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Abstract. The length distributions of III – V nanowires growing by direct impingement 
and surface diffusion of adatoms are of fundamental and instrumentation interest. Here, we 
study kinetic rate equations for the length distribution of nanowires with forward and backward 
surface diffusion along their growing axes, where the average nanowire length either increases 
infinitely with time or saturates to a constant. We have obtained the exact solution to the 
discrete rate equations in the form of a modified Polya distribution, investigated its continuum 
approximation and analyzed the available experimental data on the length distributions of 
different III – V nanowires. The obtained results can be used to model various growth systems 
with size-linear forward and backward rate constants. 
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Аннотация. Распределения по длинам нитевидных нанокристаллов полупроводнико-
вых соединений III – V групп представляют интерес с фундаментальной точки зрения 
и для приборных приложений. В работе исследованы кинетические уравнения роста 
нитевидных нанокристаллов с положительной и отрицательной диффузией вдоль оси 
роста, с бесконечным ростом средней длины или ее насыщением на больших времен-
ных интервалах. Получено точное решение задачи в виде распределения Пойа, изучена 
континуальная форма данного распределения и проанализированы экспериментальные 
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Великого.

распределения по длине различных нитевидных нанокристаллов III – V групп. Полу-
ченные результаты можно использовать для моделирования различных систем, которые 
подчиняются уравнениям Беккера – Деринга с линейными по размеру константами 
скоростей роста и фрагментации.

Ключевые слова: нитевидный нанокристалл, полупроводниковые соединения III – V, 
распределение по длине, управляющие уравнения 
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Introduction

Freestanding semiconductor nanowires (NWs), in particular III – V NWs and heterostructures 
of different types based on such NWs, are widely reported in the literature as promising building 
blocks for nanoscience and nanotechnology [1, 2]. These NWs are grown by the vapor-liquid-
solid method with a foreign metal catalyst (often Au [3]), which can be replaced by a group III 
metal in the self-catalyzed vapor-liquid-solid approach [4], or via selective-area epitaxy without 
any catalyst [5]. Surface diffusion of group III adatoms contributes into the vertical growth rate of 
Au-catalyzed NWs preparing by the vapor-liquid-solid method, of catalyst-free NWs preparing by 
selective-area epitaxy procedure and of similar selective-area epitaxy structures such as elongated 
nanomembranes [6 – 12]. 

Surface diffusion along the NW sidewalls is also possible in the NWs of elemental semiconductors 
[6]. The total diffusion flux of group III adatoms to the NW top equals the forward (direct) flux 
minus the backward (rejected) one [6, 8, 9, 11, 12]. According to current concepts [11, 12], the 
backward diffusion flux depends on the nucleation-mediated growth rate on the top nanowire/
nanomembrane facet and rapidly increases when the nucleation is suppressed by surface energetics 
or geometry (see Refs. [12, 13] and references therein). When adatoms are collected from the 
entire NW length and the total diffusion flux is positive, the NWs elongate exponentially with 
time [6, 8, 9, 12]. Negative diffusion flux leads to the limited growth regime with a length value 
saturation [12, 13]. 

Length distributions (LDs) of NWs are interesting from the fundamental viewpoint and 
paramount for processing and device functionalization of the NW ensembles. In particular, 
narrow length distributions enable easier contacting of as-grown NWs and suppress the unwanted 
inhomogeneous broadening of light-emitting devices [2]. 

Theoretical and experimental studies of the III – V NW length distributions [14 – 19] have 
led to the following results. NWs growing by the direct impingement without surface diffusion 
and nucleation delays feature the Poisson length distributions [14]. NWs growing by the direct 
impingement and forward diffusion from their entire length feature much broader Polya LDs [15]. 
Sub-Poissonian narrowing of the NW length distributions [18, 19] can be observed in thin enough 
NWs growing by the direct impingement due to a specific effect of nucleation antibunching which 
suppresses fluctuational broadenings [20 – 24]. Nucleation delay in the formation of the very 
first NW monolayer above the substrate surface leads to a very significant broadening of the NW 
length distributions, with a long tail for shorter lengths [14, 16, 18]. It cannot be suppressed by 
nucleation antibunching [18]. Desorption of semiconductor material from a catalyst droplet does 
not change the Poisson shape of the length distributions [17].

On a more general ground, NWs growing by the direct impingement and surface diffusion 
present an interesting example of non-equilibrium system described by the Becker – Döring 
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rate equations with size-linear rate constants, where the LDs can easily be measured in different 
growth stages. The Becker – Döring rate equations are widely used in the nucleation theory  
[26 – 28] and other growth-related theories [29 – 52] including those for epitaxial islands  
[38 – 45]. One important outcome of these works in the Family – Vicsek scaling of the size 
distribution [38]. In Refs. [50 – 52], we demonstrated that size-linear forward rate constants 
naturally led to the Family – Vicsek scaling, which was confirmed experimentally for Au-catalyzed 
InAs NWs in Ref. [15]. However, backward surface diffusion was never studied in this regard. 

Consequently, our goal of this work is to analyze theoretically the length distributions of 
nanowires with forward and backward diffusion and to reveal whether backward diffusion affects 
the previously obtained the Polya length distribution [15].

Computational model

The usual growth law for the length L of individual NW growing by the direct impingement 
from the vapor flux ν, forward and backward surface diffusion of adatoms is given by [6, 11, 12]:

( )2 tanh 1 ,dL L c
dt R

λ  = σν + ην − λ 
                                   (1)

where λ is the diffusion length of adatoms on the NW sidewalls; σ, η are the dimensionless 
geometrical factors that depend on the droplet geometry (or the no droplet case for NWs grown 
through selective-area epitaxy and deposition technique (vapor deposition or directional molecular 
beam epitaxy); c is the factor for describing the backward diffusion (it is independent of the NW 
length). 

The same growth law is valid for nanomembranes [12]. The case c = 0 corresponds to the 
absence of backward diffusion. Such a growth was earlier considered in Ref. [15]. For fairly short 
structures with L << λ, tanh(L/λ) = L/λ. In this case, adatoms diffuse along the entire NW length 
and the NW growth rate scale linearly with L and is independent of λ [8, 9].

