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Аннотация. В статье представлены аналитические формулы для потенциалов 
электрических полей, которые соответствуют радиочастотным воронкам с 
прямолинейным каналом транспортировки общего вида, в частности воронок с 
криволинейным профилем канала, с мультипольными диафрагмами, с неравномерно 
расположенными электродами. При определении электрических полей, за основу 
было взято распределение электрического потенциала на оси устройства. Полученные 
выражения целесообразно использовать для быстрого качественного моделирования 
радиочастотных устройств, предназначенных для изолирования, транспортировки 
и фокусировки ионов, а также при решении соответствующих задач математической 
физики.
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Abstract. The article presents analytical quadrature expressions for electric field potentials 
that correspond to radio-frequency straight-axis ion funnels of a general type, specifically, the 
funnels with a curved channel profile, with multipole diaphragms, and with unequally spaced 
electrodes. When determining electric fields, the distribution of electric potential over the 
axis of the device was taken as a basis. The resulting formulae would be appropriate for use in 
quick, high-quality simulating of radio-frequency devices designed for isolation, conveying and 
focusing ions, as well as in solving some problems of mathematical physics.
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Введение

Настоящее исследование является прямым продолжением материалов статей [1 – 4], 
где рассматриваются аналитические выражения для потенциалов электрических полей в 
цилиндрических и конических радиочастотных транспортирующих каналах [5, 6]. Прооб-
разом подобных устройств следует считать цилиндрические радиочастотные ловушки ти-
па SRIG (Stacked Ring Ion Guides), впервые предложенные авторами публикаций [7, 8] и 
подробно исследованные в работах [5, 9 – 11, 12]. Конические радиочастотные воронки, 
которые относятся к следующему поколению устройств такого типа, рассмотрены и под-
робно изучены в работах [12 – 19]. Однако потенциальные возможности радиочастотных 
ионных воронок не исчерпываются этими простейшими случаями.

В данной работе получены и представлены аналитические формулы для электриче-
ских потенциалов; эти выражения удобно применять для быстрого качественного моде-
лирования ионных воронок со сложной структурой. Действительно, при проектировании 
ионно-оптических устройств бывает целесообразно использовать радиочастотные фоку-
сирующие воронки, профиль которых отличается от конического (см., например, статью 
[17]), а также квадрупольно- либо мультипольно-сегментированные электроды (см. рабо-
ту [20]). Могут оказаться полезными и некруговые диафрагмы; в этом случае соответству-
ющие электрические потенциалы являются аддитивной суперпозицией осесимметричных 
аналитических потенциалов и мультипольных поправок, представляющих собой анали-
тические решения для мультипольно-сегментированных электродов (результат разложе-
ния по азимутальному углу в сумму гармоник Фурье для коллокационных точек краево-
го условия одиночной диафрагмы требуемой формы). Дополнительно при оптимизации 
параметров радиочастотных ионных воронок сложной структуры может потребоваться 
неравномерное размещение диафрагм вдоль канала транспортировки и соответствующие 
аналитические решения.

Применение точных или приближенных аналитических моделей позволяет облегчить 
исследование свойств ионно-оптических устройств, а также ставить и решать обратные 
задачи синтеза ионно-оптических систем. В последнем случае по заданному поведению 
заряженных частиц восстанавливают электрическое поле, обеспечивающее указанные 
функциональные характеристики, а потом (в соответствии с этим электрическим по-
лем) определяют конфигурацию электродов, реализующих требуемое устройство. Работы  
Ю. К. Голикова (см., например, книги [21 – 23]) наглядно демонстрируют преимущества 
такого подхода.
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Для конструирования электрических потенциалов высокочастотных электрических по-
лей используется принцип квазистатичности. Квазистатическая модель электрического 
поля, меняющегося во времени, подразумевает, что можно выразить высокочастотный 
потенциал этого поля в виде функции времени, задающей закон изменения напряжений 
на электродах, умноженной на потенциал электростатического поля, соответствующий 
постоянным напряжениям на электродах. 

Предположение о квазистатичности высокочастотного электрического поля справед-
ливо, когда время характерного изменения электрических напряжений на электродах су-
щественно превышает время распространения электромагнитного возмущения в пределах 
устройства. Зависящий от времени множитель описывает временнóе изменение электри-
ческих напряжений, а зависящий от координат потенциал соответствует постоянным на-
пряжениям на электродах, которые изменяются во времени синхронно и пропорцио-
нально друг другу. Хотя такой шаг есть, по сути, пренебрежение электродинамическими 
эффектами максвелловских уравнений, он все же допустим, если частота напряжений, 
прикладываемых к электродам, не слишком велика (в указанном выше смысле). 

Далее рассматриваются аналитические выражения для электростатических потенци-
алов, которые соответствуют конфигурациям электродов, типичным для радиочастот-
ных ионных воронок. Подразумевается, что при моделировании радиочастотных ионных 
воронок с прямой осью и соответствующим профилем транспортирующего канала эти 
электростатические потенциалы необходимо будет умножать на быстро осциллирующие 
функции времени, задающие закон (в большинстве случаев синусоидальный) для изме-
нения высокочастотных напряжений на электродах. В рамках квазистатической модели 
электрического поля, вместо синусоидальных радиочастотных напряжений могут исполь-
зоваться радиочастотные напряжения со сложным спектром и, в частности, импульсные 
напряжения с произвольной формой импульсов [24]. Кроме того, в зависимости от режима 
функционирования воронки, к электродам могут прикладываться двух- и четырехфазные 
радиочастотные напряжения [12], а также амплитудно-, частотно- и фазомодулированные 
радиочастотные напряжения [12], обеспечивающие режим А-волны при транспортировке 
ионов [25 – 37].

Целью данной работы является вывод аналитических квадратурных формул, которые 
позволяют быстро восстанавливать структуру электрического поля во всем требуемом 
пространстве по заданному распределению электрического потенциала на оси устройства. 

Имея восстановленную структуру электрического поля, мы тем самым можем восста-
новить и структуру электродов, ответственных за создание соответствующего электриче-
ского поля.

Полученные аналитические решения трехмерного уравнения Лапласа представляют не 
только практический, но и самостоятельный научный интерес, так как их можно при-
менять для решения задач математической физики, не имеющих прямого отношения к 
вопросам оптики заряженных частиц. 

Теоретические предпосылки

В этом разделе приводится краткая справка о математическом аппарате, который будет 
использоваться при последующих математических выкладках. Мы сочли уместным вклю-
чить краткое изложение этих методов во введении к данной статье, поскольку, как прави-
ло, данный материал не слишком широко известен специалистам по оптике заряженных 
частиц, а первоисточники, на которые можно сослаться, труднодоступны в силу раритет-
ного происхождения и/или небольшого тиража соответствующих изданий [21 – 23]. 

Планарные поля. Планарные (двумерные) электростатические поля характеризуются 
электрическим потенциалом U(x, y), который зависит лишь от двух декартовых координат 
и удовлетворяет двумерному уравнению Лапласа

( ) ( )2 2

2 2

, ,
0.

