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Аннотация. Проведено моделирование многокомпонентной атмосферы кометы с 
ядром сложной формы. Геометрия и интегральные параметры газопроизводительности 
ядра соответствуют условиям кометы 67P/Чурюмова – Герасименко в момент встречи 
с зондом «Розетта». Для моделирования применялись как газодинамические методы, 
предполагающие численное решение систем уравнений Эйлера и Навье – Стокса, так 
и кинетический подход на базе решения уравнения Больцмана. Проанализирована 
структура течения в окрестности ядра, выполнена оценка возможности применения 
газодинамических методов для расчета разреженной атмосферы, проведен анализ 
необходимости учета поступательно-вращательной неравновесности для интерпретации 
известных результатов наблюдений.
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Abstract. The multicomponent atmosphere of a comet with a complex-shaped nucleus has 
been simulated. The geometry and integral parameters of the gas production of the nucleus 
correspond to the conditions of comet 67P/Churyumov – Gerasimenko at the moment of its 
rendezvous with the Rosetta probe. The simulation was performed using both gas-dynamic 
methods, which involve numerical solution of the Euler/Navier – Stokes equations, and the 
kinetic approach based on the solution of the Boltzmann equation. The flow structure in the 
vicinity to the nucleus was analyzed, the applicability of gas-dynamic methods for prediction of 
a rarefied atmosphere was assessed, and the importance of considering translational-rotational 
nonequilibrium for interpreting observational data was analyzed.
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Введение

Кометы – это малые тела Солнечной системы с большим содержанием первородного 
льда, состав которых мог оставаться неизменным с момента их образования в протопла-
нетном диске. Под действием солнечного излучения ядро нагревается, лед сублимирует, 
и продукты сублимации покидают ядро, истекая в космическое пространство и образуя 
кометную атмосферу. Исследования состава и структуры кометных ядер дают важную 
информацию об эволюции Солнечной системы и процессах формирования планет [1, 2].

В отсутствие возможности непосредственного исследования кометного ядра, данные 
по структуре и составу ядра можно получать лишь на основе информации о динамике, 
структуре и составе околоядерной атмосферы кометы (комы). Такая информация нака-
пливается благодаря наблюдениям за кометами как с больших расстояний с использова-
нием телескопов, находящихся на поверхности Земли или на околоземных орбитах, так 
и с относительно малых расстояний (например, с использованием космических зондов).

Получение данных о физических характеристиках ядра посредством измерений состава 
и параметров околоядерной атмосферы нуждается в физической модели, связывающей 
процессы внутри и на поверхности ядра с процессами, протекающими в околоядерной 
атмосфере. Создание такой модели, интерпретация данных наблюдений, а также оптими-
зация программы наблюдений требует детального понимания структуры комы и законо-
мерностей поведения ее компонентов. С этой целью в настоящей работе рассматривается 
один из возможных вариантов газовой атмосферы кометы, находящейся на относительно 
большом расстоянии от Солнца.

Моделирование динамики атмосферы представляет собой нетривиальную вычисли-
тельную задачу. В общем случае необходимо рассматривать трехмерные нестационарные 
процессы в широком диапазоне параметров. Поскольку продукты газопроизводительно-
сти ядра истекают в вакуум, течение в атмосфере кометы характеризуется наличием об-
ластей неконтинуального и неравновестного течения. Поэтому для описания таких тече-
ний необходимо использовать как континуальные модели (уравнения Эйлера, Навье –  
Стокса), так и кинетические (уравнение Больцмана). Кроме того, для формулировки  
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граничных условий у поверхности ядра, для континуальных методов требуется решить 
проблему кнудсеновского слоя (приповерхностный слой, в котором происходит релакса-
ция изначально немаксвелловской функции распределения по скоростям молекул, эмити-
руемых с поверхности, к равновесной максвелловской функции). Кинетические методы, 
например метод прямого статистического моделирования Монте-Карло (англ.the Direct 
Simulation Monte Carlo (DSMC)), позволяющие физически корректно проводить модели-
рование разреженных и неравновесных течений, намного более трудоемки для вычисле-
ний, чем газодинамические методы.