It is convenient to measure the NW length L in monolayers (MLs); this dimensionless length is 

s = L/h = 0, 1, 2, …,
where h is the height of a monolayer (in particular, h = 0.326 MLs for GaAs). 

Introducing the dimensionless time τ and constant a according to expressions

2 , ,
2

Rt a
R h
ην σ

τ = =
η

                                           (2)

Fig. 1. A comparison of the curves’ behavior of the 
average length 〈s〉 (over monolayers of NW) with 
dimensionless time τ for two c values at a = 100.

Inserts: The examples of hexahedral GaAs NWs and 
elongated GaAs nanomembranes [10], exhibiting these 
growth regimes due to predominantly forward and 

backward surface Ga diffusion, respectively

Eq. (1) for the average NW length over the 
monolayers s s=  takes the following form: 

( )1 .ds a c s
d

= + −
τ

               (3)

The solution to Eq. (3) with zero initial 
condition at τ = 0 is

( )1 1.
1

ces a
c

− τ −
=

−
                (4)

From Eq. (4) it will be obvious that s  
increases infinitely at c < 1 or saturates to the 
quantity

( )/ 1s a c∞ = −   at c > 1.

It can be seen from Fig. 1 an exponential 
growth of the average length at c = 0.5 and 
sublinear growth with the length saturation 
at c = 1.2 for a = 100. In so doing, the 
hexahedral GaAs NWs and elongated GaAs 
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NMs from Ref. [10] exhibit superlinear and sublinear growth regimes due to predominantly 
forward and backward surface Ga diffusion, respectively (see inserts in Fig. 1). This explains the 
experimentally observed infinite and limited growth modes of nanowires and nanomembranes  
[11 – 13] but tells us nothing about the length distribution in the nanowire ensemble grown under 
identical conditions for each NW.

To access the statistical properties within the NW ensemble, we note that the NW formation 
occurs via the reaction scheme

1 1s sA B A A B++ ↔  for s = 0, 1, 2, …,

where A1 denotes the NW monolayer, and AsB is the NW composed of s monolayers with  
A0B ≡ B as the nucleation seed (a catalyst nanoparticle for the vapor-liquid-solid growth or 
patterned pinhole in a mask layer for the selective-area epitaxy growth) [6, 14 – 19]. 

We introduce the normalized length distribution fs(τ) which satisfies the normalization condition

( )
0

1ss
f∞

=
=τ∑                                                  (5)

at any time. 
The discrete set of the Becker – Döring rate equations for heterogeneous growth writes  

[6, 14 – 19, 50]:

0
1 1, , 1.s

s s
df dfJ J J s
dt dt += − = − ≥                                      (6)

The flux Js for the regular growth rate given by Eq. (3) can be written as

1( ) , 1.s s sJ a s f csf s−= + − ≥                                         (7)

The NW length distribution contains all statistical characteristics of a NW ensemble, including 
the average length ( )s τ  and variance D(τ):

( ) ( ) ( ) ( ) ( )2 2 2
1

, .ss
s s sf D s s s s∞

τ = ττ
τ = = τ τ = − = − τ∑               (8)

No nucleation delay for the formation of the very first NW monolayer is considered in this 
model. The nucleation delay is described by

1 0 1,J bf cf= −  with b < a or even b << a [14, 16, 18],

and strongly affects the length-distribution shape. 
It was earlier considered for irreversible NW growth at c = 0 by the direct impingement 

without nucleation antibunching in Ref. [14], direct impingement with nucleation antibunching 
in Ref. [18], and direct impingement with forward surface diffusion of adatoms in Ref. [16]. 
Introduction of the nucleation delay in the Becker – Döring equations for reversible growth  
(at c > 0) is a very complex problem that will be studied elsewhere.

Analytic solution for the length distribution

Analytic solution of the Becker – Döring rate equations with size-linear rate constants is 
obtained by using the generating function for the length distributions [14 – 16, 50, 51]:

( ) ( )0
, .s

ss
f x f x∞

=
τ = τ∑                                           (9)

Differentiating the generating function with respect to time and using Eqs. (6), we get

( ) ( )1

, 11 .s
ss

f x
J x

x
∞

=

∂ τ  = − τ ∂τ  
∑                                    (10)

Remarkably, size-linear rate constants yielding Eq. (7) for Js lead to the closed first-order 
equation in partial derivatives for the generating function: 
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( ) ( ) ( ) ( ) ( ), ,
1 , .

f x f x
x x c af x

∂ τ ∂ τ 
= − − + τ ∂τ ∂τ 

                          (11)

This equation should be solved with the initial condition

( ), 0 1f x τ = =                                                (12)

that corresponds to f0 (τ = 0) = 1, fs (τ = 0) = 0 for s ≥ 1 (no NWs at the beginning of deposition). 
From Eq. (11), the generating function obeys the normalization condition f(1, τ) = 1.
The average length is obtained from the equation

( ) ( )
1

,
.

x

f x
s

x
=

∂ τ
τ =

∂
                                          (13)

Differentiating Eq. (11) with respect to x and putting x = 1, we obtain Eq. (3) for the average 
length, with the solution given by Eq. (4). Now Eq. (11) contains only two parameters: a and c. 
Therefore, the resulting NW length distribution should be two-parametric. At c = 0, the solution 
should yield the result of Ref. [15], that is, the Polya length distributions for irreversible NW 
growth without backward diffusion.

Eq. (11) is solved by the method of characteristics. The equivalent system of ordinary differential 
equations is 

( )( ) ( )
.