U x y U x y
x y

∂ ∂
+ =

∂ ∂
                                       (1)

Хорошо известно, что вещественная и мнимая части любой аналитической функции 
комплексной переменной, например, имеющей вид
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( ) ( ) ( ) ( ), , ,f z f x iy u x y iv x y= + = +                                (2)

удовлетворяют двумерному уравнению Лапласа в силу того, что для этих функций выпол-
няются условия Коши – Римана [38]:

( ) ( ) ( ) ( ), , , ,
, .

u x y v x y u x y v x y
x y y x

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂
                         (3)

Если же для вещественной и мнимой частей комплекснозначной функции двух веще-
ственных переменных существуют частные производные первого порядка и выполнены 
условия Коши – Римана (3), то такая функция есть аналитическая функция комплексной 
переменной. Это означает, что в окрестности любой точки, в которой выполняются ус-
ловия (3), она разлагается в сходящийся степенной ряд и в силу этого дифференцируема 
сколько угодно раз.

Менее известно, что обратное утверждение тоже справедливо. 
Утверждение 1. Любую вещественную функцию двух переменных, которая удовлетворяет 

двумерному уравнению Лапласа, можно рассматривать как вещественную (мнимую) часть 
некоторой аналитической функции комплексной переменной. 

Доказ а т ельс тво . Пусть имеется функция u(x, y), которая удовлетворяет уравне-
нию (1). Соотношения (3) можно рассматривать как систему дифференциальных урав-
нений первого порядка в частных производных [38], заданную для неизвестной функции 
v(x, y) при известной функции u(x, y). Система уравнений разрешима, решение существу-
ет, и оно единственное с точностью до аддитивной постоянной, если для неизвестной 
функции v(x, y) справедливо условие равенства смешанных производных:

( ) ( ), ,
.

v x y v x y
y x x y

∂ ∂   ∂ ∂
≡   ∂ ∂ ∂ ∂                                       

 (4)

В силу гармоничности функции u(x, y), для рассматриваемой системы уравнений (3) 
данное условие выполнено. 

Решением системы уравнений (3) является следующая функция:

( ) ( ) ( ) ( )

( ) ( ) ( )
0 0 0 0

0 0 0 0
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0 0
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y y x
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ds dt ds dt C
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 ∂ ∂ ∂
= − − + + =  ∂ ∂ ∂ 

 ∂ ∂ ∂
= + + − +  ∂ ∂ ∂ 

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
        (5а)

которую также можно преобразовать к виду

( ) ( ) ( )

( ) ( )
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0 0
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0
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yx

x y
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u t y u x s
v x y dt ds C

y x

u x s u t y
ds dt C

x y

∂ ∂
= − + + =

∂ ∂

∂ ∂
= + − +

∂ ∂

∫ ∫

∫ ∫
                          (5б)

Функция видов (5а) и (5б) определена однозначным образом, с точностью до ве-
щественной аддитивной константы C, задающей значение функции v(x0, y0). Поэтому 
для любой функции u(x, y), которая удовлетворяет уравнению (1), можно восстано-
вить недостающую мнимую часть v(x, y), которая бы обеспечивала выполнение условий  
Коши – Римана (3). Тем самым будет определена аналитическая функция комплексной 
переменной (2) – единственная, с точностью до аддитивной мнимой константы. 

Имеющуюся функцию v(x, y), которая удовлетворяет двумерному уравнению Лапласа, 
всегда можно аналогичным образом дополнить недостающей вещественной частью  
u(x, y) и получить на выходе требуемую аналитическую функцию комплексной перемен-
ной.

Утверждение 1 доказано.
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Следствие утверждения 1. Если в процессе синтеза двумерных электронно- и  
ионно-оптических систем исследуются только те гармонические функции двух перемен-
ных, которые получены из аналитических функций комплексной переменной, то ни одно 
решение не будет пропущено.

Пусть имеется произвольная аналитическая функция комплексной переменной. Ее 
можно симметризировать, обеспечив по второму аргументу четность вещественной части 
и нечетность части мнимой. 

Утверждение 2. Любой аналитической функции комплексной переменной f(z) = f(x+iy) 
можно сопоставить симметризованную (по переменной y) аналитическую функцию ком-
плексной переменной (причем единственным образом), у которой вещественная часть четная 
по переменной y, мнимая – нечетная по той же переменной, а значения вещественной части 
на оси y = 0 совпадают со значениями вещественной части исходной функции.

Доказ а т ельс тво . Возьмем произвольную аналитическую функцию комплексной 
переменной f(z), заданную формулой (2), у которой вещественная и мнимая части удов-
летворяют соотношениям Коши – Римана (3). Тогда у комплекснозначной функции (ко-
торая, вообще говоря, не обязательно должна быть аналитической функцией) вида

( ) ( ) ( ), ,f z u x y iv x y= − − −  

вещественная и мнимая части удовлетворяют соотношениям Коши – Римана (3). Следо-
вательно, эта функция также является аналитической функцией комплексной перемен-
ной. Поэтому аналитической функцией комплексной переменной будет функция

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 , , , , ,
2 2 2

ih z f z f z u x y u x y v x y v x y = + = + − + − −                (6)

у которой вещественная и мнимая части обладают требуемой четностью по y. 
Точно так же, аналитической функцией комплексной переменной будет антисимме-

тричная функция вида

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 , , , , ,
2 2 2

ig z f z f z u x y u x y v x y v x y = − = − − + + −                (7)

у которой вещественная часть нечетная по переменной y и тождественно равна нулю при 
y = 0, а мнимая часть четная по переменной y и на оси y = 0 совпадает с мнимой частью 
функции f(z). 

Значение на оси симметрии y = 0 для вещественной части функции f(z) и для веще-
ственной части функции h(z), которая задается формулой (6), будет одним и тем же. 
Точно так же, на оси симметрии y = 0 нормальные производные (производные по пере-
менной y) у мнимых частей функций f(z) и h(z) будут совпадать.

Единственность симметризованной функции комплексной переменной следует из 
единственности решения задачи Коши (8) для двумерной гармонической функции, ко-
торая рассматривается далее, а также из единственности мнимой части аналитической 
функции комплексной переменной (с точностью до аддитивной константы, см. Утверж-
дение 1) при заданной вещественной части. 

Утверждение 2 доказано.
Процесс симметризации (6), примененный к уже симметризованной функции, эту 

функцию не изменяет. Частная производная симметризованной аналитической функции 
комплексной переменной, взятая по переменной x, будет тоже симметризованной функ-
цией комплексной переменной. Частная производная симметризованной функции ком-
плексной переменной, взятая по переменной y, будет функцией комплексной перемен-
ной, обладающей, аналогично функции (7), нечетностью вещественной и четностью мни-
мой части по второму аргументу. Такими же свойствами четности обладают компоненты 
симметризованной (согласно выражению (6)) аналитической функции комплексной пе-
ременной, умноженной на мнимую единицу. Аналогичные утверждения справедливы для 
функций комплексной переменной, полученных преобразованием (7). Последовательное 
использование преобразований (6) и (7) дает тождественный нуль.
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Для гармонической функции U(x, y), четной по переменной y и удовлетворяющей ус-
ловию U(x, –y) = U(x, y), можно поставить задачу Коши, а именно – определить значение 
функции на всей плоскости по ее поведению на оси симметрии:

( ) ( )
0

, .
y

U x y G x
=
=                                              (8)

Утверждение 3. Решение задачи Коши (8) для планарной гармонической функции, четной 
по переменной y, существует и оно единственное, по крайней мере, в окрестности оси сим-
метрии y = 0, если функция G(x) дифференцируема бесконечное число раз и разлагается в 
сходящийся степенной ряд в каждой точке.

