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Аннотация. В статье представлен алгоритм и теоретическое обоснование методики 
нахождения коэффициентов демпфирования по данным вибрационных обследований 
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Introduction

Full-scale dynamic testing of building structures remains a crucial problem, especially for 
unique structures, such as dams. Experimental assessment of dynamic characteristics (natural 
frequencies, mode shapes, relative damping ratios) and monitoring of these characteristics allows 
to control the safety, strength, integrity of the structure as well as to identify substantial changes 
without resorting to specialized devices or visual inspection of each structure.

Operational modal analysis (OMA) comprises an entire group of methods aimed at experimen-
tally determining the dynamic characteristics of structures under normal operating conditions. 
These methods have become increasingly widespread for diagnostics of dynamic characteristics 
in various structures as advances are made in measuring and recording systems. A particular 
popular method of the OMA group is Frequency Domain Decomposition (FDD) [2–4]. The 
FDD method and the ARTeMIS Modal software based on it have been adopted since 2019 by 
the scientists of the B.E. Vedeneev All-Russian Research Institute of Hydraulic Engineering 
(St. Petersburg, Russia) [9].

In addition to determining natural frequencies and mode shapes, the EFDD method expand-
ing the capabilities of FDD also offers an algorithm for determining damping ratios [4–6], how-
ever, it is rather complex, often yielding large errors.

A simpler, more accurate algorithm is proposed in this paper for identifying the 
damping parameters.

Our goal was to formulate and theoretically substantiate a new method for finding damping 
ratios based on vibration surveys.

The FDD method is described in detail in [2, 3, 7], and its theoretical framework is formulated 
in [1]. The algorithm of this method consists of the following mandatory steps.

Step 1. A cross-spectral density matrix (CSDM) Gy(ω) of simultaneously measured vibration 
signals is calculated for each frequency ω of a given range.

Step 2. A singular-value decomposition (SVD) of the matrices Gy(ω) is performed at each 
frequency ω, their first singular value σ1(ω) is determined, and a frequency function of the first 
singular value is constructed, averaged over all measurements.

Note that the main idea of the FDD algorithm (see, for example, [2, 3, 7]) is that the first 
singular value σ1(ω) of the matrix Gy(ωm) has local maxima near modal frequencies. The mathe-
matical justification for this was given in [1]. Alternatively, we use the function σ1(ω) to determine 
the logarithmic decrements corresponding to each natural frequency.

Theoretical justification of the procedure for determining logarithmic decrements

The response y(t) of the system is uniquely decomposed into their linear combination (due to 
the linear independence of the eigenmodes):

1 1 2 2( ) ( ) ( ) ( ).t q t q t t= ⋅ + ⋅ + =y ϕ ϕ Φ q (1)

As found in [7], if white noise is considered as external force, and dissipation is assumed to be 
small, the following expression holds true for CSDM Gy(ω):

H H
H
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c c c
i i i=
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where λm is the pole,

,m m dmiλ = −γ + ω (3)

0 );m m m(γ = ω ς (4)

φm is the eigenmode; Φ is a matrix whose columns are eigenvectors, Φ = [φ1, φ2,…φM]; M is the 
number of modes accounted for in decomposition (1); cm is a positive coefficient; i is the imagi-
nary unit; H is the Hermitian conjugate.
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The component ωdm of expression (3) is the natural frequency accounting for damping. In 
expression (4), ω0m is the natural frequency without accounting for damping; ςm is the damping ratio.

Next, we introduce the notation

2 2( ) 2Re .
( )

m m m
m

m md m

c c
i

  γ
α ω = = ω−λ ω−ω + γ 

(5)

Notably, modal vectors φm in expression (2) are assumed to be normalized, since the coef-
ficient αm contains, according to expression (5), a constant cm that can be supplemented with a 
normalization factor.

Then expression (2) can be written as follows:

( ) H( ) diag ( ) ,y mω = ⋅ α ω ⋅Φ ΦG (6)

or

H

1
( ) .

M

y m m m
m=

ω = α∑ ϕ ϕG (7)

Dynamic testing of the structure can be used to calculate the CSDM of the measured signals 
over a certain frequency range; next, the SVD of these matrices can be used to obtain the fre-
quency function of the first singular value [10–12].

It was proved in our earlier study [1] that the natural frequencies of the structure considered 
are located near the local maxima of this function. This paper proposes and substantiates a 
method for determining the damping ratios based on an experimentally constructed function of 
the first singular value.

