewetting” 
[4, 19 – 24], поскольку для его осуществления не требуется плавления материала покры-
тия. Он протекает под действием сил поверхностного натяжения и может вызываться, в 
частности, нагревом таких пленок в вакууме или в инертной (либо восстановительной) 
атмосфере, причем необходимая для этого температура обычно существенно (на сотни 
градусов) ниже температуры плавления соответствующего металла.

Помимо исследования эмиссионных свойств островковых покрытий (эта часть работы 
выходит за рамки предмета данной статьи), планировалось проведение начальных опы-
тов по изучению термоэлектрических характеристик контактов металлических островков 
с подложкой [25]. Цель такого исследования состояла как в проверке справедливости 
термоэлектрической модели облегченной эмиссии электронов островковыми пленками 
(предложена в публикациях [18, 26]), так и в изучении возможности их использования в 
составе эффективных термоэлектрических преобразователей [27].
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Использованные методы и материалы

Метод термической агломерации для изготовления островковых покрытий предполага-
ет последовательное проведение двух операций:

нанесение на поверхность подложки сплошной пленки;
преобразование этой пленки в островковое покрытие путем отжига. 
Обе операции проводились нами в ростовой камере HEX (производство компании 

Mantis Deposition, Великобритания) без переноса образцов через атмосферу, что позволя-
ло избежать окисления сплошных тонких пленок до их отжига.

Сплошные пленки никеля или циркония толщиной 5 нм наносились на подложки 
методом магнетронного распыления мишеней из никель-ванадиевого сплава NiV или чи-
стого циркония Zr, соответственно. Для этого использовался двухдюймовый магнетрон, 
входящий в состав установки HEX. Напряжение и ток разряда были 450 В и 250 мА; 
процесс проводился при давлении буферного газа (аргона) 10–3 мбар и комнатной темпе-
ратуре подложек. Скорость роста пленок при этом составляла 0,3 Å/с. Ее определяли 
методом кварцевых микровесов и дополнительно контролировали по профилограммам 
механически поврежденных пробных образцов покрытий.

Использование мишеней из немагнитного сплава NiV (при концентрации ванадия  
7 вес.%) для нанесения никелевых пленок диктовалось низкой эффективностью магне-
тронного распыления в отношении ферромагнетиков. Для оценки содержания ванадия 
в нанесенных покрытиях были проведены специальные измерения методом рентгено-
спектрального микроанализа с использованием сканирующего электронного микроскопа. 
Ввиду низкого значения коэффициента распыления ванадия, его содержание в пленках 
оказалось незначительным – ниже порога чувствительности метода, который для столь 
тонких пленок можно оценить как 0,5 – 1,0 вес. %. Такие пленки мы далее называем 
никелевыми, хотя и понимаем, что они не чисто никелевые, а в них имеется небольшая 
(сложно определяемая и, вероятно, неоднородно распределенная) примесь ванадия.

Образцы покрытий формировались на подложках размером приблизительно  
10  10 мм, вырезанных из пластин кремния марки КДБ10 с ориентацией поверхности 
(100). Естественный оксидный слой с поверхности подложек не удаляли, органические 
загрязнения снимали путем механической и ультразвуковой обработки в ацетоне с даль-
нейшей промывкой изопропиловым спиртом и дистиллированной водой.

Отжиг нанесенных никелевых покрытий в вакууме проводили при температуре 450С, 
покрытий из циркония – при 550 – 650 С. Время отжига варьировали от 15 до 180 мин. 
При этом откачка ростовой камеры позволяла ограничивать давление остаточных газов 
на уровне не хуже 10–5 Торр.

