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Аннотация. Исследованы особенности применения предложенных нами 
параболических волновых пакетов (PWP) к решению нестационарного уравнения 
Шрёдингера (TDSE) для атома водорода, находящегося под действием длительного 
лазерного импульса. В рамках нестационарного вариационного принципа (TDVP) 
уравнение TDSE преобразуется в систему дифференциальных уравнений первого порядка 
относительно параметров PWP. Эффективность предлагаемой схемы исследована на 
точно решаемом примере импульсов произвольной (в том числе комплексной) амплитуды 
и длительности. Рассмотрен также случай воздействия ультрафиолетового излучения, 
для которого выполнено сопоставление наших расчетных данных с результатами 
других авторов. Перечислены возможные причины наблюдаемого расхождения между 
результатами применения нашего подхода и результатами использования стандартных 
методов.
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Abstract. The article studies the features of application of the parabolic wave packets (PWP) 
(we proposed) to the solution of the Time-Dependent Schrödinger Equation (TDSE) for a 
hydrogen atom exposed to a long laser pulse. Within the framework of the Time-Dependent 
Variational Principle, the TDSE is transformed into a system of first-order differential equa-
tions with respect to the PWP parameters. The efficiency of the proposed scheme has been 
studied using an exactly solvable example of pulses of arbitrary (including complex) amplitude 
and duration. The case of ultraviolet radiation was also considered, for which our calculations 
were compared with the results obtained by other authors. Possible reasons for the observed 
discrepancy between the results of applying our approach and those obtained by standard 
methods were listed.
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Введение

Прогресс, достигнутый в разработке аттосекундных импульсных источников рентге-
новского и ультрафиолетового излучения [1], позволяет значительно расширить круг ис-
следуемых явлений в атомах и молекулах, развивающихся во времени. В таких экспери-
ментах оказывается возможным, например, наблюдать динамику сверхбыстрых электро-
нов в режиме реального времени [2, 3], изучать генерацию высоких гармоник [4] и т. п. 
В свою очередь, необходимость теоретического осмысления новых экспериментальных 
данных привела к интенсивным исследованиям, направленным на разработку эффектив-
ных методов численного решения нестационарного уравнения Шрёдингера (англ. Time-
Dependent Schrödinger Equation (TDSE)) [5]. В случае слабых полей кулоновские состоя-
ния рассеяния, модифицированные лазерным излучением, достаточно точно описывают-
ся аналитически в рамках приближения сильного поля [6], подхода Бункина – Федорова 
[7] и модели Кулона – Волкова [8]. 

Переход к более мощным лазерным излучениям стимулировал развитие более точ-
ных методов, основанных на прямом решении TDSE. Наиболее известный из них – это 
метод Кранка – Николсона [9], который, по сути, представляет собой конечно-разност-
ную явно-неявную схему с полусуммой и его модификации [10]. Кроме того, получил  
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развитие подход, основанный на вариационном принципе Дирака – вариационном прин-
ципе, зависящем от времени (англ. Time-Dependent Variational Principle (TDVP) [11]). 
Принципу TDVP удовлетворяют параметры пробных функций, используемых для пред-
ставления решения TDSE. В качестве удачного примера применения TDVP можно ука-
зать развитый в работе [12] метод, где решение TDSE ищется в представлении гауссовых 
волновых пакетов (англ. Gaussian Wave Packets (GWP)).

Ранее нами был предложен метод решения TDSE [13], описывающего процесс воздей-
ствия линейно-поляризованного лазерного излучения на атом водорода. В основе нашего 
подхода лежит представление решения в пространстве так называемых параболических 
волновых пакетов (англ. Parabolic Wave Packet (PWP)), параметры которых зависят от вре-
мени. В рамках нашего PWP-подхода аксиальная симметрия учтена путем использования 
параболических координат с осью z, направленной вдоль вектора поляризации. Тем са-
мым изначально трехмерная задача сводится к поиску решения на плоскости (ξ, η). 

