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Abstract. In this paper, the Klein – Gordon – Fock equation is derived from the first 

principles. There is no need to postulate the existence of wave functions or to axiomatically 
introduce values of equation coefficients within the framework of the applied approach. The 
equation was derived on an adiabatically variable manifold, locally described by the FRW met-
ric with complete electrodynamics constructed on it. Here the transverse electromagnetic field 
(TEMF) is quantized due to the adiabatic change in the metric tensor and the Planck constant 
acts as an adiabatic invariant of the TEMF. Moreover, the wave functions appear in the equa-
tions in a natural way, being eigenfunctions of the Sturm – Liouville problem. These are the 
functions in which the TEMF function is expanded. To summarize, the proposed approach 
makes obvious the physical meaning both of the equation itself and of quantum mechanics in 
general. 
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Аннотация. В работе предложен вывод уравнения Клейна – Гордона – Фока из 
первых принципов. Предлагаемый подход не требует ни постулирования существова-
ния волновых функций, ни аксиоматического введения вида и величин коэффици-
ентов уравнения. Вывод произведен на адиабатически изменяемом многообразии, 
локально описываемом метрикой Фридмана – Робертсона – Уокера с построенной 
на нем полной электродинамикой, в которой поперечное электромагнитное поле 
квантуется вследствие адиабатического изменения тензора метрики. В этом случае  
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постоянная Планка выступает как адиабатический инвариант поперечного электромаг-
нитного поля, а волновые функции возникают в уравнении естественным образом и 
являются собственными функциями задачи Штурма – Лиувилля, по которым раскла-
дывается функция поперечного электромагнитного поля. Таким образом, предлагаемый 
подход делает очевидным физический смысл как самого уравнения, так и квантовой 
механики в целом.

Ключевые слова: уравнение Клейна – Гордона – Фока, уравнение Шрёдингера, зада-
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1.Introduction

The Klein – Gordon – Fock (KGF) equation, which depicts the dynamics of massive spinless 
particles, is the simplest relativistic equation to describe massive fields. Though it is only a model 
by nature, it is still widely used for an approximate description of various quantum phenomena. 
One of the main reasons for this is that the KGF equation allows for the calculation of relativistic 
corrections, such as the description of particle birth in external gauge fields [1], but the KGF 
equation is also used to reflect the behavior of charge carriers in crystalline systems in the 
presence of an electromagnetic field [2]. In this case, the KGF equation is used because the 
electromagnetic field is depicted by the ab initio invariant Maxwell equations. By contrast, the 
Schrödinger equation is not invariant with respect to the Lorentz transformations, that makes 
it impossible to construct on these grounds a self-consistent and closed theory that adequately 
describes the behavior of charges in a crystal in the presence of an electromagnetic field.

Unfortunately, the KGF equation has not yet been obtained from the first principles. Usually, 
it is derived reasoning from the Schrödinger equation which, in turn, was postulated using the 
following three axioms:

(i) Required structure of the equation, 
(ii) Postulated existence of wave functions, 
(iii) Introduced the Planck constant as a coefficient. 
These have been done to achieve the consensus between the calculated and experimentally 

measured quantities. Such an axiomatic approach, since the first works of Schrödinger [3], has 
hidden the physical meaning of quantum phenomena, thus provoking the emergence of many 
different interpretations of quantum mechanics. This suggests that the axiomatic approach must 
be revisited in order to understand the physics of quantum processes. 

N. G. Chetaev was the first to try to solve the issue, who did this a year after the publication 
of Schrödinger’s work. He tried to remove the first postulate (in the structure of the Schrödinger 
wave equation), obtaining the structure of the equation from the stable motion conditions, and 
already published his work in 1931 [4] (see also Refs. [5, 6]). Soon thereafter, Chetaev’s result 
was discussed and extended by many authors (see, for example, Refs. [7, 8] and Refs. therein). 
Nevertheless, his method has still left room for improvement, because even though he managed 
to remove the first axiom, the rest are still required to be postulated. 

The following section of this paper is dedicated to a few different attempts to derive the 
Schrödinger equation.