Топография приготовленных образцов изучалась при помощи атомно-силового ми-
кроскопа (АСМ) NanoDST (Pacific Nanotechnology, США). Измерения проводили на 
атмосфере в полуконтактном режиме с зондами типа NSG10 (НТ-МДТ, Россия). Этот 
же микроскоп использовался при проведении термоэлектрических измерений. В данном 
случае на координатном столике микроскопа устанавливали элемент Пельтье, который 
позволял регулировать температуру образца в диапазоне 0 – 80 С. При этом образец 
был электрически изолирован от координатного столика, и его потенциал по отношению 
к зонду микроскопа (электрически соединенному с корпусом) измерялся вольтметром  
B7-72 (МНИПИ, Беларусь). Зонд мог приводиться в контакт с образцом при выклю-
ченной либо включенной обратной связи АСМ; во втором случае микроскоп работал 
в контактной моде (без вибраций). Для термоэлектрических измерений использовались 
зонды типа DEP01 (НТ-МДТ, Россия) с «мягким» кантилевером (2,8 Н/м) и иглой, вы-
полненной из высокопроводящего алмаза, легированного бором. Такой зонд был выбран 
по результатам предварительных испытаний с зондами нескольких типов.

Электрические характеристики пленок измерялись при помощи характериографа 
Л2-100ТЕКО (Тестприбор, Россия). Измерения вольтамперных характеристик (ВАХ) про-
водили как «вдоль», так и «поперек» покрытия. При измерении сопротивления пленки 
зонды устанавливали на расстоянии приблизительно 2 мм друг от друга. При измерении 
сопротивления контакта пленки с подложкой один из зондов располагали на выбранном 
участке пленки, а второй – напротив первого, с другой стороны подложки.
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Экспериментальные результаты и их обсуждение

Пленки циркония. Результат отжига циркониевых пленок в вакууме представлен на 
рис. 1 изображениями топографии поверхности образцов до и после отжига различной 
продолжительности. Можно констатировать, что в этих условиях на них нет очевидных 
признаков термической агломерации и покрытие остается достаточно однородным. Пол-
ная высота рельефа, как и до отжига, лишь немногим превышает 2 нм.

Рис. 1. АСМ-изображения топографии поверхности пленок циркония толщиной 5 нм: 
a – в свежеприготовленном состоянии; b – после отжига при 550°С (60 мин); 

с – при 650°С (60 мин); d – при 650°С (120 мин).
На вставках: двумерные Фурье-спектры АСМ-изображений

К некоторому исключению можно отнести изображение на рис. 1, c; оно приведено 
для покрытия, которое выдерживали при максимальной (доступной нам) температуре 
650°С в течение одного часа. На нем различимы удлиненные кристаллиты, появление 
которых можно считать признаком начала агломерации покрытия. Мы пришли к такому 
выводу, учитывая результаты работы [28], где под действием факторов, связанных с от-
бором эмиссионного тока, наблюдалось формирование именно нитевидных структур при 
агломерации циркониевых пленок. Эти структуры по форме определенно отличались от 
округлых наноостровков, получающихся при агломерации пленок молибдена, вызванной 
теми же причинами. 

Однако следует признать, что аналогичных признаков начала процесса преобразова-
ния морфологии нельзя визуально наблюдать на рис. 1, d, полученном для покрытия, 
подвергшегося термообработке при той же самой температуре (650°С) в течение вдвое 
большего времени (2 ч). Это может свидетельствовать о значительном разбросе свойств 
поверхности использованных, естественно окисленных подложек, оказывающем влияние 
на стабильность пленок. Наличие подобного разброса отмечалось ранее по результатам 
экспериментов с пленками металлов [17, 18] и углерода [15, 16].

Для выявления более тонких особенностей АСМ-изображений, не определяемых ви-
зуально, был предпринят их двумерный Фурье-анализ путем применения к ним функции 
2D FFT пакета Gwyddion 2.62. Перед этим исходные данные подвергались одинаковой 
цифровой обработке, направленной на снижение роли измерительных артефактов, таких 
как смещение строк из-за нестабильности состояния зонда. Полученные Фурье-спектры 
топографии пленок приведены на вставках на рис. 1. Можно констатировать их некоторое 

a) b)

c) d)
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уширение с повышением температуры и времени обжига, отражающее увеличение «зер-
нистости» изображений с пространственным масштабом порядка 10 нм. Такое уширение 
может свидетельствовать о перестройке наноструктуры пленок, которая начинается при 
отжиге.

