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Abstract. The length distributions of IIl — V nanowires growing by direct impingement
and surface diffusion of adatoms are of fundamental and instrumentation interest. Here, we
study kinetic rate equations for the length distribution of nanowires with forward and backward
surface diffusion along their growing axes, where the average nanowire length either increases
infinitely with time or saturates to a constant. We have obtained the exact solution to the
discrete rate equations in the form of a modified Polya distribution, investigated its continuum
approximation and analyzed the available experimental data on the length distributions of
different I1I — V nanowires. The obtained results can be used to model various growth systems
with size-linear forward and backward rate constants.
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AnHoTanusa. PacnipeneneHus 1o IIMHAM HUTEBUIAHBIX HAHOKPUCTAJIOB TTOJYITPOBOIHUKO-
BbIX coeauHeHuit I — V rpynn npeactaBisiioT nHTEpec ¢ GyHIAMEHTAIbHONM TOUYKU 3PEHUS
U U NpUOOpHBIX NMpuioxeHui. B pabore uccienoBaHbl KMHETUYECKUE YPABHEHUS POCTa
HUTEBUJHBIX HAHOKPUCTAJIJIOB C TOJIOXKUTEIbHON U oTpullaTesibHOU Auddysueii Booib ocu
pocTa, ¢ 6ECKOHEUHbIM POCTOM CpEIHEH MJIMHBI UM €€ HAChIIEHUEM Ha OOJIbIIMX BPEeMEH-
HbIX MHTepBaiax. [losydeHO TOUHOE pellleHUe 3alauu B BUIe pacnpenejaenus [loiia, nsyyeHa
KOHTUHYaJIbHas (popMa JaHHOIO pacrlpeneeHus U MpoaHaIU3UPOBaHbl SKCIIEPUMEHTAIbHbBIE
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pacmpeneaeHus Mo IJIWHE Pa3IMYHBIX HUTeBUIOHBIX HaHOKpucTtauioB III — V rpynm. ITomy-
YeHHbIE€ Pe3yIbTaThl MOXKXHO MCITOJb30BaTh JJIsSI MOJASIUPOBAHUS Pa3IUUYHBIX CUCTEM, KOTOPhIE
MOMUMHSIOTCSI ypaBHeHUsIM bekkepa — JlepuHra ¢ JMHEMHBIMU IO padMepy KOHCTaHTaMU
CKOpOCTell pocTa U (parMeHTaLMHU.

KioueBbie c10Ba: HUTeBUIHBIN HAHOKPUCTAILI, TTOJYIIPOBOAHUKOBBIC coequHeHus 111 — V,
pacrpeesieHue Mo AJIMHE, YIPaBJISIoue YpaBHEHMS
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Introduction

Freestanding semiconductor nanowires (NWSs), in particular III —V NWs and heterostructures
of different types based on such NWs, are widely reported in the literature as promising building
blocks for nanoscience and nanotechnology [1, 2]. These NWs are grown by the vapor-liquid-
solid method with a foreign metal catalyst (often Au [3]), which can be replaced by a group III
metal in the self-catalyzed vapor-liquid-solid approach [4], or via selective-area epitaxy without
any catalyst [5]. Surface diffusion of group III adatoms contributes into the vertical growth rate of
Au-catalyzed NWs preparing by the vapor-liquid-solid method, of catalyst-free NWs preparing by
selective-area epitaxy procedure and of similar selective-area epitaxy structures such as elongated
nanomembranes [6 — 12].

Surface diffusion along the NW sidewalls is also possible in the N'Ws of elemental semiconductors
[6]. The total diffusion flux of group III adatoms to the NW top equals the forward (direct) flux
minus the backward (rejected) one [6, 8, 9, 11, 12]. According to current concepts [11, 12], the
backward diffusion flux depends on the nucleation-mediated growth rate on the top nanowire/
nanomembrane facet and rapidly increases when the nucleation is suppressed by surface energetics
or geometry (see Refs. [12, 13] and references therein). When adatoms are collected from the
entire NW length and the total diffusion flux is positive, the NWs elongate exponentially with
time [6, 8, 9, 12]. Negative diffusion flux leads to the limited growth regime with a length value
saturation [12, 13].

Length distributions (LDs) of NWs are interesting from the fundamental viewpoint and
paramount for processing and device functionalization of the NW ensembles. In particular,
narrow length distributions enable easier contacting of as-grown N'Ws and suppress the unwanted
inhomogeneous broadening of light-emitting devices [2].

