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Abstract. In this paper, the Klein — Gordon — Fock equation is derived from the first
principles. There is no need to postulate the existence of wave functions or to axiomatically
introduce values of equation coefficients within the framework of the applied approach. The
equation was derived on an adiabatically variable manifold, locally described by the FRW met-
ric with complete electrodynamics constructed on it. Here the transverse electromagnetic field
(TEMF) is quantized due to the adiabatic change in the metric tensor and the Planck constant
acts as an adiabatic invariant of the TEMF. Moreover, the wave functions appear in the equa-
tions in a natural way, being eigenfunctions of the Sturm — Liouville problem. These are the
functions in which the TEMF function is expanded. To summarize, the proposed approach
makes obvious the physical meaning both of the equation itself and of quantum mechanics in
general.
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Annorammsa. B paGore mpemioxeH BbiBon ypaBHeHus KieitHa — Topmona — ®oka us
nepBbiX NpuHUUNOB. [Ipennaraemeiii monxon He TpeOyeT HU MOCTYJIMPOBAHUSI CYIIECTBOBA-
HUSI BOJHOBBIX (DyHKUMI, HU aKCMOMATUYECKOTO BBEIEHMS BUAA W BEJIUYUMH KOdhOUIIU-
€HTOB YypaBHeHWs. BbIBoj TpousBeleH Ha anuabaTMyeckKu W3MEHSIEMOM MHOTrooOpasuu,
JIOKaJIbHO omnuchiBaeMoM MeTpukoit ®dpuamana — PobGeprcoHa — Yokepa ¢ MOCTpOEHHOM
Ha HEeM TIOJIHOW 32JIEKTPOAVMHAMUKON, B KOTOPOW TIOTIEPEYHOE 3JIEKTPOMArHUTHOE ToJie
KBaHTYETCSI BCJIEJICTBUE annabaTUYeCKOro M3MEHEHMsI TeH30pa MeTpuku. B atom ciyuae
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nocrosiHHas IlnaHka BbICTymHaeT Kak aauMabaTUYeCKUii MHBApUAHT IOMNEPEYHOro 3JIeKTpoMar-
HUTHOTO TIOJISI, a BOJIHOBbIE (DYHKIIMM BO3HMKAIOT B YPaBHEHUU €CTECTBEHHBIM 00pa3oM U
SIBJITIOTCS COOCTBEHHBIMM (yHKUMSAMM 3amaun Iltypma — JIMyBUJUISL, 110 KOTOPBHIM packKJja-
NbIBaeTCsl (PYHKIMS MOTIEPEYHOTO JIEKTPOMArHUTHOTO 1MoJjisd. TakuM o0pa3om, mpenjiaraeMblid
TOJXO/ JeaeT OYEeBUAHBIM (PU3MUYECKUIT CMBICT KaK CaMOro ypaBHEHUs, TaK W KBaHTOBOW
MEXaHWKH B 1IEJIOM.
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1.Introduction

The Klein — Gordon — Fock (KGF) equation, which depicts the dynamics of massive spinless
particles, is the simplest relativistic equation to describe massive fields. Though it is only a model
by nature, it is still widely used for an approximate description of various quantum phenomena.
One of the main reasons for this is that the KGF equation allows for the calculation of relativistic
corrections, such as the description of particle birth in external gauge fields [1], but the KGF
equation is also used to reflect the behavior of charge carriers in crystalline systems in the
presence of an electromagnetic field [2]. In this case, the KGF equation is used because the
electromagnetic field is depicted by the ab initio invariant Maxwell equations. By contrast, the
Schrédinger equation is not invariant with respect to the Lorentz transformations, that makes
it impossible to construct on these grounds a self-consistent and closed theory that adequately
describes the behavior of charges in a crystal in the presence of an electromagnetic field.

Unfortunately, the KGF equation has not yet been obtained from the first principles. Usually,
it is derived reasoning from the Schrodinger equation which, in turn, was postulated using the
following three axioms:

(i) Required structure of the equation,

(ii) Postulated existence of wave functions,

(iii) Introduced the Planck constant as a coefficient.

