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Annoramusa. Peanuzanuss MOOanbHOTO — yMIPABACHUS  PaCIpeAeIeHHBIMU  YIIPYTUMU
00beKTaMu MperoaraeT UCMoJIb30BaHNE MOIAJIBHBIX MAaTPUI] — aHAJIU3aToOpa U CUHTE3aTopa
¢opm, 3amamouiuMx JIUMHEHHbIE MPeodpa3OBaHMUSI BEKTOPOB M3MEPEHHBIX M YIPABISIOIINUX
CUTHAQJIOB C IENbI0 pa3felieHUs] COOCTBEHHBIX (OpM O0OBEKTa B CHUCTEME YIpPaBICHUSI.
CraHgapTHBIN CITOCOO 3amaHWsT MOAAJIbHBIX MaTPHUIl 3aKJIIOYaeTCsl B OOpallleHWM MaTpHIl
BIusiHUA. B cTaThe TpemsaraeTcsl aJbTepHATMBHBIN CIIOCOO: TPAHCIIOHMPOBAaHUE JTAHHBIX
MaTpull C HOPMHUPOBAHWUEM BO3NCHCTBUS Ha pasHble (opmbel. Ha mpumepe uucieHHOTO
pelieHusT 3aauyu TallleHWs BbIHYXIEHHbIX KoyieOaHUII TOHKOU MeTa/uIMuyecKoil Oanku
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C TIOMOIIIBIO TTbEe303JIEKTPUIYSCKNX CEHCOPOB U aKTYaTOPOB TECTUPYIOTCSI pa3HbIe KOMOMHALINU
Ha3BaHHBIX METOIOB M pa3Hbie BapMaHTbl HOPMMpPOBaHUS. PaccCMOTpeHO yIpaBieHUE Kak ¢
HabIogaTe s IMM, Tak U 0€3 HUX — Ha OCHOBE MOJAJIbHBIX U YaCTOTHBIX (husibTpoB. [TokazaHo,
YTO HAWJIYUYIIWIA pe3yJabTaT YIIPaBICHUS TOCTUTACTCS TTPY KOMOMHMPOBAHHOM MCITOJIb30BaHUH
pPacCMOTPEHHBIX METOAOB B CHCTEeMaX KaK ¢ HaOMogaTeIIMU, TaK U 0e3 HUX.

KnoueBble cioBa: MonajlbHOE YyIIpaBieHUE, MOAAJIbHBIE MaTPUIIbl, aHaAIM3aToOp (OpM,
cuHTe3aTtop GpopMm, HabIOIaTENb

Ccepuika ais nurupoBanus: @enoroB A. B. CpaBHeHME MOAXOIOB K 3aJaHMIO MOIAJbHBIX
MAaTpUIl TIpY MOAAJIBHOM YIpPaBJICHUM YOPYTUMU CHUCTEeMaMM C HaOmogaTeIsIMU U 0e3 HUX //
Hayuno-texuuueckue Bemomoctu CIIOITTY. ®dusuko-mateMmatuyeckue Hayku. 2024. T. 17.
Ne 1. C. 114—129. DOI: https://doi.org/10.18721/JIPM.17112

CraTbsl OTKPHITOTO AocCTyma, pacrmpoctpanseMas mo juneH3suu CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/)

Introduction

In recent decades, modal control has become a widespread approach to active control of
distributed systems, including elastic ones [1—3]. Its basic principle is separate control of different
vibration modes of an object, assumed to be independent from each other. The efficiency of this
method depends on how accurately it is possible to separate different modes of the object in the
control system (CS). In control with feedback, this problem involves both accurate measurement
of activation of individual modes that are controlled, and specific control actions applied to these
modes.

Arrays of discrete sensors and actuators are commonly used in modal control of elastic
objects. Each actuator commonly affects several modes at once, and, similarly, each sensor also
reacts to several vibrational modes of the object. In this case, information about different modes
in the control system is separated using modal matrices (or modal filters), setting the linear
transformations of vectors of measured and control signals.