Доказ а т ельс тво . Если учитывать требования четности по y, то двумерную гармони-
ческаяую функцию U(x, y) в окрестности оси симметрии y = 0 можно разложить в ряд по 
четным степеням переменной y:

( ) ( ) ( ) ( ) ( ) ( )
2

2
0 2 2

1, 1 ... .
2 2 !

k
k

k

yU x y U x y U x U x
k

= − + + − +                  (9)

Возможность разложения в степенной ряд следует из аналитичности двумерных гар-
монических функций (см. теорему Бернштейна об аналитичности решений двумерных 
эллиптических уравнений [39, 40]). После подстановки выражения (9) в уравнение (1) и 
комбинирования множителей при одинаковых степенях переменной y получаем значения 
всех коэффициентов ряда (9) с помощью следующих рекуррентных соотношений: 

( ) ( ) ( ) ( )2
2

0 2 2 2, .k
k

d U x
U x G x U x

dx+= =                               (10)

Ряд (9) для функции U(x, y) сходится, причем абсолютно, так как сходится степенной 
ряд для функции G(x), который можно использовать как мажоранту для ряда (9). 

Утверждение 3 доказано.
Ряды вида (9), функциональные по одной переменной и степенные по другой, полу-

чили название рядов Шерцера1. Они используются в ионной оптике для описания сим-
метричных электрических и магнитных полей при анализе параксиальных траекторий в 
окрестности плоскости симметрии или оси симметрии.

Аналогичным образом формулируется и исследуется задача Коши о восстановлении 
гармонической функции, нечетной по переменной y, по ее нормальной производной на 
оси симметрии:

( ) ( )
0

,
.

y

U x y
H x

y
=

∂
=

∂                                          (11)

Поиск решения в виде антисимметричного ряда 

( ) ( ) ( ) ( ) ( ) ( )
2 1

3
1 3 2 1

1, 1 ...
6 2 1 !

k
k

k

yU x y yU x y U x U x
k

+

+= − + + − +
+

            (12)

позволяет выразить с помощью рекуррентных соотношений вида

( ) ( ) ( ) ( )2
2 1

1 2 1 2, k
k

d U x
U x H x U x

dx
−

+= =                               (13)

все члены ряда через производные функции H(x). Тем самым можно найти единственно 
возможное решение, справедливое, по крайней мере, в некоторой окрестности оси сим-
метрии y = 0, в которой этот ряд сходится.

Ряд Шерцера (9) с коэффициентами (10) не содержит информации о поведении функ-
ции U(x, y), которая будет решением задачи Коши (8), вдали от оси симметрии. Инте-
гральная формула, использующая функцию Грина для задачи Дирихле двумерного урав-
нения Лапласа на верхней полуплоскости [42], свободна от этого недостатка и имеет 
следующий вид:

1 По всей видимости, этот термин введен в обращение в монографии [41].



81

Математическая физика

( ) ( )
( )2 2

, .
G tyU x y dt

x t y

+∞

−∞

=
π − +∫                                      (14)

С помощью непосредственной проверки можно убедиться, что если интеграл в фор-
муле (14) сходится, то функция U(x, y) при y > 0 удовлетворяет двумерному уравнению 
Лапласа, а при y → 0 удовлетворяет условию (8). Если функция (14) будет должна под-
чиняться указанному уравнению Лапласа, в том числе и на границе y = 0, то потребуется 
дифференцируемость (аналитичность) функции G(t).

Формулу (14) следует использовать для непосредственных вычислений лишь при y > 0. 
Однако функция (14) удовлетворяет условию ∂U(x, y)/∂y = 0 при y = 0+ и поэтому может 
быть гладко продолжена на полуплоскость y < 0 симметричным образом, порождая тем 
самым четную функцию по переменной y.

Аналогичным образом функция Грина для задачи Неймана (11), которая рассматрива-
ется на верхней полуплоскости y > 0 для нечетной по y гармонической функции U(x, y) 
(см. книгу [42]), приводит к следующей формуле:

( ) ( ) ( )2 21, ln .
2

U x y H t x t y dt
+∞

−∞

 = − + π ∫                              (15)

Эта формула обеспечивает единственно возможное решение для антисимметричной 
задачи Коши (11), если функция H(t) достаточно быстро стремится к нулю на бесконеч-
ности.

К сожалению, формула (14) для симметричной задачи Коши (8) применима на деле 
только тогда, когда модуль функции G(t) растет на бесконечности медленнее линейной 
функции. Еще более жесткое условие для стремления к нулю на бесконечности налагает-
ся на функцию H(t), которая используется в интеграле (15). Кроме того, для вычисления 
интегралов в выражениях (14) и (15) необходимо либо иметь высокий уровень мастерства 
и навыков в аналитическом вычислении интегралов, либо иметь в распоряжении надеж-
ные математические справочники (довольно большого объема), посвященные интегриро-
ванию функций. 

Однако, как правило, функция G(t) представляет собой суперпозицию хорошо извест-
ных элементарных функций, и тогда задача решается проще. Действительно, для любой 
элементарной функции вещественной переменной известен ее аналог на комплексной 
плоскости (результат аналитического продолжения с вещественной оси на всю комплекс-
ную плоскость). Все, что требуется в этом случае, – это составить аналогичную супер-
позицию, включающую известные аналитические функции комплексной переменной, и 
отделить от полученного результата его вещественную либо мнимую часть. При необ-
ходимости может потребоваться выполнение симметризации либо антисимметризации 
полученного решения, в соответствии с формулами (6) или (7). 

Осесимметричные поля. Электрический потенциал осесимметричных электростатиче-
ских полей имеет вид 

( ) ( )2 2, , , ,U x y z V z x y= +  

где функция V(z, r) удовлетворяет осесимметричному уравнению Лапласа вида

( ) ( ) ( )2 2

2 2

, , ,1 0.
V z r V z r V z r

z r r r
∂ ∂ ∂

+ + =
∂ ∂ ∂

                              (16)

Как и в случае планарных полей, для осесимметричного потенциала можно поставить 
задачу Коши о восстановлении функции V(z, r) по ее значению на оси симметрии:

( ) ( )
0

, .
r

V z r F z
=
=                                              (17)

Утверждение 4. Решение задачи Коши (17) для осесимметричной гармонической функции 
в окрестности оси симметрии существует и является единственным, если функция F (z) 
дифференцируема бесконечное число раз и разлагается в сходящийся степенной ряд в каждой 
точке.
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Доказ а т ельс тво . Поиск решения в виде ряда Шерцера

( ) ( ) ( ) ( ) ( ) ( )
2

2
0 2 2

1, 1 ...
2 2 !

k
k

k

rV z r V z r V z V z
k

= − + + − +

                  (18)

позволяет после подстановки этого ряда в уравнение (16) и учета начального значения 
(17) получить следующие рекуррентные соотношения:

( ) ( ) ( ) ( ) ( )0 2 2 2

2 1, .
2 1k k

kV z F z V z V z
k+

+ ′′= =
+

                           (19)

Если использовать рекуррентные соотношения (19), то можно однозначным образом 
восстановить неизвестные коэффициенты ряда (18). Абсолютная сходимость ряда (18) с 
этими коэффициентами следует из сходимости степенного ряда для функции F(z), кото-
рый может служить в качестве мажоранты. 