These have been done to achieve the consensus between the calculated and experimentally
measured quantities. Such an axiomatic approach, since the first works of Schrédinger [3], has
hidden the physical meaning of quantum phenomena, thus provoking the emergence of many
different interpretations of quantum mechanics. This suggests that the axiomatic approach must
be revisited in order to understand the physics of quantum processes.

N. G. Chetaev was the first to try to solve the issue, who did this a year after the publication
of Schrodinger’s work. He tried to remove the first postulate (in the structure of the Schrodinger
wave equation), obtaining the structure of the equation from the stable motion conditions, and
already published his work in 1931 [4] (see also Refs. [5, 6]). Soon thereafter, Chetaev’s result
was discussed and extended by many authors (see, for example, Refs. [7, 8] and Refs. therein).
Nevertheless, his method has still left room for improvement, because even though he managed
to remove the first axiom, the rest are still required to be postulated.

The following section of this paper is dedicated to a few different attempts to derive the
Schrédinger equation.

In Section 3, we derive the Klein — Gordon — Fock equation from the stability conditions,
thus eliminating the need for the first of Schrédinger’s three axioms.

In Section 4, we derive the KGF equation without relying on Schrédinger’s second and third
axioms.

Within the framework of our approach, it has been demonstrated that wave functions naturally
arise when the photon function is decomposed by the complete set of the eigenfunctions of a

© JlunoBka A. A., Auapuanapumkaona B. M., Issuc K. X., 2024. Uznarens: Cankr-IleTepOyprckuil moJuTeXHUIECKU I
yHuBepcuret Iletpa Benukoro.
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corresponding Sturm — Liouville problem. It was also shown that the Planck constant appears in
the equation as an adiabatic invariant of a transversal electromagnetic (EM) field if changes in
metric tensor are considered.

In this paper, Latin indices and Greek indices are 7, j, k, [, m = 1,2, 3 and a, B, y, u, v =10,
1, 2, 3, 4 respectively. The signature of the metric is (1, —1, —1, —1).

2. A brief review of a few attempts to derive the Schriodinger equation

The origin of the Schréodinger equation started as far back as de Broglie’s wavelength [9],
which was an extension of the expression of photon energy discovered by A. Einstein [10].
Intrigued by de Broglie’s hypothesis and taking advantage of the well-developed and popular
theory of Sturm — Liouville, E. Schrédinger postulated his famous equation [11 — 14] (it should
be noted that he first worked on a more generally relativistic case and then moved on to the KGF
equation, but this result was not published). However, E. Schrédinger obtained his equation based
upon the three axioms mentioned above [3], which cannot be recognized as satisfactory, since it
complicates the understanding of the physical foundations of quantum mechanics.

Until recently, there was a big gap between the widespread use of the Schrédinger equation
to calculate data describing physical facts and the lack of any extant derivation of the equation
from first principles. This made it impossible to understand the physical foundations of quantum
physics. For a long time, the approach jokingly named "Shut up and calculate!" (D. Mermin) was
dominating, which, in turn, gave rise to many different interpretations of quantum mechanics.
This situation inevitably called into question the physical Copenhagen interpretation of the wave
functions. The question also arose regarding the nature of the Planck constant. Therefore, it
seems appropriate to briefly review a few attempts to derive the Schrédinger equation before going
further.

E. Nelson started from Newtonian mechanics, and obtained quantization from gravity, which
is akin to the Schrédinger equation [15]. Similar ideas were taken up later, such as by J. Ogborn
and E. F. Taylor [16] and by F. Calogero, the latter leading recently to the quantum Painlevé —
Calogero Schrédinger wave function [17]. However, on the one hand, the coupling constant of the
gravitational interaction is 40 orders of magnitude smaller than that of the electromagnetic one. For
this reason, it would be a bit strange to construct quantization on the basis of gravity. On the other
hand, interactions in atoms (which are quantized) are significantly electromagnetic. This suggests
that the method proposed by E. Nelson and F. Calogero cannot be considered as entirely correct.