К преимуществу метода можно отнести его способность находить решение в неогра-
ниченном пространстве, так что численная процедура свободна от граничных явлений 
в виде нефизического отражения, присущего подходам, в которых границы области, где 
ищется решение, задаются явно.

Вместе с тем метод имеет ряд недостатков, главным из которых является требование к 
порядку используемой численной схемы: этот порядок способен обеспечить точность вы-
числений, необходимую для устойчивой работы процедуры. Так, например, в случае при-
менения метода конечных элементов или сеточного метода дискретизации пространства 
наиболее часто в задачах эволюции используется довольно стабильный метод Кранка – 
Николсона [9]. К сожалению, этот метод оказался недостаточно точным для применения 
в нашем случае; в результате уже на первых шагах работы процедуры матрица уравнения 
становилась сингулярной.

В данном исследовании наши усилия были направлены на расширение возможно-
стей PWP-подхода, чтобы сделать его применимым к случаю импульсов продолжительно-
стью около 10 оптических циклов. Это оказалось возможным в результате использования 
13-стадийного метода Дормана – Принса 8-го порядка [14], относящегося к методам  
Рунге – Кутты. Разработанная численная схема протестирована на примере с комплекс-
ным импульсом, допускающем точное решение в виде единственной функции PWP. При-
мечательно, что через выбор значений параметров импульса можно получить решение, 
которое время от времени перестает быть нормируемым, что выходит за рамки стан-
дартных граничных условий и может служить дополнительной проверкой эффективности 
работы численной схемы.

Мы также выполнили расчеты спектров фотоэлектронов, соответствующих импуль-
сам различной длительности, и сопоставили наши расчетные результаты с полученными 
ранее другими авторами. В частности, были рассмотрены случаи короткого и интенсив-
ного импульса когерентного экстремального ультрафиолетового (англ. eXtreme UltraViolet 
(XUV)) излучения [15], а также импульсов длительностью 1 и 7 оптических циклов  
[16, 17]. Полное согласие с результатами других авторов, достигнутое в нашей статье [13] 
для коротких импульсов, длительность которых не превышала нескольких оптических ци-
клов, нарушается при переходе к импульсам большей длительности. В частности, спектр 
фотоионизации, рассчитанный стандартным методом, для такого излучения демонстри-
рует относительно регулярные осцилляции с ростом энергии электрона. В то же время, 
согласно нашим расчетам, кривая поведения спектра электрона, выбитого импульсом, 
характеризуется несколькими максимумами с последующим монотонным убыванием. Для 
определения причин такого расхождения мы исследовали погрешность нашей численной 
схемы, а также сходимость результатов с уменьшением шага по времени и с повышением 
размеров базисного набора.

Атомные единицы (a.u./а.е.) ħ = e = me = 1 используются везде, если не оговаривается 
иное.
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Квантовомеханическая теория рассматриваемого явления

Рассмотрим TDSE вида

( )) ),ˆ( (i t t t
t
∂
Ψ = Ψ

∂
                                            (1)

где полный гамильтониан системы 

( ) ( )ˆ ,ˆ ˆ
Ct H U t= +                                             (2)

представлен суммой кулоновского гамильтониана ĤC и энергии возмущения  вызванного 
лазерным полем. 

Кулоновский гамильтониан определяется выражением

2ˆ 1 ,
2C r

ZH
M r

= − ∇ +                                            (3)

где r – радиус-вектор частицы массой M; для атома водорода имеем M = 1 и заряд части-
цы Z = –1.

В случае линейно-поляризованного лазерного импульса естественным выбором на-
правления оси z будет направление, параллельное вектору поляризации. 

Таким образом, оператор возмущения в дипольном приближении и калибровке длины 
принимает вид

( ) ( )ˆ ,U t E t z=                                                  (4)

где E(t) – поле.
Аксиальная симметрия диктует применение параболических координат: ξ, η, φ, кото-

рые связаны с декартовыми согласно формулам

( )1cos , sin , .
2

x y zϕ ϕ= ξη = ξη = ξ −η                               (5)

Таким образом, TDSE, выраженное формулой (1), сводится к следующему уравнению 
на плоскости (ξ, η): 

( ) ( ) ( ) ( )

( )

2 21, ,
4 2 2 8

, , .

