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Effect of GaAs buffer layer on the characteristics of GaAs nanowires 
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Abstract. The possibility of depositing colloidal nanoparticles onto an amorphous GaAs 

layer grown on Si(111) substrates and the direct molecular beam epitaxy of size-uniform GaAs 
nanowires with diameters below 20 nm were demonstrated. Examination of the nanowires re-
vealed a nearly pure wurtzite crystal structure with low stacking fault density.
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Аннотация. Показана возможность осаждения коллоидных наночастиц на аморфный 
слой GaAs, выращенный на поверхности Si(111) подложек. С использованием полученных 
подложек методом молекулярно-пучковой эпитаксии продемонстрирован прямой 
рост однородных по размеру GaAs нитевидных нанокристаллов с диаметром менее 
20 нм. Установлено, что формируемые нитевидные кристаллы обладают вюрцитной 
кристаллической структурой с низким количеством дефектов упаковки.
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Introduction

During recent years, semiconductor nanowires (NWs) have attracted great attention due to 
their unique optical and electronic properties. On the practical side, semiconductor NWs are 
very attractive for the direct integration of III-V materials on Si, opening up new possibilities for 
the design and fabrication of various applications, such as light-emitting diodes [1], field-effect 
transistors [2], etc. For a large number of devices, it is essential to synthesize ensembles with well-
defined dimensions, size, shape, and phase purity of NWs because even small variations in size 
can have a large effect on overall device performance. Up to now, the most common technique 
for NW synthesis is vapor-liquid-solid growth using Au metal seed particles, which act as catalysts 
to initiate and guide the growth, directly controlling both diameter and orientation. Recent 
advances in this area have demonstrated the use of size-selected colloidal particles as seeds for 
MBE growth of GaAs NWs directly on Si [3−5]. However, there are several key issues concerning 
the use of colloidal nanoparticles as seed particles for the growth of NWs on Si. Specifically, the 
formation of GaAs NWs with diameters of about 50–100 nm is typically observed despite the 
use of nanoparticles 2–20 nm in diameter [4]. Besides that, diameter stabilization at the early 
growth stages also results in the tapering of NW bases [5]. The observed NW broadening effects 
are assumed to be due to the presence of Si atoms in the catalyst, which diffuse into the droplet 
during the high-temperature annealing of Au nanoparticles deposited on Si substrates [5−7].

In this work, we investigate the deposition of gold colloidal nanoparticles on a thin amorphous 
GaAs layer grown on Si(111) and how the presence of this GaAs layer affects the Au-assisted 
growth of GaAs NWs.

Materials and Methods
A Compact 21 Riber MBE system was used for the growth experiments. The investigations 

were carried out using a gold colloid containing 10-nm-diameter nanoparticles and Si(111) wafers. 
Two approaches for colloid deposition were applied. In the first case, colloid deposition was 
carried out on Si(111) substrates covered by native oxide with an Ar-plasma-irradiated surface. 
The plasma treatment was performed to improve the wetting properties of the silicon surface, 
enabling the direct deposition of Au nanoparticles onto the substrate [7]. In the second case, 
Si(111) substrates were etched by dipping in an HF solution to remove the native SiO2 layer. After 
etching, the substrates were immediately loaded into the MBE chamber to prevent the formation 
of a new SiO2 layer. The substrates were then annealed at 800 °C, after which a GaAs layer with 
a thickness of 50 nm was grown at 330 °C. Finally, the substrates were unloaded for colloidal 
deposition and loaded back for NW growth.

After the preparation step, NW growth was carried out. Upon loading the substrates, the 
temperature was ramped up to 520 °C and maintained throughout the process. NW growth was 
initiated by the simultaneous opening of the Ga and As shutters and lasted for 10 min. The Ga 
deposition rate was 0.9 ML/s, and the V/III flux ratio was ~20. After growth completion, the 
samples were cooled to room temperature and unloaded for morphological characterization via 
scanning electron microscopy (SEM) and transmission electron microscopy (TEM).
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Fig. 1. GaAs NW ensembles grown on GaAs/Si(111) (a) and Si(111) surface without (b) and with (c) 
high-temperature annealing

Results and Discussion

It is well established that the specific surface states of silicon substrates significantly affect 
colloidal nanoparticle deposition [8]. The deposition of Au nanoparticles (NPs) from colloidal 
solutions has been previously demonstrated using short Ar plasma modification [4]. The wettability 
of the GaAs surface layer grown on Si(111) substrates was significantly improved, resulting in a 
homogeneous distribution of Au nanoparticles across the substrate.

Bird-view SEM images of the grown samples are shown in Fig. 1. As seen in the figure, 
GaAs NWs grown on the GaAs/Si(111) substrate exhibited near-vertical alignment, consistent 
with the {111} crystal orientation family. These NWs maintained a uniform diameter along their 
entire length. In contrast, most GaAs NWs grown directly on Si(111) were non-directional 
and exhibited pronounced tapering (Fig. 1, b). This non-ideal growth behavior is attributed to 
suboptimal annealing temperatures for the Au NPs. To address this issue, an additional annealing 
step at 850 °C was performed to remove the native oxide underneath the Au seed particles. 
This modification increased the number of vertically aligned GaAs NWs. However, the NW 
morphology remained inhomogeneous, with noticeable tapering at both the bases and tips. The 
narrowing of the NW bases suggests the incorporation of Si atoms from the substrate into the 
Au-Ga catalyst droplet.

Fig. 2. TEM images of GaAs NW grown on GaAs/Si(111) substrate. Right inset is the diffraction 
pattern corresponded to wurtzite crustal structure

Cross-sectional SEM imaging was used to determine the mean nanowire (NW) diameters. 
For GaAs NWs grown on GaAs/Si(111), the diameters of ten carefully measured nanowires 
ranged from 13 to 18 nm. In contrast, GaAs NWs grown directly on Si(111) exhibited a mean 
diameter approximately five times larger, despite the use of identical seed nanoparticles and growth 
conditions. The average NW length was similar for both samples, measuring approximately 2 µm.

Characterization of thin GaAs NWs by scanning TEM (STEM) was conducted in high angular 
annular dark field mode. GaAs NW in Fig. 2 exhibited a wurtzite structure. It was uniform along 
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its length and shows no evidence of zinc-blend structure segmentation. Actually, stacking faults 
density was found to be around 0.5 µm−1. The diameter of GaAs NW, measured next to NW tops, 
was found to be consistent with diameter of the 10 nm Au seed nanoparticle used. It indicates 
the Au-rich growth regime. Meanwhile, the slight increase in diameter towards the NW base 
was likely due to radial growth during the later growth stage. This result show a possibility of 
exploiting the bandgap engineering and quantum confinement effects in GaAs.

Conclusion
In summary, the possibility of depositing colloidal nanoparticles onto an amorphous GaAs 

layer grown on Si(111) substrates and direct molecular beam epitaxy of size-uniform GaAs 
nanowires with diameters below 20 nm was demonstrated. Examination of nanowires revealed 
nearly pure wurtzite crystal structure with low stacking fault density.