K. C. Yung and J. H. Yee tried to derive the equation using a Feynman path integral approach,
but this effort led instead to a modified Schrodinger equation [18]. Only at the beginning of the
21 century did papers begin to appear in which attempts were made to take into account the
electrodynamic nature of quantum systems. For example, in 2004, J. H. Field decided to put more
emphasis towards classical electromagnetism [19] (a paper by D. W. Ward and S. M. Volkmer
[20], in which an attempt was made to derive the Schrodinger equation within the framework of
Special Relativity by the inclusion of electromagnetic waves, should also be noted here). Then, like
K. C. Yung and J. H. Yee [18], J. H. Field tried to derive the Schrodinger equation by not only a
Feynman path integral, but also from the Hamilton — Jacobi equation [21].

To end this short history of the derivation of the Schrédinger equation, let us cite among others
the work of P. Pelce who derives it by the typical method of considering the density of momentum
flux [22] and the work of J. C. Briggs and J. M. Rost who focused more on the origin of the time-
dependent equation [23].

Unfortunately, all these attempts did not lead to a clear understanding of the foundations of
quantum mechanics, since the nature of the Planck constant remained unclear, and complex wave
functions had to be postulated.

Recently, the Schrodinger equation was obtained without the axiomatic introduction of wave
functions and of the coefficients of the equation [24]. In that paper it was shown that what are
called wave functions are just the eigenfunctions of the Liouville operator that form a complete set
of orthogonal functions, in which the EM field of a system can be expanded. In the same paper,
the Planck constant was calculated for the first time from the geometry of the universe (see also
Refs. [25, 26] for more complete and refined results). This derivation of the Schrodinger equation
bypasses the axiomatic approach and opens the door for the derivation of the KGF equation from
first principles.
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3. The Klein — Gordon — Fock equation derived from the stability conditions

In this section, we show how to remove the first postulate that determines the form of the
desired equation. We begin with Chetaev's stability condition first obtained in 1929 [4] (see for
details Refs. [5, 6] and discussion in Refs. [7, 8]):

L“(gw ﬂj 0 @
dx dx
where x* are coordinates, S is the complete integral of the Hamilton — Jacobi equation for the
perturbed Hamiltonian function H = H + ¢H,.

These perturbation conditions correspond to the expansion up to the first terms of the
infinitesimal parameter &.

It is worth noting that the functions S (corresponds to H) and S are not single-valued functions.
Therefore, following the Chetaev's method, we define the single-valued functions y and ¢ in the

following way: _
.S ) ) [0) .
i—=In| — |, i—=In|— |, where limop=y. Q)
Sy Wo So P w0

Constants S, A and ¢, were introduced in this equation for convenience. By substituting the
definition of S written in ]%q (2) into Eq. (1), we obtain:

1 0 , O o 0
vaole 2SR @
¢ ox" ox o \ox" )\ ox

which, in the limit € — 0, gives:

2
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In addition, it also follows from Eq. (2) that:
oy i aS
ot Vs S, ot
For this reason, we can write the following:

Lo woy), s 1(osY|_ ©)
Lfax ¢ axvj+zS§(ax“” '

By taking into account the relation p, p' = m?c* and redefining the variable S, = A, we obtain

the KGF equation:
62
(hz ox o m2ch\V -~ "
[0

Chetaev's method, which is based on the stability condition, eliminates the first postulate about
the equation structure, but the other two postulates about the existence of the wave function and
the magnitude of the coefficients in the equation remain unchanged. This drawback of Chetaev’s
approach arises because:

a) it does not take into account the transverse EM field responsible for all interactions in the
quantum system, and

b) because the Universe is assumed to be flat and not expanding (i.e., it was initially postulated
that all components of the metric tensor are constant).

However, these initial assumptions contradict observations. Now we will try to bypass these
two postulates and derive the equation from the first principles, by considering a complete system.
In this case, the main equations of quantum mechanics (the Schrédinger equation and the KGF
one) can be derived without using any postulate at all.

