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Аннотация. Выполнены расчеты распределения электрического поля в электродной 

системе в виде сферического концентрического конденсатора, моделирующего 
микроострие на катоде, при воздействии высоковольтного импульса с крутизной фронта 
около 1 ГВ/с и инжекции электронов с микроострия. Показано, что при длительности 
переднего фронта импульса 150 – 250 нс глубина прорастания отрицательного объемного 
заряда (NSC) в полимер составляет 0,2 – 0,3 мкм. Электрические перенапряжения, 
обусловленные геометрией электродной системы и накапливающимся NSC, возникают 
в области накопления NSC на переднем фронте импульса. Напряженность поля у катода 
падает кратно при переходе с фронта на плато импульса за 100 – 200 нс.
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Abstract. Calculations of the electric field distribution in the electrode system in the form of 
a spherical concentric capacitor simulating a micro-tip on the cathode were performed under 
the action of a high-voltage pulse with a front steepness of about 1 GV/s and electron injection 
from the micro-tip. The penetration depth of the negative space charge (NSC) into the poly-
mer was shown to be 0.2–0.3 μm during a 150–250 ns pulse front edge. Electrical overvoltages 
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caused by the geometry of the electrode system and the accumulating NSC occurred in the 
NSC accumulation region at the pulse front edge. The field strength at the cathode decreased 
multiple times during the transition from the pulse front to its plateau in 100–200 ns.
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Введение

В последние годы значительное внимание стало уделяться изучению импульсной 
электрической прочности полимерных диэлектриков [1 – 6]. Все чаще появляются пу-
бликации, в которых рассматриваются различные аспекты воздействия импульсного на-
пряжения на полимерные материалы, а именно – накопление в них объемного заряда  
[6 – 8], влияние температуры [9] и скорости возрастания напряжения на фронте импульса  
[10, 11]. Предлагаются и различные физические механизмы, объясняющие особенности 
развития импульсного пробоя в полимерах [12 – 15]. Однако физически осмысленная 
интерпретация экспериментальных результатов и предлагаемых моделей, по нашему мне-
нию, невозможна без оценки величины реально достижимой напряженности электриче-
ского поля, его распределения в полимере и изменения со временем в условиях воздей-
ствия импульсного напряжения.

При проведении таких оценок следует учитывать, что полимерные диэлектрики ха-
рактеризуются высокой концентрацией ловушечных состояний (ловушек), на которые 
захватываются заряды, инжектированные из электродов, формирующие объемный заряд. 
Накопление объемного заряда, в свою очередь, существенно влияет на распределение 
электрического поля, что ведет к ограничению инжекционного тока и возникновению 
локальных областей электрических перенапряжений. 

Отметим здесь, что в сильном электрическом поле электроны и дырки инжектируются 
в полимер с микроскопических выступов на электродах, у вершин которых напряжен-
ность электрического поля F превышает среднее по образцу значение Fav = U/d (U –  
напряжение на образце толщиной d). 

Современные акустические методы зондирования объемного заряда и электрических 
полей в полимерах, к сожалению, не обеспечивают возможности измерения локализации 
заряда на площади поверхности образца и необходимой точности разрешения по глуби-
не, которая при исследовании полимерных пленок микронной толщины должна быть не 
хуже 0,1 мкм [16]. Вследствие этого для решения данной задачи широко используются 
численные методы, но расчеты ограничиваются, как правило, стационарным распределе-
нием полей и зарядов [17, 18]. 

Цели настоящей работы – расcчитать распределения электрического поля вблизи ми-
кроострия в полимерном диэлектрике в условиях накопления в нем отрицательного объ-
емного заряда (англ. Negative Space Charge (NSC)) при воздействии на полимер элек-
трического импульса с высокой крутизной переднего фронта, а также оценить величину 
локальных перенапряжений, возникающих при этом у инжектирующих электродов и на 
границе прорастания NSC в полимер.

Постановка задачи

Микроострие на поверхности катода моделировалось электродной системой в виде 
сферического концентрического конденсатора, в котором электрод малого радиуса rc 
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рассматривался как микроострие, а сфе-
ра большего радиуса R – как анод. Схема 
электродной системы изображена на рис. 1. 
Подобная система широко применяется в 
качестве модели микроострия с постоянной 
кривизной поверхности [19]. 

