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Abstract. The Lorentz transformation of space and time between two inertial frames of
reference is one of the pillars of the special theory of relativity. Until now, the Lorentz trans-
formation equations have been considered on the base of one-dimensional motion between the
inertial frames. The goal of this article is to extend the ordinary one-dimensional Lorentz trans-
formation to motion along X-, Y-, and Z-directions, i.c., to achieve a space-time coordinate
transformation in the three-dimensional (3D) space. We particularly discovered the modified
Lorentz transformation equations along 3 directions, and this helped us to analyze the space
contraction phenomena of a cuboid due to the relative motion between the inertial frames in
the 3D space. As a final point, this study concluded that all length, breadth and height of a
cuboid appeared to be shortened to the observer if there is the relative motion between the
cuboid and an observer in the 3D space.
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AHHOTAUUA. YpaBHEHUS MpeoOpa3oBaHUs MPOCTPAHCTBA U BpeMeHM Mo JlopeHLy Mexay
JIBYMSI MHEPIIMAJbHBIMU CUCTEMaMM OTCYeTa CJIyXaT KPaeyroJibHbIM KaMHEM CIeIUabHOMI
TEOPUU OTHOCUTENBHOCTH. JI0 HACTOSIIIIETO BPEMEHM 3TH IIPEOOpa30BaHUST pacCMaTPUBAINCh
Ha OCHOBE OJIHOMEPHOTO ABIKCHMS MEXIY YKa3aHHBIMU CUCTeMaMu oTcueTa. Llenp maHHOM
CTaThbM — PACIIPOCTPAHUTH 3TU YPAaBHEHMS Ha IBVDKCHMS BIOJb TpeX HallpaBieHWi: X, Y u Z,
T. €. TaK MOAM(PUUIMPOBATh OTHOMEpPHOE Tpeodpa3oBaHue JlopeHIIa, YTOOBI TOJYYUTh IIpe-
00pa30BaHUs MPOCTPAHCTBEHHO-BPEMEHHBIX KOOPAMHAT B TPEXMEPHOM IIpocTpaHCcTBe. Jliist
3TOr0 MCITOJb30BAaHO COBMECTHOE MPUMEHEHWE MOJSIPHONM M AEKapTOBO CHCTEM KOOpPAMHAT
JUIST HAXOXXACHUST pacTIOIOKEHUsT TOYKH, UYTO JOJKHO 00ecTieunBaTh MOJTHOE TTpeoOpa3oBaHue
IIPOCTPAHCTBEHHO-BPEMEHHBIX KOOPAWHAT BOOJb KaXIoW ocu. Momubukamus ypaBHCHUU
ITO3BOJIMJIA aBTOPY IIPOAHAIM3UPOBATh SIBICHUS CXKATHS IIPOCTPAHCTBA (Uepe3 BBEICHUE KY-
Oouma u HaOMOmaTess1), BbI3BAaHHbBIE OTHOCUTEIbHBIM IBUXKEHMEM B TPEXMEPHOM IIPOCTPaH-
CTBE MEXAYy MHEpLMaJbHBIMU CUCTeMaMu oTcueTa. IIpoBeneHHOe MccilienoBaHUE MPUBEIO K
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BBIBOJly, UTO BCE TabapuThl KyOouaa KaXyTcsl HAOJIONATENI0 YMEHbBIIEHHBIMU, €CIU MEXIY
HUM U KyOOUIOM OCYIIECTBJISIETCSI OTHOCUTEIbHOE JABUKEHUE B TPEXMEPHOM IMPOCTPAHCTBE.

KmoueBbie cioBa: cucrema OTCYCTAa, Hp€O6pa3OBaHI/Ie HopeHua, CXaTuec IIpoCTpaHCTBAa,
crienuajibHass T€Opus OTHOCUTCIIBHOCTHU
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JPM.17213
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Introduction

The Lorentz transformation equations [1], which are regarded as a fundamental mathematical
tool to develop the special theory of relativity, were represented in their form by H. Poincaré [2],
and subsequently by A. Einstein [3] as follows:

XV

2
C

X'=y(X-VT), T’:y(T— ) Y'=Y, Z'=Z7, (1)

where y=1/~+1-V?/c* denotes the Lorentz coefficient.

