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Abstract. High-speed data transfer is becoming increasingly necessary for modern satellite 
communication systems. To address growing bandwidth demands, optical technologies are proposed. 
Here we investigate an approach to designing an uplink optical communication system based on the 
acousto-optic modulation scheme. The preliminary findings suggest the applicability of this strategy 
to provide reliable communications with data rates up to 2.4 Mbps and a bit error rate of 10–9.
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Аннотация. Высокоскоростная передача данных становится все более необходимой 
для современных спутниковых систем связи. В связи с этим для удовлетворения 
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растущих потребностей предлагается использовать оптические технологии. Здесь мы 
исследуем подход к разработке системы оптической связи со спутником на основе схемы 
акустооптической модуляции. Предварительные результаты показывают применимость 
этого подхода для обеспечения надежной связи со скоростью передачи данных до 
2,4 Мбит/с и частотой битовых ошибок 10–9.
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Introduction
Modern satellite communication systems are experiencing growing demand for high-speed 

data transmission, driven by advancements in Earth remote sensing [1–3], inter-satellite commu-
nications [4–6], and satellite-based quantum key distribution [7–9]. The integration of laser com-
munication into these fields—as opposed to traditional radio frequency technology – has emerged 
as a promising solution to meet this demand and offering higher bandwidth, lower latency, and 
greater resistance to electromagnetic interference. To address this challenge, our team deployed 
the Impulse-1 satellite (a 6U CubeSat) in 2023, with the goal of demonstrating bidirectional free-
space optical communication [10].

To date, research has predominantly focused on downlink communication channels rather 
than uplinks, as the volume of downlink data significantly exceeds that of uplink trans-
missions. Moreover, uplink signals experience greater atmospheric attenuation due to tur-
bulence and scattering, which demands a high-power laser source and external modula-
tion. In this work, we present an optimized ground-to-satellite laser communication system 
based on a high-power laser module, a free-space acousto-optic modulator (AOM), and 
Manchester encoding.

Methods and Results

External modulation of the laser beam is achieved through Bragg diffraction in an acousto-optic 
crystal. A piezoelectric transducer converts an applied radio frequency (RF) signal into an ultra-
sonic wave that propagates through the crystal. The resulting ultrasonic wave induces periodic 
variations in the crystal’s refractive index, creating a volumetric phase grating within the material. 
The diffraction order depends on the incident light angle relative to the modulator. The maximum 
diffraction efficiency is achieved when the laser beam enters the crystal at the Bragg angle. This 
angle can be calculated using the Wulff–Bragg condition:
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where λ is the wavelength of incident light, Λa is the acoustic wavelength, n is the refractive index 
of the acousto-optic crystal, fRF is the frequency of the ultrasonic wave, and Vs is the speed of 
sound in the crystal.

The diffraction efficiency and amplitude modulation of light can be expressed as
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where L and W are the length and width of the piezoelectric transducer, M2 is the acousto-optic 
quality factor, and PRF is the RF signal power.

The intensity of the diffracted light can be varied by adjusting the PRF. In our case, the maxi-
mum efficiency value was 85%. The main system parameters are listed in Table 1.

The AOM can be controlled using an RF driver, which is equipped with analog and digital inputs. 
The analog input adjusts the amplitude of the output RF signal. The digital input controls the sig-
nal waveform. By default, the driver’s output RF signal is a sinusoidal waveform with a frequency 
of 68 MHz. Fig. 1 shows the experimental setup for testing optical communication technology.

The proposed communication system employs a multimode fiber laser module with a power 
output of 35 W. For experimental validation, we used a commercial single-mode 808 nm laser 
diode as the light source, integrated into a custom-designed driver and coupled via multimode 
fiber to a collimator. The emitted light was focused by a lens into the center of the AOM crys-
tal and then recollimated using the same lens to minimize divergence. The incidence angle was 

Fig. 1. Experimental setup for demonstrating of the communication system:
LD is the laser diode, VOA is the variable optical attenuator, COL is the collimator, L is the 
lens, AOM is the acousto-optic modulator, APD is the avalanche photodiode, OSC is the digital 

oscilloscope, FPGA is the field-programmable gate array, PC is the personal computer

Tab l e  1

Main system parameters

Optical parameters Acoustic parameters

λ 808 nm fRF 68 MHz n 1.46 (SiO2) L 30 mm

PTX 35 W PRF 20 W Vs 5960 m/s W 5 mm

PRX 5 µW θB 3.2 mrad Trise/fall 40 ns/mm M2 1.56e–15 m2/W

Notations: PTX and PRX are the optical powers of transmitter and receiver, respectively.
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precisely adjusted to maximize diffraction efficiency. The field programmable gate array (FPGA) 
generates the data signal and transmits it to the AOM driver. At the physical layer, we used 
Manchester encoding. The modulated laser beam was then focused onto an avalanche photodi-
ode for optical-to-electrical signal conversion. The electrical signal was recorded using a digital 
oscilloscope and further processed by the FPGA.

We evaluated the modulation depth (MD), quality factor (Q), and bit error rate (BER) across 
different data rates at an optical power of 5 µW. At data rates up to 2 Mbps, the MD equaled 
100%, while at 4 Mbps, it decreased to 50% (see Fig. 2, a). For error rate assessment, we adhered 
to the stringent industry standard of BER ≤ 10–9 [11, 12], which requires an Q ≥ 6 [13]. The sys-
tem meets these specifications at data rates up to 2.4 Mbps (see Fig. 2, b).

System performance parameters are calculated by following equations:
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Conclusion

The maximum data rate at a specified BER was determined experimentally. We have demon-
strated that laser communication with a satellite as part of the Impulse-1 mission is feasible 
using a technical solution such as acousto-optic modulation based on Manchester encoding at 
2.4 Mbps with BER of 10–9.

REFERENCES

1. Hui M., Zhai S., Wang D., et al., A review of leo satellite communication payloads for integrated 
communication, navigation, and remote sensing: Opportunities, challenges, future directions, IEEE 
Internet of Things Journal. (2025).

2. Fevgas G., Lagkas T., Sarigiannidis P., Argyriou V., Advances in remote sensing and propulsion 
systems for earth observation nanosatellites, Future Internet. 17 (1) (2025) 16.

a)	 b)
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