Достоинством данной модели являет-
ся простота математических уравнений,  
используемых для описания распределения 
электрического поля, а недостатком – ее 
неполное соответствие реальным услови-
ям, так как она согласуется с ними лишь на 
расстояниях, при которых напряженность 
электрического поля F превосходит свое 
среднее значение Fav (под Fav здесь подразу-
мевается поле в образце плоской геометрии 
толщиной d = R – rc).

Распределение напряженности электри-
ческого поля F(r, t) в межэлектродном про-
странстве рассматриваемой электродной 
системы в любой момент времени t опи-
сывается уравнением Пуассона, которое в 
сферических координатах имеет вид

Рис. 1. Схема электродной системы в 
виде сферического концентрического 

конденсатора: 
R, rc – радиусы наружной и внутренней сфер, 
соответственно; rfr(t) – глубина прорастания 
отрицательного объемного заряда (NSC) в полимер 

к моменту времени t

0

2 ( , )( , ) ( , ) ,d r tF r t F r t
dr r

+
ρ
εε

=
﻿
                                     (1)

где ε – относительная диэлектрическая проницаемость полимерного диэлектрика; ε0 – 
электрическая постоянная, ε0 = 8,85·10–12 Ф/м; e – заряд электрона, e = −1,6022⋅10⁻¹⁹ Кл; 
ρ(r, t) – мгновенное значение плотности NSC, определяемое концентрациями свободных 
электронов и электронов, захваченных в ловушки.

Поскольку электрический пробой преимущественно происходит на переднем фронте 
импульса и значительно реже – на плато или спаде импульса [12, 14], первостепенный 
интерес представляли расчеты распределения поля на временном интервале, включаю-
щем области переднего фронта и начального участка плато высоковольтного импульса. 
В связи с этим при расчетах принималось, что напряжение U на образце изменяется со 
временем следующим образом:

,
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Здесь t – время; Uamp, Δ – амплитуда и длительность переднего фронта импульса, со-
ответственно. 

Скорость возрастания напряжения на образце (крутизна фронта импульса) есть  
dU/dt = Uamp /Δ.

В соответствии с рекомендациями статьи [20], будем полагать, что в сильном электри-
ческом поле инжекция электронов из катода в полимерный диэлектрик обусловлена ав-
тоэлектронной эмиссией, а зависимость плотности тока этой эмиссии от напряженности 
поля у катода определяется уравнением Фаулера – Нордгейма. 

Если считать форму потенциального барьера на границе катод-диэлектрик треуголь-
ной, то уравнение для расчета плотности инжекционного тока jc(t) можно представить как
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где m, кг, – масса электрона; ħ, Дж·с, – постоянная Планка; Fc(t), В/м, – напряженность 
поля у катода, изменяющаяся со временем; Δe, эВ, – высота потенциального барьера на 
границе катод-полимер. 

Отметим здесь, что уравнение (3) является упрощенным и не учитывает снижение вы-
соты потенциального барьера в сильном электрическом поле.

При рассмотрении инжекции электронов в полимер из металлического электрода зна-
чение Δe можно определить как разность между работой выхода из металлического ка-
тода и сродством к электрону Ac полимерного диэлектрика. Работа выхода для метал-
лов составляет 2,0 – 5,5 эВ, тогда как Ac для полимерных диэлектриков оценивается в  
1 – 2 эВ, что позволяет оценить значение высоты потенциального барьера Δe в 1 – 4 эВ. 
Такой результат согласуется с известными экспериментальными данными; например, 
значения высоты потенциального барьера на границах полиэтилентерефталата (ПЭТФ) с 
алюминием и медью экспериментально определены авторами статьи [21] равными 2,8 и 
2,9 эВ соответственно.