)
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4. Derivation of the Klein — Gordon — Fock equation without postulating both
wave functions and the Planck constant value

Our aim in this section is to obtain the Klein — Gordon — Fock equation using neither
the second nor third axioms (the wave function's existence and postulated value of the Planck
constant).

Consider a laboratory on the Earth, i.e., the closest location to us, which is a very small region
of the Universe. In this case, the metric of the laboratory is locally similar to the Friedman —
Robertson — Walker metric. Considering that, due to the expansion of the Universe, the metric
tensor adiabatically and slowly changes over time, it becomes obvious that the energy and
momentum of the transverse electromagnetic field occupying the volume of A* are no longer
conserved — the energy and momentum are no longer integrals of movement. In this case, an
approximately conserved value is the adiabatic invariant of the transverse EM field known as the
Planck constant 2= 6.6-10"?7 erg's (see Refs. [24 — 26] for more details).

On the one hand, we want to get an equation describing the movement of microparticles
(for example, electrons), for which the characteristic dimensions are about 107!* ¢cm, while the
wavelength of the transverse EM field (responsible for all interactions) for the optical range is
about 5:107° cm. For this reason, the difference in the occupied volume of 24 orders of magnitude
allows us to assume that even in a hypothetical case of possible influence of changes in the
metric on the characteristics of the particles themselves (we speak mainly about the rest energy),
the classical law of conservation of the 4-vector of energy-momentum of the particle under
consideration, can be applied for our goal with good accuracy.

On the other hand, we are looking specifically for the KGF differential equation, which has a
structure reminiscent of the corresponding equation of classical physics. In other words, we are
not looking for the equations of movement obtained in Ref. [26], but instead the KGF equation.
For these reasons, we can consider a relativistic particle characterized by a mass m and begin with
the relativistic equation for 4-momentum:

p,p" —m’c* =0. (8)

Our final aim (the KGF equation) is obviously a differential equation. So, to obtain it, we
should apply the inverse Fourier transform to Eq. (8). However, the only harmonic function we
may use for this transform is the function that describes the transverse EM field. We emphasize
that the EM field is the only carrier of interaction in cases of interest, so it makes no sense to
consider any other functions.

The fact that the transverse EM field is quantized itself, regardless of the presence or absence
of charges nearby, was shown by A. Einstein and P. Debye at the beginning of the 20" century.
However, recently it has been shown how the transverse EM field is quantized (see Refs. [24 —
26]). The indicated works showed that the transverse EM field is described by the following
harmonic functions:

¢ = exp (—ik x"), 9)

where k , x* are 4-vectors, k = p /h.

Here' the reduced Planck constant 7 appears as an adiabatic invariant of the transverse EM
field (see Refs. [24 —26]) and is completely determined by geometry (metric of space), therefore
its axiomatic postulation into the equations is no longer required.

Let us apply to Eq. (8) the inverse Fourier x-coordinate transformation by using the harmonic
function of the transverse EM field (9):

j(pup“—mzcz)(p(kaxa)dQ:O, (10)

where dQ is a 4-volume element and the integration is carried out over the photon's volume.
In more detail one can write:

J.pup“exp{—%pax“}dﬂ—mzczj-exp{—%pax“}dﬂ =0, (11)
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where do we get:

&l el e o
or
0 O
W — +m*c? x*)dQ =0, 13
J.[ axa Gxa ](P(p“ ) ( )

where, under the integration, one can see the Liouville operator that has a complete set of
orthogonal eigenfunctions in which any function can be expanded.
Let W (x) be a complete set of eigenfunctions of the Liouville operator. Then we can expand

Eq. (9):
@(p,x) =Y a,(p)y,(x), (14)

and the previous equation becomes:

0 0
0 2 O 2.2 -0.
Id Zl:a,(p)[h o +m’c j\vl(x) 0 (15)

o

However, as already mentioned above, neither the Schrodinger equation nor the KGF one
contains the transverse EM field. If we assume that this field is not equal to zero (i.e., the
decomposition coefficients a (p) are not equal to zero) and that the eigenfunctions of the Liouville
operator are orthogonal, which is the case, meaning that the expression in brackets in Eq. (15) is
zero. "Removing" the EM field and equating the constants with one (we let Z=1 and ¢ = 1) we
obtain the usual form of the equation:

(6”6H—m2)\p,(x)=0. (16)

This is the Klein — Gordon — Fock equation.