В качестве примера, для моделирования в настоящей работе выбрана комета  
67P/Чурюмова – Герасименко (далее для краткости – 67Р) как наиболее детально изучен-
ная в ходе программы Европейского космического агентства «Розетта» [3, 4]. Выбранное 
гелиоцентрическое расстояние соответствует моменту встречи зонда «Розетта» с кометой, 
когда газопроизводительность ядра еще далека от максимальной (в перигелии) и полные 
эмиссии разных компонентов сравнимы. 

Цели настоящей работы следующие:
(i) определение структуры течения в окрестности ядра кометы 67P на гелиоцентриче-

ском расстоянии порядка 3 а.е.;
(ii) оценка возможности расчета возникающего течения на базе уравнений Эйлера и/

или Навье – Стокса;
(iii) анализ необходимости учета поступательно-вращательной неравновесности при 

моделировании динамики атмосферы комет.

Постановка задачи

Рис. 1. Модель формы ядра кометы 67P/Чурюмова – Герасименко “RMOC shape 3” 
(показаны 3D-виды на ядро с двух ракурсов вокруг оси Z)

Рассматривается расчетная область, где внутренняя (входная) граница – это поверх-
ность ядра, а внешняя (выходная) – это поверхность сферы с радиусом 35 км, описанная 
вокруг ядра. Геометрия ядра (рис. 1) соответствует форме “RMOC shape 3” – одной из 
первых реконструкций ядра кометы 67P. Эквивалентный радиус этой формы Rn = 1,7 км.

Предполагается, что ядро вращается вокруг оси z с периодом вращения 12,4 ч. Рассма-
триваемая область моделирования имеет протяженность 35 км в радиальном направлении, 
а характерная скорость течения в области – более 100 м/с, т.е. время пролета молекул от 
поверхности до внешней границы области моделирования составляет менее 350 с. За это 
время положение ядра изменяется менее, чем на 3º. Поэтому в данной работе предпола-
галось, что смена положения Солнца за время установления течения в рассматриваемой 
области не оказывает заметного влияния на распределение газопроизводительности по-
верхности и для описания течения в коме используются стационарные решения. 

Предполагается, что ядро состоит из смеси льдов воды, монооксида и диокси-
да углерода (H2O, CO и CO2), а также тугоплавких компонентов. Соответствующие 
льды имеют разные температуры сублимации. Согласно работе [5], лед H2O находится 
на поверхности, а льды CO и CO2 залегают в ядре на некоторой глубине. Таким об-
разом, сублимация молекул воды происходит непосредственно с поверхности кометно-
го ядра, а молекулы моноксида и диоксида углерода диффундируют из глубины ядра. 
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Модель эмиссии H2O предполагает, что поверхность кометы покрыта большим числом 
малоразмерных ледяных участков с интегральной долей f от площади поверхности; в дан-
ной работе принято, что f = 0,033 и эта доля постоянна по всей поверхности ядра.

Солнечный тепловой поток, приходящийся на единицу освещенной (незатененной) 
поверхности ядра, следует выражению

( ) 2(1 ) max 0,cos ,in sun hE A c r= − ⋅ ⋅ θ                                   (1)

где A – визуальное альбедо (принималось A = 0,05); csun – поток энергии солнечного 
излучения на гелиоцентрическом расстоянии rh = 1 а.е., csun = 1360 Вт/м2; θ, рад, – угол 
между локальной нормалью к поверхности и направлением на Солнце. 

Уравнение баланса энергии на ледяной поверхности предполагает, что энергия, падаю-
щая на поверхность, расходуется на тепловое излучение и сублимацию молекул H2O (те-
плообменом с внутренними слоями ядра и участками поверхности, не покрытыми льдом, 
пренебрегается):

2

4
B 0,(H O) ,in n I sE T L Z= ε ⋅σ ⋅ + ⋅                                       (2)

где TI, K, – температура льда на поверхности кометы; εn – коэффициент излучения по-
верхности ядра, εn = 0,9; σB, Вт/(м2 ·K4), – постоянная Стефана – Больцмана; Z0(H2O),  
кг/(с·м2), – массовый поток молекул воды с единичной площади ледяного участка по-
верхности; LS, Дж/кг, – скрытая теплота сублимации льда.

