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Abstract. The Lorentz transformation of space and time between two inertial frames of 
reference is one of the pillars of the special theory of relativity. Until now, the Lorentz trans-
formation equations have been considered on the base of one-dimensional motion between the 
inertial frames. The goal of this article is to extend the ordinary one-dimensional Lorentz trans-
formation to motion along X-, Y-, and Z-directions, i.e., to achieve a space-time coordinate 
transformation in the three-dimensional (3D) space. We particularly discovered the modified 
Lorentz transformation equations along 3 directions, and this helped us to analyze the space 
contraction phenomena of a cuboid due to the relative motion between the inertial frames in 
the 3D space. As a final point, this study concluded that all length, breadth and height of a 
cuboid appeared to be shortened to the observer if there is the relative motion between the 
cuboid and an observer in the 3D space.
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Аннотация. Уравнения преобразования пространства и времени по Лоренцу между 

двумя инерциальными системами отсчета служат краеугольным камнем специальной 
теории относительности. До настоящего времени эти преобразования рассматривались 
на основе одномерного движения между указанными системами отсчета. Цель данной 
статьи – распространить эти уравнения на движения вдоль трех направлений: X, Y и Z, 
т. е. так модифицировать одномерное преобразование Лоренца, чтобы получить пре-
образования пространственно-временных координат в трехмерном пространстве. Для 
этого использовано совместное применение полярной и декартовой систем координат 
для нахождения расположения точки, что должно обеспечивать полное преобразование 
пространственно-временных координат вдоль каждой оси. Модификация уравнений 
позволила автору проанализировать явления сжатия пространства (через введение ку-
боида и наблюдателя), вызванные относительным движением в трехмерном простран-
стве между инерциальными системами отсчета. Проведенное исследование привело к 
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выводу, что все габариты кубоида кажутся наблюдателю уменьшенными, если между 
ним и кубоидом осуществляется относительное движение в трехмерном пространстве.

Ключевые слова: cистема отсчета, преобразование Лоренца, сжатие пространства, 
специальная теория относительности
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Introduction

The Lorentz transformation equations [1], which are regarded as a fundamental mathematical 
tool to develop the special theory of relativity, were represented in their form by H. Poincaré [2], 
and subsequently by A. Einstein [3] as follows:

( ) 2, , , ,XVX X VT T T Y Y Z Z
c

 ′ ′ ′ ′= γ − = γ − = = 
 

                      (1)

where 2 21/ 1 /V cγ = −  denotes the Lorentz coefficient. 
There were significant contributions to the development of Lorentz transformation. H. 

Poincarй [2] recognized the relativity of simultaneity and studied the group theoretic properties. 
In the course of the last several decades, Lorentz transformation equations have been extended 
and generalized in many directions with several applications in many branches of relativistic 
mechanics. In Ref. [4], the authors presented the Lorentz transformation equations by changing 
the way of synchronizing clocks in inertial frame of reference. These transformation equations 
were further analyzed for one-way speed of light in vacuum by F. Selleri in Ref. [5]. In Ref. [6], 
the authors explained the Lorentz transformation by changes occurring in the wave characteristics 
of matter as it changes the inertial frames. There have been numerous publications [7, 8] looking 
for an agreement between the equivalence principle and nonrelativistic quantum theory with 
no electromagnetic field involved (see also Ref. [9] for a discussion involving relativistic effect). 
Ref. [10] presents a mechanism of accelerating relativistic charged particles using multifrequency 
modulated circularly polarized laser pulses directed along the propagation direction of a constant 
uniform magnetic field. Ref. [11] also presents alternative Hamiltonian and Lagrangian formalisms 
for relativistic mechanics using proper time and proper Lagrangian coordinates in 1 + 1 dimensions 
as parameters of evolution. The dynamics of a relativistic particle not having an electric charge 
and being under the action of an external force was analyzed on the basis of the special theory of 
relativity in Ref. [12]. The author of Ref. [13] determined a change in mass of an object inside 
the gravitational field using relativistic consideration. Ref. [14] also modified Newton's second law 
of motion by developing the novel formula of linear momentum, force and kinetic energy. Ref. 
[15] presented an original derivation of Lorentz transformation in the three-dimensional space. 
There have been a lot of publications on special relativity with important theoretical results. Since 
the Lorentz transformation equations in the most references have been based on one dimensional 
motion between inertial frames governed by Eq. (1), it is desirable to have an alternative method 
easily performed for deriving the Lorentz transformation equations when the motion between 
inertial frames takes place in the three-dimensional space. 