As can be seen in this case, there is no need to postulate the values of the coefficients in the
equation, such as the value of the reduced Planck constant, nor to postulate the wave function.
The wave functions appear naturally as eigenfunctions of the Sturm — Liouville problem, and
these functions are the ones that we use to expand the transverse EM field of the system under
consideration. It is in this way that the transverse EM field is included in the model and appears
in the complete Eq. (15).

Furthermore, it is precisely this cancelation of the EM field when moving from Eq. (15) to Eq.
(16) that leads to the problem of what is called the collapse of wave functions (EPR paradox).
In fact, in expression Eq. (15), the EM field (described by decomposition coefficients a (p)) is
present. Moreover, in Eq. (15) the integration over the entire volume A* of the EM field is carried
out, which causes the complete Eq. (15) to be non-local. In turn, Eq. (16) is local; it does not
contain any transversal EM field of the system, which provokes the emergence of the problem of
the collapse of wave functions.

5. Conclusion

As mentioned above, until now, postulates have always been used to derive the Schrodinger
equation and the KGF one. So, in these equations, the coefficients were postulated, or (which is
the same postulate) the value of the Planck constant was taken so that the result of the calculation
would coincide with the experimental data. However, this value of the Planck constant can be
calculated from the first principles. In fact, considering that the universe is expanding, i. e., the
metric of space adiabatically and slowly changes over time, it becomes obvious that the energy
and momentum of the transversal EM field are no longer conserved (see cosmological redshift).
In other words, the system, which includes the transverse EM field, can no longer be considered
as closed. It is not isolated. In this case, the only approximately conserved value will be the
adiabatic invariant of the EM field. For mechanical systems, the theory of adiabatic invariance
is well developed and has long been known (see, for example, the first volume of Landau and
Lifshitz textbooks, where there is a section dedicated specifically to the adiabatic invariance of
mechanical systems). However, for the transverse EM field, such a task has first been investigated
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relatively recently (see Ref. [24] and a more detailed version in Refs. [25, 26]). As it was shown
in the mentioned papers, in the case when the metric of space is slowly changing, the EM field
adiabatic invariant is the Planck constant. In this case, the value of the Planck constant arises from
the geometry, and it coincides with a laboratory-measured value to the second significant digit,
which is consistent with the experimental errors in the measurements of cosmological parameters
(the Hubble constant and cosmological one), which, in turn, characterize the dynamics of the
metric of the local universe.

Given the obtained results, on the one hand, the axiomatic postulation of the coefficients
in the Schrodinger’s or KGF’s equation is no longer required, since these coefficients naturally
appear when considering the EM field (always existing in any system and, moreover, responsible
for quantization and the evolution of the quantum system). On the other hand, the role of the
transverse EM field becomes clear; it is not so in the equations of Schrodinger and KGF precisely,
because these equations were postulated and not derived from the first principles.

We have derived the KGF equation from first principles without using any axiom. The wave
functions are the eigenfunctions of the Sturm — Liouville problem, and these functions are the
ones that we use to expand the transverse EM field of the described system. The complete Eq.
(15) contains an EM field through which all interactions in the system occur (we note here
that the KGF equation does not contain a transverse EM field and therefore is incomplete).
Moreover, Eq. (15) is not local, because it includes integration over the photon's volume. For
this reason, it will not undergo a collapse of the wave function. It should therefore be used for the
description of particle birth in external gauge fields [1] and for the description of the behavior of
charge carriers in crystalline systems in the presence of an EM field [2].

Acknowledgements

The authors V. M. Andrianarijaona and C. H. Davis would like to thank the School of
Engineering and Physics of Southern Adventist University for its support.

REFERENCES

1. Grib A. A., Mamaev S. G., Mostepanenko V. M., Quantum effects in intense external fields,
Atomizdat Publishing, Moscow, 1980 (in Russian).