1 1 1
d dx df

x x c a x f
τ
= − =

− − −                                  (14)

Integration of the first equation gives the first integral T(x,τ) of the form 

( )( )1 1 .c T xe
c x

− −τ −
=

−
                                             (15)

Using the expression

( ) ( )( ){ }1 1 exp 1 1x c c T− = − − τ− −    

in the second equation and integrating it with the initial condition

 ( )0 1,f τ = =

we obtain the following equation:

( )
( )( )

( )

1

1

1, .
1

ac T

c T

ef x
e

− −τ

−

 −
τ =  

− 
                                       (16)

Using Eq. (15), the final result for the generating function is given by

( )
( )( )

1, ,
1 1

af x
y x

τ =
+ τ −  

                                    (17)

with

( ) ( ) ( )1 1.
1

cs ey
a c

− ττ −
τ = =

−
                                       (18)

The discrete length distribution is obtained from this generating function by applying the 
known formulae: 

( )
( ) ( ) ( )0

1 , .
1 11

s
as

a s y
a s y

∞

=

Γ +
ε = ε =

Γ Γ + +− ε
∑                            (19)
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Our final result for the exact length distribution is given by the Polya distribution, which can 
be presented in the two equivalent forms:

( )
( )

( )
( ) ( )

( )
( )

( ) ( ) ( )
( ) ( ) ( )

1 , 0,
1 11

1 1 , 0.
1

s

s a

sa

s

a s y
f s

a s yy

s a s af s
a a s s

−−

 Γ + τ
τ = ≥ Γ Γ + + τ+ τ    

 τ Γ + 
τ = + + ≥   Γ Γ + τ   

                     (20)

Here Γ(ξ) denotes the gamma-function. 

Results and discussion

Thus, the main result of this work can be formulated as follows. The nanowire length distribution 
in reversible growth with forward and backward surface diffusion of adatoms along their entire 
length is able to be given by the same Polya distribution as in Ref. [15] without backward diffusion. 

However, there is one important difference. For irreversible growth at c = 0, the length 
distribution is truly one-parametric, because the average length of the Polya length distribution is 
given by the expression

( ) ( )exp 1 ,s aτ = τ −    
and increases infinitely in the large time limit. 

Our refined model with arbitrary c describes either infinite growth at c < 1 or limited growth 
at c > 1, and hence is appropriate for a much wider range of data including the sub-linear growth 
regimes of nanowires and nanomembranes [6, 12, 13] as well as more general reversible growth 
systems [27 – 35]. In particular, the equilibrium length distribution at c > 1 is two-parametric:

( ) [ ] ( )
( ) ( )

11 1 ,
1

a
s s

a s
f c

a s c
Γ +

∞ = −
Γ Γ +

                                 (21)

with the average length ( )1 .s a c∞ = −
This asymptotic equilibrium state is maintained even under the deposition flux due to the 

prevalent backward diffusion that equalizes the direct impingement flux and forward diffusion to 
the top of the structures.

The variance of the Polya length distribution is given by the expression 
2

.sD s
a

= +                                                  (22)

Therefore, the asymptotic width D  of the broad Polya length distribution is proportional to 
the average size at .s a  At a → ∞, the Polya length distribution is reduced to a much narrower 
Poisson one:

( ) ( ) ( )2
1exp exp ,

! 22

s
s

s

s ssf s s s
s ss

 −
= − ≅ − 

π   
                      (23)

with the variance .D s=  
The continuum Polya LD at s >> a is obtained in the same way as in Refs. [15, 50]. We use

( ) ( ) ( ) 11 , ( 1) ,a a as a s a a s s s− − −+ ≅ Γ + Γ + ≅  

along with

( ) ( ) ( )1 lim 1 exp
ss

s
a s as s s as s

−−

→∞
+ ≅ + = −    

at large s and finite .as s  
This results in the continuum LD has the form 

( ) ( )

11, exp .
aaa s sf s s a

s a s s

−
   = −   Γ    

                                (24)
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From Eq. (2) in a, we can see that this parameter is always much larger than unity for NWs, 
ranging from about 10 for very thin NWs with R ≈ 5 nm to ~200 nm for thicker NWs with  
R ≈ 50 nm. At a >> 1, we can use the Stirling formula for

( ) ( ) ( )1 2 / .aa a a a a eΓ = Γ + = π  

The function
( ) ( )1 exp exp lnax ax ax a x− − ≅ − +  

has the sharp maximum under the exponent at x = 1. 
This allows us to write the following:

( ) ( )( )2exp ln exp 2 1 ,ax a x a a x − + ≅ − − −   

resulting in the symmetrical Gaussian approximation for the continuum length distribution [15]:

( ) ( )2

2

1, exp .
2 2

s sa af s s
s s

 −
= − 

π   
                                 (25)

а) b)

Fig. 2. Evolution of the NW length distributions in the initial growth stage (a) 
and for longer values of growth time τ: from 3 to 5 (b) in the infinite (с = 0.5) 

and limited (с = 1.2) growth regimes at a = 100; s is a number of NW monolayers

Fig. 2 shows the time evolution of the LD in the infinite (с = 0.5) and limited (с = 1.2) growth 
regimes with the same a value (a = 100). The LDs are similar in the initial stage for short τ values 
from zero to 0.4 (see Fig. 2, a), but become very different for longer growth times from 3 to 5 
(see Fig. 2, b). These LDs are given by the same Eqs. (20). The only difference is in the average 
length s , which is c-dependent and evolves differently in the infinite and limited growth regimes. 
Fig. 3 shows the equilibrium LDs given by Eq. (21) at different c values for the same a value  
(a = 10). These LDs narrow up for larger c, corresponding to the shorter equilibrium lengths. 

Hence, the magnitude of the backward diffusion from top to bottom of the structures can be 
used as an additional tuning knob for their LDs.