There were significant contributions to the development of Lorentz transformation. H.
Poincarii [2] recognized the relativity of simultaneity and studied the group theoretic properties.
In the course of the last several decades, Lorentz transformation equations have been extended
and generalized in many directions with several applications in many branches of relativistic
mechanics. In Ref. [4], the authors presented the Lorentz transformation equations by changing
the way of synchronizing clocks in inertial frame of reference. These transformation equations
were further analyzed for one-way speed of light in vacuum by F. Selleri in Ref. [5]. In Ref. [6],
the authors explained the Lorentz transformation by changes occurring in the wave characteristics
of matter as it changes the inertial frames. There have been numerous publications [7, 8] looking
for an agreement between the equivalence principle and nonrelativistic quantum theory with
no electromagnetic field involved (see also Ref. [9] for a discussion involving relativistic effect).
Ref. [10] presents a mechanism of accelerating relativistic charged particles using multifrequency
modulated circularly polarized laser pulses directed along the propagation direction of a constant
uniform magnetic field. Ref. [11] also presents alternative Hamiltonian and Lagrangian formalisms
for relativistic mechanics using proper time and proper Lagrangian coordinates in 1 + 1 dimensions
as parameters of evolution. The dynamics of a relativistic particle not having an electric charge
and being under the action of an external force was analyzed on the basis of the special theory of
relativity in Ref. [12]. The author of Ref. [13] determined a change in mass of an object inside
the gravitational field using relativistic consideration. Ref. [14] also modified Newton's second law
of motion by developing the novel formula of linear momentum, force and kinetic energy. Ref.
[15] presented an original derivation of Lorentz transformation in the three-dimensional space.
There have been a lot of publications on special relativity with important theoretical results. Since
the Lorentz transformation equations in the most references have been based on one dimensional
motion between inertial frames governed by Eq. (1), it is desirable to have an alternative method
easily performed for deriving the Lorentz transformation equations when the motion between
inertial frames takes place in the three-dimensional space.

Therefore, the goal of this paper is to propose an efficient way to formulate and study the
transformation equation along X-, Y- and Z-directions by introducing relative motion between
inertial frames in the three-dimensional space.

For the new transformation, instead of the above Eq. (1), we simply put forward the following
one:
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T X2 +Y*+ 27
V T =y T—V +2 + ,
VX472 4+ 22

C
Y’:yY(l— T j, Z':yZ(l— ' j
X2 +Y2+ 22 VX242 4+ 22

It is clearly seen that the spatial coordinates along Y- and Z-directions in the former Eq. (1)
are absolute as well as the transformation equation of time depends only on X-coordinate, while
the spatial coordinates along X-, Y- and Z-directions in modified Eq. (2) are relative as well as
the transformation equation of time depends on all X-, Y- and Z-coordinates.

With above background, we present the organization of this paper as follows. In the next section
“Method used”, we will introduce the motion between inertial frames in the three dimensional-
space and present the space-time coordinates transformation along X-, Y- and Z-directions.
Following this, in section “Results and discussion”, we will mathematically demonstrate the
space contraction of cuboid along X-, Y- and Z-directions and will also reveal that the former
transformation equation, namely, Eq. (1) arises only as a special case. In section “Conclusions”
the concluding remarks are presented.

X'=yX(l—
(2)

Methods used

Geometry analysis. Let us consider the relative velocity v of moving frame F'’ with respect to
stationary frame £ in the three-dimensional space (Fig. 1).