2. Kazansky N. L., Kharitonov S. I., Khonina S. N., Joint solution of the Klein—Gordon and
Maxwell’s equations, Comput. Opt. 36 (4) (2012) 518—526.

3. Schrodinger E., Quantisierung als Eigenwertproblem. (Erste Mitteilung), Annalen der Physik. 79
(4) (1926) 361—376.

4. Chetaev N. G., Ob ustoychivykh trayektoriyakh dinamiki [About stable trajectories of dynamics],
Scholarly Notes of Kazan University. 91, Book 4: Mathematics (1) (1931) 3—8 (in Russian).

5. Chetaev N. G., On certain problems related to the stability of motion in mechanics, J. Appl.
Math. Mech. 20 (3) (1956) 309—314.

6. Chetaev N. G., On the extension of the optical-mechanical analogy, J. Appl. Math. Mech. 22
(4) (1958) 678—681.

7. Rusov V. D., Vlasenko D. S., Mavrodiev S. Cht., Quantization in classical mechanics and its
relation to the Bohmian W-field, Ann. Phys. 326 (8) (2011) 1807—1815.

8. Carroll R., Aspects of stability and quantum mechanics, Prog. Phys. 2 (April) (2009) 24—28.

9. De Broglie L., Recherches sur la théorie des Quanta, Annales de Physique. 10 (3) (1925) 22—128.

10. Einstein A., Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen
Gesichtspunk, Annalen der Physik. 322 (4th Ser. 17) (6) (1905) 132—148.

11. Schrédinger E., An undulatory theory of the mechanics of atoms and molecules, Phys. Rev. 28
(6) (1926) 1049—1070.

12. Schrédinger E., Quantisierung als Eigenwertproblem. (Zweite Mitteilung), Annalen der Physik.
79 (6) (1926) 489—527.

13. Schrodinger E., Quantisierung als Eigenwertproblem. (Dritte Mitteilung), Annalen der Physik.
80 (13) (1926) 437—490.

14. Schrodinger E., Quantisierung als Eigenwertproblem. (Vierte Mitteilung), Annalen der Physik.
81 (18) (1926) 109—139.

156



Theoretical physi
4 retical physics >

15. Nelson E., Derivation of Schrédinger equation from Newtonian mechanics, Phys. Rev. 150 (4)
(1966) 1079—1085.

16. Ogborn J., Taylor E. F., Quantum physics explains Newton's laws of motion, Phys. Educ. 40
(1) (2005) 26—34.

17. Mobasheramini F., Betola M., Quatization of Calogero — Painlevé system and multi-particle
quantum Painlevé equations I1—VI, SIGMA. 17 (2021) 081.

18. Yung K. C., Yee J. H., Derivation of the modified Schrédinger equation for a particle with a
spatially varying mass through path integrals, Phys. Rev. A. 50 (1) (1994) 104—106.

19. Field J. H., Relationship of quantum mechanics to classical electromagnetism and classical
relativistic mechanics, Eur. J. Phys. 25 (3) (2004) 385—397.

20. Ward D. W., Volkmer S. M., How to derive the Schrodinger equation, Oct. 2006. Found in
https://doi.org/10.48550/arXiv.physics/0610121 on 06/19/2023.

21. Field J. H., Derivation of the Schrodinger equation from the Hamilton — Jacobi equation in
Feynman's path integral formulation of quantum mechanics, Eur. J. Phys. 32 (1) (2011) 63—87.

22. Pelce P., Another derivation of the Schrodinger’s equation, Eur. J. Phys. 17 (3) (1996) 116—117.

23. Briggs J. S., Rost J. M., On the derivation of the time-dependent equation of Schrodinger,
Found. Phys. 31 (4) (2001) 693—712.

24. Lipovka A. A., Planck's constant as adiabatic invariant characterized by Hubble's and cosmological
constants, J. Appl. Math. Phys. 2 (5) (2014) 61-71.

25. Cardenas I. A., Lipovka A. A., Variation of the fine-structure constant caused by expansion of
the Universe, Mod. Phys. Lett. A. 34 (38) (2019) 1950315.