Решение уравнения (1) имеет вид
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Если учесть, что
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и подставить выражение (4) в соотношение (5), то получим, что зависимость напряжен-
ности поля у катода от времени следует выражению 
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Обозначим полный заряд, заключенный между двумя сферическими поверхностями с 
радиусами rc и r к моменту времени t, как 

2 (( , ) 4 ., )
c

r

r

x t dxq r t x ρ= π∫                                           (7)

Учитывая обозначение (7) и подставив выражение (6) в решение (4), получим:
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Зависимость (8) позволяет рассчитать распределение электрического поля в меж-
электродном пространстве в любой момент времени. Отметим здесь, что отношение  
U(t)/(R – rc) можно рассматривать как формулу для напряженности поля в образце пло-
ской геометрии толщиной d = R – rc.

Из равенства (8) следует, что напряженность электрического поля на любом расстоя-
нии r от катода представляет собой суперпозицию трех полей: 

определяемого геометрией электродной системы (первое слагаемое);
создаваемого объемным зарядом, распределенным по всему образцу (второе слагае-

мое);
создаваемого NSC, распределенным в пространстве между катодом и поверхностью 

радиуса r (третье слагаемое). 
Если рассматривать воздействие на полимер короткого электрического импульса, в 

течение которого электроны еще не успевают достигнуть противоположного электрода 
(анода) и провзаимодействовать с ним, то справедливо равенство

q[rfr(t)] = Q(t),

где Q(t) – полный заряд, накопившийся к моменту времени t в межэлектродном про-
странстве за счет инжекции электронов из катода; напомним, что rfr(t) – глубина проник-
новения электронов в полимер.
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Полный заряд Q(t) следует выражению 

2

0

( ) 4 ( ) .
t

c cQ t r j t dt′ ′= π ∫                                            (9)

Глубина прорастания заряда в полимер к моменту времени t определяется как

0

( ) ( ) ,
t

fr frdrr t F t dt′µ ′= ∫                                          (10)

где Ffr(t) – напряженность поля на границе прорастания заряда в полимер (зависит от 
времени); μdr – дрейфовая подвижность электронов в полимерном диэлектрике. 

Значение величины μdr невелико. Даже в сильном постоянном электрическом поле 
(при Fav ≈ 108 В/м) оно оценивается равным примерно 10–9 м2/(В·с) [22].

Точное аналитическое выражение для функции q(r, t) неизвестно и вряд ли может быть 
установлено, поскольку требует учета скоростей захвата и опустошения электронных ло-
вушек при любых значениях r и t. 

Очевидно, что вид функции q(r, t) зависит от многих факторов:
плотности инжекционного тока, 
подвижности носителей заряда, 
напряжения на электродах, 
энергетической плотности ловушечных состояний,
длительности электрического импульса. 
Однако согласно определению, функция q(r, t) при rc ≤ r ≤ rfr монотонно возрастает по 

мере увеличения r, причем q(rc, t) ≡ 0. При r > rfr величина q(r, t) не зависит от коорди-
наты и q(r, t) = Q(t). 

При кратковременном воздействии электрического импульса на полимерный диэлек-
трик электроны, инжектированные из катода, захватываются в ловушки, там удержива-
ются и формируют NSC. 

Среднее время захвата электрона в ловушки выражается как

ttrap = τ0 exp [Etrap /(kBT)],

где Etrap – глубина ловушки, T – температура, kB – постоянная Больцмана; τ0 – характер-
ное время, τ0 ≈ 0,1 пc.

Если принять длительность электрического импульса равной 10 нс, то при комнатной 
температуре электроны будут удерживаться в ловушках глубиной более 0,3 эВ в течение 
всего времени действия импульса. В работе [11] показано, что при электрическом им-
пульсе длительностью от 10 до 1000 нс и экспоненциальном распределении ловушек по 
глубине плотность NSC, прорастающего в полимер, можно считать постоянной. В этом 
случае выражение для расчета функции q(r, t) примет вид

3 3

3 3( , ) ( ).
( )

c

fr c

r rq r t Q t
r t r

−
=

−
                                         (11)

Соотношение (11) следует рассматривать как приближение, которое можно использо-
вать при расчетах распределения поля вблизи микроострия. Однако на практике граница 
прорастающего заряда не может быть столь резко выражена, а плотность распределения 
заряда все-таки должна зависеть от координаты. Поэтому в работе [23] функция q(r, t) 
при r ≤ rfr аппроксимируется степенным рядом с основанием r – rc. 