P(R,a,B.T)
(R, a.fT)

s
X Y —>Q

Fig. 1. Graphic presentation of movement between inertial frames in the three
dimensions of space. Basic geometric notations are given

Let T and 7" be the time recorded in two frames. Let the origin O and O' of two reference
system coincide at 7= 7" = 0. Now let us suppose that a source of light is located at the origin O
in the frame F, from which a light wavefront is emitting at a time 7= 0. When the light reaches
point P, the polar space-time coordinates measured from frame F and F' are (R, a, B, 7) and
(R', a, B, T") respectively (see Fig. 1). The time required for the light signal to travel the distance
OP in frame F is given by equations

T=OP/c, T=R/c,or R=cT. 3)
This Eq. (3) represents the equation of wavefront in frame F. According to the special theory

of relativity, the light velocity will be ¢ in the second frame F’. Hence, in F’ frame the time
required for the light signal to travel the distance O'P will be given by the following equations:
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T'=0O'Plc, T"=R'/c,or R"= cT". 4)

This Eq. (4) represents the equation of wavefront in frame F'. Now, we can easily calculate
the mathematical relationship between the Cartesian coordinates (x, y, z) of the point P and its
spherical coordinates (R, a, B) in F frame of reference using trigonometry, and they are given by
the following equations:

Z = R-cosa, (5)
Y = R-sina-sinf, (6)
X = R-sina-cosp. (7)

Putting the value of R = cT from Eq. (3) into above equations we get:

Z=cT-cos q, ()
Y= cT" sina-sinf, 9
X =cT: sina-cosp. (10)

Also, the value of radius vector OP that connects points O and P in Fig. 1 is given by equations:

(OP) = (0Q) + (QPY, or (OP)* = (0S)* + (SQ)* + (OP),

or R*=X>+Y*+ 7% 0or R=NX"+Y*+7". (11)

Similarly, we can easily calculate the mathematical relationship between the Cartesian
coordinates (X', Y, Z') of the point P and its spherical coordinates (R, a, B) in F' frame of
reference using trigonometry, and they are given by the following equations:

Z'=R'-cosa, (12)
Y= R'"sina-sinf, (13)
X'= R"sina-cosp. (14)

Putting the value of R’ = ¢T" from Eq. (4) into above equations we get

Z'=cT"cos a, (15)
Y'=cT" sino-sinf, (16)
X'= cT" sina-cosp. (17)

The value of radius vector O'P that connects points O' and P in Fig. 1 is also given by

equations:
(O'PY = (0'0) + (Q'PY, or (O'PY* = (O'S)} + (S'0')* + (Q'PY,

or (R’ = (X + (Y +(Z'V, or R = (XY +(¥') +(Z') . (18)

Transformation equations in relativistic mechanics. The following equation can be clearly
written if we refer to Fig. 1:

OP=0OP-00",orR'=R—T.
This equation in relativistic mechanics with Lorentz factor y can be written as follows:

R'=y(@R — VD). (19)
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Putting the T value from Eq. (3) we get:

R'=y(R—v R/c), or R"=yR(1 —Vlc). (20)
This is the relativistic transformation equation from frame F to F' in terms of radius vectors
R and R".

Similarly, the following equation can be clearly written if we refer to Fig. 1:
OP=0'P+0OO0',orR=R"+VvT"
This equation in relativistic mechanics with Lorentz factor y can be written as follows:

R=vy(R"+vT").
Putting the value of 7' from Eq. (4) we get:

R :y(R'+V£j, or R:yR'(1+K).
c

(22)
c
This is the relativistic transformation equation from frame /"’ to F in terms of radius vectors R’
and R. Now, putting the R’ value from Eq. (20) we get:
V 2
R:YZR(l—Kj(1+—J, or 1=7? l—V—2 , or yzz;z, or y= , (23)
c c c - Ve 2
2

11—
C 2
which is the required value of the Lorentz factor. ¢
Putting this value of y in Egs. (19) and (21), we get:

1)

, R-VT

24)

(25)
I=—5
Multiplying both sides of Eq. (24) by cosa we get:

R R-cosa—VT cosa
-cosQL = .