Молекулы воды, сублимируюшие с поверхности ядра, имеют полумаксвелловское рас-
пределение по скоростям (т.е. среднемассовая скорость течения полагается нулевой, а 
влетающие молекулы имеют компоненту скорости, перпендикулярную к поверхности, − 
больше нуля). Вследствие межмолекулярных столкновений распределение по скоростям 
релаксирует (если столкновений достаточно) к равновесному максвелловскому распреде-
лению в слое над поверхностью (слой Кнудсена). Для использования континуальных ме-
тодов необходимо определить параметры газа на верхней границе кнудсеновского слоя. С 
учетом того, что радиус ядра намного превышает толщину кнудсеновского слоя, в данной 
работе используется аналитическое решение для плоскопараллельного кнудсеновского 
слоя, полученное Карло Черчиньяни [6] из решения уравнения Больцмана:

2

2 20 0
0,(H O)

B 0

( ) 1 12 erf ( ) exp( ) ;
2 2 2/

s I

I I

p T T T SZ S S S c S S
T Tk T m

  π  = ⋅ ⋅ ⋅ − + + −   π     
    (3)

2

0 1 11 ,
2 1 2 1I

T S S
T

 π γ − π γ −
= + ⋅ − ⋅  γ + γ + 

                               (4)

где kB, Дж/K, – постоянная Больцмана; m, кг, – масса молекулы воды; T0, K, – тем-
пература газа; S – безразмерная скорость на верхней границе кнудсеновского слоя, 

0 B 0/ 2 /S u k T m=  (u0, м/с – скорость); ps(TI), Па, – давление насыщенного водяного па-
ра; γ – показатель адиабаты.

Поток молекул воды с поверхности, имеющей ледяные участки и не покрытые льдом, 
определяется как произведение f·Z0(H2O).

Выражения (3) и (4) зависят от параметра, определяющего влияние атмосферы кометы 
на поток, истекающий с поверхности кометы. В качестве такого параметра используется 
локальное число Маха у поверхности:

( )0 0M 2 / M 1 .S= γ ≤  

Модель эмиссии монооксида и диоксида углерода предполагает, что сублимация 
льда происходит внутри ядра и молекулы диффундируют из глубины через поры на 
поверхность. С учетом большой неопределенности (отсутствие данных наблюдений) в  
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параметрах структуры поверхностного слоя, в данной работе используется простейшая 
модель, позволяющая качественно воспроизвести интегральные характеристики наблю-
даемой активности ядра. Считается, что поток эмиссии складывается из двух частей (в 
определенной пропорции): 

равномерно распределенной по всей поверхности,
пропорциональной падающему солнечному излучению. 
Первая часть связана с низкой температурой сублимации CO и CO2 (у воды она зна-

чительно выше). Для сублимации CO, CO2 температура в поверхностном слое в течение 
периода вращения остается довольно высокой даже на ночной стороне.

Вторая часть связана с изменением потока сублимации из-за нагрева поверхности, 
пропорционального падающему солнечному излучению.

Таким образом, величина потока, истекающего с единичной площади поверхности, 
выражается как

( ) ( )0,0, 1
max 0,cos ,JJ

J J
ext

aa
Z Q

A A

 −
= + θ 

  

                               (5)

где индекс J относится к CO или CO2; QJ , кг/с – полный поток компонента J с поверх-
ности кометы (входной параметр модели); Aext, ,A



 м2 – общая площадь поверхности и 
площадь освещенного сечения ядра, соответственно; a0,J – доля эмиссии, равномерно 
распределенной по поверхности (в данной работе a0 = 0,11).

Модели газовой эмиссии, использованные в настоящей работе, являются простейши-
ми с минимальным числом параметров. Однако способность этих моделей описывать 
интегральное и качественное изменение газопроизводительности у различных комет под-
тверждена в ряде работ (см., например, работы [5, 7 – 10]). В работе [5] параметры моде-
лей подгонялись для согласования с данными измерений in situ (вдоль траектории зонда) 
состава и плотности атмосферы, а также изменения полной газопроизводительности ядра. 
Эти простейшие модели (без учета теплопроводности внутри ядра) позволяют получать 
удовлетворительное согласие с данными наблюдений для определенного угла между осью 
вращения ядра и направлением на Солнце, т.е. только для определенного участка траек-
тории кометы и ограниченного временного промежутка.