Пленки никеля. Для преобразования структуры сплошного никелевого покрытия тол-
щиной 5 нм к островковой, оказалось достаточным его отжига при температуре 450C. На 
рис. 2, a приведено типичное АСМ-изображение поверхности сплошной никелевой плен-
ки после магнетронного напыления. Рис. 2, b – d представляют топографию образцов 
после их прогрева в вакууме продолжительностью 30, 60 и 120 мин. Очевидно, что в ре-
зультате прогрева происходит агломерация пленки с формированием округлых островков. 

Рис. 2. АСМ-изображения топографии пленок никеля начальной толщины 5 нм: 
a – свежеприготовленные пленки; b – d – после отжига в вакууме 

при 450°С в течение 30 мин (b), 60 мин (c) и 120 мин (d)

Результаты статистической обработки серии АСМ-изображений топографии пленок 
приведены на рис. 3. Рис. 3, а представляет зависимости от времени отжига для стан-
дартизованных «параметров шероховатости» (roughness parameters) поверхности пленок, 
вычисленных средствами пакета Gwyddion как для максимальных, так и медианных зна-
чений высоты выступающих островков. График максимальной высоты пиков (т.е. высоты 
самых крупных островков, отсчитываемой от медианной плоскости) показывает моно-
тонный рост этого параметра с увеличением времени отжига; его наибольшее значение 
близко к 20 нм. При этом медианное значение высоты остается в диапазоне от 5 до 8 нм, 
что приблизительно соответствует исходной толщине покрытия.

На рис. 3, b и d представлены гистограммы значений высоты отдельных островков, а 
на рис. 3, c и e – гистограммы их распределения по латеральным размерам. Эти данные 
относятся к пленкам, подвергнутым прогреву в течение 30 и 120 мин. Большему време-
ни отжига соответствуют более широкие распределения этих параметров, а также при-
близительно 50%-й рост максимальных латеральных размеров островков по мере отжига 
покрытий, что типично для термической агломерации [19]. После двухчасового отжига 
радиус крупных островков достигал 35 – 40 нм при высоте 20 – 25 нм (см. рис. 3 d, e).

На рис. 4 представлены результаты измерения поверхностной проводимости покры-
тий. Они демонстрируют качественное изменение характера их проводимости после от-
жига. Пленки, не подвергавшиеся термической обработке, несмотря на малую среднюю  

a) b)

c) d)
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Рис. 3. Результаты обработки серии АСМ-изображений топографии 
пленок Ni первоначальной толщины 5 нм: a – зависимости параметров 
шероховатости поверхности образцов от времени их отжига при 450C 

(символы ■,  – медианные и максимальные значения высоты); 
b, d –распределения островков по высоте, c, e – по радиусу, для покрытий 

после 30 мин (b, c) и 2 ч (d, e) отжига

Рис. 4. Результаты измерения проводимости вдоль никелевых покрытий: 
a – не отожженного, b – отожженного в вакууме при 450С в течение 60 мин. 