E tZi t
t M

t

 ξ + η  ∂ ∂ ∂ ∂ ∂
Ψ ξ η = − ξ + η + + ξ −η ×  ∂ ∂ξ ∂ξ ∂η ∂η  

×Ψ ξ η

        (6)

Параболические волновые пакеты. Решение уравнения (1) предлагается искать в виде 
следующего разложения [13]:

( )
1

( ) ,
N

j
j

t u t
=

κ

κ

Ψ =∑∑                                              (7)

по базисным функциям

[ ] ( )2, , , , ,
2

( ) ,
i

t eu g t
κφ

κ
λ

ξ η φ = ξη ξ η
π

λ = κ                             (8)

где
( ) ( ) ( ) ( ), , exp .g t t a t b tξ η = γ − ξ − η                                   (9)

Пробные функции (9) мы назвали параболическими волновыми пакетами (PWP) по 
аналогии с известными в литературе гауссовыми волновыми пакетами (GWP) [12].

Вариационный принцип. В случае использования базисного набора из N векторов (9) 
волновую функцию системы будет представлять вектор длины 3N, компонентами которо-
го являются нелинейные параметры

{ }( ), ( ), ( ) , 1, 2, , ,j j jt a t b t j Nγ = 
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упорядоченные следующим образом:

( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }

1 2

1 2

1 2

, , ,

, , , , .

, , ,

N

N

N

t t t

a t a t a t

b t b t b t

 γ γ … γ
 

= … 
 

…  

q                                    (10)

Таким образом, зависимость от времени параметров PWP определяет эволюцию атом-
ной системы. Уравнение относительно компонент вектора параметров получается под-
становкой разложения (7) в уравнение (1) с последующим применением вариационного 
принципа Маклачлана (TDVP) [11]. 

В результате исходное TDSE преобразуется в систему обыкновенных дифференциаль-
ных уравнений первого порядка относительно параметров (см., например, статью [12]):

M .i =q v                                                    (11)

Здесь M – положительно определенная эрмитова матрица размером 3N × 3N, элементы 
которой определяются формулой

'
'

M ,jj
j jq q

∂Ψ ∂Ψ
=

∂ ∂
                                            (12)

где v – комплексный вектор длины 3N со следующими элементами:

ˆ .j
j

v
q
∂Ψ

= Ψ
∂

                                              (13)

Начальные значения параметров q(0) определяются путем диагонализации гамильто-
ниана (3) для атома водорода.

Точно решаемый случай. В развитии нового численного подхода особое значение име-
ют эталонные решения, которые играют роль теста эффективности предлагаемой схемы. 
В качестве такового мы предложили следующее вспомогательное поле [13]:

( ) ( ) ( ) ,
s t

E t F t i
r

= +                                           (14)

где F(t) = 0 при t ≤ 0 и

( ) ( )
0

' ',
t

s t F t dt= ∫                                             (15)

допускает точное решение в виде единственного PWP (9). Действительно, если подставить 
выражение (9) в уравнение (6), то получим уравнение вида 

( ) ( ) ( ) ( ) ( )
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4 2 4 2
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× ξ η

    (16)

Из уравнения (16) следует система уравнений относительно параметров PWP:
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∂

∂
γ = + = − +
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                             (17)
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Наконец, полагая для основного состояния атома водорода

1 1(0) (0) , (0) ln 2,
2 2

a b= = γ =  

получаем следующую систему уравнений:

( ) ( )

( ) ( )

( ) ( )2

0

1 1 ,
2
1 1 ,
2

1 ln 2 ' ' .
2 2

t

a t is t

b t is t

it t s t dt

= +  

= −  

 
γ = + − 

 
∫

                                    (18)

Следует отметить, что функция F(t) может быть произвольной, а это означает, что к 
такому импульсу с произвольными значениями несущей частоты и амплитуды теория 
возмущений может оказаться неприменимой. 