An obvious idea is to compare the analytical expression for the first singular value and the 
experimentally constructed function [14]. Even though there is no general analytical expression 

for the first singular value of CSDM, a fairly good analytical approximation can be obtained 
under certain conditions.

Consider two main cases when it is possible to obtain such an approximation.
Case of single natural frequency. Here, the response y(t) of the system (see Eq. (1)) in the 

vicinity of some natural frequency (let us denote it as ωds) is determined mainly by eigenmode 
with the same number. Then the following relation holds true:

( ) ( ),s st q t≈ ⋅ϕy (8)

and the expression for the CSDM given by Eq. (4) can be rewritten as:

H( ) .y s s sω ≈ α ϕ ϕG (9)

Evidently, Eq. (9) holds true when the values of the functions αs(ω) significantly exceed the 
other values αm(ω) in the vicinity of the frequency ωds. Now let us find the conditions under which 
this requirement is satisfied.

Consider the properties of functions αm(ω). It can be seen from expression (5) that these 
functions depend on the corresponding natural frequencies and damping ratios. They have one 
maximum each, reached at the corresponding natural frequency.

Indeed (see our study [1]), determining the extreme values of the functions αm(ω), we obtain 
for ω = ωdm

( ) c .m dm m mα ω = γ (10)

We introduce the notation for the minimum distance ds on the frequency scale between the 
frequency ωds and the rest of the natural frequencies ωdm, namely:
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min .s ds dmm s
d

≠
ω ω= − (11)

Then the following relation holds true for the frequency ωdm with all m ≠ s:
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γ γ
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Now let us introduce the notation

0
.s

sm s m
mm

dr d= γ =
ω ς⋅ (13)

Comparing relations (12) and (10), we can see that the condition

( ) ( )s d s m d sα ω >> α ω (14)

is satisfied if

1, for all .sm s mr >> ≠ (15)

Therefore, as condition (15) is satisfied, only one term in expression (7) can be taken into 
account, i.e., the CSDM is calculated by Eq. (9).

An analytical expression can be constructed for the first singular value pf the CSDM Gy(ω) 
described by expression (9). The matrix Gy(ω) is evidently square and symmetrical (it is Hermitian 
for complex modes). The rank of the matrix Gy(ω) equals unity (since the rank of the product of 
the matrices does not exceed the ranks of the multipliers), therefore this matrix has no more than 
one eigenvalue other than zero.

We find it by defining the eigenvalues. Let u be the eigenvector and λ the eigenvalue of the matrix 
Gy(ω); then, by defining the eigenvector and the eigenvalue, we obtain the following equality:

( ) ,y u uω = λG (16)

then,

H H H( ) ( ) .s s s s s s s s su u u uα = α = α = λϕ ϕ ϕ ϕ ϕ ϕ (17)

An immediate consequence of equality (17) is that the only nonzero eigenvector u = φs, and 
the eigenvalue 2

s sλ = α ϕ . Evidently, λ ≥ 0, since the coefficient cm ≥ 0. Consequently, the 
matrix Gy(ω) is positive semi-definite, and then (since it is also Hermitian), its singular values 
coincide with its eigenvalues. Since 

2
sϕ = 1, then, apparently, σ1 coincides with αs. Therefore, 

the maximum singular value of the CSDM in the vicinity of natural frequencies can be written as

1 2 2 2 2 2
0

.
( ) ( )

s s s s
s

d s s d s ss

c cγ γ
σ = α = =

ω−ω + γ ω−ω +ω ⋅ς (18)

Furthermore, the natural frequencies accounting for damping (ωdk) and without it (ω0k) prac-
tically coincide for small damping ratios.

If we compare the function of the first singular value, obtained by processing experimental 
data, with analytical dependence (18), we can estimate the logarithmic decrements. Let us rewrite 
Eq. (18) in the following form:

1 2 2 2 .
( )ds ds

A
B

σ =
ω−ω +ω

(19)
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Then we use the least squares method (for example), making it possible to determine the coef-
ficients A and B that approximate the analytical function σ1 as close as possible (see Eq. (19)) to 
the experimentally obtained dependence in the vicinity of some natural frequency. The value of 
the parameter B apparently corresponds to the damping decrement.

The case of two converged natural frequencies. Let us now consider the second case, when the 
values of two natural frequencies numbered k and k + 1 (ωdk and ωdk+1) are located close to each 
other (such frequencies are generally known as converged in the literature), i.e., condition (15) is 
not satisfied for frequencies with these numbers.