In Section 3, we derive the Klein – Gordon – Fock equation from the stability conditions, 
thus eliminating the need for the first of Schrödinger’s three axioms. 

In Section 4, we derive the KGF equation without relying on Schrödinger’s second and third 
axioms. 

Within the framework of our approach, it has been demonstrated that wave functions naturally 
arise when the photon function is decomposed by the complete set of the eigenfunctions of a 
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corresponding Sturm – Liouville problem. It was also shown that the Planck constant appears in 
the equation as an adiabatic invariant of a transversal electromagnetic (EM) field if changes in 
metric tensor are considered.

In this paper, Latin indices and Greek indices are i, j, k, l, m = 1, 2, 3 and α, β, γ, μ, ν = 0, 
1, 2, 3, 4 respectively. The signature of the metric is (1, –1, –1, –1).

2. A brief review of a few attempts to derive the Schrödinger equation
The origin of the Schrödinger equation started as far back as de Broglie’s wavelength [9], 

which was an extension of the expression of photon energy discovered by A. Einstein [10]. 
Intrigued by de Broglie’s hypothesis and taking advantage of the well-developed and popular 
theory of Sturm – Liouville, E. Schrödinger postulated his famous equation [11 – 14] (it should 
be noted that he first worked on a more generally relativistic case and then moved on to the KGF 
equation, but this result was not published). However, E. Schrödinger obtained his equation based 
upon the three axioms mentioned above [3], which cannot be recognized as satisfactory, since it 
complicates the understanding of the physical foundations of quantum mechanics.

Until recently, there was a big gap between the widespread use of the Schrödinger equation 
to calculate data describing physical facts and the lack of any extant derivation of the equation 
from first principles. This made it impossible to understand the physical foundations of quantum 
physics. For a long time, the approach jokingly named "Shut up and calculate!" (D. Mermin) was 
dominating, which, in turn, gave rise to many different interpretations of quantum mechanics. 
This situation inevitably called into question the physical Copenhagen interpretation of the wave 
functions. The question also arose regarding the nature of the Planck constant. Therefore, it 
seems appropriate to briefly review a few attempts to derive the Schrödinger equation before going 
further. 

E. Nelson started from Newtonian mechanics, and obtained quantization from gravity, which 
is akin to the Schrödinger equation [15]. Similar ideas were taken up later, such as by J. Ogborn 
and E. F. Taylor [16] and by F. Calogero, the latter leading recently to the quantum Painlevé – 
Calogero Schrödinger wave function [17]. However, on the one hand, the coupling constant of the 
gravitational interaction is 40 orders of magnitude smaller than that of the electromagnetic one. For 
this reason, it would be a bit strange to construct quantization on the basis of gravity. On the other 
hand, interactions in atoms (which are quantized) are significantly electromagnetic. This suggests 
that the method proposed by E. Nelson and F. Calogero cannot be considered as entirely correct.

K. C. Yung and J. H. Yee tried to derive the equation using a Feynman path integral approach, 
but this effort led instead to a modified Schrödinger equation [18]. Only at the beginning of the 
21st century did papers begin to appear in which attempts were made to take into account the 
electrodynamic nature of quantum systems. For example, in 2004, J. H. Field decided to put more 
emphasis towards classical electromagnetism [19] (a paper by D. W. Ward and S. M. Volkmer 
[20], in which an attempt was made to derive the Schrödinger equation within the framework of 
Special Relativity by the inclusion of electromagnetic waves, should also be noted here). Then, like 
K. C. Yung and J. H. Yee [18], J. H. Field tried to derive the Schrödinger equation by not only a 
Feynman path integral, but also from the Hamilton – Jacobi equation [21]. 

To end this short history of the derivation of the Schrödinger equation, let us cite among others 
the work of P. Pelce who derives it by the typical method of considering the density of momentum 
flux [22] and the work of J. C. Briggs and J. M. Rost who focused more on the origin of the time-
dependent equation [23]. 

Unfortunately, all these attempts did not lead to a clear understanding of the foundations of 
quantum mechanics, since the nature of the Planck constant remained unclear, and complex wave 
functions had to be postulated.