Утверждение 4 доказано.
Как и в планарном случае, осесимметричный ряд Шерцера (18) позволяет изучить 

поведение осесимметричного электрического потенциала лишь в некоторой окрестности 
оси симметрии r ≈ 0. Для восстановления осесимметричного электрического потенциала 
на всей плоскости (z, r) можно воспользоваться следующим эффективным методом. С 
помощью рассмотренных выше инструментов надо аналитически продолжить веществен-
ную функцию F(x) на комплексную плоскость; это позволяет найти двумерную гармони-
ческую функцию u(x, y) с требуемым поведением на оси y = 0:

( ) ( ) ( ) ( ) ( ) ( ), , , ,0 .F x f x iy u x y iv x y u x F x→ + = + =
 

Затем можно применить формулу Уиттекера – Ватсона2 вида

( ) ( )
0

1, , cos ,V z r u z r d
π

= ϕ ϕ
π ∫

                                     (20)

которая позволяет вычислить осесимметричный потенциал V(z, r), когда под знаком ин-
теграла находится двумерная гармоническая функция u(x, y). 

В случае, когда функция u(x, y) будет четной по y, т. е. удовлетворяет условию  
u(x, –y) = u(x, y), формула (20) приводится к виду

( ) ( )
2

0

2, , cos .V z r u z r d
π

= ϕ ϕ
π ∫

                                    (21)

Утверждение 5. Формула (20) обеспечивает взаимно-однозначную связь между решени-
ями V(z, r) задачи Коши (17) для осесимметричных гармонических функций и решениями 
u(x,y) задачи Коши (8) для планарных гармонических функций, четных по второму аргументу,  
которые характеризуются одинаковым поведением на оси симметрии.

Доказ а т ельс тво . Функция V(z, r), заданная с помощью формулы (20), удовлетво-
ряет осесимметричному уравнению (16), когда функция u(x, y) удовлетворяет планарному 
уравнению Лапласа (1). Это можно проверить прямой подстановкой после замены пере-
менной интегрирования φ на переменную y, в соответствии с формулами

2 2cos , ,y r dy r y d= ϕ = − − ϕ  x = z.

2 Эта формула приводится в монографии [43]. Автор формулы нам неизвестен, но предположительно, формула по-
лучена одним из авторов монографии как частный случай общей формулы для трехмерной гармонической функции, 
которая выводится и исследуется авторами монографии в главе 18. Название «формула Уиттекера», введенное в обо-
рот Ю. К. Голиковым, постепенно становится общеупотребительным.
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Получим следующее равенство:

( ) ( ) ( )

( )

2 2 2 2
2

2 2 2 2
0

2 2 2 2
2 2

2 2 2 2 2 22 2 2 2

2 2
2

, , ,1 1 coscos

1 1

1 0.

r r

r r

y r

y r

V z r V z r V z r u u u d
z r r r x y r y

u u y y u dy u u dyr y y
x y r r y r y yr y r y

u r y
r y

π

− −

=+

=−

∂ ∂ ∂  ∂ ∂ ϕ ∂
+ + = + ϕ+ ϕ = ∂ ∂ ∂ π ∂ ∂ ∂ 

   ∂ ∂ ∂ ∂ ∂
= + + = − − + =   π ∂ ∂ ∂ π ∂ ∂− −   

 ∂
= − − = π ∂ 

∫

∫ ∫  

При r = 0 выполняется условие

( ) ( ) ( ) ( )
0

1,0 ,0 ,0 ,V z u z d u z F z
π

= ϕ = =
π ∫

 

поэтому поведение функций V(z, r) и u(z, r) обязано совпадать на оси симметрии r = 0.
Как было показано в Утверждении 3, задача Коши (8) о восстановлении планарной 

гармонической функции u(z, r), которая будет четной по переменной r, по ее значению 
u(z, 0) на оси симметрии r = 0, всегда разрешима; причем это решение не только суще-
ствует, но и единственное, по крайней мере, в некоторой окрестности оси симметрии  
r = 0. Подставив в формулу (20) полученное решение u(z, r), получим на выходе осесим-
метричную гармоническую функцию V(z, r) с требуемым поведением на оси симметрии 
(вообще говоря, одну из многих). Однако из анализа ряда Шерцера (18) следует, что такая 
осесимметричная гармоническая функция – единственная и, следовательно, других реше-
ний поставленной задачи, кроме выраженного формулой (20), не существует. 

Утверждение 5 доказано.
Если представить функцию u(z, r) как сумму четной по r планарной гармонической 

функции
u+(z, r) = [u(z, r) + u(z, –r)]/2

и нечетной по r планарной гармонической функции
u–(z, r) = [u(z, r) – u(z, –r)]/2,

то легко заметить, что для нечетной функции интеграл (20) обращается в нуль, а заме-
на гармонической функции u(z, r) симметризованной гармонической функцией u+(z, r) 
оставляет значение этого интеграла без изменения. Поэтому для практического примене-
ния формулы (20) важны только планарные гармонические функции, четные по r. Отме-
тим, что хотя планарных гармонических прототипов u(z, r) для формулы (20) у имеющей-
ся функции V(z, r) может быть много, но симметризованный планарный гармонический 
прототип является единственным. 

В заключение подраздела, посвященного осесимметричным полям, важно сделать вы-
вод, что при анализе и синтезе систем оптики заряженных частиц интегральная формула 
(20) позволяет перебирать без пропусков все возможные осесимметричные потенциалы, 
не имеющие особенностей на оси симметрии.

Мультипольные поля. В общем случае потенциалы мультипольных электростатических 
полей имеют вид

( ) ( ) ( )( ) ( )2 2 2 2, , cos arg , ,
m

U x y z x y m x iy W z x y= + + + γ +               (22)

где m – положительное целое число, определяющее порядок мультипольности3;  
arg(x, y) – (здесь и далее) функция, возвращающая аргумент комплексного числа x + iy, 
лежащий в диапазоне от –π до +π.

3 Строго говоря, для последующих математических выкладок необязательно, чтобы индекс m был положительным 
либо целым числом.
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Когда функция U(x, y, z) удовлетворяет трехмерному уравнению Лапласа, функция 
W(z, r) удовлетворяет мультипольному уравнению Лапласа:

( ) ( ) ( ) ( )2 2

2 2

, , 2 1 ,
0.

W z r W z r m W z r
z r r r

∂ ∂ + ∂
+ + =

∂ ∂ ∂
                       (23)

Мультипольную симметрию задают мультипольные множители

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

2 2

, cos arg

, , ,

, cos arg ,

, sin arg ,

m

m

p m q m

m

m

m

m

R x y x y m x iy

c P x y c Q x y

P x y x y m x iy

Q x y x y m x iy

= + + + γ =  

= +

= + +  

= + +  

                      (24)

для которых выполняется планарное уравнение Лапласа (1). 
При положительных целочисленных значениях индекса m множители (24) являются 

однородными гармоническими полиномами степени m, как это следует из рекуррентных 
соотношений

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

0 0

1

1

, 1, , 0,

, , , ,

, , , .
m m m

m m m

P x y Q x y

P x y xP x y yQ x y

Q x y yP x y xQ x y
+

+

= =

= −

= +
 

Рассмотрим задачу Коши о восстановлении функции W(z, r) по ее значению на оси 
симметрии:

( ) ( )
0

, .
r

W z r F z
=
=                                            (25)

Утверждение 6. Решение задачи Коши (25) для множителя мультипольной гармонической 
функции (22) в окрестности оси симметрии существует и является единственным, если 
функция F(z) дифференцируема бесконечное число раз и разлагается в сходящийся степенной 
ряд в каждой точке.