Начальной поверхностью для решения уравнений Эйлера и Навье – Стокса служит 
верхняя граница кнудсеновского слоя, толщина которого считается пренебрежимо ма-
лой, по сравнению с радиусом ядра, поэтому геометрическое положение этой границы 
совпадает с поверхностью ядра. Предполагается, что поток эмиссии направлен перпенди-
кулярно от поверхности. По величинам потока эмиссии и температуры, полученным на 
верхней границе кнудсеновского слоя, и числу Маха M0 (задано у поверхности) можно 
вычислить остальные параметры газа (плотность, давление, скорость) для расчета конти-
нуальными методами.

На внешней границе области моделирования (сфера радиуса 35 км вокруг ядра) стави-
лось условие свободного вытекания. Радиальная составляющая скорости – сверхзвуковая, 
и такое граничное условие является корректным.

При континуальном описании течения, в настоящей работе решается система уравне-
ний Эйлера или Навье – Стокса – Фурье (для вязкой теплопроводной сжимаемой жид-
кости).

Для расчета уравнений газовой динамики используется схема типа Годунова второго 
порядка точности, предложенная Родионовым и описанная в работе [11]. Указанная схема 
имеет отличительную черту: для получения второго порядка точности по пространству 
используется линейное распределение параметров внутри каждой ячейки (с применением 
реконструкций-ограничителей Колгана или ван Лира). Второй порядок по времени до-
стигается благодаря использованию процедуры типа предиктор-корректор. Расчеты задач 
проводятся методом установления по времени, когда стационарное течение находят путем 
длительного расчета нестационарного течения.

В случае решения уравнений Навье – Стокса их правые части (члены, описывающие 
процессы вязкости, теплопроводности и диффузии компонентов смеси) аппроксимиру-
ются явным образом с использованием центральных разностей. В отличие от решения 
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уравнений Эйлера, здесь может возникать проблема моделирования сильно разрежен-
ной комы, когда диссипативные процессы (правые части уравнений Навье – Стокса) 
начинают доминировать над конвективными процессами (перетекание вещества между 
ячейками). В таких случаях расчеты в рамках уравнений Навье – Стокса не приводят к 
стационарному решению.

Для кинетического описания течения используется метод DSMC [12, 13], который 
представляет собой стохастический метод решения уравнения Больцмана. Метод DSMC 
не требует специального выделения кнудсеновского слоя, и значения потока эмиссии и 
температуры для H2O следуют из решения уравнения (2), а для CO и CO2 – из уравнения 
(5). Вылет молекул с поверхности описывается полумаксвелловской функцией распреде-
ления по скоростям, т.е. скорости влетающих молекул соответствуют функции Максвелла 
с нулевой средней скоростью и имеют только положительную компоненту скорости, пер-
пендикулярную к поверхности.

При моделировании DSMC, для частиц применялась модель твердых сфер переменно-
го диаметра (англ. Variable Hard Sphere (VHS)) и схема столкновений без счетчика времени 
(англ. no-time-counter (NTC)) [12]. Для описания поступательно-вращательного энергооб-
мена использовалась модель Ларсена – Боргнакке с числом столкновений, необходимым 
для установления поступательно-вращательного равновесия Λ = 1. В рассматриваемом 
температурном диапазоне колебательные степени свободы молекул полагались невозбуж-
денными. Часть β потока молекул, возвращающихся на поверхность (β = f), конденсиро-
валась, а остальная часть (1 – β) отражались диффузно с полной аккомодацией энергии.

Подробное описание параметров (зависимость вязкости от температуры, сечения стол-
кновений и прочее), используемых в газодинамическом и кинетическом моделировании, 
приведено в работах [14 – 18].

Результаты расчетов и их обсуждение

В настоящей работе рассмотрено газовое течение в окрестности ядра кометы 67P, когда 
она находится на гелиоцентрическом расстоянии, равном 3,22 а.е. Предполагается, что 
Солнце находится в плоскости XZ и направление на Солнце составляет 50º от оси Z (в 
сторону оси X).

Рис. 2 показывает распределения потоков газовой эмиссии по поверхности ядра ко-
меты. Для заданной модели газопроизводительности, распределения потоков моноокси-
да углерода CO (QCO = 2·1025 c−1) и его диоксида CO2 (QCO2

 = 3·1024 c−1) отличаются на 
постоянный коэффициент QCO2

/QCO = 0,15, поэтому на рис. 2 представлено только рас-
пределение газового потока монооксида углерода CO. Эмиссия воды H2O определяется 
поверхностной сублимацией льда. Интенсивность этой эмиссии очень чувствительна к 
температуре, поэтому потоки с освещенной и затененной поверхностей отличаются на 
порядки величины (от 1010 до 1021 м–2·с–1). Потоки эмиссии CO и CO2 задаются независи-
мо от температуры поверхности в виде суммы двух составляющих:

равномерно распределенной по всей поверхности,
зависящей от освещенности поверхности. 