Therefore, the goal of this paper is to propose an efficient way to formulate and study the 
transformation equation along X-, Y- and Z-directions by introducing relative motion between 
inertial frames in the three-dimensional space. 

For the new transformation, instead of the above Eq. (1), we simply put forward the following 
one:



St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2024. Vol. 17. No. 2

162

2 2 2
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2 2 2 2 2 2
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VT V X Y ZX X T T
cX Y Z

VT VTY Y Z Z
X Y Z X Y Z

   + +′ ′= γ − = γ −    + +   
   

′ ′= γ − = γ −   
+ + + +   

                 (2)

It is clearly seen that the spatial coordinates along Y- and Z-directions in the former Eq. (1) 
are absolute as well as the transformation equation of time depends only on X-coordinate, while 
the spatial coordinates along X-, Y- and Z-directions in modified Eq. (2) are relative as well as 
the transformation equation of time depends on all X-, Y- and Z-coordinates.

With above background, we present the organization of this paper as follows. In the next section 
“Method used”, we will introduce the motion between inertial frames in the three dimensional-
space and present the space-time coordinates transformation along X-, Y- and Z-directions. 
Following this, in section “Results and discussion”, we will mathematically demonstrate the 
space contraction of cuboid along X-, Y- and Z-directions and will also reveal that the former 
transformation equation, namely, Eq. (1) arises only as a special case. In section “Conclusions” 
the concluding remarks are presented.

Methods used
Geometry analysis. Let us consider the relative velocity v of moving frame F' with respect to 

stationary frame F in the three-dimensional space (Fig. 1).

Fig. 1. Graphic presentation of movement between inertial frames in the three 
dimensions of space. Basic geometric notations are given

Let T and T' be the time recorded in two frames. Let the origin O and O' of two reference 
system coincide at T = T' = 0. Now let us suppose that a source of light is located at the origin O 
in the frame F, from which a light wavefront is emitting at a time T = 0. When the light reaches 
point P, the polar space-time coordinates measured from frame F and F' are (R, α, β, T) and 
(R', α, β, T') respectively (see Fig. 1). The time required for the light signal to travel the distance 
OP in frame F is given by equations

T = OP/c, T = R/c, or R = cT.                                      (3)

This Eq. (3) represents the equation of wavefront in frame F. According to the special theory 
of relativity, the light velocity will be c in the second frame F'. Hence, in F' frame the time 
required for the light signal to travel the distance O'P will be given by the following equations: 
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T' = O'P/c, T' = R'/c, or R' = cT'.                                (4)

This Eq. (4) represents the equation of wavefront in frame F'. Now, we can easily calculate 
the mathematical relationship between the Cartesian coordinates (x, y, z) of the point P and its 
spherical coordinates (R, α, β) in F frame of reference using trigonometry, and they are given by 
the following equations:

Z = R·cosα,                                                            (5)

Y = R·sinα·sinβ,                                               (6)

X = R·sinα·cosβ.                                                        (7)

Putting the value of R = cT from Eq. (3) into above equations we get:

Z = cT·cos α,                                                           (8)

Y = cT· sinα·sinβ,                                              (9)

X = cT· sinα·cosβ.                                            (10)

Also, the value of radius vector OP that connects points O and P in Fig. 1 is given by equations: 

(OP)2 = (OQ)2 + (QP)2, or (OP)2 = (OS)2 + (SQ)2 + (QP)2,

or R2 = X2 + Y2 + Z2, or 2 2 2 .R X Y Z= + +                                                            (11)
Similarly, we can easily calculate the mathematical relationship between the Cartesian 

coordinates (X', Y', Z') of the point P and its spherical coordinates (R', α, β) in F' frame of 
reference using trigonometry, and they are given by the following equations: 

Z' = R'·cosα,                                                         (12)

Y' = R'·sinα·sinβ,                                            (13)

X' = R'·sinα·cosβ.                                                     (14)

Putting the value of R' = cT' from Eq. (4) into above equations we get

Z' = cT'·cos α,                                              (15)

Y' = cT'· sinα·sinβ,                                                    (16)

X' = cT'· sinα·cosβ.                                          (17)

The value of radius vector O'P that connects points O' and P in Fig. 1 is also given by 
equations:

(O'P)2 = (O'Q)2 + (Q'P)2, or (O'P)2 = (O'S')2 + (S'Q')2 + (Q'P)2,

or (R')2 = (X')2 + (Y')2 +(Z')2, or ( ) ( ) ( )2 2 2 .R X Y Z′ ′ ′ ′= + +                                      (18)

Transformation equations in relativistic mechanics. The following equation can be clearly 
written if we refer to Fig. 1:

O'P = OP – OO', or R' = R – vT.