It can be seen from Eq. (25) that the Family – Vicsek scaling function for the re-normalized 
LD ( , )sf s s  versus x s s=  is given by the probability density of the gamma-distribution [16, 50]: 

( ) ( ) ( )
1, , .

a
a axa ssf s s F x x e x

a s
− −= = =

Γ                              
 (26)

At a >> 1 this is further reduced to

( ) ( ) ( )2, exp 1 .
2 2
a asf s s F x x = = − − π  

                          (27)
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These universal scaling functions do not depend on the average NW length and satisfy the 
usual sum rules for the surface density and average size of the structures [38 – 44]:

( ) ( )
0 0

1.dxF x dxxF x
∞ ∞

= =∫ ∫                                      (28)

Fig. 3. Equilibrium NW length distributions at 
different c values (a = 10)

Fig. 4 shows the continuum length 
distributions given by Eqs. (24) and (26) in the 
natural and Family – Vicsek scaled variables 
at different a value from 1 to 250 for the same 
average length s = 3000.  As mentioned above, 
the case a = 1 is not relevant for NWs, but 
may be interesting for other systems including 
linear rows of metal adatoms on reconstructed 
Si surfaces [50, 53 – 55]. Generally, the Polya 
distribution is monotonically decreasing at  
a ≤ 1 and unimodal at a > 1. The threshold case  
a = 1 corresponds to the geometrical 
distribution and the exponential Family – 
Vicsek scaling function F(x) = exp(–x). The 
Polya length distributions become more 
symmetric for larger a-values, with the 

Gaussian approximation becoming indistinguishable from Eqs. (24) or (26) at a ≥ 100. 
The shapes of both length distributions in Fig. 4 are similar. As evident, they narrow up for 

larger a-values.
However, the non-scaled length distributions in Fig. 4,a describe the NW ensemble with a 

given mean length, while the scaled length distributions in Fig. 4,b apply for any mean length 
1s   or, equivalently, for all but very short growth times. 

а) b)

Fig. 4. Continuum LDs in the natural (a) and Family – Vicsek-scaled variables (b) 
for the same average length of 3000 monolayers and different a values. 

In Fig. 4, b, the symmetrical Gaussian scaling function given by Eq. (27) is shown (dashed lines); 
it becomes indistinguishable from Eq. (26) at a ≥ 100 for this average length

Fig. 5 shows the experimental NW length distributions with similar average lengths from Refs. 
[15, 19], fitted by the model. GaAs NWs of Ref. [19] were grown by the self-catalyzed vapor-
liquid-solid method (with liquid Ga droplets). In this case, the NW axial growth rate is controlled 
by the As input, and Ga surface diffusion does not contribute to the NW elongation. These 
LDs are well-fitted by the Poisson length distribution given by Eq. (23), with s = ﻿4035 MLs and 
( ) .D s s=  InAs NWs of Ref. [15] were grown by the Au-catalyzed vapor-liquid-solid method, 

where indium surface diffusion is always effective. Consequently, their length distribution is 
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well-fitted by the Polya distribution given by 
Eq. (27) with s = ﻿4500 MLs and ( ) 2 .D s s a=  
This length distribution is much broader than 
Poissonian one. Further growth of these Ga-
catalyzed GaAs NWs leads to sub-Poissonian 
narrowing due to nucleation antibuncning (as 
descrivbed in detail in Ref. [19]). No nucleation 
delays are prersent is both cases, which is 
achieved by the droplet organization prior to 
NW growth. 

Summary

To summarize, it has been shown in the 
paper that backward diffusion of adatoms along 
the NW sidewalls does not obey the Polya 
LD shape, previously obtained for irreversible 
NW growth by surface diffusion [15, 16]. 
Consequently, the FV scaling form of the 
continuum LD remains the same. However, 
the reversible growth model describes different 

Fig. 5. LDs of self-catalyzed GaAs [19] (Data 
1) and Au-catalyzed InAs [15] (Data 2) NWs 
with surface diffusion of group III adatoms with 
s =  4035 MLs and without it ( s = 4500 MLs), 
respectively (histograms), fitted by the continuum 

Poisson (see Eq. (23)) and Polya LD with 
a = 200 (see Eq. (27)) (blue and red lines)

regimes of NW growth depending on the parameter c. At c < 1, NWs grow to infinite length, 
while at c > 1 they evolve to the equilibrium Polya distribution. These exact results can be used 
for understanding and controlling the NW/NM LDs grown by different epitaxy techniques and 
under different conditions, including the experimentally observed sublinear growth modes with 
the length saturation [11 – 13]. We hope that the obtained analytic distribution will be useful for 
modeling different systems including linear rows of adatoms [53 – 55], surface islands [26, 28, 
37, 43, 44], planar NWs [56], and III – V ternary nanostructures [2]. The complex case of the 
diffusion-induced heterogeneous growth with a nucleation delay will be considered in our future 
work.

REFERENCES

1. Ning C.-Z., Dou L., Yang P., Bandgap engineering in semiconductor alloy nanomaterials with 
widely tunable compositions, Nat. Rev. Mater. 2 (31 Oct) (2017) 17070.

2. McIntyre P. C., Morral A. F. I., Semiconductor nanowires: To grow or not to grow? Mater. 
Today Nano. 9 (March) (2020) 100058.

3. Wagner R. S., Ellis W. C., Vapor-liquid-solid mechanism of single crystal growth, Appl. Phys. 
Lett. 4 (5) (1964) 89–90.

4. Colombo C., Spirkoska D., Frimmer M., et al., Ga-assisted catalyst-free growth mechanism of 
GaAs nanowires by molecular beam epitaxy, Phys. Rev. B. 77 (15) (2008) 155326.

5. Aseev P., Fursina A., Boekhout F., et al., Selectivity map for molecular beam epitaxy of advanced 
III-V quantum nanowire networks, Nano Lett. 19 (1) (2019) 218–227.

6. Dubrovskii V. G., Glas F., Vapor–liquid–solid growth of semiconductor nanowires, In book: N. 
Fukata, R. Rurali (Eds.), Fundamental properties of semiconductor nanowires, Springer Nature Pte 
Ltd., Singapore (2020) 1–38.

7. Seifert W., Borgstrom M., Deppert K., et al., Growth of one-dimensional nanostructures in 
MOVPE, J. Cryst. Growth. 272 (1–4) (2004) 211–220.

8. Plante M. C., LaPierre R. R., Analytical description of the metal-assisted growth of III–V 
nanowires: Axial and radial growths, J. Appl. Phys. 105 (11) (2009) 114304.