Рис. 2. 3D-изображения распределений по поверхности ядра потоков газовой эмиссии 
(в м–2·с–1), рассчитанных для воды H2O (a) и монооксида углерода CO (b)

а) b)
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а) b) c)

d) e) f)

g) h) j)

k) l) m)

Рис. 3. Изолинии плотности (в кг·м–3) (a – c, g – j) и скорости (в м·с–1) (d – f, k – m) течения 
смеси газов (H2O, CO, CO2) в плоскости XZ, в окрестности ядра кометы (области до 3Rn (a – f) 
и до 15Rn (g – m)), рассчитанных с помощью уравнений Эйлера (a, d, g, k) и Навье – Стокса 

(b, e, h, l), а также методом DSMC (c, f, j, m)

У этих составляющих значения потоков эмиссии на освещенной и затененной поверх-
ностях сопоставимы: 5,0·1016 – 1,0·1018 м–2·с–1 для CO,

7,5·1015 – 1,5·1017 м–2·с–1 для CO2.
Распределения плотности и скорости (с линиями тока) в плоскости XZ, полученные 

из решения уравнений Эйлера и Навье – Стокса, а также DSMC показаны на рис. 3 (для 
областей до 3Rn и до 15Rn).
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В окрестности ядра кометы (область менее 5Rn) имеет место хорошее качественное 
согласие решений, полученных разными методами (см. рис. 3, a – f). Решения, получен-
ные методами сплошной среды и в предположении о равновесности течения, показывают 
более интенсивное расширение и ускорение потока. Кроме того, в результатах, получен-
ных методами сплошной среды, имеются выраженные ударно-волновые структуры. В ре-
зультатах кинетического моделирования эти структуры отсутствуют или сильно размыты 
ввиду недостаточной частоты столкновений молекул.

По мере удаления от ядра различия в решениях возрастают. При этом качественное 
согласие между решением Эйлера и решением, полученным методом DSMC, сохраня-
ется на больших расстояниях от ядра (см. рис. 3, g –m). Согласно решению уравнений  
Навье – Стокса, на расстоянии порядка 5Rn начинается искусственное торможение по-
тока. Это связанно с тем, что сильная разреженность течения приводит к преобладанию 
диссипативных процессов над конвективными.

Макроскопические параметры течения (плотность, скорость и пр.) – это осреднен-
ные значения соответствующих молекулярных величин (среднее число молекул в единице 
объема, их средняя скорость и т.п.) в течении. Поэтому их можно определять лишь до 
тех пор, пока имеется достаточное число молекул в самом малом из значимых объемов 
течения. Уравнения сохранения массы, импульса и энергии в течении можно вывести, 
пользуясь континуальной и/или кинетической моделью, но эти уравнения не замкну-
ты, пока касательные (сдвиговые) напряжения и тепловые потоки не выражены через 
макроскопические величины низшего порядка. Такое условие накладывает ограничение 
на применение континуальных уравнений. Члены уравнений, отвечающие за перенос 
(транспортные члены) в уравнениях Навье – Стокса, не отражают рассматриваемого про-
цесса, если градиенты макроскопических переменных становятся настолько велики, что 
их характерная длина оказывается соизмеримой с длиной свободного пробега молекул 
между их столкновениями.

Рассматриваемое гелиоцентрическое расстояние и соответствующая ему газопроизво-
дительность ядра кометы порождают весьма разреженное течение уже в непосредствен-
ной окрестности ядра. Рис. 4, a иллюстрирует распределение числа Кнудсена Kn в поле 
течения:

Kn = λ/L,                                                   (6)

где λ – длина свободного пробега молекул; L – характерный линейный размер течения, 
определяемый по градиенту плотности, L = ρ/(dρ/dr).