В случае эталонного решения (14), (15), допускающего существование решения в ви-
де единственного PWP (см. формулу (9)), (3 × 3)-матрица M (12) принимает следующий 
явный вид:

2 2 2

2

2 2

2 3M 2 2 ,
4

2 32  2

u v u vu v
u v

e u v u v u v
u u u uv

u v u v u
v

v
v uv v

ω

+ + + − − 
 

+ + + = − 
 + + + −
  

                           (19)

где u = a + a*, v = b + b* и ω = γ + γ* (звездочкой обозначена операция комплексного со-
пряжения). 

В свою очередь выражение (13) для вектора v также принимает простой вид:
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            (20)

Заметим, однако, что матричное уравнение (11) не сводится к системе (17) символьны-
ми преобразованиями, так что для проверки работоспособности подхода, основанного на 
уравнениях (11) – (13), в нашем распоряжении остается вариант численной схемы [13]. 
Эффективность нашего подхода мы проверяем на примерах, представленных в следую-
щих разделах. 

Амплитуда ионизации. Решение TDSE (1) можно использовать для получения инфор-
мации об энергетическом и угловом распределениях электронов, выбитых из атома лазер-
ным импульсом. В нашем случае исследуемой характеристикой является амплитуда иони-
зации, определяемая следующим образом. 

Возмущение Û(t) обращается в нуль при t > tf, так что решение Ψ(t) формально можно 
разложить по собственным функциям гамильтониана ĤС: 

( ) ( ) ( ) ( ) ( )
2

2, , ,f
ki t t
M

k b ft d C e t t
− −−Ψ = ∫ ψ +ψ −r k k r r                           (21)

где −ψk − волновая функция состояния непрерывного спектра атомной системы,  
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нормированная по импульсу на δ-функцию; ψb обозначает вклад всех связанных состоя-
ний атома. 

Коэффициенты C(k) в выражении (21) определяют амплитуду перехода электрона в 
состояние континуума ,−ψk  а именно – амплитуду ионизации.

Как показано в работе [18], для извлечения амплитуды C(k) достаточно подействовать 
оператором функции Грина кулоновской системы

( )
12

( )ˆ ˆ, ,
2C C

kG Z M k i H
M

−

+  ≡ + ε −  
 

на решение Ψ(t) в конце действия импульса, т. е. в момент времени t = tf.
Действительно, из свойств функции Грина при r → ∞ [19] следует, что искомая  

амплитуда будет фигурировать в асимптотическом выражении для ( )ˆ ( )C fG t− Ψ  в виде 
коэффициента при расходящейся кулоновской волне:
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             (22)

где β − параметр Зоммерфельда, β = ZM/k. 
С другой стороны, в работе [13] нами было показано, что

( ) ( ) ( ) ( )
( ){ }ˆ ˆ

exp  ln 2, ,
, , 2 ,

2
j

C j

i kr krg t
G Z M k C k

r
+

−β ξ η  − π
π

r r

          (23)
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причем
p = –ik/2a, q = –ik/2b,

c = (1 – p)(1 + q)cos2(θ/2),                                       (25)
s = (1 + p)(1 – q)sin2(θ/2),
( ) ( ) ( )
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                                   (26)

Таким образом, амплитуда ионизации представляется в виде суммы

( ) ( )
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.
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j
j

C C
=

= ∑k k                                              (27)

В свою очередь, вероятность ионизации или спектр фотоэлектрона вычисляются путем 
интегрирования квадрата амплитуды по всем возможным углам вылета электрона:

( ) 2
.dP k C d

dE
= Ω∫ kk                                           (28)

Численная реализация решения матричного уравнения

Решение матричного уравнения (11) в настоящей работе реализовано методом  
Рунге – Кутты 8-го порядка с постоянной длиной шага, зависящей от размеров матрицы.  
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Дифференциальная система (11) является жесткой, что приводит к необходимости увели-
чивать число шагов по мере расширения размеров базиса. Мы полагаем, что это проис-
ходит потому, что показатели экспонент aj(t), bj(t), отвечающие разным gj (см. выражение 
(9)), как показывает опыт, могут различаться на несколько порядков. При этом различие 
в параметрах нарастает довольно быстро. В результате даже при небольших значениях  
N (N ≈ 10) матрица уравнения становится сингулярной уже на первых шагах работы про-
цедуры, и процесс решения аварийно завершается.