9. Harmand J. C., Glas F., Patriarche G., Growth kinetics of a single InP1–xAsx nanowire, Phys. 
Rev. B. 81 (23) (2010) 235436.

10. Mosiiets D., Genuist Y., Cibert J., et al., Dual-adatom diffusion-limited growth model for 
compound nanowires: Application to InAs nanowires, Cryst. Growth Des. 24 (9) (2024) 3888.

11. Dubrovskii V. G., Nucleation-dependent surface diffusion in anisotropic growth of III–V 
nanostructures, Cryst. Growth Des. 24 (15) (2024) 6450.



43

Simulation of physical processes

12. Zendrini M., Dubrovskii V., Rudra A., et al., Nucleation-limited kinetics of GaAs nanostructures 
grown by selective area epitaxy: Implications for shape engineering in optoelectronic devices, ACS 
Appl. Nano Mat. 7 (16) (2024) 19065–19074.

13. Semlali E., Avit G., André Y., et al., Circumventing the ammonia-related growth suppression for 
obtaining regular GaN nanowires by HVPE, Nanotechnol. 35 (26) (2024) 265604.

14. Dubrovskii V. G., Sibirev N. V., Berdnikov Y., et al., Length distributions of Au-catalyzed and 
In-catalyzed InAs nanowires, Nanotechnol. 27 (37) (2016) 375602.

15. Dubrovskii V. G., Berdnikov Y., Schmidtbauer J., et al., Length distributions of nanowires 
growing by surface diffusion, Cryst. Growth Des. 16 (4) (2016) 2167–2172.

16. Dubrovskii V. G., Length distributions of nanowires: Effects of surface diffusion versus nucleation 
delay, J. Cryst. Growth 463 (1 Apr) (2017) 139–144.

17. Dubrovskii V. G., Barcus J., Kim W., Does desorption affect the length distributions of nanowires? 
Nanotechnol. 30 (47) (2019) 475604. 

18. Glas F., Dubrovskii V. G., Self-narrowing of size distributions of nanostructures by nucleation 
antibunching, Phys. Rev. Mater. 1 (3) (2017) 036003. 

19. Koivusalo E., Hakkarainen T., Guina M. T., Dubrovskii V. G., Sub-Poissonian narrowing of 
length distributions realized in Ga-catalyzed GaAs nanowires, Nano Lett. 17 (9) (2017) 5350–5355.

20. Wen C.-Y., Tersoff J., Hillerich K., et al., Periodically changing morphology of the growth 
interface in Si, Ge, and GaP nanowires, Phys. Rev. Lett. 107 (2) (2011) 025503.

21. Jacobsson D., Panciera F., Tersoff J., et al., Interface dynamics and crystal phase switching in 
GaAs nanowires, Nature. 531 (17 March) (2016) 317–322.

22. Dubrovskii V. G., Refinement of nucleation theory for vapor – liquid –solid nanowires, Cryst. 
Growth Des. 17 (5) (2017) 2589–2593.

23. Glas F., Panciera F., Harmand J. C., Statistics of nucleation and growth of single monolayers in 
nanowires: Towards a deterministic regime, Phys. Stat. Solidi (RRL). 16 (5) (2022) 2100647.

24. Glas F., Incomplete monolayer regime and mixed regime of nanowire growth, Phys. Rev. Mater. 
8 (4) (2024) 043401.

25. Becker R., Döring W., Kinetische Behandlung der Keimbildung in übersättigten Dämpfern, 
Ann. Phys. 416 (8) (1935) 719–752.

26. Kashchiev D., Nucleation: Basic theory with applications. Butterworth-Heinemann, Oxford, 
UK, 2000. 

27. Slezov V. V., Kinetics of first-order phase transitions, Wiley-VCH Verlag GmbH & Co., Berlin, 
2009. 

28. Kukushkin S. A., Osipov A. V., Thin-film condensation processes, Phys. Usp. 41 (10) (1998) 
983–l014.

29. Ball J. M., Carr J., Penrose O., The Becker – Döring cluster equations: Basic properties and 
asymptotic behaviour of solutions, Commun. Math. Phys. 104 (4) (1986) 657–692.

30. Jun Y.-S., Zhu Y, Wang Y., et al., Classical and nonclassical nucleation and growth mechanisms 
for nanoparticle formation, Annu. Rev. Phys. Chem. 73 (April) (2022) 453–477.

31. Wattis J. A. D., King J. R., Asymptotic solutions of the Becker – Döring equations, J. Phys. A: 
Math. Gen. 31 (34) (1998) 7169.

32. King J. R., Wattis J. A. D., Asymptotic solutions of the Becker – Döring equations with size-
dependent rate constants, J. Phys. A: Math. Gen. 35 (6) (2002) 1357.

33. Wattis J. A. D., A Becker – Döring model of competitive nucleation, J. Phys. A: Math. Gen. 
32 (49) (1999) 8755.

34. Wattis J. A. D., Similarity solutions of a Becker – Döring system with time-dependent monomer 
input, J. Phys. A: Math. Gen. 37 (32) (2004) 7823.

35. Duncan D. B., Soheili A. R., Approximating the Becker – Döring cluster equations, Appl. 
Numer. Math. 37 (1–2) (2001) 1–29.

36. Álvarez-Cuartas J. D., Camargo M., González-Cabrera D. L., Colloidal model for nucleation 
and aggregation in one dimension: Accessing the interaction parameters, Phys. Rev. E. 109 (6) (2024) 
064604.

37. Tomellini M., De Angelis M., Fokker – Planck equation for the crystal-size probability density in 
progressive nucleation and growth with application to lognormal, Gaussian and gamma distributions, 
J. Cryst. Growth. 650 (15 Jan) (2025) 127970.



St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2025. Vol. 18. No. 4

44

38. Vicsek T., Family F., Dynamic scaling for aggregation of clusters, Phys. Rev. Lett. 52 (19) 
(1984) 1669–1672.

39. Bartelt M. C., Evans J. W., Exact island-size distributions for submonolayer deposition: Influence 
of correlations between island size and separation, Phys. Rev. B. 54 (24) (1996) R17359–R17362.