Recently, the Schrödinger equation was obtained without the axiomatic introduction of wave 
functions and of the coefficients of the equation [24]. In that paper it was shown that what are 
called wave functions are just the eigenfunctions of the Liouville operator that form a complete set 
of orthogonal functions, in which the EM field of a system can be expanded. In the same paper, 
the Planck constant was calculated for the first time from the geometry of the universe (see also 
Refs. [25, 26] for more complete and refined results). This derivation of the Schrödinger equation 
bypasses the axiomatic approach and opens the door for the derivation of the KGF equation from 
first principles.
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3. The Klein – Gordon – Fock equation derived from the stability conditions

In this section, we show how to remove the first postulate that determines the form of the 
desired equation. We begin with Chetaev's stability condition first obtained in 1929 [4] (see for 
details Refs. [5, 6] and discussion in Refs. [7, 8]):

0,d dSg
dx dx

µν
µ ν

 
= 

 



                                              (1)

where xμ are coordinates, S̃ is the complete integral of the Hamilton – Jacobi equation for the 
perturbed Hamiltonian function H̃ = H + εH1. 

These perturbation conditions correspond to the expansion up to the first terms of the 
infinitesimal parameter ε.

It is worth noting that the functions S (corresponds to H) and S̃ are not single-valued functions. 
Therefore, following the Chetaev's method, we define the single-valued functions ψ and φ in the 
following way:

0
0 0 0 0

ln ,     ln ,    where   lim .S Si i
S S ε→

   ψ ϕ
= = ϕ = ψ   ψ ϕ   



                       (2)

Constants S0, ψ0 and φ0 were introduced in this equation for convenience. By substituting the 
definition of S̃ written in Eq. (2) into Eq. (1), we obtain:

2

1 0,gg
x x x x

µν
µν

µ ν µ ν

 ∂ ∂ϕ ∂ϕ ∂ϕ    − =     ϕ ∂ ∂ ϕ ∂ ∂     
                              (3)

which, in the limit ε → 0, gives:
2

2

1 1 0.g
x x x

µν
µ ν µ

 ∂ ∂ψ ∂ψ   − =    ψ ∂ ∂ ψ ∂     
∑                                (4)

In addition, it also follows from Eq. (2) that:

0

0.i S
x S xµ µ

∂ψ ∂
= ψ =

∂ ∂
                                             (5)

For this reason, we can write the following:
2

2
0

1 1 0.Sg
x x S x

µν
µ ν µ

 ∂ ∂ψ ∂   + =    ψ ∂ ∂ ∂     
∑                                 (6)

By taking into account the relation pγ p
γ = m2c2 and redefining the variable S0 = ћ, we obtain 

the KGF equation:
2

2 2 2 0.m c
x xµ
µ

 ∂
+ ψ =  ∂ ∂ 

                                        (7)

Chetaev's method, which is based on the stability condition, eliminates the first postulate about 
the equation structure, but the other two postulates about the existence of the wave function and 
the magnitude of the coefficients in the equation remain unchanged. This drawback of Chetaev’s 
approach arises because:

a) it does not take into account the transverse EM field responsible for all interactions in the 
quantum system, and

b) because the Universe is assumed to be flat and not expanding (i.e., it was initially postulated 
that all components of the metric tensor are constant). 

However, these initial assumptions contradict observations. Now we will try to bypass these 
two postulates and derive the equation from the first principles, by considering a complete system. 
In this case, the main equations of quantum mechanics (the Schrödinger equation and the KGF 
one) can be derived without using any postulate at all. 
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4. Derivation of the Klein – Gordon – Fock equation without postulating both 
wave functions and the Planck constant value

Our aim in this section is to obtain the Klein – Gordon – Fock equation using neither 
the second nor third axioms (the wave function's existence and postulated value of the Planck 
constant).