Доказ а т ельс тво . Поиск решения в виде ряда Шерцера

( ) ( ) ( ) ( ) ( ) ( )
2

2
0 2 2

1, 1 ... .
2 2 !

k
k

k

rW z r W z r W z W z
k

= − + + − +                (26)

позволяет после подстановки ряда (26) в уравнение (23), с учетом начального значения 
(25), получить следующие рекуррентные соотношения: 

( ) ( ) ( ) ( ) ( )0 2 2 2

2 1, ,... .
2 1k k

kW z F z W z W z
k m+

+ ′′= =
+ +

                      (27)

Из рекуррентных соотношений (27) можно однозначным образом восстановить неиз-
вестные коэффициенты ряда (26). Его абсолютная сходимость с коэффициентами (27) 
следует из сходимости степенного ряда для F(z), если этот ряд использовать в качестве 
мажоранты для ряда (26).

Утверждение 6 доказано.
Ряд Шерцера (26) не позволяет исследовать поведение мультипольного электрического 

потенциала (22) вдали от оси симметрии r = 0. Как и в случае осесимметричного электри-
ческого потенциала, для определения значений множителя W(z, r) вдали от оси симме-
трии вещественная функция F(x) аналитически продолжается на комплексную плоскость. 
Это позволяет определить двумерную гармоническую функцию u(x, y) с заданным пове-
дением на оси симметрии:

( ) ( ) ( ) ( ) ( ) ( ), , , ,0 ,F x f x iy u x y iv x y u x F x→ + = + =  

после чего становится возможным применение формулы Дугалла (28).
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Формула Дугалла4, частным случаем которой при m = 0 является формула Уиттекера – 
Ватсона (20), позволяет конструировать мультипольные потенциалы, используя произ-
вольные двумерные гармонические функции u(x, y) в качестве исходного материала:

( ) ( ) ( ) ( )2

0

!, , cos sin .
1 2

mmW z r u z r d
m

ππ
= ϕ ϕ ϕ
Γ + ∫                          (28)

В случае, когда гармоническая функция u(x, y) является четной по переменной y и 
удовлетворяет условию u(x, –y) = u(x, y), формула (28) приводится к виду

( ) ( ) ( ) ( )
2

2

0

2 !, , cos sin .
1 2

mmW z r u z r d
m

ππ
= ϕ ϕ ϕ
Γ + ∫                         (29)

Нормирующий множитель перед знаком интеграла в формулах (28) или (29) не явля-
ется необходимым и не влияет на форму искомого мультипольного потенциала, однако 
он нужен для нормировки значения функции вдоль оси мультипольной симметрии r = 0, 
чтобы обеспечивать его совпадение с функцией u(z, 0). 

Утверждение 7. Формула (28) обеспечивает взаимно-однозначную связь между решениями 
задачи Коши (25) для множителей мультипольных гармонических функций (22) и решениями 
задачи Коши (8) для планарных четных по второму аргументу гармонических функций с оди-
наковым поведением на оси симметрии.

Доказ а т ельс тво . Функция W(z, r), заданная с помощью формулы (28), удовлетво-
ряет мультипольному уравнению (23), когда функция u(x, y) удовлетворяет планарному 
уравнению Лапласа (1). Это проверяется прямой подстановкой после замены переменной 
интегрирования φ на переменную y, в соответствии с формулами 

2 2cos , ,y r dy r y d= ϕ = − − ϕ  x = z:

( ) ( ) ( ) ( )

( )
( ) ( )

( )
( )

( ) ( ) ( )

2 2

2 2

2 2
2 2

2 2
0

2 2 2 2 2

2 2 2 2 2 2 2

2
2 2

2 2 2

, , 2 1 ,

2 1 cos! cos sin
1 2

2 1!
1 2

1 ! 2 1
1 2

m

mr

r

m

W z r W z r m W z r
z r r r

mm u u u d
m x y r y

m ym u u y u r y dy
m x y r r y r r y

m u ur y m y
r m y y

π

−

+

∂ ∂ + ∂
+ + =

∂ ∂ ∂
+ ϕ π ∂ ∂ ∂

= + ϕ+ ϕ ϕ = Γ + ∂ ∂ ∂ 

+ π ∂ ∂ ∂  − 
= + + =  Γ + ∂ ∂ ∂ −  

π ∂ ∂
= − − + +

Γ + ∂ ∂

∫

∫

( )

( ) ( )

2 1
2 2

2 1
2 2

2 2

1 ! 0.
1 2

r m

r

y r
m

m
y r

r y dy

m u r y
r m y

−

−

=+
+

+

=−


− = 

 

 π ∂
= − − = Γ + ∂ 

∫

 

При r = 0 выполняется условие

( ) ( ) ( ) ( ) ( ) ( )2

0

!,0 ,0 sin ,0 ,
1 2

mmW z u z d u z F z
m

ππ
= ϕ ϕ = =
Γ + ∫  

поэтому поведение функций W(z, r) и u(z, r) обязано совпадать на оси симметрии r = 0.
Как было показано в Утверждении 3, задача Коши (8) о восстановлении четной по 

r планарной гармонической функции u(z, r) по ее значению на оси симметрии всегда 
разрешима, причем ее решение не только существует, но и является единственным. Под-
ставив в формулу (28) этот прототип u(z, r) с заданным поведением на оси симметрии, 

4 Формула приводится в монографии [43] (см. гл. 18, пример 2 в конце главы) со ссылкой на шотландского математика 
Джона Дугалла (John Dougall) в качестве автора этого результата. Дж. Дугалл (1867 – 1960) – выдающийся шотланд-
ский математик, член Эдинбургского математического общества и Королевского общества Эдинбурга. Оригинальная 
публикация, в которой содержится вывод этой формулы, нам неизвестна.
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получим на выходе искомый множитель W(z, r) мультипольной гармонической функции 
(22) с требуемым поведением на оси симметрии (вообще говоря, этот множитель – один 
из многих возможных). Из анализа ряда Шерцера (26), проведенного ранее для решений 
уравнения (23), следует, что такой множитель единственный и, следовательно, других 
решений для задачи Коши (25) не существует, за исключением функции, заданной фор-
мулой (28). 

Утверждение 7 доказано. 
При представлении функции u(z, r) в виде суммы, состоящей из четной по r планар-

ной гармонической функции 

u+(z, r) = [u(z, r) + u(z, –r)]/2

и нечетной по r планарной гармонической функции 
u–(z, r) = [u(z, r) – u(z, –r)]/2,

легко заметить, что интеграл (28) для нечетной функции обращается в нуль, а замена 
гармонической функции u(z, r) на симметризованную гармоническую функцию u+(z, r) 
оставляет без изменения значение этого интеграла. Другими словами, для использования 
формулы (28) имеют значение только четные планарные гармонические функции, причем 
при наличии множества подходящих планарных гармонических прототипов u(z, r), для 
любой заданной функции W(z, r) существует единственный симметризованный планар-
ный гармонический прототип. 

Таким образом, при анализе и синтезе систем оптики заряженных частиц интегральная 
формула (28) позволяет перебирать все возможные мультипольные потенциалы, не име-
ющие особенностей на оси симметрии, не пропустив ни одного.

Радиочастотные воронки общего вида с равномерно расположенными электродами

В данном разделе рассматриваются аналитические формулы для планарных, осесим-
метричных и мультипольных электростатических полей, которые обеспечивают на оси 
устройства OZ потенциалы вида

( ) ( ) ( ) ( )0
0,
0

, , cos ,xC C
y

U x y z U z f z z=
=
= = λ

                             (30)

( ) ( ) ( ) ( )0
0,
0

, , sin .xS S
y

U x y z U z f z z=
=
= = λ                              (31)

где λ – параметр, определяющий геометрический масштаб транспортирующего устрой-
ства. 

