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Abstract. The effect of coalescence and aggregation processes on the memristive proper-
ties of silver nanoparticle assemblies has been investigated. Nanoparticles were prepared by
vacuum-thermal evaporation on silicon substrates with gold electrodes and quartz glasses for
morphological control. The structure of the samples and size distribution of nanoparticles were
studied using scanning electron microscopy (SEM) and UV-visible spectroscopy. Memristive
properties were estimated using cyclic voltammetry. Due to Ostwald ripening and an increase
in average nanoparticle size, the operating voltage required to switch the system into the mem-
ristive state decreased, while the conductivity dynamics changed. These findings are useful for
ensuring the stability of memristive devices based on silver nanoparticle assemblies.
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AnHoraumua. VccinenyeTcss BAMSIHHME TIPOLIECCOB  KOAJECHEHLIMM U arperalydu  Ha
MEMPHUCTUBHBIC CBOMCTBA aHCaMOJeil HaHouacTull cepedpa. CrucTeMbl HAHOYACTUL MOJAYUEHbI
METOJIOM BaKyyM-TEPMMUUYECKOTO WCIIAPEHUSI HAa KPEMHUEBBIE MOMIOXKU C 30JIOTBIMU
2JIEKTPOAaMU M Ha KBapleBble CTeKja IJIs1 KOHTpoJsg Mopdoysoruu. Mop@dosoruio 4acTuil
aHaIM3upoBaau MeTogaMu POM n YD -BunmMoii CIIeKTpOCKOTINT, a MEMPUCTUBHEIC CBOMCTBA
C TTIOMOILBIO LIUKJIMYECKOU BOJbTaMIEPOMETPUU. BeaeacTBue oCTBaIbI0BCKOTO CO3pEBAHUS U
YBEJIMYEHUS CpeIHero pa3Mepa HaHOUACTULL, CHUKAETCS paboyee HaIpsKeHue, HeoOXoaumMoe
U1 NEPEeKIIYEHUST CUCTEMbl B MEMPUCTUBHOE COCTOSIHME, IIPU 3TOM U3MEHSETCS
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JUHAMKMKa TpoBoauMOoCTu. [IpuBeaeHHbIE OLICHKH MOJIE3HbI IJis 00ecleueHus CTabIbHOCTU
padoOThl MEMPUCTUBHBIX YCTPOMCTB HAa OCHOBE aHcaMOJieli HaHOYaCTULl cepedpa.
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Introduction

Silver nanoparticles and nanowires are promising materials for the development of neuromorphic
computing devices. Their main advantages include (1) the ability to scale, (2) the technological
simplicity of application to various substrates, and (3) the presence of complex nonlinear dynamic
characteristics [1—3]. In such systems, a self-organizing network of discrete memristive elements
is formed, separated by nanometer gaps, where each nanoobject functions as an independent
memristor [4]. The applied electric field induces the formation of atomically thin conductive
filaments (filaments) between the nanoparticles, which is clearly detected by the characteristic
hysteresis loops on the volt-ampere characteristics [5—7].

Experimental studies [8, 9] confirm the prospects of using nanoscale silver structures for
processing time signals and solving predictive tasks. The main advantage of such systems is the
implementation of the principle of reservoir computing, where learning affects only the output
connections, while the internal network of nanoelements retains the same random configuration
of connections. However, the key limitation of this technology is the temporary instability of
silver nanostructures caused by the processes of coalescence (gradual particle enlargement) and
aggregation (cluster formation), which leads to degradation of the original network architecture
and deterioration of its functional characteristics. This work presents the results of a study of the
temporal dynamics and the effect of coalescence and aggregation processes in an ensemble of
silver nanoparticles on the memristive properties. It has been revealed that, in order to practically
apply such systems, it is necessary to address the issue of nanoparticle stabilization, which can be
accomplished by either modifying the surface of silver structures or by using additional materials
that have increased resistance to structural changes [10].

Materials and Methods

Experimental samples were obtained by vacuum thermal deposition of silver onto a thermally
oxidized silicon substrate, with a gap of either 2 or 20 microns (depending on the weight of the
sample), between two gold electrodes. Silver weights of 0.62 mg, 1.18 mg, 3.34 mg, 4.71 mg, 6.06
mg, 10.05 mg, 15.06 mg, 17.2 mg, and 20.05 mg were selected for deposition. Simultaneously,
deposition also occurred on quartz glass, for further investigation into the temporal dynamics of
structural changes using optical spectroscopy (UV-VIS spectrometer, Thermo Fisher Scientific, US).
After deposition, all samples underwent vacuum annealing at 230°C for 30 minutes.