Putting R"-cosa = Z' from Eq. (12) we get:

7 R-cosoc—VT-cosa'

2

~

(26)
1—

b ‘

c
Putting also R-cosa = Z from Eq. (5) we get:

Z,:Z—VT-cosoc’

1—

QN‘ VN

(27)
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, Z—VT(Z/R)
or Z'= -
V
|-
c2

Z= Z[l_ 2 VTz 2}
2 2 2
_ NX"+Y " +7 or 7' = NX+Y " +Z (28)

2 ’ 2 ’
- a
C Cc

and again, multiplying both sides of Eq. (24) by sina-sinf}, we get:

R-sino-sin—VT -sino-sinf3
y? '

2
C

R'-sino-sinf =
1

Putting R"sino-sinf3 = Y’ from Eq. (13) we get:

_R-sina-sinf—VT-sino-sinf3
= = .

2
C

Y’ (29)

1

Putting also R-sina-sinf3 = Y from Eq. (6) we get:

Y,=Y—VT-sinoc-sinB, (30)

Putting also the value of R from Eq. (11)

,_ Y Y(1 B VT j

/ 2 2 2 / 2 2 2

2 ’ 2
- G
C C

again, multiplying both sides of Eq. (24) by sina-cosp, we get:

R-sino-cosB—VT -sina-cosf
v '

2
C

R'-sino-cosf =
1

Putting R"sina-cosP = X' from Eq. (14) we get:

R-sino-cosB—VT -sina-cosf
v '

2
C

X'= (32)

1
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Putting also R-sina-cosP = X from Eq. (7) we get:
X —VT -sina.-cosf

X' = = , (33)
BE
c
) X—VT(X/R)
or X'= - .
-
c

Putting also the value of R from Eq. (11) we get:

X - X[l_ (2 VTz 2}
2 2 2
_ NX+Y " +Z or X'= X +Y'+Z . (34)

Egs. (28), (31) and (34) are transformation equations along X-, Y- and Z-directions from
frame F' to F' respectively.
Similarly, multiplying both sides of Eq. (25) by cosa we get:

R'-cosa+ VT -cosa

R-cosa =

V2

I==
c

Putting R-cosa = Z from Eq. (5) we get:
Z:R-cosoc+VT2-cos0L. (35)
NE
c

Putting also R'-cosa = Z' from Eq. (12) we get:

! " Z'+VT'(Z'/ R
g AT cosa (Z/R) 36)
& . y?
1—— -
6‘2 02

, VT'Z' , VT’
Z+J(X’)2+(Y’)2+(Z')2 ’ 1+J(X’)2+(Y’)2+( )
7 = - , Or Z= > (37)
I—V— 1_L
c’ ¢’

Again, multiplying both sides of Eq. (25) by sina-sinf3, we get:

R'-sina-sinf3+V7T"-sina-sinf3
y? '

2
C

R-sinoa-sinf} =

1
Putting R-sina-sinf = Y from Eq. (6) we get:
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_ R'-sina-sinf+V7"-sina.-sinf

Y (38)
_r
c2
Putting also R'-sina-sinf = Y’ from Eq. (13) we get:
Y:Y’+VT'-sina-sinB (39)
VZ
-2
CZ
Y'+VT'(Y’/R')
or Y= -
G
c
Putting also the value of R’ from Eq. (18) we get:
Y+ 2 VTYz 2 Y’ 1+\/ 2 il 2 2
X' +(Y') +(Z' XY +(Y') +(Z'
SR (€0 ST A 0 MV G €S R U0 A G2 S
VZ VZ
1——- -2
c’ c’
Again, multiplying both sides of Eq. (25) by sina-cosp we get:
R-sina~cosB=R -sma-cosB—i—VT-smoc-cosB.
VZ
-2
CZ
Putting R-sina-cosp = X from Eq. (7) we get:
X=R -sina-cosB+VT -s1noc-cos[3. @1
_r
cZ
Putting also R'-sina-cosf = X' from equation Eq. (14) we get:
' ' sin o - X'+VT'(X'/ R
X=X+VT sino cosB’ or X = ( ) 42)
2 2
e .
c? c?
Putting also the value of R’ from Eq. (18) we get:
X'+ - VTXZ - X' 1+\/ T - =
X))y +(Y') +(Z XY +(Y') +(Z'
PRS00 I 0 R G R G € IR U0 RA G2 0 S
V2 &
l—c—2 1_072

Egs. (37), (40) and (43) are the transformation equations along X-, Y- and Z-directions from
frame F' to F respectively.