При этом функция f(z) медленно изменяется вдоль оси устройства, по сравнению с 
быстро осциллирующими функциями cos(λz) и sin(λz). 

Исследование планарных, осесимметричных или мультипольных рядов Шерцера при-
менительно к условиям Коши (30), (31) подсказывает, что решение (которое существует и 
является единственным, по крайней мере, в окрестности оси r = 0) следует искать в виде

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, , cos , sin ,

, , sin , cos ,

,0 , ,0 0.

C

S

U z r F z r z G z r z

U z r F z r z G z r z

F z f z G z

= λ + λ

= λ − λ

= =

                         (32)

Важно отметить, что с целью унификации обозначений для планарного уравнения 
Лапласа (1) здесь сделана замена переменных x → z, y → r.

Решение вида (32) позволяет, в частности, рассматривать для функций UC(z, r) и  
US(z, r) модифицированные ряды Шерцера:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0

2
2 2

2

, cos sin

1 cos sin
2

1 cos sin ... ;
2 !

C

k
k

k k

U z r z F z z G z

r z F z z G z

r z F z z G z
k

= λ + λ −  

− λ + λ + +  

+ − λ + λ +  

                     (33)
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 0

2
2 2

2

, sin cos

1 sin cos
2

1 sin cos ... .
2 !

S

k
k

k k

U z r z F z z G z

r z F z z G z

r z F z z G z
k

= λ − λ −  

− λ − λ + +  

+ − λ − λ +  

                       (34)

Подстановка выражений (33) и (34) в соответствующие уравнения Лапласа показывает, 
что коэффициенты рядов Шерцера (33) и (34) одинаковы и удовлетворяют одним и тем 
же рекуррентным соотношениям:

а) для планарного уравнения Лапласа (1) –

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

0 0

2
1

2
1

, 0,

1 2 ,
2 1 2 1

1 2 ;
2 1 2 1

k k k k

k k k k

F z f z G z

F z F z G z F z
k k

G z G z F z G z
k k

+

+


= =


 ′′ ′=  + λ −λ   + +


′′ ′=  − λ −λ   + +

                 (35)

б) для осесимметричного уравнения Лапласа (16) –

( ) ( ) ( )

( )
( )

( ) ( ) ( )

( )
( )

( ) ( ) ( )

0 0

2
1 2

2
1 2

, 0,

1 2 ,
4 1

1 2 ;
4 1

k k k k

k k k k

F z f z G z

F z F z G z F z
k

G z G z F z G z
k

+

+


 = =

 ′′ ′=  + λ −λ   +

 ′′ ′=  − λ −λ   +

                     (36)

в) для мультипольного уравнения Лапласа (23) –

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

0 0

2
1

2
1

, 0,

1 2 ,
4 1 1

1 2 .
4 1 1

k k k k

k k k k

F z f z G z

F z F z G z F z
k k m

G z G z F z G z
k k m

+

+


= =


 ′′ ′=  + λ −λ   + + +


′′ ′=  − λ −λ   + + +

              (37)

Подстановка выражений (32) непосредственно в соответствующие уравнения Лапласа 
и раздельное обращение в нуль каждого из сгруппированных множителей, стоящих при 
синусах и косинусах, приводит к задаче Коши на оси r = 0 для системы двух линейных 
эллиптических уравнений в частных производных, которые заданы относительно двух 
неизвестных функций (F(z, r) и G(z, r)):

а) для планарного уравнения Лапласа (1) –

( ) ( ) ( ) ( ) ( )

2 2
2

2 2

2 2
2

2 2

2 0,

2 0,

,0 ,0
,0 , 0, ,0 0, 0;

F F GF
z r z
G G FG
z r z

F z G z
F z f z G z

r r

∂ ∂ ∂
+ −λ + λ = ∂ ∂ ∂

∂ ∂ ∂ + −λ − λ = ∂ ∂ ∂
 ∂ ∂

= = = = ∂ ∂

                (38)
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б) для осесимметричного уравнения Лапласа (16) –

( ) ( ) ( ) ( ) ( )

2 2
2

2 2

2 2
2

2 2

1 2 0,

1 2 0,

,0 ,0
,0 , 0, ,0 0, 0;

F F F GF
z r r r z
G G G FG
z r r r z

F z G z
F z f z G z

r r

∂ ∂ ∂ ∂
+ + −λ + λ = ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ + + −λ − λ = ∂ ∂ ∂ ∂
 ∂ ∂

= = = = ∂ ∂

               (39)

в) для мультипольного уравнения Лапласа (23) –

( )

( )

( ) ( ) ( ) ( ) ( )

2 2
2

2 2

2 2
2

2 2

2 1
2 0,

2 1
2 0,

,0 ,0
,0 , 0, ,0 0, 0.

mF F F GF
z r r r z

mG G G FG
z r r r z

F z G z
F z f z G z

r r

+∂ ∂ ∂ ∂
+ + −λ + λ = ∂ ∂ ∂ ∂

+∂ ∂ ∂ ∂
+ + −λ − λ = ∂ ∂ ∂ ∂

 ∂ ∂
= = = = ∂ ∂

               (40)

Пусть вещественная функция f(z) аналитически продолжена на комплексную пло-
скость, в результате чего получается симметризованная функция комплексной перемен-
ной: ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

, , ,

, ,

,0 , ,0 0,

, , , , , .

f z f x iy u x y iv x y
u v u v
x y y x

u z f z v z

u z r u z r v z r v z r

→ + = +

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂

= =

− = − = −

                            (41)

Для планарного уравнения Лапласа с помощью прямой подстановки можно убедиться, 
что решение вида

( ) ( ) ( )
( ) ( ) ( )

, , ch ,

, , sh

F z r u z r r

G z r v z r r

= λ


= λ
                                       (42)

удовлетворяет системе уравнений (38), в том числе начальным условиям.
Если применить формулу Уиттекера – Ватсона (20) с учетом четности по r функций 

u(z, r) и v(z, r), то получим, что для осесимметричного уравнения Лапласа (16), записан-
ного в виде (32), решения задачи Коши (39) следуют выражениям:

( ) ( ) ( )

( ) ( ) ( )

2

0

2

0

2, , cos ch cos ,

2, , cos sh cos .

F z r u z r r d

G z r v z r r d

π

π


= ϕ ϕ ϕ π


 = ϕ ϕ ϕ π

∫

∫
                         (43)

Точно так же, после применения формулы Дугалла (28) с учетом четности по r функ-
ций u(z, r) и v(z, r) получим, что решения (32) для задачи Коши (40) (выведена для муль-
типольного уравнения Лапласа (23)) после подстановки (32), можно получить с помощью 
формул вида

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
2

0

2
2

0

2 !, , cos ch cos sin ,
1 2

2 !, , cos sh cos sin .
1 2

m

m

mF z r u z r r d
m

mG z r v z r r d
m

π

π

 π
= ϕ ϕ ϕ ϕ Γ +


π = ϕ ϕ ϕ ϕ Γ +

∫

∫
             (44)
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Размещение основных и вспомогательных диафрагм для ионной воронки с равномерно 
расположенными электродами. Пусть имеется планарный, осесимметричный или мульти-
польный электрический потенциал UC(z, r), заданный с помощью первой формулы (32) 
при функциях F(z, r) и G(z, r), вычисленных надлежащим образом, и такой потенциал 
ведет себя вдоль оси r = 0 как 

UC (z, 0) = f(z) cos(λz).