The modal approach to control can be implemented both based on modal and frequency
filters [4—7], and based on observers [§—11]. In the second case, the control system turns out to
be more complex, since it uses a known object model to determine the state vector of an elastic
object, allowing to determine the required values more accurately.

The efficiency of these two modal approaches to damping forced vibrations in a thin metal
beam was compared in our earlier paper [12]. It was established that control with observers is
more efficient than control based on modal and frequency filters. Both approaches considered
rely on modal matrices to separate the vibrational modes of the object in the control system.

The standard technique for calculating modal matrices consists in calculating the inverse
influence matrices [5, 13] (or pseudo-inverse in the more general case [14, 15]). These matrices
show the proportions in which each sensor and actuator measures or excites various modes of the
object.

Thus, ideally, inversion of the influence matrices allows to obtain a system where each control
loop works only with its specific eigenmode and the loops do not interfere with each other's
operation. This method for calculating modal matrices was also invariably used in our earlier
studies [12, 13, 16—18].

However, the given method cannot be considered a universal solution to the problem of modal
separations.

Firstly, higher forms are always present, inevitably excited by the control system, since the
number of modes of a distributed elastic object is infinite, while the number of controlled modes
is finite. The phenomenon where energy flows to higher modes is called the spillover effect. It
limits the efficiency of modal control and can lead to instability of a closed system.

Secondly, the number of sensors and actuators in the control system is also limited. If control
is intended to be exercised over the number of modes exceeding the number of sensors and
actuators, it is usually impossible to completely separate these modes in the control system.

© ®enotoB A. B., 2024. Uznarens: Cankr-IletepOyprekuit monurexHuuyeckuii yuuepcuret [lerpa Benukoro.
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In any case, ideal selection of the necessary modes during control is possible only in the rather
rare situation when distributed modal sensors and actuators are used [6] (so there is no need for
modal matrices); in the more common case when discrete control arrays are used, there is no
universal solution to this problem, so alternative approaches should be found.

One such alternative technique for calculating modal matrices was proposed by us in [12]. It
consists in transposing these matrices instead of inverting the weight coefficient matrices. They
are also multiplied by additional diagonal matrices that normalize the degree of excitation and
measurements of individual modes.

Instead of separating different modes to be controlled, the algorithm is primarily intended for
achieving the most efficient actuation on each mode, approximating it in accordance with the
influence coefficients for this particular mode.

Firstly, the proposed method is computationally simpler than the standard one, since it does
not require inversion of matrices but only their transposition and multiplication by a diagonal
matrix. Secondly, if the number of controlled modes changes, modal matrices do not need to be
completely recalculated: it is sufficient to either add necessary columns to them or remove rows
from them.

The goal of this study is to analyze the efficiency of various methods for calculating modal
matrices in modal control of elastic systems.

A problem similar to the ones we discussed earlier in [12, 13, 16—18] is solved numerically
for this purpose: damping of forced bending vibrations in a thin metal beam using piezoelectric
sensors and actuators. Optimal control laws are synthesized for each calculation method, and the
results of vibration damping for all obtained matrices are compared with each other.

Theoretical foundations of the considered control methods

Modal control is widely used to control the vibrations of elastic systems in various spheres of
technology. In this paper, two of the most common approaches to modal control are investigated:
a simpler one based on modal and frequency filters, and a more complex one based on observers.

This section provides a brief theoretical description of the methods under consideration (they
are described in more detail in [12]), additionally substantiating various techniques for calculating
modal matrices: both standard and alternative (proposed by the author of this paper).

Method of modal and frequency filters. Consider the problem of damping forced bending
vibrations in a Bernoulli—Euler beam using piezoelectric sensors and actuators. Let us write the
vibration equation for an elastic object in matrix form as an eigenmode expansion, assuming that
vibrations in different modes occur independently:

G+2EQ¢+Q%q =0+ 0", (1)

where ¢, (t) is the vector of generalized coordinates, its length n corresponds to the number
of the object’'s modes taken into account in the model; Q  is the diagonal matrix of natural
frequencies of the vibrating beam; & is the scalar damping coefficient (for simplicity, we assume it
to be the same for all modes); O, %t) , ijl (t) are the vectors of generalized forces corresponding
to control and external perturbation, respectively.