However, if condition (15) is satisfied for all other natural frequencies, except for frequencies 
numbered k and k + 1, then CDSM can be calculated by Eq. (7) with only two terms:

1
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k
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m k
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=

ω = α∑ ϕ ϕG (20)
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∑ ∑ ∑

G . (21)

This matrix has the dimensions N × N, and it is difficult to find its singular values (or 
eigenvalues) analytically.

To simplify the task, we compose a Gram matrix (denoting it as K) based on the vectors 
k kα ϕ  and 1 1k k+ +α ϕ .

The matrix K has the following coordinate form:

1 1

1 1 1

( , )
.

( , )
k k k k k

k k k k k

+ +

+ + +

 α α α
=  

α α α  

ϕ ϕ

ϕ ϕ
K (22)

This matrix, like the matrix Gy, is Hermitian and positive semi-definite (a property of the 
Gram matrix). A proof that nonzero eigenvalues of the matrix Gy coincide with the eigenvalues 
of the matrix K (the Gram matrix constructed from the corresponding vectors) was given in [1], 
and the eigenvalues of the matrices K and Gy coincide with their singular values. Thus, the first 
singular value of the matrix Gy is equal to the spectral radius of the matrix K.

In this case, the matrix K has the dimensions of 2 × 2, and we can easily construct an analytical 
expression for the value of its spectral radius [16]:

2tr( )+ tr ( ) - 4det( )
.

2
ρ =

K K K (23)

Since it follows from the expression for matrix (22) that
2

1 1 1det ) ( , ) ,k k k k k k+ + +( = α α −α α ϕ ϕK (24)

1tr ) ,k k+( = α +αK (25)
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we obtain the following expression for the spectral radius of the matrix K (and therefore, for the 
first singular value of the matrix Gy):

22
1 1 1 1

1

+ + ( ) 4 ( , )
.

2
k k k k k k k k+ + + +α α α −α + α α

σ =
ϕ ϕ (26)

It follows directly from Eq. (26) that if φk is orthogonal to φk+1, then 1 , 1
max ii k k= +

σ = α , regardless of 
whether condition (15) is satisfied.

Fig. 1 shows graphs of functions σ1 and αi calculated for a system with three degrees of free-
dom. Evidently, in the vicinity of the first natural frequency ω1, function of the first singular value 
σ1 coincides well with the function α1 in a fairly wide frequency range ( 12 12.7r =  in this example). 
However, the behavior of the function σ1 changes for the second and third natural frequencies (

23 320.85, 1.7r r= = , respectively), while the greatest difference between the graph of this function 
and the corresponding graphs of functions αi is observed in the frequency range corresponding to 
the interval between the maxima of the curves for the functions α2 and α3.

Note that expression (26) is simplified at the point of intersection of the curves for αk and αk+1 
(α2 and α3 in the example):

1 1(1 ( , ) ).k k k+σ = α + ϕ ϕ (27)

In other cases, expression (26) as a function of logarithmic decrements is a rather complex 
expression, so using it to find the necessary parameters turns out to be a difficult task.

We propose a different approach to solving this problem in the case of converged frequencies. 
It is known from linear algebra that the sum of the eigenvalues of a square matrix is equal to its 
trace [15–17], and since, as noted above, the eigenvalues and singular values of the matrix K 
coincide in this case, the following formula holds true:

1 2 1.k k+σ + σ = α +α (28)

Let us introduce the notation

1 2( ) ( ) ( ).s ω = σ ω +σ ω (29)

Then expression (28) can be rewritten as follows:

1k ks += α +α (30)

(for brevity, the argument is omitted here).
If we substitute the expressions for αk and αk+1 in Eq. (30), then the following relation holds true:

Fig. 1. Behavior of first singular value σ1 compared with functions αi(ω) 
for system with three degrees of freedom (ω1 – ω3)
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1 1
2 2 2 2

0 1 0 1 1

.
( ) ( )

k k k k

dk k k dk k k

c cs + +

+ + +

γ γ
= +

ω−ω +ω ς ω−ω +ω ς
(31)

Fig. 2 shows a comparison of the sum of the first two singular values s and the sum αk + αk+1 
for the previously considered case (see Fig. 1), a system with three degrees of freedom (α2 + α3 
in the example).

Singular-value decomposition of the matrix Gy(ω) is performed during processing of experi-
mental data obtained by dynamic measurements at each frequency ω of a given range; not only 
the first singular value σ1(ω) but also the remaining singular values of the function are determined. 
Thus, the sum of the first two singular values is known.