Theoretical and experimental studies of the III — V NW length distributions [14 — 19] have
led to the following results. NWs growing by the direct impingement without surface diffusion
and nucleation delays feature the Poisson length distributions [14]. NWs growing by the direct
impingement and forward diffusion from their entire length feature much broader Polya LDs [15].
Sub-Poissonian narrowing of the NW length distributions [18, 19] can be observed in thin enough
NWs growing by the direct impingement due to a specific effect of nucleation antibunching which
suppresses fluctuational broadenings [20 — 24]. Nucleation delay in the formation of the very
first NW monolayer above the substrate surface leads to a very significant broadening of the NW
length distributions, with a long tail for shorter lengths [14, 16, 18]. It cannot be suppressed by
nucleation antibunching [18]. Desorption of semiconductor material from a catalyst droplet does
not change the Poisson shape of the length distributions [17].

On a more general ground, NWs growing by the direct impingement and surface diffusion
present an interesting example of non-equilibrium system described by the Becker — Doéring
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rate equations with size-linear rate constants, where the LDs can easily be measured in different
growth stages. The Becker — Doring rate equations are widely used in the nucleation theory
[26 — 28] and other growth-related theories [29 — 52] including those for epitaxial islands
[38 — 45]. One important outcome of these works in the Family — Vicsek scaling of the size
distribution [38]. In Refs. [50 — 52], we demonstrated that size-linear forward rate constants
naturally led to the Family — Vicsek scaling, which was confirmed experimentally for Au-catalyzed
InAs NWs in Ref. [15]. However, backward surface diffusion was never studied in this regard.

Consequently, our goal of this work is to analyze theoretically the length distributions of
nanowires with forward and backward diffusion and to reveal whether backward diffusion affects
the previously obtained the Polya length distribution [15].

Computational model

The usual growth law for the length L of individual NW growing by the direct impingement
from the vapor flux v, forward and backward surface diffusion of adatoms is given by [6, 11, 12]:

dL 2A L

—=ov+—tanh| — [nv(l-c), 1
dr R (x jn (1=¢) M
where A is the diffusion length of adatoms on the NW sidewalls; ¢, n are the dimensionless
geometrical factors that depend on the droplet geometry (or the no droplet case for NWs grown
through selective-area epitaxy and deposition technique (vapor deposition or directional molecular
beam epitaxy); c is the factor for describing the backward diffusion (it is independent of the NW
length).

The same growth law is valid for nanomembranes [12]. The case ¢ = 0 corresponds to the
absence of backward diffusion. Such a growth was earlier considered in Ref. [15]. For fairly short
structures with L << A, tanh(L/A) = L/A. In this case, adatoms diffuse along the entire NW length
and the NW growth rate scale linearly with L and is independent of A [8, 9].

It is convenient to measure the NW length L in monolayers (MLs); this dimensionless length is

s=Lh=0,1,2, ...,

where /4 is the height of a monolayer (in particular, 2 = 0.326 MLs for GaAs).
Introducing the dimensionless time t and constant a according to expressions

2 R
1=V 0= )
R 2nh
© ' ' ' ' Eq. (1) for the average NW length over the
monolayers 5 =(s) takes the following form:
800 - a5
—=a+(1-¢)5. (3)
6004 NMs,c>1 | dt
aa——— Thq solution to_Eq. (3) with zero initial
5 - condition at T = 0 is
400 Lum, _ e(l—c)r -1
I S=a—. (4)
200— 7 . 1._c . [e—
From Eq. (4) it will be obvious that s
increases infinitely at ¢ < 1 or saturates to the
o 4 > 5 & ¢ Quanty
Fig. 1. A comparison of the curves’ behavior of the s, =al (c—l) atc > 1.
average length (s) (over monolayers of NW) with
dimensionless time t for two ¢ values at a = 100. It can be seen from Fig. 1 an exponential

Inserts: The examples of hexahedral GaAs NWs and growth of the average length at ¢ = 0.5 and
elongated GaAs nanomembranes [10], exhibiting these sublinear growth with the length saturation
growth regimes due to predominantly forward and at ¢ = 1.2 for a = 100. In so doing, the

backward surface Ga diffusion, respectively hexahedral GaAs NWs and elongated GaAs
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NMs from Ref. [10] exhibit superlinear and sublinear growth regimes due to predominantly
forward and backward surface Ga diffusion, respectively (see inserts in Fig. 1). This explains the
experimentally observed infinite and limited growth modes of nanowires and nanomembranes
[11 — 13] but tells us nothing about the length distribution in the nanowire ensemble grown under
identical conditions for each NW.