Consider a laboratory on the Earth, i.e., the closest location to us, which is a very small region 
of the Universe. In this case, the metric of the laboratory is locally similar to the Friedman – 
Robertson – Walker metric. Considering that, due to the expansion of the Universe, the metric 
tensor adiabatically and slowly changes over time, it becomes obvious that the energy and 
momentum of the transverse electromagnetic field occupying the volume of λ3 are no longer 
conserved – the energy and momentum are no longer integrals of movement. In this case, an 
approximately conserved value is the adiabatic invariant of the transverse EM field known as the 
Planck constant h = 6.6·10–27 erg·s (see Refs. [24 – 26] for more details). 

On the one hand, we want to get an equation describing the movement of microparticles 
(for example, electrons), for which the characteristic dimensions are about 10–13 cm, while the 
wavelength of the transverse EM field (responsible for all interactions) for the optical range is 
about 5·10–5 cm. For this reason, the difference in the occupied volume of 24 orders of magnitude 
allows us to assume that even in a hypothetical case of possible influence of changes in the 
metric on the characteristics of the particles themselves (we speak mainly about the rest energy), 
the classical law of conservation of the 4-vector of energy-momentum of the particle under 
consideration, can be applied for our goal with good accuracy. 

On the other hand, we are looking specifically for the KGF differential equation, which has a 
structure reminiscent of the corresponding equation of classical physics. In other words, we are 
not looking for the equations of movement obtained in Ref. [26], but instead the KGF equation. 
For these reasons, we can consider a relativistic particle characterized by a mass m and begin with 
the relativistic equation for 4-momentum:

2 2 0.p p m cµ
µ − =                                                (8)

Our final aim (the KGF equation) is obviously a differential equation. So, to obtain it, we 
should apply the inverse Fourier transform to Eq. (8). However, the only harmonic function we 
may use for this transform is the function that describes the transverse EM field. We emphasize 
that the EM field is the only carrier of interaction in cases of interest, so it makes no sense to 
consider any other functions.

The fact that the transverse EM field is quantized itself, regardless of the presence or absence 
of charges nearby, was shown by A. Einstein and P. Debye at the beginning of the 20th century. 
However, recently it has been shown how the transverse EM field is quantized (see Refs. [24 – 
26]). The indicated works showed that the transverse EM field is described by the following 
harmonic functions:

,( )  exp –ik xα
αϕ =                                              (9)

where kα, x
α are 4-vectors, kα = pα/ћ.

Here the reduced Planck constant ћ appears as an adiabatic invariant of the transverse EM 
field (see Refs. [24 –26]) and is completely determined by geometry (metric of space), therefore 
its axiomatic postulation into the equations is no longer required.

Let us apply to Eq. (8) the inverse Fourier x-coordinate transformation by using the harmonic 
function of the transverse EM field (9):

( ) ( )2 2 0,p p m c k x dα
α

µ
µ − ϕ Ω =∫                                  (10)

where dΩ is a 4-volume element and the integration is carried out over the photon's volume. 
In more detail one can write:

2 2exp exp 0,i ip p p x d m c p x dα α
α α

µ
µ

   − Ω− − Ω =   
   ∫ ∫
 

                 (11)
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where do we get:

2 2 2exp exp 0,i ip x d m c p x d
x x

α α
α αα

α

∂ ∂    − Ω+ − Ω =   ∂ ∂    ∫∫ 
 

             (12)

or

( )2 2 2 0,m c p x d
x x

α
αα

α

 
ϕ 


Ω



∂ ∂
+ =

∂ ∂∫                               (13)

where, under the integration, one can see the Liouville operator that has a complete set of 
orthogonal eigenfunctions in which any function can be expanded.