Let the number of sensors and actuators be the same and equal to m (m < n). Their operation
is described by the following equations:

ymxl = ®jn><nqn><l > Qrfxl = ®meumxl > (2)
where y, (t) is the vector of sensor signals; u,,, (t) is the vector of control signals applied to
the actuators; @7, ©®?  are the influence matrices for sensors and for actuators, respectively.

If distributed modal sensors and actuators are used [6], the modes of the object are already
separated in the control system: each sensor reacts, and each actuator affects only one specific mode.
However, such sensors and actuators are used in exceptional cases; they are often inconvenient
and too expensive, especially if several modes of the object are to be controlled simultaneously.
For this reason, below we consider the case of discrete sensors and actuators.

We assume that control is carried out for k£ lower modes (k < n), therefore, the control system

includes k loops. Modal matrices 7 and F (mode analyzer and synthesizer) carry out linear
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transformations of measured and control signals in the CS. These transformations ensure that
each control loop corresponds to a specific mode of the object:

ékxl = T;cxmymxl > umxl = mekaxl b (3)

where ¢, (t) is the estimate vector of k lower generalized coordinates, O, (t) is the vector of
required control actions on k lower eigenmodes.

The required action on the mode in each loop of the modal system depends on the estimate
of the respective generalized coordinate:

A

Qi :_Ri(‘s)éi’ 4)

where R, (s) is the control law in the ith circuit, written as a function of the complex variable s.
The control laws in the loops are also called frequency filters, set in such a way that the control
system exerts the action on the object required with respect to amplitude and phase, precisely near
the resonant frequency of the object corresponding to this loop.
Evidently, in the simplest case, when & = m = n, modal matrices should be calculated as
follows:
-1

T=(e") . F=(e")". (%)

In this case, system of equations (1) is expanded into » independent equations for each of its
eigenmodes:

g, +28Q4, +Qz‘2qi =-R (S)qi +Qid’ (6)

and efficient separate control of each eigenmode of the object can be carried out by selecting the
control laws R, (s)

However, the number of modes n to be taken into account in control of distributed systems
generally exceeds the number of sensors and actuators m as well as the number of modes k&
controlled; the numbers m and k are also not necessarily the same. In this case, the influence
matrices can be represented as follows:

O, = |:(:)fn><k (:Dfnx(n—k) } s O = l:(:)i?:;nxm } ) (7)

while the modal filters are defined as pseudo-inverse to the corresponding components of these
matrices:

T;cxm = (@fnxk) s mek = (@me) . (8)
The above method for calculating modal matrices can be considered the standard approach

[14, 15, 19]. Below we discuss an alternative we proposed in [12].
Observer method. To describe this method, we represent system (1), (2) in the state space:

q"=Aq"+Bu+Dd, )
y=Cq", (10)
where d is the vector of external influences; y, u are the vectors of the measured signals and

control actions; ¢” is the vector of the state of the system related as follows to the vector of
generalized coordinates from Eq. (1):

¢ =(¢ - 4 @& - 4); (11)
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matrices A, B and C can be expressed in terms of matrices describing the dynamics of the object
and the operation of sensors and actuators:

>

a=| Ot g O ) o (e, 0,.,] 2
= > = ’ = mxn mxn _|* 1

o, -0, e, "
Here O,,,, 0, and O, . are matrices consisting of zeros; 7, is the unit matrix.

We assume that observation and control are carried out for k£ lower modes of the object
(k < n). The observer's task is to estimate the state vector qk corresponding to these modes:

. . \T
¢ =(q - 9@ @ - 4) - (13)
The observer generates an estimate g,,,, of this vector using known matrices Ag,sz s Bélk)xm
and C! 22,{ describing the dynamics of k lower modes of the object (they can be obtained from
matrices A, B and C by removing unnecessary columns and rows):

g=A"g+B+L(y-C"g), (14)
where L

»ixm 18 the observation matrix to be calculated.
The control action depends on the estimates of the state vector:

u=-Rq, (15)

where R, is the control matrix that also is to be calculated.
The principle of separate control of the object’s different modes dictates the following structure
for the observation matrix L and control matrix R:

Kl
Ly, = {K"k}T R, =F. | Kl K5 (16)

kxm >
kxk

where K", K, K®, K™ are diagonal matrices of size k x k; T, F are modal matrices that are
already known (mode analyzer and synthesizer).