Вместе с тем нам удалось обеспечить точность вычислений, необходимую для устойчи-
вой работы указанной процедуры. Это оказалось возможным в результате использования 
13-стадийного метода Дормана – Принса 8-го порядка [14]. Избранная схема позволила 
нам получить решение также в случае импульсов продолжительностью около 10 оптиче-
ских циклов. Была исследована погрешность вычислений решения, а также сходимость 
метода как с повышением размеров базиса, так и по мере увеличения числа шагов (умень-
шения длины шага) по времени.

Результаты и их обсуждение

Точно решаемые задачи. Особый интерес представляет случай, когда напряженность 
внешнего поля лазера сопоставима с напряженностью внутриатомного поля. Поскольку 
теория возмущений оказывается неприменимой, такая ситуация служит удобным тестом 
для нашего численного подхода.

Мы рассмотрели два точно решаемых примера вспомогательного поля E(t) (14), когда 
функция F(t) следует разным выражениям:

I. FI(t) = sin(t); II. FII(t) = [(1 + i)/2] sin(t).

Как следует из системы уравнений (18), в I примере функция s(t) вещественная, так 
что Re[(a(t)] = Re[(b(t)] = 1/2,
и таким образом решение g(t, ξ, η) остается нормируемым в каждый момент времени. 
Сохранение единичной нормы – это одно из стандартных требований к решению TDSE 
для изначально связанного состояния квантовой системы.

Во II примере амплитуда импульса комплексная, что приводит к необычному пове-
дению вещественной части параметра a(t), которая теперь обращается в нуль в точках  
tj = π(2j + 1). Следовательно, в эти моменты времени решение g(t, ξ, η) перестает быть 
нормируемым по переменной ξ. Это отклонение от поведения, характерного для кван-
товых систем, может служить дополнительным тестом устойчивости работы численной 
схемы, основанной на уравнении (11).

Результаты абсолютных отклонений рассчитанных параметров γ(t), a(t) и b(t) от их 
точных значений (18) представлены на рис. 1. В вычислениях использовались различные 
версии схем: Рунге – Кутты 4-го порядка и Дормана – Принса. Из результатов, показан-
ных на рис. 1, следует, что точность расчетов ожидаемо возрастает на 6 – 8 порядков при 
переходе к схеме Дормана – Принса. 

К основным результатам следует отнести стабильность величины погрешности с те-
чением времени, что делает возможным использование нашего подхода в сочетании со 
схемой Дормана – Принса для импульсов большой длительности. Наконец, полученные 
результаты могут служить доказательством работоспособности метода применительно к 
лазерному излучению высокой интенсивности, когда ни одно из полей (ни атомное, ни 
внешнее) не может быть рассмотрено в рамках теории возмущений.

Ультрафиолетовое излучение. Тестирование работоспособности PWP-подхода было 
выполнено также на примере поля слабой интенсивности, допускающего применение те-
ории возмущений. В частности, был рассчитан спектр фотоэлектронов, покидающих атом 
водорода под действием лазерного импульса следующей формы [16, 17]:

2
0 0 0( ) sin[ ( )]sin , ,0 ,

2
f

f
f

TtE t E t t t t T
T

− ππ
= ω − = ≤ ≤                         (29)

где ω = 1,71; Tf = 3,67 либо 25,72 для случаев одного либо семи оптических циклов, со-
ответственно. 
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Рис. 1. Временная динамика абсолютных отклонений Δ параметров γ, a и b 
(решений системы (12) с учетом (19) и (20)) от своих точных значений (18): 

использованы схемы Рунге – Кутты 4-го порядка (a, c) и Дормана – Принса (b, d). 
Соответствующий PWP (9) удовлетворяет уравнению (16) с импульсом (14), (15), 

где функция F(t) следует выражениям FI(t) (a, b) и FII(t) (с, d)

Амплитуду E0 поля, линейно-поляризованного вдоль оси z, полагали равной 0,05 (ма-
лой, по сравнению со значением напряженности внутриатомного поля). 