Let Ψk(x) be a complete set of eigenfunctions of the Liouville operator. Then we can expand 
Eq. (9):

( , ) ( ) ( ),l l
l

p x a p xϕ = ψ∑
                                                    

 (14)

and the previous equation becomes:

( )2 2 2 0. ( )
l

l ld ca x
x x

p mα
α

 ∂
∂

ψ
∂

Ω + =
∂ 

 
∑∫                           (15)

However, as already mentioned above, neither the Schrödinger equation nor the KGF one 
contains the transverse EM field. If we assume that this field is not equal to zero (i.e., the 
decomposition coefficients al(p) are not equal to zero) and that the eigenfunctions of the Liouville 
operator are orthogonal, which is the case, meaning that the expression in brackets in Eq. (15) is 
zero. "Removing" the EM field and equating the constants with one (we let ћ = 1 and c = 1) we 
obtain the usual form of the equation:

( ) ( )2 0.lm xµ
µ∂ ∂ − ψ =                                          (16)

This is the Klein – Gordon – Fock equation.
As can be seen in this case, there is no need to postulate the values of the coefficients in the 

equation, such as the value of the reduced Planck constant, nor to postulate the wave function. 
The wave functions appear naturally as eigenfunctions of the Sturm  Liouville problem, and 
these functions are the ones that we use to expand the transverse EM field of the system under 
consideration. It is in this way that the transverse EM field is included in the model and appears 
in the complete Eq. (15). 

Furthermore, it is precisely this cancelation of the EM field when moving from Eq. (15) to Eq. 
(16) that leads to the problem of what is called the collapse of wave functions (EPR paradox). 
In fact, in expression Eq. (15), the EM field (described by decomposition coefficients al(p)) is 
present. Moreover, in Eq. (15) the integration over the entire volume λ3 of the EM field is carried 
out, which causes the complete Eq. (15) to be non-local. In turn, Eq. (16) is local; it does not 
contain any transversal EM field of the system, which provokes the emergence of the problem of 
the collapse of wave functions.

5. Conclusion
As mentioned above, until now, postulates have always been used to derive the Schrödinger 

equation and the KGF one. So, in these equations, the coefficients were postulated, or (which is 
the same postulate) the value of the Planck constant was taken so that the result of the calculation 
would coincide with the experimental data. However, this value of the Planck constant can be 
calculated from the first principles. In fact, considering that the universe is expanding, i. e., the 
metric of space adiabatically and slowly changes over time, it becomes obvious that the energy 
and momentum of the transversal EM field are no longer conserved (see cosmological redshift). 
In other words, the system, which includes the transverse EM field, can no longer be considered 
as closed. It is not isolated. In this case, the only approximately conserved value will be the 
adiabatic invariant of the EM field. For mechanical systems, the theory of adiabatic invariance 
is well developed and has long been known (see, for example, the first volume of Landau and 
Lifshitz textbooks, where there is a section dedicated specifically to the adiabatic invariance of 
mechanical systems). However, for the transverse EM field, such a task has first been investigated 
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relatively recently (see Ref. [24] and a more detailed version in Refs. [25, 26]). As it was shown 
in the mentioned papers, in the case when the metric of space is slowly changing, the EM field 
adiabatic invariant is the Planck constant. In this case, the value of the Planck constant arises from 
the geometry, and it coincides with a laboratory-measured value to the second significant digit, 
which is consistent with the experimental errors in the measurements of cosmological parameters 
(the Hubble constant and cosmological one), which, in turn, characterize the dynamics of the 
metric of the local universe.

Given the obtained results, on the one hand, the axiomatic postulation of the coefficients 
in the Schrödinger’s or KGF’s equation is no longer required, since these coefficients naturally 
appear when considering the EM field (always existing in any system and, moreover, responsible 
for quantization and the evolution of the quantum system). On the other hand, the role of the 
transverse EM field becomes clear; it is not so in the equations of Schrödinger and KGF precisely, 
because these equations were postulated and not derived from the first principles.

We have derived the KGF equation from first principles without using any axiom. The wave 
functions are the eigenfunctions of the Sturm – Liouville problem, and these functions are the 
ones that we use to expand the transverse EM field of the described system. The complete Eq. 
(15) contains an EM field through which all interactions in the system occur (we note here 
that the KGF equation does not contain a transverse EM field and therefore is incomplete). 
Moreover, Eq. (15) is not local, because it includes integration over the photon's volume. For 
this reason, it will not undergo a collapse of the wave function. It should therefore be used for the 
description of particle birth in external gauge fields [1] and for the description of the behavior of 
charge carriers in crystalline systems in the presence of an EM field [2].
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