To access the statistical properties within the NW ensemble, we note that the NW formation
occurs via the reaction scheme

AB+A4 <> A, B fors=0,1,2, .,

where 4, denotes the NW monolayer, and 4 B is the NW composed of s monolayers with
A B = B as the nucleation seed (a catalyst nanoparticle for the vapor-liquid-solid growth or
patterned pinhole in a mask layer for the selective-area epitaxy growth) [6, 14 — 19].

We introduce the normalized length distribution f (t) which satisfies the normalization condition

> (=1 (5)

at any time.
The discrete set of the Becker — Doring rate equations for heterogeneous growth writes
[6, 14 — 19, 50]:
&y, 4
=-J,,
dt dt
The flux J_ for the regular growth rate given by Eq. (3) can be written as

—J -J

s+1°

s>1. (6)

Jo=(a+s)f,_ —csf,,s=1. (7)

The NW length distribution contains all statistical characteristics of a NW ensemble, including
the average length s(t) and variance D(1):

5(1)=(s), =2 o (2. D(x) = ((s-5)) =(s*),-F(2). ®)

No nucleation delay for the formation of the very first NW monolayer is considered in this
model. The nucleation delay is described by

J, =bf, —cf,, with b <a or even b << a [14, 16, 18],

and strongly affects the length-distribution shape.

It was earlier considered for irreversible NW growth at ¢ = 0 by the direct impingement
without nucleation antibunching in Ref. [14], direct impingement with nucleation antibunching
in Ref. [18], and direct impingement with forward surface diffusion of adatoms in Ref. [16].
Introduction of the nucleation delay in the Becker — Doéring equations for reversible growth
(at ¢ > 0) is a very complex problem that will be studied elsewhere.

Analytic solution for the length distribution

Analytic solution of the Becker — Doéring rate equations with size-linear rate constants is
obtained by using the generating function for the length distributions [14 — 16, 50, 51]:

flxo)=2" fi(0)x" ©)

Differentiating the generating function with respect to time and using Eqgs. (6), we get

) (-2 (10)

X

Remarkably, size-linear rate constants yielding Eq. (7) for J lead to the closed first-order
equation in partial derivatives for the generating function:
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%=(x—l){(x—c)%fr)+af(x,t)}. (11)
This equation should be solved with the initial condition

f(x1=0)=1 (12)

that corresponds to f, (t=0) =1, f (t=0) = 0 for s > 1 (no NWs at the beginning of deposition).
From Eq. (11), the generating function obeys the normalization condition f{1, 1) = 1.
The average length is obtained from the equation

_(1:) 8f(x,r)

S =

ox

(13)

x=1

Differentiating Eq. (11) with respect to x and putting x = 1, we obtain Eq. (3) for the average
length, with the solution given by Eq. (4). Now Eq. (11) contains only two parameters: ¢ and c.
Therefore, the resulting NW length distribution should be two-parametric. At ¢ = 0, the solution
should yield the result of Ref. [15], that is, the Polya length distributions for irreversible NW
growth without backward diffusion.

Eq. (11) is solved by the method of characteristics. The equivalent system of ordinary differential
equations is

ﬂ _ dx B df
1 (x-1)(x-¢) a(x-1)f (14)
Integration of the first equation gives the first integral 7(x,t) of the form
0T _ l1-x . (15)
c—Xx

Using the expression
x—l=(l—c)/{exp[(l—c)(t—T)]—1}

in the second equation and integrating it with the initial condition

f(rzO):l,

we obtain the following equation:
1= =0 ¢
f(x,T) = W . (16)

Using Eq. (15), the final result for the generating function is given by
1

flx,t)= -, (17)
9 [1+y(7)(1-x)]
with
B E(’E) 3 e
y(t)= T (18)

The discrete length distribution is obtained from this generating function by applying the
known formulae:
o I'la+s 1
z, ( ) g = &= 4 ) (19)
T (a)T(s+1) (1-¢) l+y
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Our final result for the exact length distribution is given by the Polya distribution, which can
be presented in the two equivalent forms:

Simulation of physical processes >

] 1 F(Cl ) I y(T) | s>

fi(1)= [1+(c)] C(a)(s+1)[1+y(x) |’ 20, (20)
T)= +§(T) -’ F(a ) + a I §2

£ (%) {1 } (a)r(s—kl)_1 s(v)] 7 =

Here I'(§) denotes the gamma-function.
Results and discussion

Thus, the main result of this work can be formulated as follows. The nanowire length distribution
in reversible growth with forward and backward surface diffusion of adatoms along their entire
length is able to be given by the same Polya distribution as in Ref. [15] without backward diffusion.