26. Lipovka A., Physics on the adiabatically changed Finslerian manifold and cosmology, J. Appl.
Math. Phys. 5 (3) (2017) 582 —595.

CINMUCOK JIUTEPATYPbI

1. I'pu6 A. A., Mamaes C. I'., MocTtenanenko B. M. KBanToBbie 3¢ (GeKTbl B MHTEHCUBHBIX BHEIITHUX
moisix. M.: Atomusgar, 1980. 296 c.

2. Kazansky N. L., Kharitonov S. I., Khonina S. N. Joint solution of the Klein — Gordon and
Maxwell’s equations // Computer Optics. 2012. Vol. 36. No. 4. Pp. 518—526.

3. Schrodinger E. An undulatory theory of the mechanics of atoms and molecules // Physical
Review. 1926. Vol. 28. No. 6. Pp. 1049—1070.

4. Yeraes H. I'. O06 ycCTOMUMBBIX TpaeKTOpUSIX AWHAMUKM // YdeHble 3ammcku KazaHckoro
yHuBepcuteta. 1931. T. 91. Knura 4. Matemaruka. Boin. 1. C. 3—8.

5. YeraeB H. I'. O HekoTOphIX 3agayax 00 YCTOMYMBOCTU ABMDKEHUS B Mexanuke // [lpukmagHas
MatemaTuka U MexaHuka. 1956. T. 20. Ne 3. C. 309—314.

6. Chetaev N. G. On the extension of the optical-mechanical analogy // Journal of Applied
Mathematics and Mechanics. 1958. Vol. 22. No. 4. Pp. 678—681.

7. Rusov V. D., Vlasenko D. S., Mavrodiev S. Cht. Quantization in classical mechanics and its
relation to the Bohmian W-field // Annals of Physics. 2011. Vol. 326. No. 8. Pp. 1807—1815.

8. Carroll R. Aspects of stability and quantum mechanics // Progress in Physics. 2009. Vol. 2. April.
Pp. 24-28.

9. De Broglie L. Recherches sur la théorie des Quanta // Annales de Physique. 1925. Vol. 10. No.
3. Pp. 22—128.

10. Einstein A. Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen
Gesichtspunk // Annalen der Physik. 1905. Bd. 322 (vierte, Folge 17). Nr. 6. S. 132—148.

11. Schrodinger E. Quantisierung als Eigenwertproblem. (Erste Mitteilung)// Annalen der Physik.
1926. Bd. 79. Nr. 4. S. 361—376.

12. Schréodinger E.Quantisierung als Eigenwertproblem. (Zweite Mitteilung) // Annalen der Physik.
1926. Bd. 79. Nr. 6. S. 489—527.

13. Schrédinger E. Quantisierung als Eigenwertproblem. (Dritte Mitteilung) // Annalen der Physik.
1926. Bd. 80. Nr. 13. S. 437—490.

14. Schréodinger E. Quantisierung als Eigenwertproblem. (Vierte Mitteilung) // Annalen der Physik.
1926. Bd. 81. Nr. 18. S. 109—139.

15. Nelson E. Derivation of Schrodinger equation from Newtonian mechanics // Physical Review.
1966. Vol. 150. No. 4. Pp. 1079—1085.

157



4St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2024. Vol. 17. No. 2>

16. Ogborn J., Taylor E. F. Quantum physics explains Newton's laws of motion // Physical
Education. 2005. Vol. 40. No. 1. Pp. 26—34.

17. Mobasheramini F., Betola M. Quatization of Calogero — Painlevé system and multi-particle
quantum Painlevé equations II — VI // Symmetry, Integrability and Geometry: Methods and
Applications (SIGMA). 2021. Vol. 17. P. 081.

18. Yung K. C., Yee J. H. Derivation of the modified Schrodinger equation for a particle with a
spatially varying mass through path integrals // Physical Review A. 1994. Vol. 50. No. 1. Pp. 104—106.

19. Field J. H. Relationship of quantum mechanics to classical electromagnetism and classical
relativistic mechanics // European Journal of Physics. 2004. Vol. 25. No. 3. Pp. 385—397.