На дневной стороне, до расстояния порядка 5Rn, имеется область с Kn < 1; на всей же 
ночной стороне течения Kn > 1. Принято считать, что применимость газодинамических 
методов на базе уравнений Навье – Стокса и Эйлера ограничена значениями числа Кнуд-
сена: Kn < 1 [9, 6]. Однако отметим, что в работах [10, 13, 14] показано, что газодинамиче-
ские методы могут давать качественно правильные распределения плотности и скорости 
течения даже при значениях Kn > 1.

Рис. 4. Изолинии числа Кнудсена (Kn) (a) и отношения поступательной температуры 
к вращательной (Ttr/Trot) (b) в плоскости XZ

а) b)
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Даже при максимально быстром поступательно-вращательном энергообмене, посту-
лированном в расчетах (Λ = 1), равновесие между поступательными и вращательными 
степенями свободы молекул (характеризуемое отношением соответствующих температур  
Ttr/Trot > 0,9) сохраняется только на дневной стороне, в области протяженностью в не-
сколько радиусов ядра (рис. 4, b). Недостаточная частота столкновений приводит к за-
мораживанию внутренней энергии молекул и, соответственно, к меньшей доле тепловой 
энергии газа, преобразуемой в поступательное движение, и меньшей интенсивности уско-
рения потока.

Рис. 5 показывает распределение в течении относительной концентрации молекул 
H2O, CO, CO2 (результат решения методом DSMC). Вследствие значительной разницы в 
потоках эмиссии H2O, CO и CO2 с освещенной поверхности (см. рис. 2), в течении газо-
вой смеси доминирует вода H2O. На ночной стороне доминирует монооксид углерода CO. 
Наличие эмиссии CO и CO2 на ночной и затененной сторонах ограничивает расширение 
H2O с дневной на ночную сторону и препятствует формированию потока конденсации на 
неосвещенную поверхность. Относительная концентрация диоксида углерода CO2 имеет 
максимум на ночной стороне, но даже там она не превышает 15%. На дневной стороне, 
около затененных частей поверхности, относительные концентрации H2O и CO сравни-
мы (имеют значения около 50%). По мере удаления от ядра кометы вода (компонент с 
наибольшей общей газопроизводительнстью) постепенно занимает доминирующее поло-
жение во всей области.

CH2O, CO, CO2

а) b) c)

Рис. 5. Изолинии относительной концентрации молекул H2O (a), CO (b) и CO2 (c) в течении, 
полученные методом Монте-Карло

Численное моделирование было выполнено на вычислительном кластере с узлами из 
Intel Xeon E5-2650 v4 (2,20 ГГц). Без использования распараллеливания решение уравне-
ний Эйлера заняло 3 ч, уравнений Навье – Стокса – 5 ч, расчет методом DSMC – 48 ч.

Заключение

Проведено математическое моделирование газодинамическими и кинетическими ме-
тодами течения во внутренней атмосфере кометы 67P/Чурюмова – Герасименко в момент 
ее встречи с зондом «Розетта». По результатам моделирования можно описать следующий 
характер протекающих процессов.

Многокомпонентная эмиссия с поверхности ядра сложной формы приводит к форми-
рованию в непосредственной окрестности ядра кометы многомерного течения со слож-
ной структурой и областями разного молекулярного состава. Однако уже на расстоянии 
около 5Rn структура течения приближается к течению от точечного источника с пере-
менной угловой интенсивностью, а именно – расширение газа происходит в радиальном 
направлении с практически постоянной (но зависящей от направления) скоростью. 

Распределения плотности и скорости указанного течения, полученные из решения 
уравнений Эйлера, качественно согласуются с результатами моделирования методом 
DSMC. Учитывая большую неопределенность параметров эмиссии с поверхности ядра 
(вследствие отсутствия прямых измеряемых данных) и необходимость многочислен-
ных расчетов для инверсии данных косвенных наблюдений (например, спектрометрии  
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комы), решения уравнений Эйлера можно использовать для интерпретации наблюдений как  
наиболее вычислительно эффективные.

Рассматриваемое гелиоцентрическое расстояние (3,2 а.е.) и соответствующая ему га-
зопроизводительность ядра имеют следствием сильную разреженность и неравновесность 
течения в большей части области моделирования. В расчетах переноса излучения при 
моделировании вращательных спектров в субмиллиметровом диапазоне важно учитывать 
поступательно-вращательную неравновесность, так как вращательная температура опре-
деляет заселенность энергетических уровней, а поступательная температура определяет 
частоту столкновений и величину допплеровского сдвига.
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