40. Vvedensky D. D., Scaling functions for island-size distributions, Phys. Rev. B. 62 (23) (2000) 
15435–15438.

41. Körner M., Einax M., Maass P., Capture numbers and island size distributions in models of 
submonolayer surface growth, Phys. Rev. B. 86 (8) 085403.

42. Evans J. W., Thiel P. A., Bartelt M. C., Morphological evolution during epitaxial thin film 
growth: Formation of 2D islands and 3D mounds, Surface Surf. Sci. Rep. 61 (1–2) (2006) 1–128.

43. Dieterich W., Einax M., Maass P., Stochastic theories and scaling relations for early-stage 
surface growth, Eur. Phys. J. Spec. Top. 161 (1) (2008) 151–165.

44. Einax M., Dieterich W., Maass P., Colloquium: Cluster growth on surfaces: Densities, size 
distributions, and morphologies, Rev. Mod. Phys. 85 (3) (2013) 921–939.

45. Gibou F. G., Ratsch C., Caflisch R. E., Capture numbers in rate equations and scaling laws for 
epitaxial growth, Phys. Rev. B. 67 (15) (2003) 155403.

46. Álvarez-Cuartas J. D., González-Cabrera D. L., Camargo M., Epitaxial growth in one dimension, 
J. Phys: Cond. Matter 36 (46) (2024) 463001. 

47. Aditya S., Roy N., Family – Vicsek dynamical scaling and Kardar-Parisi-Zhang-like superdiffusive 
growth of surface roughness in a driven one-dimensional quasiperiodic model, Phys. Rev. B. 109 (3) 
(2024) 035164.

48. Bhakuni D. S., Lev Y. B., Dynamic scaling relation in quantum many-body systems, Phys. Rev. 
B. 110 (1) (2024) 014203.

49. Fujimoto K., Hamazaki R., Kawaguchi Y., Family – Vicsek scaling of roughness growth in a 
strongly interacting Bose gas, Phys. Rev. Lett. 124 (21) (2020) 210604.

50. Dubrovskii V. G., Berdnikov Yu. S., Natural scaling of size distributions in homogeneous and 
heterogeneous rate equations with size-linear capture rates, J. Chem. Phys. 142 (12) (2015) 124110.

51. Dubrovskii V. G., Sibirev N. V., Analytic scaling function for island-size distributions, Phys. 
Rev. E. 91 (4) (2015) 042408.

52. Dubrovskii V. G., A general solution to the continuum rate equation for island-size distributions: 
Epitaxial growth kinetics and scaling analysis, Nanomaterials. 15 (5) (2025) 396. 

53. Albao M. A., Evans M. M. R., Nogami J., et al., Monotonically decreasing size distributions for 
one-dimensional Ga rows on Si(100), Phys. Rev. B. 72 (3) (2005) 035426.

54. Javorský J., Setvín M., Oštádal I., et al., Heterogeneous nucleation and adatom detachment at 
one-dimensional growth of In on Si (100)-2 × 1, Phys. Rev. B. 79 (16) (2009) 165424.

55. Liu H., Reinke P., Formation of manganese nanostructures on the Si(100)-(2×1) surface, Surf. 
Sci. 602 (4) (2008) 986–992.

56. Rothman A., Dubrovskii V. G., Joselevich E., Kinetics and mechanism of planar nanowire 
growth, Proc. Nat. Acad. Sci. USA. 117 (1) (2020) 152–160.

СПИСОК ЛИТЕРАТУРЫ

1. Ning C.-Z., Dou L., Yang P. Bandgap engineering in semiconductor alloy nanomaterials with 
widely tunable compositions // Nature Reviews Materials. 2017. Vol. 2. 31 October. P. 17070.

2. McIntyre P. C., Morral A. F. I. Semiconductor nanowires: To grow or not to grow? // Materials 
Today Nano. 2020. Vol. 9.  March. P. 100058.

3. Wagner R. S., Ellis W. C. Vapor-liquid-solid mechanism of single crystal growth // Applied 
Physics Letters. 1964. Vol. 4. No. 5. Pp. 89–90.

4. Colombo C., Spirkoska D., Frimmer M., Abstreiter G., Morral A. F. I. Ga-assisted catalyst-free 
growth mechanism of GaAs nanowires by molecular beam epitaxy // Physical Review B. 2008. Vol. 
77. No. 15. P. 155326.

5. Aseev P., Fursina A., Boekhout F., et al. Selectivity map for molecular beam epitaxy of advanced 
III–V quantum nanowire networks // Nano Letters. 2019. Vol. 19. No. 1. Pp. 218–227.

6. Dubrovskii V. G., Glas F. Vapor–liquid–solid growth of semiconductor nanowires // N. Fukata, 
R. Rurali (Eds.) Fundamental properties of semiconductor nanowires. Singapore: Springer Nature Pte 
Ltd., 2020. Pp. 1–38.



45

Simulation of physical processes

7. Seifert W., Borgstrom M., Deppert K., et al. Growth of one-dimensional nanostructures in 
MOVPE // Journal of Crystal Growth. 2004. Vol. 272. No. 1–4. Pp. 211–220.

8. Plante M. C., LaPierre R. R. Analytical description of the metal-assisted growth of III–V 
nanowires: Axial and radial growths // Journal of Applied Physics. 2009. Vol. 105. No. 11. P. 114304.

9. Harmand J. C., Glas F., Patriarche G. Growth kinetics of a single InP1–xAsx nanowire // Physical 
Review B. 2010. Vol. 81. No. 23. P. 235436.

10. Mosiiets D., Genuist Y., Cibert J., Bellet-Amalric E., Hosevar M. Dual-adatom diffusion-
limited growth model for compound nanowires: Application to InAs nanowires // Crystal Growth 
Design. 2024. Vol. 24. No. 9. P. 3888.

11. Dubrovskii V. G. Nucleation-dependent surface diffusion in anisotropic growth of III–V 
nanostructures // Crystal Growth Design. 2024. Vol. 24. No. 15. P. 6450.