However, there is one important difference. For irreversible growth at ¢ 0, the length
distribution is truly one-parametric, because the average length of the Polya length distribution is

=a [exp (t)-

given by the expression
1],
and increases infinitely in the large time limit.

Our refined model with arbitrary ¢ describes either infinite growth at ¢ < 1 or limited growth
at ¢ > 1, and hence is appropriate for a much wider range of data including the sub-linear growth
regimes of nanowires and nanomembranes [6, 12, 13] as well as more general reversible growth
systems [27 — 35]. In particular, the equilibrium length distribution at ¢ > 1 is two-parametric:

£ () =[1-1/e]" C(a+s) 1

F(a)r(s+1) ¢’
with the average length 5 = a/ (c —1).

This asymptotic equilibrium state is maintained even under the deposition flux due to the
prevalent backward diffusion that equalizes the direct impingement flux and forward diffusion to
the top of the structures.

The variance of the Polya length distribution is given by the expression

-2

st _
D=—+5%.

a

Therefore, the asymptotic width JD of the broad Polya length distribution is proportional to
the average size at 5 > a. At a — oo, the Polya length distribution is reduced to a much narrower

Poisson one:

s(v)

1)

(22)

(23)

f.(5)=exp(—s

with the variance D=75.
The continuum Polya LD at s >> a is obtained in the same way as in Refs. [15, 50]. We use

(1+5/a) " =(5/a) ",

F(a+s)/F(s+1) SR
along with
(I1+a/5) " = 1%[1+(as/§)/s]_s =exp(—as/s)

at large s and finite as/s.
This results in the continuum LD has the form

f(s,?) =—

1 a°

EF(a

N

)

( ja_l ( S
- CXp| —a—
K K

J

(24)
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From Eq. (2) in @, we can see that this parameter is always much larger than unity for NWs,
ranging from about 10 for very thin NWs with R = 5 nm to ~200 nm for thicker NWs with
R = 50 nm. At @ >> 1, we can use the Stirling formula for

['(a)=T(a+1)/a :\/m(a/e)a.

x“"exp(—ax) = exp(—ax+alnx)

The function

has the sharp maximum under the exponent at x = 1.
This allows us to write the following:

exp(—ax+alnx)= exp[—a ~(a/2)(x~1) ] ,

resulting in the symmetrical Gaussian approximation for the continuum length distribution [15]:

f(5,5) =Sé \/% exp[—%(sg_—f):l. (25)

a) b)
-3
£ . . 0BT T3 N
_ ——¢=05 —¢=0.
1=0.04 =12 15 =4 —c=12 A
0.15 : =5
12 4
104 _ 9
010 1=0.2
=04 6 w3
0.054
=4
31 =5
) a . : ; . ; ) . ¢ . ; .
0 10 20 30 40 50 60 s 0 500 1000 1500 2000 2500 s

Fig. 2. Evolution of the NW length distributions in the initial growth stage (a)
and for longer values of growth time t: from 3 to 5 (b) in the infinite (¢ = 0.5)
and limited (¢ = 1.2) growth regimes at ¢ = 100; s is a number of NW monolayers

Fig. 2 shows the time evolution of the LD in the infinite (¢ = 0.5) and limited (¢ = 1.2) growth
regimes with the same a value (a = 100). The LDs are similar in the initial stage for short t values
from zero to 0.4 (see Fig. 2, a), but become very different for longer growth times from 3 to 5
(see Fig. 2, b). These LDs are given by the same Egs. (20). The only difference is in the average
length s, which is c-dependent and evolves differently in the infinite and limited growth regimes.
Fig. 3 shows the equilibrium LDs given by Eq. (21) at different ¢ values for the same a value
(a = 10). These LDs narrow up for larger c, corresponding to the shorter equilibrium lengths.

Hence, the magnitude of the backward diffusion from top to bottom of the structures can be
used as an additional tuning knob for their LDs.