Modal matrices can be calculated by the same technique as in the case of control without
observers.

Alternative technique for calculating modal matrices. The idea of the method presented below
was first proposed by the author of this study earlier in [12], however, theoretical substantiation
as well as the first results and study of the efficiency of the proposed method are presented for
the first time in this paper.

Thus, the central idea of the proposed method is to calculate modal matrices not by inversion,
but rather by transposition of influence matrices. An additional mathematical operation is also
performed, consisting of multiplying the resulting matrices by the diagonal matrices giving the
degree of excitation and response of the control system to the object's individual modes. The
proposed method is described by the following equations:

T,

kxm

=M, (8,)  F =(00,) ML, (17)

where M, ,, M, , are the diagonal matrices to be determined.

Next, we consider different approaches to calculating these matrices.

The proposed method can be substantiated theoretically by expanding on the theory of modal
filters, described in one of the fundamental studies on this subject [19]. Let us apply this theory to
the problem of controlling the bending vibrations in a Bernoulli—Euler beam using piezoelectric
sensors and actuators.

Consider a beam of length / located along the x axis, making bending vibrations in the XZ
plane. Let us represent the transverse displacement of the points of the beam w(x,t) as an

expansion in terms of eigenmodes:
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n

w(x,t)=2 X, (x)q; (1), (18)
i=1
where all the notations introduced in the previous sections are preserved, and X i(x) are the
eigenmodes of the beam's bending vibrations.
We assume that the eigenmodes are normalized as follows:

I;PI(X)Xi(x)Xj(x)dx=8U, (19)

where p,(x ( ) is the linear density of the beam material, 8 is the Kronecker symbol.
The normalization condition for the second derlvatlve modes also holds true:

(20)

i
" " 2
[ EL(x) X (x) X[ (x)dx = Q5
where EI (x) is the bending stiffness of the beam's cross sections.
The operation of sensors and actuators is described by Eq. (2). We consider them as rectangular
piezoelectric plates glued on both sides of the beam in sensor-actuator pairs.
In this case, the following relations hold true for the influence coefficients:

0, =k'0,,0, =k'0,, (21)

i
0,=X (xl.(z))—Xj'. (x,.(l)) (1) X"( Jdx~X"(x,)1,, (22)

where k%, k“ are the coefficients for sensors 8nd ?(ituators, respectively, depending on their
geometric parameters and material properties; x;’, x;”, x, are the coordinates the left and right
ends as well as the center of the ith sensor—actuator pair, respectively; is the length of each
piezoelectric element.

These quantities are related as follows:

M, @
X = % 1 =x? -0, (23)

Eq. (22) uses the assumption that the length of the sensors and actuators is small, allowing to
approximately replace the integral of the second derivative of the beam's eigenmodes along the
length of the piezoelectric element with the value of this function in the midsection. The influence
coefficients essentially turn out to be proportional to the curvature of individual eigenmodes in
the given cross sections. The reason for this is that longitudinal deformation of sensors and
actuators is associated precisely with bending deformation (i.e., curvature) of the corresponding
sections of the beam.

It is proposed in [19] to calculate the approximation of the transverse displacement function
v?/(x, t) of beam points in terms of estimates of this function in separate cross sections corresponding
to the location of sensors, v”v(xj,t):

v?/(x,t)zZT:IG(x,xj)ﬁ/(xj,t), (24)
where G(x,x ) are the interpolation functions given for each sensor.