167



4St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2024. Vol. 17. No. 2>

Results and discussion

We have already derived the transformation equations along X-, Y- and Z-directions when
the relative motion between inertial frames is in the three-dimensional space. In this section,
our derived transformation equations are further analyzed to demonstrate the space contraction
phenomena of a cuboid in the three-dimensional space.

For that, consider two frames F' and F' that are superimposed at a time 7 = 7' = 0. In the
course of time, frame £’ moves in the three-dimensional space at velocity v. Let a cuboid keep
in the frame F”’ (Fig. 2).

B (X2,¥2.Z5)

(X3, ¥3,75)

A (X, ¥y, Z))

(1,71, 21)

X

Fig. 2. Graphic presentation of space contraction of a cuboid in the three dimensions of space

Let us suppose that o is the angle between Z-axis and a line connecting the origins of the
inertial frames of reference and A- and B- corners of the cuboid. The space coordinates of
the opposite corners 4 and B as measured by observer O' of frame F' are (X', ¥,', Z") and
X, Y,', Z,") respectively, while the space coordinates of the opposite corners 4 and B as
measured by observer O of frame F are (X, Y, Z)) and (X, Y,, Z)) respectively. Therefore, the

height of the cuboid along Z-axis as seen by observer O’ in frame I% "is
H,=7Z,-Z]. (44)
The height H is called the proper height of cuboid. The apparent height of the cuboid from
frame F' at any instant of time 7 is

H=7,-Z,. (45)

Now, using transformation Eq. (27) along Z-axis we get:

Zz,zZz—VT-cosa (46)
V2
1——
02

7= Z,—VT-cosa @7
y?
1——
C2

168



4 Theoretical physics

By putting Egs. (46) and (47) in Eq. (44) we get:
Z,—VT-cosa Z —VT-cosa Z -7

2 2
1= Egr \/! ‘7? 1“E;r
C C

Substituting Eq. (45) in above equation we get:
H

=—2.
o
C

Thus, the apparent height of the cuboid that is the height from frame F is

2
H:HO‘/I—I:—Z.

H, =

Similarly, the breadth of the cuboid along Y-axis as seen by observer O’ in frame F" is

B, :YZ,_Y]"

(48)

(49)

The breadth B is called the proper breadth of the cuboid. The apparent breadth of the cuboid

from frame F at any instant of time 7 is
B=Y,-Y,.
Now, using transformation Eq. (30) along Y-axis,

_Y,—VT-sina.-sinf3

v, \/ s
-
CZ
, Y, =VT-sino-sinf
Y= :
2
-
6'2

by putting Egs. (51) and (52) in Eq. (49) we get:

B - Y, VT -sina-sinfB ¥ —VT-sina-sinf Y,-Y
0

Substituting Eq. (50) in the above equation we get:
B

B, = 2
cz

1—
Thus, the apparent breadth of the cuboid that is the breadth from frame F' is

B=B

0

2
na
C

2 2 > B, = 2
i G NS
C C

(50)

(1)

(52)

(33)
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Similarly, the length of the cuboid along X-axis as seen by observer O’ in frame F” is

Ly=X,-X.

(34)

The length L is called the proper length of the cuboid. The apparent length of the cuboid from

frame F' at any instant of time 7 is
L=X—-X.

