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Abstract. In this work we present the experimental results on the molecular-beam epitaxy
growth of wurtzite AlGaAs nanowires with nanoscale zinc-blende insertions on silicon sub-
strate. Structural characterization confirmed the formation of zinc-blende nanoscale segments
within the wurtzite nanowire matrix. Autocorrelation function measurements for emission at
710 nm have shown the characteristic dip at zero time delay, which indicates that the synthe-
sized nanostructures are sources of single photons.
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AnHotanusa. B paboTe TpencTaBieHBl Pe3ydbTaThl 3KCIEPUMEHTATBHBIX WCCIEIOBAaHUN

MO POCTY METOJOM MOJIEKYJISIPHO-TTyYKOBOW 3MUTAKCUU BIOPUUTHBIX AlGaAs HUTEBUIHBIX
HAHOKPHUCTAJIJIOB C HAHOpPa3MEpPHbIMM BCTaBKaMM KyOMuYecKoil KpucTtamiorpaduyeckoi
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(a3pl Ha MOBEPXHOCTH KpeMHMsI. Pe3yabTaTbl HUCCAEHOBAHUI CTPYKTYPHBIX CBOMCTB
MoATBepaIuAn (OPMUPOBaHME BCTaBOK KyOMueckKoi (a3l B BIOpLUUTHYIO cTpykTypy HHK.
PesynbraTtel M3MepeHMit aBTOKOPPEASUMOHHON (DYHKLIMU TSI M3IYYEHUs] Ha JJIMHE BOJIHBI
710 HM IIPOAEMOHCTPUPOBAJIM XapaKTEPHBIN MPOBaJl MPU HYJICBOM BPEMEHHOM 3aepXKKe, UTO
XapaKTeprU3yeT CUHTE3MPOBaHHBIC HAHOCTPYKTYPHI KaK MCTOUHUKN OTWHOUYHBIX (POTOHOB.

KmoueBbie ciaoBa: HurteBumHble HaHOKpUcTaibl, AlGaAs, KBaHTOBbIE TOYKU, BIOPLMUT,
MOJIEKYJISIPHO-ITYYKOBAsT SIUTAKCHS
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Introduction

Nowadays, III-V semiconductor nanowires (NWs) are promising platform for nanoscale
devices due to their unique optoelectronic, electrophysical, transport and other properties [1, 2].
Recent advances in NWs formation enable integration of quantum dots (QDs) in the NWs matrix,
allowing precise control over QDs’ size and position, which define physical properties of QDs.
In turn, I1I-V QDs are particularly promising as single photon sources, essential components for
quantum communication and computing [3]. Moreover, the unique morphology of NWs allows
the synthesis of such nanostructures directly on the silicon surface [4, 5]. However, the growth
of QDs in NWs based on different material systems may come with a set of challenges, due to
the possible reservoir effect during catalytic growth or significant mismatch of lattice constants. It
has been shown previously that varying the growth conditions during NWs synthesis, for example
III/V flux ratio, enables reversible alternation of the catalyst droplet’s contact angle and change
the crystallographic phase of the growing NW segment [6]. Furthermore, it was demonstrated
that bands offset between the wurtzite (WZ) and zinc-blende (ZB) crystal phases can lead to an
indirect electron-hole pair recombination [7] and formation of QDs within the single material
system for III-V NWs, including GaAs, InAs and InP NWs, which can be sources of single
photons [8]. However, to expand the number of applications, it is necessary to increase the
range of compositions for such nanostructures. Previously, we have shown the possibility of Au-
catalyzed WZ AlGaAs NWs on silicon for the first time and demonstrated their potential as a
promising material system for optoelectronic applications [9, 10]. Formation of crystal phase QDs
in such NWs could further increase the range of applications based on this material.

In this work we demonstrate the results of experimental studies on the Au-catalyzed WZ
AlGaAs NWs with ZB nanoscale insertions growth by molecular-beam epitaxy (MBE) on Si(111).
It was shown for the first time that AlGaAs NWs could be sources of single photons according to
autocorrelation function measurements results.

Materials and Methods

Growth experiments were carried out using a Riber Compact 21 MBE setup equipped with
Ga and Al effusion cells, As cracker source and additional metallization chamber. The one-
side polished p-type Si wafers with surface orientation (111) were used as the substrates for
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MBE growth. Initially, native oxide layer was removed by wafer etching in aqueous solution of
hydrofluoric acid (10:1). Then the substrate was loaded into the metallization chamber where it was
annealed at 850 °C for 20 minutes to remove residual oxide layer. Then substrate temperature was
decreased to 550 °C and a 1 nm layer of Au was deposited onto the surface. The substrate was kept
at the same temperature for one minute to form gold droplets on substrate. On the next stage the
substrate was transferred into the growth chamber without breaking ultra-high vacuum conditions.
In growth chamber the substrate temperature was increased to 510 °C and As shutter was open.
After stabilization of As flux, Al and Ga shutters were opened simultaneously for 20 minutes
initiating AlIGaAs NWs growth. In order to form ZB segments As flux was periodically decreased
from 1-107 Torr to 4-10°¢ Torr by source aperture modulation from 100% to 45% for 5 seconds.
The aperture response time was ~1 second. Although As is not pumped instantly from growth
chamber, the growth conditions on the substrate surface change rapidly from group V-stabilized
to group III-stabilized and back [8]. The fluxes from the Ga and Al sources corresponded to
AlGaAs layer growth rate of 1 monolayer per second at a Ga/Al ratio of 0.5/0.5 according to
preliminary calibrations.

Morphological properties of grown samples were studied using a Carl Zeiss Supra 25 scanning
electron microscopy (SEM) system. Structural properties of single NWs were studied using Jeol
2100 transmission electron microscopy (TEM) system. Correlation measurements were performed
using the optical stand equipped with the cryostat, monochromator, lasers for excitation of
nanostructures and single photon detectors.

Results and Discussion

Figure 1, a demonstrates the typical SEM image of grown AlGaAs NWs array on Si(111)
substrate. As can be seen from the figure, AlGaAs NWs formed strictly in [111] direction which
indicates their epitaxial bond with the substrate. The average height of the NWs is 1.4 pm.
It should be noted that the NWs have a non-uniform diameter in height — 140 nm at the base
and 30 nm at the top of the NWs. The average NWs surface density is ~2-10” cm™ which allows
exciting a single NW using the laser with a spot area of 1 um.
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Fig. 1. Typical SEM image of grown AlGaAs NWs array on Si(111) substrate (a). Typical TEM image
of the AlGaAs NW segment. The insert shows the results of the autocorrelation function measurements
for emission at the wavelength of 710 nm (b)

Figure 1, b shows typical TEM image of the AlGaAs NW segment. It can be seen that
NW segment demonstrates predominately WZ crystal structure with a presence of nanoscale ZB
insertion. The height of the ZB insertion is ~2 nm. The insert to Fig. 1, b shows the results of
the autocorrelation function measurements for photoluminescence emission at the wavelength
of 715 nm, corresponding to AlGaAs [9]. The characteristic dip of the function at zero time
indicates that the synthesized nanostructures are sources of single photons. It should be noted that
the high noise level is associated with the short measurement time.

150



4 Atom physics and physics of clusters and nanostructures

Conclusion

In summary, we demonstrated the MBE growth of WZ AlGaAs NWs with ZB insertions on
the silicon surface using Au as a catalyst. The height of the ZB insertion studied using TEM
is ~2 nm. The characteristic dip of the autocorrelation function at zero time indicates that the
synthesized nanostructures are sources of single photons. These results open up new prospects for
creating devices in the field of quantum technologies.
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