The alternative technique for calculated the matrices, presented in this paper, assumes a
slightly modified definition for the function v?/(x,t) :

W(x,t)zZTzlé(x,xj)yj (t) (25)
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A modification introduced here is that the actual signals w(x t) of the sensors are used instead
of the displacement estimate Y; ( in the points where the sensors are mounted. This substitution
is made because the sensors in the given problem measure not the transverse displacement of
the beam's cross sections, as is the case in [19], but the curvature of the beam in these cross
sections, therefore it is impossible to obtain an estimate of the displacement w xl,t) from their
signals. Therefore the function G(x X; ) takes on a slightly different meaning than the function
Glx, x;) in the orrgrnal formula.

he ormula for determining the interpolation functions G(x X, ) plays the central role in
developing the proposed method.

We propose the following definition:

>

G(x,xj)z lel\ziin(x)Xl."(xj ) (26)

Thus, the interpolation function for each of the sensors is a combination of the beam's
eigenmodes, where the weight of each eigenmode is proportional to the curvature of this eigenmode
in the beam cross section corresponding to this sensor (i.e., in fact corresponding to the influence
coefficient ® -). In addition, the contribution of various modes is regulated by coefficients M Y
Next, let us consider several approaches to determining them.

The following expression for the estimate of the ith generalized coordinate can be obtained
from the condition of orthogonality and normalization of eigenmodes (19):

3,(1)= ] p (x) X, (x) #(x.0) . 27)

Substituting expressions (25) and (26) here, and taking into account condition (19) and the
definition of the mode analyzer (3), we obtain the following expression for the components of
this matrix:

- M? M}
= p( x)G dx=M;X](x)=—"L0,=—L0". (28)
7, = [1p, (x)X,(x)G (x.x,) (v)=0, =1

P

Thus, we have obtained an expression for the matrix 7, which coincides with Eq. (17). In this
case, the coefficients are related as follows:

M =1 kM. (29)

Next, let us discuss how these normalizing coefficients are to be determined. To do this, recall
the standard definition of the matrix 7, that is, Eq. (5). It assumes that the diagonal of the matrix,
which is the product of the matrices 7 and ®°, is composed of units, i.e., the following equality
holds true:

211 i i :_M Z/ 1( ji) =1 (30)

This leads to the first method for normalization, consisting of fitting:

_ 1 ) VL
M“:L-;ZLM MfY:Ml :;Mi’ (31)

i K m 2 K i i K $\2
Fe) k LA (k)
where the components of the diagonal normalizing matrix are introduced:

M-—1 (32)

S Xe,)

The matrix synthesizing the modes is found by calculating the normalizing matrix M“ from
Eq. (17) similarly to expression (31):
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1
Mi=— M, (33)
(%)
The second approach to calculating the normalizing matrices is asymptotic. It is formulated
assuming that there is a sufficiently large number of sensors and actuators, and the sum of the

squared second derivatives of the eigenmodes can be replaced by the average value of this function
along the length of the beam multiplied by the number of piezoelectric elements:

2 2 2
m 2 o , 2 Lmoer, 2 ["mC;
Z_/:1(®ji) zlpz_,’:l(Xi(xj)) ~ - O(Xi(x)) dx == : (34)
/ IET
In this case, the components of the diagonal normalizing matrix take the following form:

_El
i 272, "
Q;lm

(35)

Finally, another normalization method is trivial (in fact, the absence of normalization), where
the matrix M is assumed to be singular:

M=1_,. (36)

Regardless of the method for determining the normalizing matrix, the proposed method for
calculating modal matrices is much simpler than the standard method (8) from the standpoint of
calculations. It also has another advantage: if the number of controlled modes is changed (while
maintaining the sensor and actuator system) there is no need to completely recalculate the modal
matrices, as with the standard method; it is sufficient to either add the corresponding columns to
them or remove rows from them.

This raises the natural question whether the standard and alternative approaches to calculating
modal matrices are fundamentally different; if the answer is yes, the conundrum is how this is
possible since both approaches are aimed at solving the same problem.

This apparent contradiction is explained simply: if the number of sensors and actuators, evenly
distributed over the control object, is increased, the results yielded by these approaches converge,
since in this case the columns of the matrix ® become orthogonal to each other, and the results
of inverting this matrix and transposing it (provided that the first normalization method (32) is
used) become identical.

In view of this remark, the greatest difference between the considered approaches to calculating
modal matrices is manifested in the case when the number of sensors and actuators used turns out
to be small. This specific case is considered below: the number of pairs of piezoelectric elements
in the problem is taken equal to two.