Similar to the case of a single natural frequency, the natural frequencies accounting for damp-
ing (ωdk) and without it (ω0k) practically coincide for small damping ratios. Therefore, the analyt-
ical expression for the sum s of the first two singular values has the form

2 2 2 2 2 2
1 1

,
( ) ( )dk dkdk dk

A Cs
B D+ +

= +
ω−ω +ω ω−ω +ω

(32)

where A, B, C, D are unknown parameters.
The least squares method can be used to determine these unknown parameters. Evidently, 

the coefficient B is an estimate of the damping ratio ςk, and the coefficient D corresponds to the 
ratio ςk+1.

Example calculations of damping ratios

The method for determining logarithmic decrements was tested with a mathematical model of 
a system with 8 degrees of freedom (Fig. 3).

Fig. 2. Sum of first two singular values s(ω) compared with functions αi(ω) 
and sum αk + αk+1 for system with three degrees of freedom (see Fig. 1)

Fig. 3. Model of dynamic system with 8 degrees of freedom
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The inertial and stiffness parameters were set in the adopted model. The damping ratios were 
assumed to be the same and equal to 0.01. Then, a proportional damping matrix was calculated at 
each natural frequency by the specified damping parameters. Forces with a white noise spectrum 
were applied to masses M1 – M8. The values of the force amplitude and other parameters of the 
system are given in Table 1. The loading modeled was non-uniformly distributed over the degrees 
of freedom: the amplitude of the force at degrees of freedom 7 and 8 was increased by 10 times.

Next, vibrational responses at all degrees of freedom were determined as time series with a 
given frequency from the exact solution of the dynamic problem.

The measurement data obtained by this approach were used to test the FDD technique and 
to subsequently identify the damping parameters by the proposed method. The results were com-
pared with the parameters set for the model. The frequency function of the first singular value is 
shown in Fig. 4. Evidently, the six peaks corresponding to the natural frequencies (1–5 and 8) 
can be regarded as, i.e., the problem of determining the damping ratios corresponds to the case 
of a single natural frequency. The damping ratios corresponding to frequencies 1–5 and 8 were 
calculated by Eq. (19) based on to the algorithm described above (Table 2, upper lines).

Fig. 4. Frequency spectrum for function of first singular value 
in CSDM for system with 8 degrees of freedom (see Fig. 3)

Fig. 5. Calculated sum of first two singular values (points) 
and obtained dependence approximated by Eq. (32) (solid line

Tab l e  1

Parameters set for model of dynamic system with 8 degrees 
of freedom and their values (see Fig. 3)

Mass, kg Stiffness, N/m Force amplitude, N
(applied to mass)

M1 =…= M8 = 25.9 C1 = 770, C2 =1000,
C3 = 950 

F1 =…= F6 = 1,
F7 = F8 = 10

Note . The damping ratios (logarithmic decrements) were set to be the same and 
equal to 0.01.
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The graph in Fig. 5 for the case of converged frequencies (these are frequencies 6 and 7 in 
the example) shows the points corresponding to the sum of the first and second singular values 
(obtained by the simulation model) as well as a function approximating them by Eq. (32).

The values of the identified damping ratios and the corresponding coefficients of determination 
found by the above method are also given in Table 2.)

Conclusion

The paper proposes a simple method for determining the damping ratios after identifying 
the natural frequencies of a structure based on experimental data using the FDD technique. 
Analytical expressions are obtained in the vicinity of natural frequencies for the first singular value 
as well as for the sum of the first two singular values as frequency functions. The method for 
determining the damping ratios is based on approximating the values obtained from processing the 
experimental data by analytical expressions with unknown parameters. The least squares method 
allows to determine the damping ratios. The first singular value is approximated in the case of a 
single natural frequency, the sum of the first two singular values is approximated in the case of 
converged natural frequencies.

The damping ratios were identified for a model problem. The proposed method has an advan-
tage over the well-known EFDD method presented in [4], due to its lower complexity; further-
more, unlike the EFDD method, it allows determining the damping characteristics in the case of 
natural frequencies that are close in value.

Tab l e  2

Calculated damping ratios and corresponding coefficients of determination 

Peak Natural
frequency

Damping 
ratio

Coefficient
of determination

Case of 'single' natural frequency
1 0.64 0.0107 0.9985
2 1.03 0.0109 0.9995
3 1.54 0.0104 0.9957
4 1.73 0.0104 0.9975
5 1.93 0.0140 0.9357
8 2.39 0.0106 0.9983

Case of two 'converged' natural frequencies
6 2.06 0.01014 0.9977
7 2.10 0.01070 0.9981

Note .  The least squares method was used to find the values of the 
coefficient of determination.
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