This equation in relativistic mechanics with Lorentz factor γ can be written as follows:

R' = γ(R – vT).                                              (19)
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Putting the T value from Eq. (3) we get:

R' = γ(R – v R/c), or R' = γR(1 – v/c).                              (20)

This is the relativistic transformation equation from frame F to F' in terms of radius vectors 
R and R'.

Similarly, the following equation can be clearly written if we refer to Fig. 1:

OP = O'P + OO', or R = R' + vT'.

This equation in relativistic mechanics with Lorentz factor γ can be written as follows:

R = γ(R' + vT').                                               (21)

Putting the value of T' from Eq. (4) we get:

,RR R V
c
′ ′= γ + 

 
 or 1 .VR R

c
 ′= γ + 
 

                                 (22)

This is the relativistic transformation equation from frame F' to F in terms of radius vectors R' 
and R. Now, putting the R' value from Eq. (20) we get:

2 1 1 ,V VR R
c c

  = γ − +  
  

 or 
2

2
21 1 ,V

c
 

= γ − 
 

 or 2
2

2

1 ,
1 V

c

γ =
−

 or 
2

2

1 ,
1 V

c

γ =

−

          (23)

which is the required value of the Lorentz factor. 
Putting this value of γ in Eqs. (19) and (21), we get:

2

2

,
1

R VTR
V
c

−′ =

−

                                               (24)

2

2

.
1

R VTR
V
c

′ ′+
=

−

                                               (25)

Multiplying both sides of Eq. (24) by cosα we get:

2

2

cos coscos .
1

R VTR
V
c

⋅ α − α′⋅ α =

−

 

Putting R'·cosα = Z' from Eq. (12) we get: 

2

2

cos cos .
1

R VTZ
V
c

⋅ α − ⋅ α′ =

−

                                       (26)

Putting also R·cosα = Z from Eq. (5) we get: 

2

2

cos ,
1

Z VTZ
V
c

− ⋅ α′ =

−

                                             (27)
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or 
( )

2

2

/
.

1

Z VT Z R
Z

V
c

−
′ =

−

Putting also the value of R from Eq. (11),

2 2 2

2

2

,
1

VTZZ
X Y ZZ

V
c

−
+ +′ =

−

 or 
2 2 2

2

2

1
,

1

VTZ
X Y ZZ

V
c

 
− 

+ + ′ =

−

                (28)

and again, multiplying both sides of Eq. (24) by sinα·sinβ, we get:

2

2

sin sin sin sinsin sin .
1

R VTR
V
c

⋅ α ⋅ β − ⋅ α ⋅ β′ ⋅ α ⋅ β =

−

 

Putting R'·sinα·sinβ = Y' from Eq. (13) we get: 

2

2

sin sin sin sin .
1

R VTY
V
c

⋅ α ⋅ β − ⋅ α ⋅ β′ =

−

                                (29)

Putting also R·sinα·sinβ = Y from Eq. (6) we get: 

2

2

sin sin ,
1

Y VTY
V
c

− ⋅ α ⋅ β′ =

−

                                       (30)

or 
( )

2

2

/
.

1

Y VT Y R
Y

V
c

−
′ =

−

 

Putting also the value of R from Eq. (11)

2 2 2

2

2

,
1

VTYY
X Y ZY

V
c

−
+ +′ =

−

 or 
2 2 2

2

2

1
,

1

VTY
X Y ZY

V
c

 
− 

+ + ′ =

−

                  (31)

again, multiplying both sides of Eq. (24) by sinα·cosβ, we get:

2

2

sin cos sin cossin cos .
1

R VTR
V
c

⋅ α ⋅ β − ⋅ α ⋅ β′ ⋅ α ⋅ β =

−

 

Putting R'·sinα·cosβ = X' from Eq. (14) we get: 

2

2

sin cos sin cos .
1

R VTX
V
c

⋅ α ⋅ β − ⋅ α ⋅ β′ =

−

                                 (32)
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Putting also R·sinα·cosβ = X from Eq. (7) we get: 

2

2

sin cos ,
1

X VTX
V
c

− ⋅ α ⋅ β′ =

−

                                       (33)

or 
( )

2

2

/
.

