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Abstract. There are a large variety of quantum key distribution (QKD) protocols, which 
can provide unconditional security even with practically possible coherent states instead single-
photon ones. Most of them require equal intensities of states emitted, which can be achieved 
only with some precision. However, in some state preparation schemes, for example, in those 
based on optical injection, equal intensities cannot be achieved without additional elements, 
which increases the cost and complexity of QKD setup. In this work we analyze the influence 
of different state intensities on achievable secret key rate in classical BB84 scheme.
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Аннотация. Существует большое количество протоколов квантового распределения 
ключа (КРК), которые способны гарантировать безусловную секретность даже с 
использованием когерентных состояний вместо однофотонных. Большинство из этих 
протоколов требуют одинаковой интенсивности посылаемых состояний. Однако, в 
некоторых схемах приготовления состояний, например, на основе оптической инжекции, 
состояния равных интенсивностей не могут быть получены без дополнительных 
элементов, что увеличивает стоимость и сложность установки КРК. В данной работе 
мы анализируем влияние различия интенсивностей приготавливаемых состояний на 
достижимую скорость генерации ключа в классическом протоколе BB84.
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Introduction

Quantum key distribution (QKD) protocols allow two distant users, often referred to as Alice 
and Bob, to distribute a secret key, which privacy is guaranteed by the laws of quantum mechan-
ics. They can be divided into two main families: discrete variable (DV) and continuous variable 
(CV) QKD. The DV QKD protocols are those, which encodes secrecy in finite set of optical 
modes. Basically, it is essential for such protocols to use single-photon states, however, since 
there are no reliable single-photon sources, in practice coherent states are generally employed. 
Fortunately, with slight modification, DV QKD protocols based on attenuated laser pulses may 
be reduced to single-photon protocols. This reduction often relies on the implicit assumption, that 
the intensities of coherent states are the same for different bases and bit choices. In this work we 
perform a careful analysis of consequences, to which the violation of this assumption brings to the 
most common QKD protocol — BB84.

We remind, that basic BB84 protocol consist of the following steps:
1.	 Alice prepares and sends to Bob one of four qubit states, which are typically: |0Z⟩, |1Z⟩, 

|0X⟩ ≡ (|0Z⟩ + |1Z⟩)/√2, |1X⟩ ≡ (|0Z⟩ – |1Z⟩)/√2 with respective probabilities pαj, α ∈ {Z, X}, j ∈ 
{0,1} that are commonly equal. However, in practice Alice’s source may be non-ideal both 
in the sense of preparing states and in the sense of the probability distribution.

2.	 Bob chooses measurement basis between X and Z randomly with probabilities pB
X, pB

Z  
respectively.

3.	 Alice and Bob announces bases in which each state was prepared and detected. Mismatched 
events are dropped out.

4.	 Alice and Bob estimate bit error rate and correct errors.
5.	 Alice and Bob estimate phase error rate and perform privacy amplification.
This protocol implies, that Alice has single-photon source, and Bob receives and measures all 

photons sent. In practice this is not the case. First, Alice use laser, which is the source of coherent 
states. Second, only a small fraction of states can be detected because of losses in fiber and finite 
quantum single-photon efficiency. Thus in realistic scenario one need to develop another security 
proof, which takes into account these difficulties.

In the following section we extend a common approach to security proof of DV QKD in real-
istic scenario to the case of BB84 with different state intensities. Next we present the results of 
our approach, namely, the achievable secret key rate and draw a conclusion whether protocols 
with this imperfection type can be employed or not.

Materials and Methods

When establishing security proof for a QKD protocol based on the coherent states, the follow-
ing framework is commonly used [1]. Alice is allowed to prepare her coherent states on a Hilbert 
space of two photonic modes. We will stick to the case, when each state has some fixed intensity 
μj and perfectly random phase:
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Here E and L denote two photonic modes, early and late here, however, they can be two 
arbitrary orthogonal modes, for example, horizontal and vertical polarization. Let †

, ,ˆ ˆ,E L E La a  be 
annihilation/creation operators for E and L mode respectively. Then for each state type j we may 
introduce new pair of creation operators, defined as:
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and corresponding annihilation operators. They obviously obey bosonic commutation relation, 
and thus induce another Fock basis on the space of two photonic modes. If we now rewrite state 
(1) in this basis, we will obtain:

