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Abstract. Formation of new devices of flexible and organic electronics requires new materi-
als. One of the perspective classes of materials is graphene derivatives. To enhance wettability of
polymer substrates we used multicomponent graphene oxide suspension with further reduction
of obtained films with laser irradiation. We used UV and IR lasers for local reduction of these
films to form transistors and biosensors. Graphene oxide film from 0.93 mg/ml suspension with
lacquer thinner was successfully deposited and reduced for BGTE transistor formation. Re-
duced graphene oxide film acted as an n-type semiconductor with 2—8x10° cm?/V-s! mobility.
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Annoramus. Co3fgaHue HOBBIX YCTPOWCTB TMOKOW M OPraHUYECKOUN SJEKTPOHUKU TpeOyeT
HOBbIX MaTepuanoB. OQHUM M3 MEPCIEKTUBHBIX KJIACCOB MAaTEPUAJIOB SIBJISIIOTCS ITPOM3BOIHBIC
rpapeHa. JIyigd TIOBBIIIEHUS CMAYMBAaEeMOCTH IIOJIMMEPHBIX TIOMUIOKEK MCITOIbh30Bajlach
MHOTOKOMITOHEHTHAsl CyCNEeH3WsI OKcuMaa TIpadeHa ¢ TOCIeAyIoIMM BOCCTaHOBJICHUEM
TTOJTyYEHHBIX TIJICHOK JIa3epHBIM 00ydeHueM. Il JIOKaJIbHOTO BOCCTAHOBJICHUS 3TUX IJIEHOK
C HeTbI0 (hOPMHUPOBAHUS TPAH3UCTOPOB M OMOCEHCOPOB MCTONMb3oBaMCh Y®- n1 MK-1a3epsl.
[Tnenka oxcuna rpacdena us cycnensuu 0,93 mr/mi ¢ pacTBopuTesieM sl jiaka ObUia YCIeIHO
ocakeHa 1 BocCTaHOBIeHa 1151 popmupoBaHus TpaHsuctopa BGTE. BoccranoBneHHast reHka
okcuia rpadeHa Bea cedsl KakK MOJIyIPOBOAHUK N-TUIA C MOABXKHOCTBIO 2—8% 1073 cm?/B-c.

KioueBbie clioBa: yroia cMmaydBaHUS, OUCIIEPCUOHHAS cpeda, OKCHI TpadeHa,
BOCCTAHOBJICHHBII OKCHI rpadeHa, TOHKUE IUIEHKHW, TPAaH3UCTOP
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Introduction

Overcoming limitations of classic microelectronic technology has been one of the main points
of interest of scientists during last 30 years. Since the beginning of the 2000s, researchers have
tried to create or adopt new materials for electronics to obtain flexibility and overcome shape
limitations of electronic products.

Among the variety of new materials like fullerenes [ 1], nanotubes [2], organic semiconductors [3]
graphene derivatives seem to be the most perspective [4]. Graphene oxide (GO) is a material
that on one hand can be relatively easy deposited on the large area substrates and on the other
hand by the management of the presence of functional groups on its surface. The last fact allows
reduced graphene oxide (rGO) [5] to be either conducting of semiconducting. Such management
can be done by different techniques, including chemical and electrochemical [6, 7], thermal [§]
or laser [9], reduction. Presence of functional groups is attractive for other rGO applications,
especially for chemical and biosensors [10]. The use of laser for GO reduction may be the
most prospect due to the possibility of treatment localization and obtain different additional
chemical [11] effects in case of pico- and femtosecond lasers [12].

Wet deposition methods seem to be the most suitable for formation of large area graphene
oxide films. And such methods as spin- [13] and spray [14] coating are most perspective due to
the possibility of deposition of large-area uniform films. Management of suspension properties
can be done by varying its composition. Moreover, the effect of dispersion on the quality of GO
structure hasn’t been studied properly. According to the literature data [15-17] we found a set of
possible additional organic solvents based on its Hildebrand parameter (8T) that should be close
or higher than that of graphene oxide (6T = 25.4 MPa'??).