12. Zendrini M., Dubrovskii V., Rudra A., Dede D., Morral A. F. I., Piazza V. Nucleation-limited 
kinetics of GaAs nanostructures grown by selective area epitaxy: Implications for shape engineering 
in optoelectronic devices // ACS Applied Nano Materials. 2024. Vol. 7. No. 16. Pp. 19065–19074.

13. Semlali E., Avit G., André Y., Gil E., Moskalenko A., Shields P., Dubrovskii V. G.,  
Cattoni A., Harmand J.-Ch., Trassoudaine A. Circumventing the ammonia-related growth suppression 
for obtaining regular GaN nanowires by HVPE // Nanotechnology. 2024. Vol. 35. No. 26. P. 265604.

14. Dubrovskii V. G., Sibirev N. V., Berdnikov Y., Gomes U. P., Ercolani D., Zannier V., Sorba L. 
Length distributions of Au-catalyzed and In-catalyzed InAs nanowires // Nanotechnology. 2016. Vol. 
27. No. 37. P. 375602.

15. Dubrovskii V. G., Berdnikov Y., Schmidtbauer J., Borg M., Storm K., Deppert K., Johansson J. 
Length distributions of nanowires growing by surface diffusion // Crystal Growth Design. 2016. Vol. 
16. No. 4. Pp. 2167–2172.

16. Dubrovskii V. G. Length distributions of nanowires: Effects of surface diffusion versus nucleation 
delay // Journal of Crystal Growth. 2017. Vol. 463. 1 April. Pp. 139–144.

17. Dubrovskii V. G., Barcus J., Kim W. Does desorption affect the length distributions of nanowires? 
// Nanotechnology. 2019. Vol. 30. No. 47. P. 475604.

18. Glas F., Dubrovskii V. G. Self-narrowing of size distributions of nanostructures by nucleation 
antibunching // Physical Review Materials. 2017. Vol. 1. No. 3. P. 036003.

19. Koivusalo E., Hakkarainen T., Guina M. T., Dubrovskii V. G. Sub-Poissonian narrowing of 
length distributions realized in Ga-catalyzed GaAs nanowires // Nano Letters. 2017. Vol. 17. No. 9. 
Pp. 5350–5355.

20. Wen C.-Y., Tersoff J., Hillerich K., Reuter M. C., Park J. H., Kodambaka S., Stach E. A., 
Ross F. M. Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires 
// Physical Review Letters. 2011. Vol. 107. No. 2. P. 025503.

21. Jacobsson D., Panciera F., Tersoff J., Reuter M. C., Lechmann S., Hofmann S., Dick K. A., 
Ross F. M. Interface dynamics and crystal phase switching in GaAs nanowires // Nature. 2016. Vol. 
531. 17 March. Pp. 317–322.

22. Dubrovskii V. G. Refinement of nucleation theory for vapor–liquid–solid nanowires // Crystal 
Growth Desing. 2017. Vol. 17. No. 5. Pp. 2589–2593.

23. Glas F., Panciera F., Harmand J. C. Statistics of nucleation and growth of single monolayers in 
nanowires: Towards a deterministic regime // Physica Status Solidi (RRL) – Rapid Research Letters. 
2022. Vol. 16. No. 5. P. 2100647.

24. Glas F. Incomplete monolayer regime and mixed regime of nanowire growth // Physical Review 
Materials. 2024. Vol. 8. No. 4. P. 043401.

25. Becker R., Döring W. Kinetische Behandlung der Keimbildung in übersättigten Dämpfern // 
Annalen der Physik. 1935. Vol. 416. No. 8. Pp. 719–752.

26. Kashchiev D. Nucleation: Basic theory with applications. Oxford, UK: Butterworth-Heinemann, 
2000. 544 p.

27. Slezov V. V. Kinetics of first-order phase transitions. Berlin: Wiley-VCH Verlag GmbH & Co., 
2009. 415 p.

28. Кукушкин С. А., Осипов А. В. Процессы конденсации тонких пленок // Успехи физиче-
ских наук. 1998. Т. 168. № 10. С. 1083–1116. 

29. Ball J. M., Carr J., Penrose O. The Becker – Döring cluster equations: Basic properties and 
asymptotic behaviour of solutions // Communications in Mathematical Physics. 1986. Vol. 104. No. 
4. Pp. 657–692.



St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2025. Vol. 18. No. 4

46

30. Jun Y.-S., Zhu Y, Wang Y., Ghim D., Wu X., Kim D., Jung H. Classical and nonclassical 
nucleation and growth mechanisms for nanoparticle formation // Annual Review of Physical Chemistry. 
2022. Vol. 73. April. Pp. 453–477.

31. Wattis J. A. D., King J. R. Asymptotic solutions of the Becker – Döring equations // Journal 
of Physics A: Mathematical and General. 1998. Vol. 31. No. 34. P. 7169.

32. King J. R., Wattis J. A. D. Asymptotic solutions of the Becker – Döring equations with size-
dependent rate constants // Journal of Physics A: Mathematical and General. 2002. Vol. 35. No. 6. 
P. 1357.

33. Wattis J. A. D. A Becker – Döring model of competitive nucleation // Journal of Physics A: 
Mathematical and General. 1999. Vol. 32. No. 49. P. 8755.

34. Wattis J. A. D. Similarity solutions of a Becker – Döring system with time-dependent monomer 
input // Journal of Physics A: Mathematical and General. 2004. Vol. 37. No. 32. P. 7823.

35. Duncan D. B., Soheili A. R. Approximating the Becker – Döring cluster equations // Applied 
Numerical Mathematics. 2001. Vol. 37. No. 1–2. Pp. 1–29.

36. Álvarez-Cuartas J. D., Camargo M., González-Cabrera D. L. Colloidal model for nucleation 
and aggregation in one dimension: Accessing the interaction parameters // Physical Review E. 2024. 
Vol. 109. No. 6. P. 064604.

37. Tomellini M., De Angelis M. Fokker – Planck equation for the crystal-size probability density 
in progressive nucleation and growth with application to lognormal, Gaussian and gamma distributions 
// Journal of Crystal Growth. 2025. Vol. 650. 15 January. P. 127970.