1

X VT X R
X

V
c

−
′ =

−

 

Putting also the value of R from Eq. (11) we get:

2 2 2

2

2

,
1

VTXX
X Y ZX

V
c

−
+ +′ =

−

 or 
2 2 2

2

2

1
.

1

VTX
X Y ZX

V
c

 
− 

+ + ′ =

−

               (34)

Eqs. (28), (31) and (34) are transformation equations along X-, Y- and Z-directions from 
frame F to F' respectively. 

Similarly, multiplying both sides of Eq. (25) by cosα we get:

2

2

cos coscos .
1

R VTR
V
c

′ ′⋅ α + ⋅ α
⋅ α =

−

 

Putting R·cosα = Z from Eq. (5) we get: 

2

2

cos cos .
1

R VTZ
V
c

′ ′⋅ α + ⋅ α
=

−

                                       (35)

Putting also R'·cosα = Z' from Eq. (12) we get: 

2

2

cos ,
1

Z VTZ
V
c

′ ′+ ⋅ α
=

−

  or 
( )

2

2

/
.

1

Z VT Z R
Z

V
c

′ ′ ′ ′+
=

−

                         (36)

Putting also the value of R' from Eq. (18), we get:

( ) ( ) ( )2 2 2

2

2

,
1

VT ZZ
X Y Z

Z
V
c

′ ′
′ +

′ ′ ′+ +
=

−

 or 
( ) ( ) ( )2 2 2

2

2

1

.
1

VTZ
X Y Z

Z
V
c

 ′ ′ +
 ′ ′ ′+ + =

−

        (37)

Again, multiplying both sides of Eq. (25) by sinα·sinβ, we get:

2

2

sin sin sin sinsin sin .
1

R VTR
V
c

′ ′⋅ α ⋅ β + ⋅ α ⋅ β
⋅ α ⋅ β =

−

 

Putting R·sinα·sinβ = Y from Eq. (6) we get: 
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2

2

sin sin sin sin .
1

R VTY
V
c

′ ′⋅ α ⋅ β + ⋅ α ⋅ β
=

−

                                (38)

Putting also R'·sinα·sinβ = Y' from Eq. (13) we get: 

2

2

sin sin ,
1

Y VTY
V
c

′ ′+ ⋅ α ⋅ β
=

−

                                       (39)

or 
( )

2

2

/
.

1

Y VT Y R
Y

V
c

′ ′ ′ ′+
=

−

 

Putting also the value of R' from Eq. (18) we get:

( ) ( ) ( )2 2 2

2

2

,
1

VT YY
X Y Z

Y
V
c

′ ′
′ +

′ ′ ′+ +
=

−

 or 
( ) ( ) ( )2 2 2

2

2

1

.
1

VTY
X Y Z

Y
V
c

 ′ ′ +
 ′ ′ ′+ + =

−

       (40)

Again, multiplying both sides of Eq. (25) by sinα·cosβ we get:

2

2

sin cos sin cossin cos .
1

R VTR
V
c

′ ′⋅ α ⋅ β + ⋅ α ⋅ β
⋅ α ⋅ β =

−

 

Putting R·sinα·cosβ = X from Eq. (7) we get: 

2

2

sin cos sin cos .
1

R VTX
V
c

′ ′⋅ α ⋅ β + ⋅ α ⋅ β
=

−

                               (41)

Putting also R'·sinα·cosβ = X' from equation Eq. (14) we get: 

2

2

sin cos ,
1

X VTX
V
c

′ ′+ ⋅ α ⋅ β
=

−

  or 
( )

2

2

/
.

1

X VT X R
X

V
c

′ ′ ′ ′+
=

−

                     (42)

Putting also the value of R' from Eq. (18) we get:

 
( ) ( ) ( )2 2 2

2

2

,
1

VT XX
X Y Z

X
V
c

′ ′
′ +

′ ′ ′+ +
=

−

 or 
( ) ( ) ( )2 2 2

2

2

1

.
1

VTX
X Y Z

X
V
c

 ′ ′ +
 ′ ′ ′+ + =

−

        (43)

Eqs. (37), (40) and (43) are the transformation equations along X-, Y- and Z-directions from 
frame F' to F respectively.
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Results and discussion

We have already derived the transformation equations along X-, Y- and Z-directions when 
the relative motion between inertial frames is in the three-dimensional space. In this section, 
our derived transformation equations are further analyzed to demonstrate the space contraction 
phenomena of a cuboid in the three-dimensional space. 