Результаты расчетов вероятности ионизации представлены на рис. 2, a и b, соответ-
ственно для значений продолжительности импульса в один либо семь оптических циклов 
(полученные нами данные сравниваются также с результатами работ [16, 17]). 

В случае импульса длительностью в один цикл, форма которого представлена выра-
жением (29), использован базисный набор PWP (8) размером N = 54. При этом была 
исследована зависимость результатов от длины шага h, который варьировали в интервале 
7,34·(10–5 – 10–6). 

Как следует из рис. 2, a, сходимость плотности вероятности ионизации достигает-
ся довольно быстро: соответствующие кривые становятся неразличимыми начиная с  
h = 7,34·10–5. Для сравнения мы также привели на рис. 2, a результаты расчетов, полу-
ченные в статье [16]. Плотность вероятности ионизации для 7-циклового импульса, по 
сравнению с результатами работы [17], также представлены на рис. 2, b. Свойства схо-
димости в данном случае были исследованы с размерами базисного набора N = 54 и 78. 
С учетом увеличения длительности импульса начальное значение шага по времени здесь 
также было увеличено до h = 1,29·10–4. Мы довели значение h до 2,57·10–5. Как видно на 
рис. 2, b, сходимость наступает уже при h = 1,29·10–4. Аналогичная картина наблюдается 
и с повышением числа используемых PWP, которое в наших расчетах достигало 78.

Наконец, нами был рассмотрен случай воздействия на атом водорода импульсом дли-
тельностью 9 циклов [15]:

E(t) = f(t) E0 sin(ωt)                                                    (30)

с довольно распространенной формой огибающей f(t): 
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Рис. 2. Графическое представление результатов расчетов плотности вероятности ионизации 
(28) под действием импульсов XUV (29) (a, b) и (30) с огибающей (31) (d); данные получены с 

применением схемы Дормана – Принса в зависимости от шага по времени: 
a – для импульса длительностью 1 цикл (Tf = 3,67), b – 7 циклов (Tf = 25,72); с – форма 

импульса длительностью 9 циклов с соответствующими параметрами, d – полученная 
плотность вероятности для этого (с) импульса. Для сравнения приведены 

соответствующие результаты из работ [16] (a), [17] (b) и [15] (d)
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где T – период одного цикла центральной частоты, T = 2π/ω; n1, n2, n3 – параметры фор-
мы, которые задают количество циклов, отвечающих фазам нарастания, плато и спада 
импульса, соответственно.

В итоге величина tf = (n1 + n2 + n3)T определяет общую длительность импульса. Мы 
использовали характерные значения параметров [15]: n1 = n3 = 1,5; n2 = 6,0. Амплитуда 
и частота импульса также взяты из работы [15]: ω = 0,7; E0 = 0,05338. Форма импульса 
представлена на рис. 2, с. 

В данном случае мы также использовали 54 PWP (см. формулу (8)). Из результатов, 
полученных для вероятности ионизации (рис. 2, d), следует, что сходимость достигается 
при длине шага по времени h = 8,08·10–5; отметим, что эффект от дальнейшего уменьше-
ния шага пренебрежимо мал.

Во всех случаях, рассмотренных в данном разделе, полученные нами результаты в це-
лом согласуются с соответствующими результатами других авторов.

Анализ отличий от результатов литературных источников. Наблюдаемые явные раз-
личия требуют анализа их возможного происхождения. Начнем с того, что в рассчитан-
ных нами ранее случаях ультракоротких импульсов длительностью в полцикла [13] было  
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достигнуто полное согласие с результатами работы [11]. Таким образом, естественно пред-
положить, что расхождения, наблюдаемые при переходе к импульсам большей длительно-
сти (большее число циклов), объясняются потерей точности с соответствующим ростом 
числа шагов по времени. Чтобы исключить эту возможную причину, мы воспользовались 
схемой Дормана – Принса, обеспечивающей более высокую точность (на 6 – 8 порядков), 
чем метод Рунге – Кутты 4-го порядка (см. рис. 1); последний был использован нами в 
работе [13]. 