Чтобы использовать подобный способ аппроксимации q(r, t), примем, что функция 
q(r, t) имеет вид

( )2( , ) ( )( ) ( ) .c cq r t a t r r b t r r= − + −                                   (12)

Коэффициенты полинома a(t) и b(t) для момента времени t можно найти из условий

q[rfr(t)] = Q(t) и dq(r, t)/dr = 0 при r = rfr.

Данная аппроксимация соответствует условию, при котором плотность NSC на грани-
це его прорастания равна нулю, и a(t) и b(t) определяются как
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( ) 2 ( ) ( ) ,

( ) ( ) ( )
( ) .

( )

fr c

fr c

fr c

a t b t r t r

Q t a t r t r
b t

r t r

 = − − 
 − − =

 − 

                                     (13)

Следует отметить, что в простейшем случае q(r, t) можно аппроксимировать и более 
простым выражением, а именно – линейной функцией вида 

( , ) ( ).
( )

c

fr c

r rq r t Q t
r t r

−
=

−
                                         (14)

Вид зависимости, определяемой соотношением (13), относится к случаю ρ(r, t) ~ r–2, 
причем ρ(rfr, t) ≠ 0.

Соотношения (11), (12) и (14) при их подстановке в выражение (8) позволяют получить 
аналитические выражения для расчета напряженности электрического поля в межэлек-
тродном пространстве при фиксированном значении t. Временной аргумент функции  
F(r, t) обусловлен зависимостью от времени таких величин, как U(t), Q(t) и rfr(t), которые 
можно рассматривать как независящие от координаты интегральные параметры, входя-
щие в соотношение (8). Расчет зависимости F(r, t) усложняется тем, что глубина про-
растания заряда в полимер rfr(t) связана с напряженностью поля Ffr(t) на границе области 
NSC через интеграл в выражении (10). 

Таким образом, процесс прорастания NSC представляет собой самосогласованную за-
дачу. Поэтому при расчете зависимостей Fc(t) и Ffr(t) мы использовали временной поша-
говый метод. Применение метода предполагало, что распределение поля и заряда неиз-
менно в течение времени дискретизации Δt (при расчетах принималось, что Δt = 1 нс). 
Расчет Fc и Ffr на i-м шаге в момент времени ti проводился на основании результатов 
расчета этих величин на предыдущем временном шаге. Интегралы в соотношениях (9) 
и (10), определяющие изменение во времени величин Q(t) и rfr(t), заменялись суммами. 

При расчетах учитывалось, что интенсивная автоэлектронная эмиссия из микроострия 
на катоде возникает по достижении некоторого критического значения напряженности 
электрического поля (в соответствии с уравнением (3)). Как следствие, в слабом электри-
ческом поле электроны в полимер практически не инжектируются, NSC не накаплива-
ется и распределение электрического поля в межэлектродном пространстве определяется 
геометрией электродной системы (см. первое слагаемое в уравнении (8)). Поэтому пер-
вым шагом (i = 1) при расчете F(r, t) служил не момент времени t = 0, соответствующий 
началу роста напряжения, а момент t1, когда напряжение на образце достигало значения 
U(t1), при котором возникает заметный инжекционный ток. 

В качестве начальных условий для расчетов на первом временном шаге мы принимали, 
что

Q(t1) = 0, rfr(t1) = rc и Ffr(t1) = Fc(t1).

Значение t1 составляло 30 – 40 нс (оно зависело от амплитуды импульса и длительно-
сти его переднего фронта).

Численные расчеты были выполнены при следующих значениях параметров:

rc = 0,25 мкм, R = 2,50 мкм, μdr = 1·10–9 м2/(В·с), Δe = 2,9 эВ, ε = 3.
Результаты расчетов и их обсуждение

Рассмотрим, в какой мере характер распределения заряда в образце влияет на зависи-
мости Fc(t) и Ffr(t). Результаты расчетов этих зависимостей при Uamp = 1500 В и Δ = 150 нс 
с использованием различных функций, аппроксимирующих функцию q(r, t), представле-
ны на рис. 2. 