Тонкие диафрагмы (планарные, осесимметричные или мультипольные) должны рас-
полагаться в точках локальных минимумов и максимумов осевого распределения, т.е. в 
точках zk = πk/λ. 

Для планарных и осесимметричных систем размеры диафрагм rk определяются из ус-
ловий

UC (zk, rk) = ±UR

или, что то же самое, из условий

F(zk, rk) = UR

(мультипольно-сегментированные диафрагмы рассмотрены далее).
Дополнительные диафрагмы с нулевым или почти нулевым потенциалом могут уста-

навливаться в точках 
zk+1/2 = π(k + 1/2)/λ,

в которых осциллирующая функция cos(λz) обращается в нуль. Размеры rk+1/2 дополни-
тельных диафрагм удобно определять из условий

G(zk+1/2, rk+1/2) = UR,
что обеспечивает гладкий профиль канала транспортировки и способствует комбинирова-
нию потенциалов UC(z, r) и US(z, r) в рамках единой системы электродов.

Рассмотрим планарный, осесимметричный или мультипольный электрический потен-
циал US(z, r), заданный с помощью второй формулы (32) и обеспечивающий осевое рас-
пределение

US(z, 0) = f(z) sin(λz)

вдоль оси r = 0. 
Теперь тонкие диафрагмы, задающие рассматриваемое электрическое поле, должны 

располагаться в точках
zk+1/2 = π(k + 1/2)/λ,

т.е. в точках локальных минимумов и максимумов осевого распределения.
Для планарных и осесимметричных систем размеры диафрагм rk+1/2 определяются из 

условий 
US(zk+1/2, rk+1/2) = ±UR, т.е. G(zk+1/2, rk+1/2) = UR. 

Дополнительные диафрагмы с нулевым или почти нулевым потенциалом могут уста-
навливаться в точках zk = πk/λ, в которых осциллирующая функция sin(λz) обращается в 
нуль. Размеры rk дополнительных диафрагм удобно определять из условий F(zk, rk) = UR, 
что обеспечивает гладкий профиль канала транспортировки и способствует комбинирова-
нию в рамках единой системы электродов потенциалов UC(z, r) и US(z, r). 

Необходимо отметить, что при использовании комбинированного набора диафрагм, 
размещенных в точках (zk, rk) и (zk+1/2, rk+1/2), можно создавать как электрическое поле 
с электрическим потенциалом UC(z, r) (либо US(z, r)), так и произвольную линейную 
комбинацию этих потенциалов в рамках единой системы электродов. Для этого следует 
изменять напряжения, приложенные к диафрагмам.

При вычислении размеров диафрагм для мультипольных систем следует учитывать, 
что трехмерный мультипольный электрический потенциал связан с мультипольным 
множителем W(z, r) = UC(z, r) соотношением (22). Кроме того, вместо криволинейных  
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мультипольных диафрагм с формой, определяемой как сечения в соответствующих точ-
ках оси эквипотенциальных поверхностей, для аналитических электрических потенциа-
лов UC(z, r) либо US(z, r) можно использовать мультипольно-сегментированные круговые 
диафрагмы. 

Условия для определения радиуса диафрагм принимают вид

( ),m
k k k Rr F z r U= γ  и ( )1 2 1 2 1 2, ,m

k k k Rr F z r U+ + + = γ  

где γ – нормированная первая гармоника при разложении краевого условия для мульти-
польно-сегментированной круговой диафрагмы в ряд Фурье. 

Вклад старших гармоник разложения краевого условия в ряд Фурье в окрестности оси 
симметрии, вдали от краев электродов, незначителен, так что ими можно пренебречь.

Радиочастотные воронки общего вида с неравномерно 
расположенными электродами

В данном разделе рассматриваются аналитические формулы для планарных, осесимме-
тричных и мультипольных электростатических полей, которые обеспечивают на оси OZ 
разрабатываемого устройства потенциалы вида

( ) ( ) ( ) ( )0
0,
0

, , cos ,xC C
y

U x y z U z f z h z=
=
= =                              (45)

( ) ( ) ( ) ( )0
0,
0

, , sin ,xS S
y

U x y z U z f z h z=
=
= =                              (46)

где h(z) – монотонная функция, определяющая точки расположения электродов, а функ-
ция f(z) меняется вдоль оси устройства медленно, по сравнению с быстро осциллирующи-
ми функциями cos[h(z)] и sin[h(z)]. 

Исследование планарных, осесимметричных или мультипольных рядов Шерцера при-
менительно к условиям Коши (45), (46) подсказывает, что решение (которое существует 
и является единственным) следует искать в виде

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, , cos , sin ,

, , sin , cos ,

,0 , ,0 0.

C

S

U z r F z r h z G z r h z

U z r F z r h z G z r h z

F z f z G z

= +      
= −      

= =
                    (47)

Действительно, рассмотрим модифицированные ряды Шерцера, адаптированные к 
формулам (47):

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
2

0,

, 1 cos sin ,
2 !

k
k

C k k
k

rU z r h z F z h z G z
k= ∞

= − +      ∑            (48)

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
2

0,

, 1 sin cos .
2 !

k
k

S k k
k

rU z r h z F z h z G z
k= ∞

= − −      ∑            (49)

Подстановка выражений (48) и (49) в соответствующие уравнения Лапласа показывает, 
что коэффициенты рядов Шерцера (48) и (49) одинаковы и удовлетворяют одним и тем 
же рекуррентным соотношениям. Для мультипольного уравнения Лапласа (23) эти рекур-
рентные соотношения имеют вид

( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0

2

1

2

1

, 0,

1 2 ,
4 1 1

1 2 ,
4 1 1

k k k k k

k k k k k

F z f z G z

F z F z h z F z h z G z h z G z
k k m

G z G z h z G z h z F z h z F z
k k m

+

+


= =


  ′′ ′ ′ ′ ′′= − + +  + + +


 ′′ ′ ′ ′ ′′= − − −  + + +

   (50)
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Для планарного уравнения Лапласа (1) искомые рекуррентные соотношения получают-
ся из формул (50) как частный случай m = –1/2. Для осесимметричного уравнения Лапласа 
(17) искомые рекуррентные соотношения получаются из формул (50) как частный случай 
m = 0.

Подстановка выражений (47) непосредственно в соответствующие уравнения Лапласа 
и раздельное обращение в нуль каждого из сгруппированных множителей при синусах и 
косинусах приводят к задаче Коши на оси r = 0 для системы двух линейных эллиптиче-
ских уравнений в частных производных, которые заданы относительно двух неизвестных 
функций: F(z, r) и G(z, r). Для мультипольного уравнения Лапласа (23) эта система урав-
нений имеет вид:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 2
2

2 2

2 2
2

2 2

2 1
2 0,

2 1
2 0,

,0
,0 , 0,

,0
,0 0, 0.

mF F F Gh z F h z h z G
z r r r z

mG G G Fh z G h z h z F
z r r r z

F z
F z f z

r
G z

G z
r

+∂ ∂ ∂ ∂′ ′ ′′+ + − + + = ∂ ∂ ∂ ∂
+∂ ∂ ∂ ∂′ ′ ′′+ + − − − = ∂ ∂ ∂ ∂


∂ = = ∂


∂ = = ∂

             (51)

Для планарного уравнения Лапласа (1) система уравнений получается из формул (51) 
как частный случай m = –1/2. Для осесимметричного уравнения Лапласа (17) система 
уравнений получается из формул (51) как частный случай m = 0.