For that, consider two frames F and F' that are superimposed at a time T = T' = 0. In the 
course of time, frame F' moves in the three-dimensional space at velocity v. Let a cuboid keep 
in the frame F' (Fig. 2).

Fig. 2. Graphic presentation of space contraction of a cuboid in the three dimensions of space

Let us suppose that α is the angle between Z-axis and a line connecting the origins of the 
inertial frames of reference and A- and B- corners of the cuboid. The space coordinates of 
the opposite corners A and B as measured by observer O' of frame F' are (X1', Y1', Z1') and  
(X2', Y2', Z2') respectively, while the space coordinates of the opposite corners A and B as 
measured by observer O of frame F are (X1, Y1, Z1) and (X2, Y2, Z2) respectively. Therefore, the 
height of the cuboid along Z-axis as seen by observer O' in frame F' is 

0 2 1.H Z Z′ ′= −                                                (44)

The height H0 is called the proper height of cuboid. The apparent height of the cuboid from 
frame F at any instant of time T is 

H = Z2 – Z1.                                                (45)

Now, using transformation Eq. (27) along Z-axis we get: 

2
2 2

2

cos ,
1

Z VTZ
V
c

− ⋅ α′ =

−

                                           (46)
 

1
1 2

2

cos .
1

Z VTZ
V
c

− ⋅ α′ =

−

                                           (47)
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By putting Eqs. (46) and (47) in Eq. (44) we get: 

2 1
0 2 2

2 2

cos cos ,
1 1

Z VT Z VTH
V V
c c

− ⋅ α − ⋅ α
= −

− −

  or 2 1
0 2

2

.
1

Z ZH
V
c

−
=

−

 

Substituting Eq. (45) in above equation we get:

0 2

2

.
1

HH
V
c

=

−

 

Thus, the apparent height of the cuboid that is the height from frame F is 

2

0 21 .VH H
c

= −                                               (48)

Similarly, the breadth of the cuboid along Y-axis as seen by observer O' in frame F' is 

0 2 1.B Y Y′ ′= −                                                  (49)

The breadth B0 is called the proper breadth of the cuboid. The apparent breadth of the cuboid 
from frame F at any instant of time T is 

B = Y2 – Y1.                                                 (50)

Now, using transformation Eq. (30) along Y-axis, 

2
2 2

2

sin sin ,
1

Y VTY
V
c

− ⋅ α ⋅ β′ =

−

                                        (51)

1
1 2

2

sin sin ,
1

Y VTY
V
c

− ⋅ α ⋅ β′=

−

                                        (52)

by putting Eqs. (51) and (52) in Eq. (49) we get:

2 1
0 2 2

2 2

sin sin sin sin ,
1 1

Y VT Y VTB
V V
c c

− ⋅ α ⋅ β − ⋅ α ⋅ β
= −

− −

 or 2 1
0 2

2

.
1

Y YB
V
c

−
=

−

 

Substituting Eq. (50) in the above equation we get:

0 2

2

.
1

BB
V
c

=

−

 

Thus, the apparent breadth of the cuboid that is the breadth from frame F is

2

0 21 .VB B
c

= −                                              (53)
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Similarly, the length of the cuboid along X-axis as seen by observer O' in frame F' is 

0 2 1.L X X′ ′= −                                                 (54)

The length L0 is called the proper length of the cuboid. The apparent length of the cuboid from 
frame F at any instant of time T is 

L = X2 – X1.                                                 (55)

Now, using transformation Eq. (33) along X-axis,

2
2 2

2

sin cos ,
1

X VTX
V
c

− ⋅ α ⋅ β′ =

−

                                      (56)

1
1 2

2

sin cos ,
1

X VTX
V
c

− ⋅ α ⋅ β′ =

−

                                      (57)

by putting Eqs. (56) and (57) in Eq. (54) we get: 

2 1
0 2 2

2 2

sin cos sin cos ,
1 1

X VT X VTL
V V
c c

− ⋅ α ⋅ β − ⋅ α ⋅ β
= −

− −

 or 2 1
0 2

2

.
1

X XL
V
c

−
=

−

 

Substituting Eq. (55) in the above equation, we get:

0 2

2

.
1

LL
V
c

=

−

 

Thus, the apparent length of the cuboid that is the length from frame F is 
2

0 21 .VL L
c

= −                                                (58)