Изменение со временем напряженности поля Fc(t) у катода представлено на рис. 2, а. 
Видно, что разные случаи функций, аппроксимирующих зависимость q(r, t), не оказыва-
ют существенного влияния на форму зависимости Fc(t). На всех кривых Fc(t) можно вы-
делить три характерных временных отрезка, возникновение которых обусловлено двумя 
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Рис. 2. Зависимости Fc(t) (а), Ffr(t) (b) и jc(t) (с), 
рассчитанные с помощью различных функций, 
аппроксимирующих q(r,t): квадратичной 
(см. формулу (12), кривая 1), линейной 
(14) (кривая 2); кубической (11) (кривая 3); 
пунктиром 4 показано изменение Fc(t) в 
отсутствие ограничения поля объемного заряда. 
На вставке: детализация начального участка 

кривой Fc(t)

а)

c)

b)

конкурирующими факторами: возрастани-
ем напряжения на образце по закону, опре-
деляемому соотношением (2), и эффекту 
ограничения поля областью NSC у катода. 

Первый отрезок на зависимости Fc(t)
соответствует относительно низкой напря-
женности электрического поля, при кото-
рой влияние NSC на Fc(t) пренебрежимо 
мало. Возрастание напряженности электри-
ческого поля у катода на этом временном 
интервале связано только c линейным ро-
стом напряжения на образце и совпадает с 
зависимостью Fc(t) в отсутствие NSC (пун-
ктирная прямая 4 на рис. 2, а).

 Переход ко второму временному отрез-
ку на зависимости Fc(t) происходит, когда 
величина Fc достигает критического значе-
ния, при котором резко возрастает ток ав-
тоэлектронной эмиссии (см. зависимость 
jc(t) на рис. 2, с) и в прикатодной области 
начинает быстро накапливаться NSC. Ско-
рость ограничения поля NSC у катода ока-
зывается большей, чем скорость возраста-
ния Fc вследствие подъема напряжения на 
образце. На зависимости Fc(t) формируется 
максимум. По мере накопления NSC эф-
фективность ограничения поля этим объ-
емным зарядом все повышается и значение 
величины Fc стабилизируется. Как след-
ствие этого, стабилизируется и плотность 
тока jc(t) (см. рис. 2, с). На зависимостях 
Fc(t) и jc(t) формируется плато. Масштаб-
ная вставка на рис. 2, а более наглядно 
демонстрирует влияние функции, аппрок-
симирующей q(r, t), на зависимость Fc(t)
в режиме ограничения поля NSC у катода. 
Видно, что различия между кривыми 1 – 3 
незначительны, но более эффективно NSC 
ограничивает напряженность Fc при выбо-
ре в качестве аппроксимирующей функции 
полинома второй степени (кривая 1, отно-
сящаяся к квадратичной функции).

Переход к третьему временному отрез-
ку зависимости Fc(t) совершается в момент 
времени, когда напряжение на образце пе-
рестает расти, т. е. при t = Δ. На плато им-
пульса наблюдается быстрое снижение на-
пряженности поля у катода. Отметим, что 

к этому моменту времени область NSC успевает прорасти в полимер на глубину 0,15 –  
0,25 мкм, причем наибольшая глубина этого прорастания соответствует выбору квадра-
тичного полинома, аппроксимирующего функцию q(r, t). Причина спада со временем ве-
личины Fc состоит в том, что при t ≥ Δ (плато импульса) напряжение на образце перестает 
расти, но накопление NSC продолжается, несмотря на понижение плотности инжекци-
онного тока (см. рис. 2, с). В итоге эффективность ограничения поля NSC повышается и 
значения Fc и jc, снижаясь, стремятся к своим стационарным значениям.
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Зависимости Ffr(t), построенные с использованием различных пробных функций, ап-
проксимирующих q(r, t), представлены на рис. 2, b. Так же, как и рассмотренные выше 
зависимости Fc(t), они имеют несущественные различия, и это позволяет заключить, что 
выбор аппроксимирующей функции, удовлетворяющей перечисленным выше требовани-
ям, не имеет принципиального значения при расчете распределения электрического поля 
в рассматриваемой электродной системе.