Пусть вещественные функции f(z) и h(z) аналитически продолжены на комплексную 
плоскость, в результате чего получаются симметризованные функции комплексной пере-
менной:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

, , ,

, ,

,0 , ,0 0, , , , , , ,

f z f x iy u x y iv x y
u v u v
x y y x

u z f z v z u z r u z r v z r v z r

→ + = +

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂

= = − = − = −

          (52)

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

, , ,

, ,

,0 , ,0 0, , , , , , .

h z h x iy p x y iq x y
p q p q
x y y x

p z h z q z p z r p z r q z r q z r

→ + = +

∂ ∂ ∂ ∂
= = −

∂ ∂ ∂ ∂

= = − = − = −

         (53)

C помощью прямой подстановки можно убедиться, что с учетом соотношений (52) и 
(53) для пар функций вида

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

, , cos , ch , , sin , sh , ,

, , cos , ch , , sin , sh , ;
C

C

U x y u x y p x y q x y v x y p x y q x y

V z r v x y p x y q x y u x y p x y q x y

 = +               


= −               
   (54)

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

, , sin , ch , , cos , sh , ,

, , sin , ch , , cos , sh ,
S

S

U x y u x y p x y q x y v x y p x y q x y

V z r v x y p x y q x y u x y p x y q x y

 = −               


= +               
   (55)

выполняются соотношения Коши – Римана. 
Это означает, что функции 

UC(x, y) + i VC(x, y) и US(x, y) + i VS(x, y)                               (55а)
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являются симметризованными аналитическими функциями комплексной переменной. 
Здесь стоит отметить, что при условии симметризованности функций

u(x, y) + iv(x, y) и p(x, y) + iq(x, y),

в симметризованном характере функций (54) и (55) можно убедиться непосредственной 
проверкой.

Вследствие симметризованности функциий (55а), функции UC(z, r) и US(z, r) являются 
симметризованными решениями двумерного уравнения Лапласа (1), которые обеспечива-
ют требуемое поведение потенциалов (45), (46) на оси симметрии r = 0.

Из равенств (47), после подстановки в них функций (54), (55), получаем решение за-
дачи Коши (51) при m = –1/2, которое соответствует планарному уравнению Лапласа (1):

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , cos , ch ,

, sin , sh , ,

, , sin , ch ,

, cos , sh , .

F z r u z r h z p z r q z r

v z r h z p z r q z r

G z r u z r h z p z r q z r

v z r h z p z r q z r

 = − −      
− −        


= − +       

+ −       

                     (56)

Путем использования формулы Уиттекера – Ватсона (20) получаем решение задачи 
Коши (51) при m = 0, которое соответствует осесимметричному уравнению Лапласа (17):

( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) }
( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) }
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2

0

2, , cos cos , cos ch , cos
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v z r h z p z r q z r d
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π

π


= ϕ − ϕ ϕ −       π

− ϕ − ϕ ϕ ϕ      

 = ϕ − ϕ ϕ +      π

+ ϕ − ϕ ϕ ϕ      

∫

∫



        (57)

После применения формулы Дугалла (28) получаем точно так же решение задачи Коши 
(51) с произвольным индексом m > 0, которое соответствует мультипольному уравнению 
Лапласа (23):

( ) ( ) ( ) ( ) ( ) ( ){

( ) ( ) ( ) ( ) } ( )
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m
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








 ϕ ϕ ϕ  

  (58)

Размещение основных и вспомогательных диафрагм для ионной воронки с неравномер-
но расположенными электродами. По аналогии со случаем равномерно расположенных 
электродов для планарного, осесимметричного или мультипольного электрического по-
тенциала UC(z, r), заданного с помощью первой формулы (47), его распределение вдоль 
оси r = 0 определяется формулой

UC (z, 0) = f(z) cos[h(z)],
где функция h(z) монотонна и имеет достаточно большой диапазон значений. 

Тонкие диафрагмы должны располагаться в точках локальных минимумов и макси-
мумов осевого распределения, т.е. в точках zk, которые представляют собой решения  
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алгебраических уравнений h(zk) = πk/λ. В силу высказанных предположений о свойствах 
функции h(z), такие решения существуют и являются единственными при любых, инте-
ресующих нас значениях индекса k. 

Размеры планарных и осесимметричных диафрагм rk определяются из условий

UC (zk, rk) = ±UR, т. е. F(zk, rk) = UR;

дополнительные диафрагмы с нулевым (или почти нулевым) потенциалом можно уста-
навливать в точках zk+1/2, которые есть решения алгебраических уравнений

h(zk+1/2) = π(k + 1/2)/λ;

в них осциллирующая функция cos[h(z)] обращается в нуль.
Для планарного, осесимметричного или мультипольного электрического потенциала 

US(z, r), заданного с помощью второй формулы (47), вдоль оси r = 0 обеспечивается рас-
пределение 

US(z, 0) = f(z) sin[h(z)].

Тонкие диафрагмы, задающие рассматриваемое электрическое поле, должны распола-
гаться в точках zk+1/2, для которых выполняются условия

h(zk+1/2) = π(k + 1/2)/λ,

т.е. в точках локальных минимумов и максимумов осевого распределения.
Размеры диафрагм планарных и осесимметричных систем rk+1/2 определяются из усло-

вий US(zk+1/2, rk+1/2) = ±UR, т. е. G(zk+1/2, rk+1/2) = UR.
Дополнительные диафрагмы с нулевым (или почти нулевым) потенциалом можно 

устанавливать в точках zk, определяемых уравнениями h(zk) = πk/λ, в которых функция 
sin[h(z)] обращается в нуль. Размеры rk дополнительных диафрагм находятся из условий  
F(zk, rk) = UR, что обеспечивает гладкий профиль канала транспортировки и способствует 
комбинированию потенциалов UC(z, r) и US(z, r) в рамках единой системы электродов.

Использование комбинированного набора диафрагм, размещенных в точках (zk, rk) и 
(zk+1/2, rk+1/2), позволяет создавать как электрическое поле с электрическим потенциалом 
UC(z, r) либо US(z, r), так и произвольную линейную комбинацию этих потенциалов в 
рамках единой системы электродов. Для этого необходимо изменять напряжения, прило-
женные к диафрагмам.

Размеры диафрагм для мультипольных систем вычисляются точно так же, как и в слу-
чае равномерно расположенных электродов.

Заключение

В работе получены аналитические выражения в квадратурах для электрических потен-
циалов, которые целесообразно использовать для исследования движения ионов в ра-
диочастотных ловушках и радиочастотных воронках с прямой осью, образованных пла-
нарными, круговыми либо мультипольными диафрагмами с прямолинейным каналом 
транспортировки, характеризуемым сложным радиальным профилем. Профиль канала 
транспортировки однозначным образом определяется по осевому распределению элек-
трического потенциала, используемого в качестве исходных данных для задачи Коши при 
вычислении электрических потенциалов во всем рассматриваемом пространстве. Взве-
шенные суммы аналитических выражений, которые соответствуют круговым и мульти-
польно-сегментированным диафрагмам, позволяют синтезировать электрические потен-
циалы для радиочастотных воронок с диафрагмами некруговой формы. 

С помощью получаемых на выходе аналитических выражений можно быстро иссле-
довать и оптимизировать поведение ионов в соответствующих радиочастотных ионных 
воронках, используя псевдопотенциальную модель движения ионов в высокочастотных 
электрических полях [44 – 46, 6, 12].

Полученные аналитические выражения для трехмерных гармонических функций с ос-
циллирующим поведением на оси могут быть также полезными при решении ряда задач 
математической физики.
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