Кривые под разными номерами соответствуют разным парам точек контакта на одном образце

a) b)

a)

b) c)

d) e)
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толщину, являются сплошными – об этом свидетельствует омический (линейный) вид 
вольтамперной характеристики и высокая электропроводность при малом разбросе элек-
трических параметров (рис. 4, a). Вольтамперные характеристики отожженного покрытия 
(рис. 4, b) нелинейны и существенно меняются при перемещении контактов вдоль по-
верхности, а для получения заданной величины тока здесь требуются существенно боль-
шие напряжения. Это естественно объясняется прерыванием сплошных токовых путей 
по металлической пленке при ее разбиении на островки. При этом пленки ни до отжига, 
ни после него не обладали свойством фотопроводимости: освещение их красным светом 
полупроводникового лазера не приводило к изменению ВАХ (пометки “laser on/off” в 
легендах графиков рис. 4 означают включенный/выключенный лазер).

a) b)

Рис. 5. ВАХ «вдоль поверхности» (a) и «сквозь подложку» (b) для образцов пленок никеля 
толщиной 5 нм после отжига разной продолжительности при 450C

Рис. 5, a иллюстрирует изменение характеристик проводимости вдоль поверхности об-
разцов никелевых покрытий с увеличением времени отжига. Примечательно, что ВАХ 
нелинейны уже при минимальном времени отжига (15 мин), что очевидно отражает 
уже совершившуюся к этому моменту агломерацию пленок. Нелинейный характер ВАХ 
островковых пленок можно объяснить как проводимостью вдоль пленки по механизму 
туннелирования носителей заряда между металлическими островками, так и проводимо-
стью через подложку. При втором варианте носителям приходится дважды преодолевать 
интерфейс между подложкой и покрытием, частью которого является сохраненный слой 
диоксида кремния. Совокупность косвенных признаков говорит скорее в пользу этого 
(второго) предположения. Один из таких признаков – это гладкий и воспроизводимый 
вид ВАХ на рис. 4, b и 5, a: протекание туннельного тока по островковым пленкам обыч-
но сопровождается их «электроформовкой» [29], которая проявляется в виде нестабильно-
сти и гистерезиса токовых зависимостей. Другим признаком можно считать относительно 
медленное и монотонное (с поправкой на отмеченный выше разброс свойств подложек) 
изменение вида ВАХ при увеличении времени отжига – в случае туннельной проводимо-
сти можно было бы ожидать более резкого изменения электропроводности вдоль поверх-
ности при наблюдаемом расширении зазоров между островками.

Еще одним аргументом в пользу протекания тока через подложку при измерении ВАХ 
«вдоль поверхности» может служить вид токовых характеристик, измерявшихся в направ-
лении «сквозь подложку», между одной из точек покрытия и омическим контактом на 
противоположной стороне кремниевой пластины. Такие ВАХ приведены на рис. 5, b. Их 
форма асимметрична, и степень асимметрии растет с увеличением времени отжига. При 
этом одна из ветвей (правая) каждой из приведенных зависимостей близка по форме и 
количественным параметрам к симметричным ветвям ВАХ «вдоль покрытия» для соответ-
ствующего образца (см. рис. 5, a). Другая ветвь (левая) характеризуется большим током. 
Такие закономерности можно легко трактовать, если считать, что островки отожженных 
покрытий отделены от подложки контактами Шоттки, ВАХ которых близки к приве-
денным на рис. 5, b. При измерениях «вдоль поверхности» (см. рис. 5, a), на пути тока  
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окажутся два таких контакта, включенных встречно друг другу, и результирующая окажет-
ся симметричной – ее ветви будут соответствовать обратной ветви ВАХ контакта Шоттки. 
При этом зависимость формы ВАХ от длительности отжига покрытия может определяться 
уменьшением эффективной площади контакта по мере изоляции островков покрытия 
друг от друга.

Образцы покрытий и подложек затем использовались в экспериментах по определению 
термоэлектрических свойств их наноконтатактов с зондом атомно-силового микроскопа. 
Измеренные значения термоэлектрического коэффициента S для наноконтакта зонда с 
неотожженной пленкой и с подложкой без металлического покрытия были низкими (не 
превышали приблизительно 4 мкВ/K). Значения коэффициента Зеебека такого порядка 
типичны для металлов, хотя острие используемого АСМ-зонда было изготовлено из полу-
проводящего легированного алмаза. Значения же коэффициента Зеебека для полупрово-
дников, как правило, на 1 – 2 порядка выше. Этот результат подтверждает известную из 
литературы (см., например, статью [30]) общую закономерность: подавление термоэлек-
трического эффекта в микро- и наноконтактах.