Based on the multicomponent GO suspension with thinner for lacquer paints as additional
component, we made macrosized uniform films for further local laser reduction. We showed the
possibility to use the cheap microsecond laser for local reduction of spin-coated GO film with
transistor channels formation. We obtained n-type rGO transistor with mobility in the range from
2x1073 cm?/V-s! to 8x1073 cm?/V-s! that can be used for flexible electronics.

Materials and Methods

For device formation we used 125 um thick polyethylene terephthalate (PET) film as a substrate
with 15x15 mm size. All substrates were mechanically precleaned with isopropanol with further
drying in a 4 atm air stream.

For GO film formation we used graphene oxide water suspension with 3.11 mg/ml concentration
was synthesized by the modified Hummers method (MIP Graphen LLC, Russian Federation).
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As additional component for better wettability we used thinner for lacquer paints (LT, Tamiya
Ink., Japan) with concentration 1.24 mg/ml. that is in range of 1—1.5 mg/ml that is suitable for
uniform film formation [18]. Also, Hildebrand parameter of the main component of this thinner
— ethylene glycol is 0T = 33 MPa'/.

GO deposition was obtained with the EZ4 spin-coater (LEBO Science, PRC) with the
following deposition profile: 1000 rpm for 60 sec with a further 30 min heat treatment in the low-
vacuum chamber VAC-24 (Stegler, PRC) at 110 °C. Gate (Al), Source and Drain (Ag) electrodes
deposited by thermal sputtering on a modified VUP-4 thermal evaporator (USSR). The thickness
of all electrodes was ~100 nm, measured by a quartz monitor crystal (INFICON AG, Germany).
For Gate passivation, we used anodic oxidation of Al on a self-designed laboratory setup under
30 V voltage. Local laser treatment was carried out by the self-designed system with a 445nm
solid-state laser facility with a motorized table. Output laser power was about 200 mW at a 30
MHz frequency. Treatment time in a spot (1.5x1073 mm?) was constant at 30 ms.

Raman spectra were obtained on an InVia Raman spectrometer (Renishaw, UK). FTIR
spectroscopy data for films was collected on the Nicolet iS10 (Thermo Scientific, USA) in
attenuated total reflectance mode. I—V curves of reduced graphene oxide transistors were
measured on Keithley 4200A (Tektronix, USA). Transfer curve measurements were done with
the next parameters: Source-Drain voltage was constant at 5 V in all cases; Gate-Source voltages
were measured in a range from —1 V to 10 V depending on the specific transistor. The thickness
of the GO film was measured on NTEGRA PRIMA SPM (NT-MDT, Russian Federation) in
semicontact mode with an NSG 30 cantilever: 320 kHz resonance frequency, 40 N/m force
constant (Tipsnano OU, Estonia).

Results and Discussion

Deposition of GO films were done with the use of multicomponent suspension with LT as
additional component and 1.24 mg/ml concentration. This suspension allows for better wettability
of PET substrate, and its characteristic drying time of about 70 seconds is very close to that of spin
coating process. Nevertheless, we observed much better adhesion in case of additional low vacuum
thermal treatment at 110 °C for 30 min. After abovementioned operations a thin GO film (thickness
about 80—-90 nm according to AFM data) that uniformly covers all the substrate was formed.