38. Vicsek T., Family F. Dynamic scaling for aggregation of clusters // Physical Review Letters. 
1984. Vol. 52. No. 19. Pp. 1669–1672.

39. Bartelt M. C., Evans J. W. Exact island-size distributions for submonolayer deposition: Influence 
of correlations between island size and separation // Physical Review B. 1996. Vol. 54. No. 24. Pp. 
R17359 – R17362.

40. Vvedensky D. D. Scaling functions for island-size distributions // Physical Review B. 2000. Vol. 
62. No. 23. Pp. 15435–15438.

41. Körner M., Einax M., Maass P. Capture numbers and island size distributions in models of 
submonolayer surface growth // Physical Review B. 2012. Vol. 86. No. 8. Pp. 085403.

42. Evans J. W., Thiel P. A., Bartelt M. C. Morphological evolution during epitaxial thin film 
growth: Formation of 2D islands and 3D mounds // Surface Science Reports. 2006. Vol. 61. No. 1–2. 
Pp. 1–128.

43. Dieterich W., Einax M., Maass P. Stochastic theories and scaling relations for early-stage 
surface growth // The European Physical Journal. Special Topics. 2008. Vol. 161. No. 1. Pp. 151–165.

44. Einax M., Dieterich W., Maass P. Colloquium: Cluster growth on surfaces: Densities, size 
distributions, and morphologies // Reviews of Modern Physics. 2013. Vol. 85. No. 3. Pp. 921–939.

45. Gibou F. G., Ratsch C., Caflisch R. E. Capture numbers in rate equations and scaling laws for 
epitaxial growth // Physical Review B. 2003. Vol. 67. No. 15. Pp. 155403.

46. Álvarez-Cuartas J. D., González-Cabrera D. L., Camargo M. Epitaxial growth in one dimension 
// Journal of Physics: Condensed Matter. 2024. Vol. 36. No. 46. P. 463001.

47. Aditya S., Roy N. Family – Vicsek dynamical scaling and Kardar-Parisi-Zhang-like superdiffusive 
growth of surface roughness in a driven one-dimensional quasiperiodic model // Physical Review B. 
2024. Vol. 109. No. 3. P. 035164.

48. Bhakuni D. S., Lev Y. B. Dynamic scaling relation in quantum many-body systems // Physical 
Review B. 2024. Vol. 110. No. 1. P. 014203.

49. Fujimoto K., Hamazaki R., Kawaguchi Y. Family – Vicsek scaling of roughness growth in a 
strongly interacting Bose gas // Physical Review Letters. 2020. Vol. 124. No. 21. P. 210604.

50. Dubrovskii V. G., Berdnikov Yu. S. Natural scaling of size distributions in homogeneous and 
heterogeneous rate equations with size-linear capture rates // The Journal of Chemical Physics. 2015. 
Vol. 142. No. 12. P. 124110.

51. Dubrovskii V. G., Sibirev N. V. Analytic scaling function for island-size distributions // Physical 
Review E. 2015. Vol. 91. No. 4. P. 042408.

52. Dubrovskii V. G. A general solution to the continuum rate equation for island-size distributions: 
Epitaxial growth kinetics and scaling analysis // Nanomaterials. 2025. Vol. 15. No. 5. P. 396.



47

Simulation of physical processes

53. Albao M. A., Evans M. M. R., Nogami J., Zorn D., Gordon M. S., Evans J. W. Monotonically 
decreasing size distributions for one-dimensional Ga rows on Si(100) // Physical Review B. 2005. Vol. 
72. No. 3. P. 035426.

54. Javorský J., Setvín M., Oštádal I., Sobotic P., Kotria M. Heterogeneous nucleation and 
adatom detachment at one-dimensional growth of In on Si (100) -2 × 1 // Physical Review B. 2009. 
Vol. 79. No. 16. Pp. 165424.

55. Liu H., Reinke P. Formation of manganese nanostructures on the Si(100)-(2×1) surface // 
Surface Science. 2008. Vol. 602. No. 4. Pp. 986–992.

56. Rothman A., Dubrovskii V. G., Joselevich E. Kinetics and mechanism of planar nanowire growth 
// Proceedings of the National Academy of Sciences of the USA. 2020. Vol. 117. No. 1. Pp. 152–160.

THE AUTHORS

DUBROVSKII Vladimir G.
St. Petersburg State University
7 – 9 Universitetskaya Emb., St. Petersburg, 199034, Russia
dubrovskii.ioffe@mail.ru
ORCID: 0000-0003-2088-7158

LESHCHENKO Egor D. 
Submicron Heterostructures for Microelectronics, Research & Engineering Center, RAS 
26 Politekhnicheskaya St., St. Petersburg, 194021, Russia 
leshchenko.spb@gmail.com
ORCID: 0000-0002-2158-9489

СВЕДЕНИЯ ОБ АВТОРАХ

ДУБРОВСКИЙ Владимир Германович – доктор физико-математических наук, профес-
сор кафедры физики твердого тела Санкт-Петербургского государственного университета, 
Санкт-Петербург, Россия.

199034, Россия, г. Санкт-Петербург, Университетская наб., 7 – 9
dubrovskii.ioffe@mail.ru
ORCID: 0000-0003-2088-7158

ЛЕЩЕНКО Егор Дмитриевич – кандидат физико-математических наук, младший научный 
сотрудник Научно-технологического центра микроэлектроники и субмикронных гетероструктур 
РАН, Санкт-Петербург, Россия.

194021, Россия, г. Санкт-Петербург, Политехническая ул., 26
leshchenko.spb@gmail.com
ORCID: 0000-0002-2158-9489

© Санкт-Петербургский политехнический университет Петра Великого, 2025

Received 24.05.2025. Approved after reviewing 23.06.2025. Accepted 23.06.2025.
Статья поступила в редакцию 24.05.2025. Одобрена после рецензирования 23.06.2025. 

Принята 23.06.2025.