21
0 .i

j j jj
e ϕµ ⊗=ψ (3)

It can be shown, that in case Alice each time produces states with random phase φ, the aver-
aged states are Poisson mixture of n-photon states:
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Note that now the measurement of photon number does not have any impact on states sent 
in the sense that the probabilistic mixture of this measurement resulted states is the same as (4). 
This means, that theoretically Alice can have a photon number measuring device installed on her 
output, and thus she will know the number of photons in each pulse. We then may split the initial 
protocol into several subprotocols which generate secret key only on vacuum states, single-photon 
states, and multiphoton ones. However, we are still allowed to perform only the steps of the initial 
protocol. The multiphoton subprotocol generates no secret because of the photon number split-
ting (PNS) attack, in which Eve steal one photon from pulse, stores it in her quantum memory 
and measures it in the right basis after basis announcement step. The vacuum subprotocol is also 
pretty useless to run, since all detection events in it is due to dark counts and thus bit error rate 
is close to 50%, which gives zero key.

We will stick to the case of ideally-prepared states, but with different intensities. Such states 
can be expressed as:
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where we use the following creation operators:
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The single-photon subprotocol is then just basic BB84 protocol with ideal states, but different 
probabilities ,j

j j jp p e α−µ
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=∑   This result is simply the consequence of projecting (5) 
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onto the single-photon subspace. All we need then is to analyze the amount of secrecy Nsec in 
this slightly unideal BB84 protocol and run privacy amplification over single-photon states. The 
security analysis is straightforward and can be found in [2, 3]. It uses the concept of quantum coin 
and its imbalance, which can be calculated given distributed states expressions and probabilities 

, jpα . It worth noting, that we can always adjust initial state generation probabilities pαj in such 
a way, that coin imbalance is zero. And thus we will have perfect BB84 single-photon protocol, 
which gives much higher key rate.

Alice, however, does not know the exact positions of the single-photon states sent. Fortunately, 
she can use proper privacy amplification technique to distill secrecy from the whole bunch of data 
originated from any states, not only single-photon ones. All she need to know is the amount of 
the secret key Nsec which can be obtained from these data in principle. Since this quantity is low-
er-bounded by the amount of secret key in single-photon states only, all Alice really needs is the 
lower bound on the amount of detected by Bob single-photon states, and the upper bound on bit 
error rates among them. She can obtain pretty tight bounds with the help of so-called decoy-state 
technique [1]. We will shortly review it here, since it is essential for our work.

We start with some definitions. The probability that Bob detects n-photon state of type j sent 
by Alice is called yield, and is denoted as Yn

j, the fraction of n-photon states of type j, which 
produced the wrong click is called error rate and is denoted as en

j. Alice may choose from a set of 
different intensities for each state type μj ∈ {μ(1)

j , μ(2)
j ,…, μ(m)

j } and for each intensity and state type 
she has overall gain Q

j
μ(i)

j  which is the fraction of such states, that produced click on Bob’s detector, 
and the overall error rate E

j
μ(i)

j  which is the fraction of wrong clicks among Qj
μ(i)

j   detected states. If 
Alice can prepare and analyze arbitrary intensity, then she can find exact single-photon yield Y1

j 
and error rate e1

j. In [1] it was shown, that pretty tight bounds can be obtained also in case Alice 
has only three options for intensity.

Unfortunately, if Alice is not permitted to use decoy states, the bounds are loose, mostly 
because we cannot reliably estimate the number of detected vacuum states (the first term in the 
right side):
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Fortunately, we may estimate the total number of vacuum and single-photon states, i.e. vac-
uum + single-photon gain and total errors number:

( )( ) ( ) ( )
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However, this leads to a problem: we need to analyze the security of BB84 protocol with 
qutrit states. Although Koashi’s approach [2] based on quantum coin is applicable here, it gives 
extremely poor, if not always zero, key rate. This is the result of huge “losses” (recall, that the-
oretical coin imbalance should be divided on yield), which are present in the system since only 
a small fraction of vacuum states is detected by Bob. Therefore, in this case we need to either 
find better consideration instead of just normalizing quantum coin imbalance or use loss-tolerant 
approach, like in [4] is done for three-state protocol. Since the first approach is not developed 
yet, we use the second one. Moreover, the presence of the fourth state in BB84 protocol allows us 
to include vacuum states into the analysis naturally. It worth noting, that loss-tolerant approach 
requires a little bit more postprocessing, since it utilizes and counts events which failed sifting, i.e. 
where Alice’s and Bob’s bases differ.