The geometric dimensions of the nanoparticles were estimated from the SEM images obtained
using the FEI Helios NanoLab 650i DualBeam electron-ion scanning microscope. To calculate
the average values of nanoparticle diameters and distances between them, a Python program
was developed, which uses the Delaunay method for distance calculation. Voltammograms were
obtained for experimental samples using a probe station (Cascade Microtech Summit, US) and
a B1500A parametric analyzer (Keysight, US). All samples were stored in a nitrogen-dry storage
cabinet at 23 £ 2 °C and 14 * 2% humidity.
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Results and Discussion

Figure 1 shows the results obtained for the experimental samples in their original form. For
samples with an evaporated silver mass above 10 mg, the shape of the nanoparticles became distinct
from spherical and represented arbitrarily oriented cluster-like elements. This was confirmed by
both SEM images and the position of the surface plasmon resonance peak on optical spectra.
The distance between nanoparticles was comparable to their diameter. Over time, coalescence
and diffusion led to a characteristic Ostwald ripening process, accompanied by an increase in
nanoparticle size due to the system's tendency to minimize surface energy.
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Fig. 1. Optical spectra of annealed experimental samples (a) and their photo () on quartz glass (mass
increase from 0.62 mg to 20.05 mg from left to right), (¢) — (¢) SEM images for samples 3.34 mg,
10.05 mg and 20.05 mg respectively (from top to bottom). Scale bar for all SEM images is 100 nm

Figure 2 allows to estimate the rate of morphological change in nanoparticle ensembles over
time based on the dynamics of the redshift of the absorption peak and its broadening. The results
obtained confirm the general trend of nanoparticle enlargement over time. It is worth noting that
for large silver sample masses, the rate of change in the geometric dimensions of nanoparticles
is lower (for samples weighing 17.2 mg and 20.05 mg, the displacement was in the range of
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Fig. 2. Shift of the absorption maximum («) and its broadening (b) for different masses of silver bulk
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up to 5 nm during the presented time), which can be characterized as a more kinetically and
thermodynamically stable structure due to a reduction in the surface area to volume ratio, which
leads to a decrease in the driving force for minimizing surface energy. A more stable configuration
is an important parameter in the development of architecture for practical applications.

Figure 3 also shows the unimodal diameter distribution obtained from analyzing the SEM
image in the initial case, and the bimodal distribution after 2 months.

The decrease in the average diameter is explained by the appearance of many small
nanoparticles in close proximity to large “nuclei”, which is typical of Ostwald ripening. This
result was observed in all samples up to a mass of 10 mg, as it reproduced the known mechanism
of coalescence, including the stages of formation of a “neck” between adjacent nanoparticles,
followed by “spherification” and gradual relaxation towards a thermodynamically stable structure.
For elongated silver clusters with larger masses, it will take considerably longer to reach a spherical
shape, as they initially have a larger surface area.

After the “molding” process, all experimental samples of silver nanoparticles exhibited
characteristic memristive behavior and a hysteresis loop in their voltammograms. The less spherical
the nanoparticles were in the ensemble, the lower the value of the switching voltage required to
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Fig. 3. The result of processing SEM images in the program for a 4.71 mg sample: (@) the initial

ensemble, (b) after 2 months, (c¢) and (d) histograms of the diameter (d) size distribution via number of

particles (Q), respectively, and (e) and (f) - a histogram for the gaps sizes (dgap) between nanoparticles.

The scale bar on the SEM is 200 nm, the boundaries of the nanoparticles are outlined in green, and
the distances taken into account are in red
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transition to the conductive state. This behavior can be explained by the presence of areas with
higher electric field strength near elongated protrusions on the nanoparticles, which facilitate the
formation of conductive pathways (filaments) in a more directed manner.

Over time, a gradual decrease in the “ON” voltage was observed, which is associated with the
gradual formation of areas of large clusters, remaining after the incomplete destruction of the
percolation cluster by voltages of different polarities. For small spherical nanoparticles, this is also
due to their gradual enlargement. There was also an asymmetry of the hysteresis curve for small
nanoparticles (Fig. 4) and a decrease in the number of intermediate “memory” states for large
ones (a more rectangular loop shape).
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Fig. 4. Voltammograms for samples of 4.71 mg silver (a), 10.05 mg (b) and 17.2 mg (c¢). The curves
for the initial state are highlighted in black, and after 8 weeks — in red

Conclusion

The paper presents the results of a study on the coalescence dynamics of ensembles of silver
nanoparticles with various sizes (ranging from 5 nm to 200 nm, for evaporation masses of 0.62 mg
and 20.05 mg, respectively), and its impact on the memristive properties. The observed slow
relaxation of these systems towards a thermodynamically stable structure leads to changes in the
morphology and geometric dimensions of the nanoparticles, which affects the control switching
voltage and the operating characteristics. The smaller the nanoparticles are, the greater the ratio
of their surface area to their volume, and therefore, the higher the mobility of surface atoms.
Therefore, nanoparticles require external conditions for limiting coalescence to stabilize the
system and reduce the frequency of tuning output connections.
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