For investigation of laser modification, we used BGTE transistor configuration (Fig. 1) with
GO film (suspension with LT as additional component, 1.24 mg/ml) deposited on the passivated
gate electrode with further top source and drain electrode formation by thermal sputtering trough
the mask. Local laser treatment was carried out by the own-designed system with a 445nm solid-
state laser facility with a motorized table. For GO reduction, we used laser parameters that were
equal to ~35-37 mJ/cm?; the reduction process was made in a camera with nitrogen flow to
remove possible impurities arising in the reduction process. Reduced GO areas are shown in Fig. 1
(black regions). Reduction of GO was confirmed by Raman (Fig. 2) and IR spectroscopy (Fig. 3).
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Fig. 1. Scheme of rGO transistor the top view and cross-section
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A general view of Raman spectra of rGO correlates with results observed in [19, 20]. From
these articles, we can clearly identify high-intensity G, D and 2D bands. We also clearly observe
low-intensity D*, G*, D+G, and 2G bands. The relatively sharp and intensive 2D peak in our case
tells us that on one hand defects in rGO structure are partially healed, and GO film successfully
reduced, on the other the intensity of 2D band is much lower compared to the spectra typical for
the fully reduced GO. Thus, we assume that laser irradiation with 35-37 mJ/cm? results in partial
reduction of GO film which can be semiconduction due to opening of band gap.
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Fig. 2. Raman spectra of locally reduced graphene oxide in transistor channel

In IR spectra (Fig. 3), we clearly observe the presence of different bands, most of which are
common for graphene oxide and reduced graphene oxide. This fact is one more confirmation of
the partial reduction of the initial graphene oxide film. According to the literature data presented
in [21, 22] we can identify the next bands: two small bands at 2927 cm™ and 2849 cm™' are
asymmetric and symmetric CH, stretching of GO. The band at ~1720 cm™ is attributed to
the presence of carbonyl and carboxyl groups; the 1582 cm™' band comes from aromatic ring
stretching; the 1400 cm™! band comes from —OH bending in phenol etc. Thus, we can clearly
see the presence of different functional groups that mean partial reduction of graphene oxide.
Moreover, partial reduction can be used for the task of transistor formation due to the presence
of carbonyl and carboxyl groups (~1720 cm™' band).
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Fig. 3. FTIR spectra of locally reduced graphene oxide in transistor channel

After GO reduction, we made Source and Drain electrodes by thermal evaporation of Ag with
a thickness of about 100 nm (measured by a quartz detector in the evaporation camera). The total
number of substrates was 5, with four transistors on each substrate, i.e., we made measurements
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of 20 individual transistors. Measurement of CV characteristics was made in a nitrogen box with
special probes on Keithley 4200A semiconductor measurement station. The typical CV transfer
curve of the obtained rGO transistors is shown in Fig. 4.

As can be seen from Fig. 4, the n-type conductivity is observed. This fact correlates with the
result of the [23], where the n-type of p-type charge carriers and rGO film depend on reduction
temperature. For n-type charge carriers, rGO film should be reduced with temperatures in ranges
of 250-450 °C and from 800 to 1000 °C. According to the similarity of FTIR spectra in our article
and [23] we can assume the local reduction temperature in the range > 350—450 °C in our case.
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Fig. 4. Transfer CV curve of rGO transistor. IDS — Drain-Source Current, IGS — Gate-Source
current, VDS — Drain-Source voltage, VDS — Gate-Source voltage

The mobility of the rGO films was calculated from the CV characteristics of transistors. We
found that mobility is in the range from 2x103 cm?/V-s™! to 8x1073 cm?/V-s'!. This result is much
lower compared with data from [24, 25] and close to the results obtained in [26]. We attribute
relatively low mobility to the not full reduction of GO film. Nevertheless, such transistors can
be used in biosensor development due to transistor effect on one hand and presence of carboxyl
functional groups that is important sensitive biomolecule immobilization through the coupling
with carboxyl groups.

Conclusion

The work successfully demonstrated the possibility of formation of uniform GO films ready for
further local laser induced reduction by the use of additional organic component in the deposited
GO suspension with concentration in range 1-1.5 mg/ml. By the use of relatively cheap laser,
it is possible to obtain local reduction of graphene oxide film with formation of BGTE design
transistors, where the rGO film behaved as an n-type semiconductor. Despite the relatively low
mobility in range about 2—8x107 c¢cm?/V-s™!' partially reduced rGO films with the presence of
carboxyl functional groups can be used as basis for chemical or biosensor formation due to the
possibility of sensitive molecules’ immobilization.
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