При анализе характера зависимости Ffr(t) следует учитывать, что накапливающийся 
NSC не ограничивает, а усиливает напряженность поля на границе своего прорастания. 
Однако область NSC непрерывно смещается вглубь полимера и, вследствие этого, компо-
нента электрического поля, определяемая геометрией электродной системы, сокращает-
ся, поэтому характерные временные отрезки, которые формируются на кривых Ffr(t), не 
столь явно выражены, как на соответствующих кривых Fc(t). 

Величины Ffr и Fc при одних и тех же значениях времени t примерно одинаковы, т. 
е. в прикатодной области, где накапливается NSC, распределение электрического поля 
близко к однородному. При Fav = 666 МВ/м (что соответствует Uamp = 1500 В) и толщине 
полимерной пленки 2,25 мкм, напряженность электрического поля в области накопления 
NSC достигает значений около 2,5 ГВ/м. Наносекунды существования поля со столь зна-
чительной напряженностью в этой области образца примерно соответствует длительности 
переднего фронта электрического импульса.

Известно, что крутизна переднего фронта электрического импульса оказывает замет-
ное влияние на многие явления, наблюдаемые в полимерных диэлектриках в сильных 
электрических полях. Например, в пленке полиэтилентерефталата наблюдается резкий 
подъем пробивной напряженности образца при увеличении крутизны переднего фронта 
импульса [11], при этом повышается интенсивность свечения импульсной электролюми-
несценции указанного полимера [24]. Согласно соответствующим наблюдениям авторов 
статей [24, 25], свечение полимера имеет место только в момент действия фронта импуль-
са и отсутствует во время действия его плато.

Рассмотрим влияние длительности переднего фронта импульса (Uamp = 1500 В) на за-
висимости Fc(t) и Ffr(t). Отметим, что здесь и далее все расчетные зависимости получе-
ны при аппроксимации функции q(r, t) квадратичным полиномом (см. формулу (12)). 
Результаты расчетов представлены на рис. 3. Видно, что увеличение крутизны фронта им-
пульса (за счет снижения длительности его переднего фронта при постоянной амплитуде) 
приводит к повышению напряженности электрического поля как у катода (см. рис. 3, а), 
так и на границе области прорастания NSC (см. рис. 3, b). Однако протяженность плато 
на зависимостях Fc(t) и Ffr(t), где напряженность поля достигает наибольших значений, 
сокращается. Например, при повышении крутизны фронта с 5 до 10 ГВ/с, напряженность 
поля в максимуме у катода возрастает с 2,30 до 2,45 ГВ/м (такое увеличение Fc приводит 
к росту плотности инжекционного тока с 1,2 до 3,2 МА/м2), а на фронте NSC – с 1,70 до 
2,55 ГВ/м, но протяженность плато на зависимости Fc(t) снижается со 190 до 100 нс, а на 
зависимости Ffr(t) – со 160 до 75 нс.

а) b)

Рис. 3. Зависимости Fc(t) (а) и Ffr(t) (b), рассчитанные при Uamp = 1500 В и различных значениях 
крутизны фронта импульса, ГВ/с: 10 (1), 7 (2) и 5 (3)
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Заключение

Таким образом, изучение динамики накопления отрицательного объемного заряда 
(NSC) в полимере при воздействии на него высоковольтного импульса с крутизной фрон-
та около 1 ГВ/с и анализ изменения распределения напряженности электрического поля 
F, связанного с этим воздействием, позволяют заключить, что в прикатодной области 
этого полимера успевает сформироваться область NSC (за время порядка 100 нс), которая 
ограничивает напряженность поля у катода и повышает его напряженность на границе 
области прорастания NSC; при этом распределение напряженности электрического поля 
становится более однородным. Величина F в этой области полимерного диэлектрика, в 
несколько раз превосходящая свое среднее по образцу значение, возникает только на пе-
реднем фронте высоковольтного импульса. Сокращение длительности переднего фронта 
высоковольтного импульса приводит к возрастанию напряженности электрического поля 
в полимере в области накопления NSC, но длительность воздействия сильного электри-
ческого поля сокращается. Этот совокупный эффект может привести с одной стороны, к 
ускорению процессов, инициируемых в полимерном материале электрическим полем, но 
с другой, – к сокращению времени их воздействия на полимерный материал.
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