The whole analysis is rather complicated, so we present here only the crucial ideas and address 
the reader to the original work [4] or our future article, where we will cover this question in 
detail. The first point is to observe, that the states (5), projected onto the zero and one photon 
subspace are in semi-diagonal form, i.e. their density matrix are block-diagonal, with single 
number characterizing vacuum component, and qubit submatrix characterizing single-photon 
component. Thus we will need only one extra transmission rate, which characterizes the trans-
mission of vacuum states, additionally to the transmission rates of X, Z Pauli matrices and identity 
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matrix. This four transmission rates are perfectly obtainable via the solution of the system of four 
linear equations, one equation for each state type. The second point to highlight is that we need 
to know exact yields and gains in order to obtain phase error. This is not the case, but we are 
able to find reliable bounds they lie within. Fortunately, the expression for the phase error rate 
is almost linearly dependent on the observable quantities, thus with some analysis one may state, 
that upper bound on the phase error is achieved on the boundary of observables. This means, we 
may calculate phase error upper bound as maximum over a finite set.

Results and Discussion

Using the security proof, sketched here, we may characterize the influence of state intensi-
ties mismatch on the achievable secure key rate. We will stick to the case when the intensities 
are related as following: 2μ0z = 2μ1z = μ0x = ξ−1μ1x. Such choice is natural for state preparation 
scheme based on the optical injection. Fig. 1,a represents the key rate per state sent dependent 
on transmission channel length for various scenarios (modelling parameters are listed in Table 
and intensities were chosen to maximize key generation at 30 km). It worth noting that in decoy-
states scenario the key rate of BB84 with different intensities and balanced probabilities almost 
follows the key rate of that with same intensities. All reasonable probability balancing scenarios 
for BB84 without decoys are with high precision the same and follows the key rate for BB84 with 
equiprobable states choice. The reasons for it is employing loss-tolerant approach and generation 
high part of key from dark counts.

a)	 b)

Fig. 1. Plot of key rate per state sent versus channel length (a). Plot of key rate per state sent 
at different channel transmission parameters η (including detector efficiency and transparency)

versus intensity mismatch parameter (b)

Tab l e 

Parameters for key rates estimation

Fiber transparency α=0.02 dB/km Z-basis state intensity 
for decoy-state protocol µds=0.299

Detector efficiency η=0.1 Z-basis state intensity for 
protocol without decoys µwods=2.82⋅10-3

Dark count probability pdc=10-6 Decoy state 
attenuation coefficient λ1=0.5, λ2=0.1

Probability of 
wrong click perr=0.01 Error correction efficiency fec=1.22
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Fig. 1, b shows the dependence of the key rate for various fixed transmission probabilities η, 
which incorporates both detector efficiency and channel opacity, on intensity mismatch param-
eter ξ in decoy-state scenario. Without decoys key rate barely depends on ξ, but slight grow can 
be observed. This is the consequence of the increase in the detection rate of one of the states sent 
due to its higher intensity.

Conclusion

We have analyzed the modified version of BB84 protocol on coherent states with different 
intensities of signal pulses. Despite our analysis is largely simplified and there potentially can exist 
better key rate formulas, we have shown that it is possible to distribute secret key without any 
correction of intensity. Moreover, such a protocol can be brought back to ideal BB84 just with 
adjustment of bit values distribution on the Alice’s side, which may be done programmatically and 
requires no additional hardware changes.

The results obtained in this work are for asymptotic scenario only, i.e. when Alice and Bob 
gather infinitely much data and can estimate all statistics with arbitrary precision. In case of finite 
block size an additional complicated analysis is required, which will result in lower secret key rate.
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