In addition to the formulation of the proposed approach, the novelty of this study is that
we consider the case when the number of modes controlled exceeds the number of sensor-
actuator pairs (k > m), while the opposite situation is traditionally considered in the literature on
modal control (k < m) [14, 15]. This means that the modes controlled in the systems discussed
below cannot be strictly separated from each other, which further complicates the problem of
determining modal matrices and increases the importance of studying the alternative approaches
to solving this problem.

Problem statement

The problem solved in this study involves damping of forced bending vibrations in a thin
aluminum beam elastically restrained in the midsection by piezoelectric sensors and actuators
glued to the beam in certain regions. This problem has already been considered in some of our
earlier studies: first in an experimental study [16], then in numerical ones [12, 17, 18], where the
goal was to simulate the processes occurring in the experiment as accurately as possible.

The experimental setup is shown schematically in Fig. 1. Beam [/ with a cross section of
3 x 35 mm and a length of 70 cm is arranged vertically and fixed at one point at a distance of 10
cm from the lower end. Piezoelectric stack actuator 2 is included in the fastener connecting the
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[LLLIIT]
2

Fig. 1. Schematic of experimental setup:
aluminum beam 1; piezoelectric stack actuator 2;
fixed base 3; sensors 4; actuators 3;
digital controller 6; low-pass filters 7; amplifier 8

beam to fixed base 3. Longitudinal vibrations of the actuator, occurring when an AC voltage is
applied to it with a certain frequency, induce vibrations in the point where the beam is connected.
Such vibration acts as external excitation, whose consequences the control system should mitigate.

The control system consists of two sensor-actuator pairs (sensors 4, actuators 5), which are thin
rectangular piezoelectric plates measuring 50 x 30 mm, covered with electrodes on both sides.

In addition to digital controller 6, converting the measured signals into control signals, the
control circuit includes additional elements: low-pass filters 7 and amplifier §. Filters smooth out
the high-frequency components of the signal arising from discretization in the controller, and
generally increase the stability of the closed system; the amplifier increases the amplitude of the
control signal by 25 times before it is fed to the actuators.

The frequency characteristics of the filters and the amplifier are also taken into account in
numerical simulation of a closed system [12], which distinguishes this study from most numerical
studies on this subject.

Initially, the initial goal of control in the experiment and subsequent numerical studies, where
control systems were synthesized without observers, was to dampen the forced bending vibrations
of the beam only at the first and second resonances. The arrangement of sensors and actuators
on the beam was chosen in accordance with this goal [16]. However, our most recent studies,
starting with [12], consider, among other things, more efficient modal systems with observers
allowing to increase the number of beam eigenmodes to be controlled, while preserving the
number and arrangement of sensors and actuators. Therefore, the goal of control for such systems
was formulated as damping forced beam vibrations at three lower resonances.

The efficiency of control in the experiment was monitored with a laser vibrometer measuring
the vibration amplitude of a point at the upper end of the beam (since it is this point that
experiences the largest displacements during forced vibrations of the beam).

A finite element model of the control object (beams with piezoelectric elements and fastener)
was constructed at the first stage of numerical simulation of the closed system; analysis of the
model allows to obtain the frequency characteristics of the object [17]. Next, the frequency
characteristics of the closed system were calculated for each type of control system tested based on
the frequency characteristics of both the object and the CS itself [17]. To determine the efficiency
of control, we analyzed the frequency response of displacement of a point at the upper end of
the beam.

Synthesis of control systems

This study was aimed at synthesizing optimal control systems within the framework of the
approaches considered, i.e., such system that achieve the goal of control posed the most efficiently.
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For this purpose, an optimization procedure is used to construct the control systems [17, 18],
allowing to vary the parameters of the control system and select their optimal combinations,
satisfying the condition for stability of the closed system.

The optimization criterion is either the height of a specific resonant peak on the frequency
response of the beam (corresponding to displacement of the point at the upper end), or the sum
of the vibration amplitudes (in decibels) at the corresponding resonant peaks in the case when the
system must dampen vibrations at several resonances.