Вместе с тем, опыты с островковой пленкой никеля, полученной отжигом сплошной 
пленки толщиной 5 нм при 450C в течение 60 мин (см. рис. 1, с), принесли качествен-
но иной результат. При контакте такого образца, нагретого до 65C, с зондом, имевшим 
температуру окружающей среды 20C, регистрировалась термоэлектрическая разность 
потенциалов величиной до 3,4 мВ, что соответствует значению коэффициента Зеебека  
S  75 мкВ/K. Это превосходит типичные значения S для металлов и по порядку ве-
личины соответствует типичным значениям для легированных полупроводников. Таким 
образом, в данном случае существенного подавления термоэлектрического эффекта не 
происходило. Это может быть связано с размерными эффектами в наноостровках никеля 
либо с особенностями интерфейса между островком и подложкой. Этот интерфейс обла-
дает относительно низкой электропроводностью (ввиду наличия слоя оксида и барьера 
Шоттки) и при этом достаточно высоким качеством акустического контакта. Поперечный 
размер интерфейса составляет около 20 нм, что существенно больше размера контакта 
зонда АСМ с плоской пленкой или подложкой. Все это способствует эффективному пре-
образованию потока тепла из электронной (в островке) в фононную (в подложке) форму 
или обратно. Принципиальная возможность осуществления эффективного термоэлектри-
ческого преобразования в таких условиях анализировалась в недавней теоретической ра-
боте [27].

Заключение

В результате проведенного исследования, нацеленного на разработку технологии полу-
чения островковых пленок никеля на окисленных кремниевых подложках марки КДБ10, 
такая технология была отработана и проведена методом термической агломерации. Для 
достижения поставленной цели оказалось достаточным прогреть сплошные покрытия 
толщиной 5 нм в вакууме при температуре 450С. Параметры технологического процесса, 
обнаруженные нами в литературных источниках, нельзя было использовать на практике 
без нашей дополнительной проверки, поскольку известно, что температура агломерации 
тонких пленок зависит не только от материала покрытия, но и от его толщины [24], 
наличия примесей [31], материала подложки [32]. По совокупности этих показателей, 
наиболее близкой к условиям наших экспериментов с никелем представляется работа [3], 
где изучалась агломерация при отжиге изначально сплошных пленок никеля толщиной  
3,0 нм, нанесенных на пластины Si (100) со слоем оксида толщиной 4,5 нм. Авторы рабо-
ты указывали, что разрушение сплошной структуры пленки (появление отверстий) про-
исходило уже при температуре отжига 280С, однако для формирования изолированных 
островков требовался нагрев до 450С, а это вполне согласуется с результатами проведен-
ных нами экспериментов.

Поперечный размер (радиус) никелевых островков, полученных в наших экспери-
ментах, составлял от нескольких единиц до 35 – 40 нм. Тестирование электрических 
характеристик пленок показало, что островки электрически слабо связаны друг с дру-
гом – электрическая проводимость вдоль покрытия в основном определяется тока-
ми, протекающими через подложку, интерфейсы между островками и подложкой.  
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Как морфологические, так и электрические параметры покрытий можно было варьиро-
вать через изменение времени отжига. При тестировании аналогичной методики в отно-
шении пленок циркония той же средней толщины (5 нм) оказалось, что нагрева до 650С 
недостаточно для преобразования их структуры к островковой.

Первые эксперименты по определению термоэлектрических параметров наноостров-
ковых пленок никеля с использованием атомно-силового микроскопа показали целесо-
образность дальнейшего изучения таких структур для нахождения способов достижения 
повышенной эффективности термоэлектрического преобразования. 
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