It can be seen from Eq. (25) that the Family — Vicsek scaling function for the re-normalized
LD 5f(s,5) versus x=s/s is given by the probability density of the gamma-distribution [16, 50]:

Ef(s,?) = F(x) = a—x“_le_“x,x =

F(a)
At a >> 1 this is further reduced to

(55) = F(x) = \/g exp[-%(x-l)z}. o7

o (26)

s
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These universal scaling functions do not depend on the average NW length and satisfy the
usual sum rules for the surface density and average size of the structures [38 — 44]:

[ dxF (x)= [ dxxF (x)=1. (28)

o , , , , , Fig. 4 shows the continuum length

. distributions given by Eqgs. (24) and (26) in the

c=1.1 natural and Family — Vicsek scaled variables

0.06 —C=1§ . at different a value from 1 to 250 for the same
—c=1.

average length 5= 3000. As mentioned above,
the case a = 1 is not relevant for NWs, but
may be interesting for other systems including
linear rows of metal adatoms on reconstructed
0.021 i Si surfaces [50, 53 — 55]. Generally, the Polya
distribution is monotonically decreasing at
a <1 and unimodal at a > 1. The threshold case
a = 1 corresponds to the geometrical
distribution and the exponential Family —
Fig. 3. Equilibrium NW length distributions at Vicsek scaling function F(x) = exp(—x). The
different ¢ values (a = 10) Polya length distributions become more
symmetric for larger a-values, with the
Gaussian approximation becoming indistinguishable from Egs. (24) or (26) at a > 100.
The shapes of both length distributions in Fig. 4 are similar. As evident, they narrow up for
larger a-values.
However, the non-scaled length distributions in Fig. 4,a describe the NW ensemble with a
given mean length, while the scaled length distributions in Fig. 4,b apply for any mean length
s >1 or, equivalently, for all but very short growth times.

a) b)
Ftx)
6

0.04 + B

T T T

T T
0 25 50 75 100 125 N

a=1
a=10
a=50 5
a=100
a=250

0.5

)

0 1000 2000 3000 4000 5000 N

Fig. 4. Continuum LDs in the natural (a) and Family — Vicsek-scaled variables (b)
for the same average length of 3000 monolayers and different a values.
In Fig. 4, b, the symmetrical Gaussian scaling function given by Eq. (27) is shown (dashed lines);
it becomes indistinguishable from Eq. (26) at @ > 100 for this average length

Fig. 5 shows the experimental NW length distributions with similar average lengths from Refs.
[15, 19], fitted by the model. GaAs NWs of Ref. [19] were grown by the self-catalyzed vapor-
liquid-solid method (with liquid Ga droplets). In this case, the NW axial growth rate is controlled
by the As input, and Ga surface diffusion does not contribute to the NW elongation. These
LDs are well-fitted by the Poisson length distribution given by Eq. (23), with 5 =4035 MLs and
D(5)=5. InAs NWs of Ref. [15] were grown by the Au-catalyzed vapor-liquid-solid method,
where indium surface diffusion is always effective. Consequently, their length distribution is
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Fig. 5. LDs of self-catalyzed GaAs [19] (Data
1) and Au-catalyzed InAs [15] (Data 2) NWs
with surface diffusion of group III adatoms with
5= 4035 MLs and without it (5=4500 MLs),
respectively (histograms), fitted by the continuum
Poisson (see Eq. (23)) and Polya LD with
a = 200 (see Eq. (27)) (blue and red lines)
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well-fitted by the Polya distribution given by
Eq. (27) with 5 =4500 MLs and D(E)ziz/a.
This length distribution is much broader than
Poissonian one. Further growth of these Ga-
catalyzed GaAs NWs leads to sub-Poissonian
narrowing due to nucleation antibuncning (as
descrivbed in detail in Ref. [19]). No nucleation
delays are prersent is both cases, which is
achieved by the droplet organization prior to
NW growth.

Summary

To summarize, it has been shown in the
paper that backward diffusion of adatoms along
the NW sidewalls does not obey the Polya
LD shape, previously obtained for irreversible
NW growth by surface diffusion [15, 16].
Consequently, the FV scaling form of the
continuum LD remains the same. However,

the reversible growth model describes different
regimes of NW growth depending on the parameter c¢. At ¢ < 1, NWs grow to infinite length,
while at ¢ > 1 they evolve to the equilibrium Polya distribution. These exact results can be used
for understanding and controlling the NW/NM LDs grown by different epitaxy techniques and
under different conditions, including the experimentally observed sublinear growth modes with
the length saturation [11 — 13]. We hope that the obtained analytic distribution will be useful for
modeling different systems including linear rows of adatoms [53 — 55], surface islands [26, 28,
37, 43, 44], planar NWs [56], and III — V ternary nanostructures [2]. The complex case of the
diffusion-induced heterogeneous growth with a nucleation delay will be considered in our future
work.
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