В качестве второй возможной причины можно указать неудачный выбор шага по вре-
мени. Таким образом, мы включили в расчеты исследование сходимости с уменьшением 
шага по времени, подобное проведенному в работе [13]. Напомним, что хорошее соответ-
ствие наших расчетов результатам статьи [10] для 4-циклового импульса, достигнутое при 
шаге 0,0001 а.е., нарушается по мере уменьшения шага. Заметим, что в наших расчетах 
(как в прежней работе [13], так и в этой работе) была достигнута сходимость по шагу.  
С другой стороны, мы не встречали подобного исследования в упомянутых выше работах. 

Наконец, отдельного обсуждения заслуживает представление угловой части решения. 
Заметим, что при использовании сферических координат, для описания решения зача-
стую приходится использовать довольно большое (от 15 до 60) количество парциальных 
волн. Иными словами, угловая зависимость имеет вид полиномов, включающих функции 
sinθ и cosθ довольно высокой степени. В нашем представлении, как следует из выраже-
ний (24) и (25) для амплитуды ионизации, зависимость этой амплитуды от функций угла 
θ является дробно-рациональной, и ее не всегда удается аппроксимировать с помощью 
даже того количества полиномов Лежандра, которое характерно для расчетов, использу-
ющих сферические координаты. Таким образом, в общем случае невозможно провести 
сопоставление нашего метода со стандартными подходами. 

Заключение

В проведенном исследовании наши усилия были направлены на расширение возмож-
ностей нашего PWP-метода [13], чтобы сделать эффективным его применение к слу-
чаю импульсов длительностью около 10 оптических циклов. Это оказалось возможным 
в результате использования 13-стадийного метода Дормана – Принса 8-го порядка [14]. 
Разработанная численная схема протестирована на примере модельного импульса, допу-
скающего точное решение в виде единственного PWP. Примечательно, что путем выбо-
ра значений параметров импульса можно получить решение, которое время от времени 
перестает быть нормируемым, что выходит за рамки стандартных граничных условий и 
тем самым может служить дополнительной проверкой эффективности работы численной 
схемы. 

Мы также выполнили расчеты спектров фотоэлектронов для слабых полей, рассмо-
тренных другими авторами. В частности, были получены результаты для импульсов дли-
тельностью в 1 [16], 7 [16, 17] и 9 [15] оптических циклов. 

Несмотря на общее согласие наших расчетов с результатами работ [15 – 17], имеют 
место существенные различия. Например, спектр фотоионизации, рассчитанный другими 
авторами, демонстрирует осцилляции с ростом энергии электрона. В нашем случае спектр 
ограничивается несколькими максимумами, после чего наблюдается его монотонное убы-
вание. Мы полагаем, что для такого отличия имеются две основные причины. Во-первых, 
в нашем PWP-подходе и в стандартных методах, использующих сферические координаты, 
описание угловой части решения радикально различаются. В PWP-амплитуде фигурируют 
дробно-рациональные выражения, содержащие функции sinθ и cosθ, тогда как в стандарт-
ных методах применяется разложение амплитуды по полиномам Лежандра.

Таким образом, сопоставление этих двух подходов затруднено, например тем, что разло-
жение PWP-амплитуды может потребовать неограниченного числа полиномов Лежандра. 
Кроме того, наши расчеты включают исследование сходимости результатов с существен-
ным уменьшением шага по времени. К сожалению, подобное исследование отсутствует в 
работах [15 – 17], так что сопоставление методов на этом уровне пока невозможно. 

В своих будущих работах мы планируем выполнить детальное (насколько это возмож-
но) сопоставление методов, для чего рассмотрим различные аспекты реализации стан-
дартных подходов.
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