20. Ward D. W., Volkmer S. M. How to derive the Schrédinger equation // Oct. 2006. Found in
https://doi.org/10.48550/arXiv.physics/0610121 on 06/19/2023.

21. Field J. H. Derivation of the Schrodinger equation from the Hamilton — Jacobi equation in
Feynman's path integral formulation of quantum mechanics // European Journal of Physics. 2011.
Vol. 32. No. 1. Pp. 63—87.

22. Pelce P. Another derivation of the Schrodinger’s equation // European Journal of Physics. 1996.
Vol. 17. No. 3. Pp. 116—117.

23. Briggs J. S., Rost J. M. On the derivation of the time-dependent equation of Schrédinger //
Foundations of Physics. 2001. Vol. 31. No. 4. Pp. 693—712.

24. Lipovka A. A. Planck's constant as adiabatic invariant characterized by Hubble's and cosmological
constants // Journal of Applied Mathematics and Physics. 2014. Vol. 2. No. 5. Pp. 61—71.

25. Cardenas 1. A., Lipovka A. A. Variation of the fine-structure constant caused by expansion of
the Universe // Modern Physics Letters A. 2019. Vol. 34. No. 38. P. 1950315.

26. Lipovka A. Physics on the adiabatically changed Finslerian manifold and cosmology // Journal
of Applied Mathematics and Physics. 2017. Vol. 5. No. 3. Pp. 582—595.

THE AUTHORS

LIPOVKA Anton Adolfovich

Sonora University, Department of Investigation for Physics, Hermosillo, Mexico

Blvd. Luis Encinas J, Calle Av. Rosales &, Centro, Hermosillo, Sonora, 83190, Mexico
anton.lipovka@unison.mx

ORCID: 0000-0003-2770-2304

ANDRIANARIJAONA Vola Masoandro

Southern Adventist University, School of Engineering and Physics,
PO Box 370, Collegedale, TN 37315-0370, USA
avola@southern.edu

ORCID: 0000-0002-1655-9242

DAVIS Colton Hart

Southern Adventist University, School of Engineering and Physics,
PO Box 370, Collegedale, TN 37315-0370, USA
coltondavis@southern.edu

ORCID: 0000-0003-4348-7923

CBEAEHUA Ob ABTOPAX

JIUTIOBKA Anton AnoandoBua — PhD, npogheccop lenapmamenma husuuecKux uccie0o8aHull
Ynusepcumema Conopot, e. Bpmocuavo, wumam Conopa, Mekcuka.

Blvd. Luis Encinas J, Calle Av. Rosales &, Centro, Hermosillo,

Sonora, 83190, Mexico

anton.lipovka@unison.mx

ORCID: 0000-0003-2770-2304

158



4 Theoretical physics

AHIAPUAHAPUJIZKAOHA Boaa Macoaunnpo — PhD, npogheccop Jlenapmamenma ¢usuxu u umxice-
nepuu FOxcnoeo adéenmucmcikoeo yHusepcumema, e. Koaneodocetin, wmam Tennecu, CIIIA.

Taylor Cir, Collegedale, TN 37315-0370, 4881, USA

avola@southern.edu

ORCID: 0000-0002-1655-9242

JADBUC Koaron Xapr — cmydenm Illkoasr unscenepuu u gusuxu FOx CHO20 a08eHMUCMCKO20 YHU-
eéepcumema, 2. Koanedxceiin, wumam Teunnecu, CIIIA.

Taylor Cir, Collegedale, TN 37315-0370, 4881, USA coltondavis@southern.edu
ORCID: 0000-0003-4348-7923

Received 02.01.2024. Approved after reviewing 09.02.2024. Accepted 09.02.2024.

Cmamovsa nocmynuaa 6 pedaxyuro 02.01.2024. Odobpena nocae peuensuposanus 09.02.2024.
Ilpunama 09.02.2024.

© CaHkT-MNeTepbyprckuii NonUTEXHUYECKUI yHuBepcuTeT MeTpa Benukoro, 2024

159