Now, using transformation Eq. (33) along X-axis,
X, —=VT -sina.-cosf

X, = =
-
6'2
X/ = X, —VT-SinOL-COSB,
VZ
———
CZ
by putting Egs. (56) and (57) in Eq. (54) we get:
L= X, =VT -sina-cosp X, —VT-sinoc-cosB’ or I, = X, - X, .
VZ V2 1 V2
1—— 1-— -
c’ c’ c’
Substituting Eq. (55) in the above equation, we get:
L,= L =
e

[

c
Thus, the apparent length of the cuboid that is the length from frame F is

L=L,1-

QN| VN

(35)

(56)

(37)

(38)

Eqgs. (48), (53) and (58) give corresponding contraction of the cuboid along X-, Y- and Z-axes
when relative motion between the inertial frames is in the three-dimensional space. In order to

derive the relativistic form of the time coordinate, let rewrite Eq. (24) as follows:

’;U
|
I

R=—.
Y
C

b ‘

Putting the T value from Eq. (3) we get:

2 2 2
r_v R VX +Y*+Z

R-—
R’:—i, or R'= <
-7 -
I} C

Now putting the values of R and R' from Egs. (3) and (4) we get:
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VNXP+Y*+Z° VNXP+Y + 77

cT T- :

CT' = ¢ or T'= < ) (59)
2 ’ 2
- I
¢’ c’

In order to get the inverse transformation equation of time, let interchange the coordinates and
replace v by —v in the above Eq. (59):

T= 4 : (60)

Egs. (59) and (60) are the required transformation equations of time in the three-dimensional
space.

Table
Space coordinate transformation in the three-dimensional space
Motion Space coordinate transform equation
between
frames Along X-direction Along Y- direction Along Z- direction
along axes
, _sinocosB(R-VT) ,_sinasinB(R-VT) , _cosa(R-VT)

X, Y, Z
o V1=V /¢ NI V1172 /¢
. Y
e cosB(R-VT) e sinB(R-VT) cosE(R—VT)

N N2 L= 0

X, Y only, cosB( X2+Y2+Z2—VT) sinB( X2+Y2+ZZ—VT)
X'= Y =
T N1=V2/c? NI=T* /¢
o=—
2
cosB( X2+Y2—VT) sinB( X2+Y2—VT)
X' = Y'=
\/I—VZ/C2 VI—VZ/CZ SeeEq‘ (5)
— Z =cosa
e .
X only, 1-V"/e Z=Rcos5:0
T X,_\/X2+Y2+ZZ—VT
o =— - = =
5 m Y’=0, Y=0 (see also Eq. (6))
B=0 o X-vT

N1=V?/c?
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The Table represents the Lorentz transformation equations along X-, Y- and Z-axes with
different special cases of relative motion between inertial frames. The second row of the Table
gives the Lorentz transformation equations along X- and Y-axes when the motion between inertial
frames is in the two-dimensional XY-plane. Similarly, the third row of the Table represents the
transformation equation in one dimensional motion along X-axis which is exactly the same
transformation equation along X-axis as that obtained in the ordinary one-dimensional Lorentz
transformation.

Conclusions

In summary, a method has been obtained for the formulation of the Lorentz transformation
equations in the three-dimensional space by using the concept of both polar and Cartesian
coordinates. The space-time coordinates transformation equations along X-, Y- and Z-directions
were separately presented and proved as displayed in Egs. (37), (40) and (43) respectively. Also, it
was explicitly verified in Eqs. (48), (53) and (58) that the length, breadth and height of a cuboid
got contracted if there was simultaneous relative motion between inertial frames along X-, Y- and
Z-directions, being of the following form:

VZ VZ V2
C—z, B=B() 1—0—2, H=H0 l—c—2

L=1L,[1-

From these equations, we can conclude that it is definitely possible to observe the
simultaneous space contraction of the cuboid along X-, Y- and Z-directions. We hope that the
Lorentz transformation equations discovered by such a different mathematical method in the
three-dimensional space will enrich the scientific literature connected by relativistic mechanics,
particularly those which are related to the space-time coordinates transformation between inertial
frames in the three-dimensional space.
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