Eqs. (48), (53) and (58) give corresponding contraction of the cuboid along X-, Y- and Z-axes 
when relative motion between the inertial frames is in the three-dimensional space. In order to 
derive the relativistic form of the time coordinate, let rewrite Eq. (24) as follows:

 
2

2

.
1

R VTR
V
c

−′ =

−

Putting the T value from Eq. (3) we get:

2

2

,
1

RR V
cR

V
c

−
′ =

−

  or 

2 2 2

2

2

.
1

V X Y ZR
cR

V
c

+ +
−

′ =

−

 

Now putting the values of R and R' from Eqs. (3) and (4) we get:
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2 2 2

2

2

,
1

V X Y ZCT
cCT

V
c

+ +
−

′ =

−

 or 

2 2 2

2

2

2

.
1

V X Y ZT
cT
V
c

+ +
−

′ =

−

                   (59)

In order to get the inverse transformation equation of time, let interchange the coordinates and 
replace v by –v in the above Eq. (59): 

( ) ( ) ( )2 2 2

2

2

2

.
1

V X Y Z
T

cT
V
c

′ ′ ′+ +
′ +

=

−

                                    (60)

Eqs. (59) and (60) are the required transformation equations of time in the three-dimensional 
space.

Tab l e

Space coordinate transformation in the three-dimensional space

Motion 
between 
frames 

along axes 

Space coordinate transform equation

Along X-direction Along Y- direction Along Z- direction

X, Y, Z

X, Y only, 

2
π

α =

see Eq. (5):

 
cos

cos 0
2

Z

Z R

= α
π

= =X only, 

2
π

α =  

β = 0

Y’ = 0, Y = 0 (see also Eq. (6))

( )
2 2

sin cos

1 /

R VT
X

V c

α β −
′ =

−

( )
2 2

sin sin

1 /

R VT
Y

V c

α β −
′ =

−

( )
2 2

cos

1 /

R VT
Z

V c

α −
′ =

−

( )
2 2

cos

1 /

R VT
X

V c

β −
′ =

−

( )
2 2

sin

1 /

R VT
Y

V c

β −
′ =

−

( )
2 2

cos
2 0

1 /

R VT
Z

V c

π
−

′ = =
−

( )2 2 2

2 2

cos

1 /

X Y Z VT
X

V c

β + + −
′ =

−

( )2 2 2

2 2

sin

1 /

X Y Z VT
Y

V c

β + + −
′ =

−

( )2 2

2 2

cos

1 /

X Y VT
X

V c

β + −
′ =

−

( )2 2

2 2

sin

1 /

X Y VT
Y

V c

β + −
′ =

−

2 2

2 2 2

2 2

2 2

1 /

1 /

1 /

R VTX
V c

X Y Z VTX
V c

X VTX
V c

−′ =
−

+ + −′ =
−
−′ =

−
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The Table represents the Lorentz transformation equations along X-, Y- and Z-axes with 
different special cases of relative motion between inertial frames. The second row of the Table 
gives the Lorentz transformation equations along X- and Y-axes when the motion between inertial 
frames is in the two-dimensional XY-plane. Similarly, the third row of the Table represents the 
transformation equation in one dimensional motion along X-axis which is exactly the same 
transformation equation along X-axis as that obtained in the ordinary one-dimensional Lorentz 
transformation.

Conclusions
In summary, a method has been obtained for the formulation of the Lorentz transformation 

equations in the three-dimensional space by using the concept of both polar and Cartesian 
coordinates. The space-time coordinates transformation equations along X-, Y- and Z-directions 
were separately presented and proved as displayed in Eqs. (37), (40) and (43) respectively. Also, it 
was explicitly verified in Eqs. (48), (53) and (58) that the length, breadth and height of a cuboid 
got contracted if there was simultaneous relative motion between inertial frames along X-, Y- and 
Z-directions, being of the following form:

2 2 2

0 0 02 2 21 , 1 , 1 .V V VL L B B H H
c c c

= − = − = −  

From these equations, we can conclude that it is definitely possible to observe the 
simultaneous space contraction of the cuboid along X-, Y- and Z-directions. We hope that the 
Lorentz transformation equations discovered by such a different mathematical method in the 
three-dimensional space will enrich the scientific literature connected by relativistic mechanics, 
particularly those which are related to the space-time coordinates transformation between inertial 
frames in the three-dimensional space. 
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