The stability of the closed system was analyzed using the Nyquist criterion, modified for the
case of several control loops [17].

Modal matrices, a mode analyzer and a mode synthesizer (7 and F) are calculated at the
first stage of CS synthesis, both with and without observers. They are calculated by different
techniques, discussed above. Then, control laws are synthesized for each combination of
modal matrices using the optimization procedure: for systems without observers, these are
frequency filters Rl(s) and R, (s) (see Eq. (4)), and for systems with observers, these are
diagonal matrices K*, K™, K®and K™, included in the definition of observation and
control matrices L and R (see expressions (16)). Various goals of control are set: both the
damping of beam vibrations at each resonance separately, and simultaneous damping at several
resonances.

Let us focus more closely on different techniques for calculating the modal matrices used in
this study. We assume that equalities (21) hold true for the influence matrices. In this case, two
approaches to calculating the matrices are globally possible.

The first method is inversion (or pseudo-inversion) (8):

+

T=(®S)+ =K', F=(0") =k"(0") (37)

The second method is transposition with multiplication by the matrix M (see expressions
(31, 33)):
1
(o) M= oM. (38)

1 T 1 1
T=—_M(©) =—M0", F=
ey T

The following influence matrices were obtained from the object model for cases of control over
two or three modes:

2X2:{3.659 —17.07} 2x3:[3.659 —-17.07 21.48}. (39)

1.187 17.76 1.187 17.76  10.09

The normalizing matrix M was determined by one of the three techniques (see Egs. (32), (35),
(36)) (the last row and column are removed for control over two modes):

{ M"™ =1, M*" = diag{0.574 0.0159 0.00223}, (40)

M’itzdiag{0.0676 0.00165 0.00178}.

In this case, the product of multiplying the modal matrices by the corresponding influence
matrices is of greater interest for analysis than the matrices themselves; let us denote it as ® . The
matrix ® should have as much similarity as possible to the unit matrix for the best separation
of modes.

This requirement is satisfied for the case of control over two modes (k = 2) and inversion of
the influence matrices:

O, =70 =(0°F) =1, (41)
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Below we present the matrices corresponding to pseudo-inversion and different normalization
methods for transposition with & = 3: trivial, asymptotic and fitting (matrices for k = 2 can be
obtained by removing the last row and column from these matrices):

0.0236  —0.0201  0.150 148 —41.4 90.6
O™ =|-0.0201 1.00  0.00310|, @™ =|-414 —607 -187],
0.150  0.00310 0.977 90.6 —187 563 42)
849 238 520 1.00 280 6.12
O“™ =| —0.658 9.65 298|, " =|-0.0682 1.00 —0.309 .
0202 -0417 1.25 0.161 —0.333 1.00

As evident from the formulas obtained, different techniques for calculating the modal matrices
produce significantly different results for separation of the beam's eigenmodes in the control
system. Next, we can compare the efficiency of the considered approaches.

Comparison of results obtained from different control systems

This section presents the results from the synthesized control systems. Examples of control laws
for the CS based on the method of modal and frequency filters are given in [18], and examples
for the CS with observers are given [12].

Results of damping of forced beam vibrations at the first (I) and second (II) resonances
for systems without observers are given in Table 1. If the modal matrices are calculated by the
transposition method in such CS, it does not matter which normalization method is used, since
different methods produce the same result with the appropriate choice of gain coefficients in
the control laws in each of the loops. The CS synthesized for each technique for calculating
modal matrices (inversion or transposition) were efficient only at the first or second resonances
separately or at both resonances together.

As evident from the data presented, the most efficient damping of vibrations at both resonances
is achieved when one of the modal matrices is determined by inversion, and the other by
transposition (cases 3 and 4), the latter case is slightly more efficient.

Table 1

Decrease in resonant amplitudes of beam vibrations
for various control systems (without observers)

Calculation technique ) Amplitude decrease, dB,
Damping at resonance
Case T F I (Ay) IT (Ay,)
separately 32.04 30.84
1 Tr Inv
together 32.00 31.05
separately 32.31 31.41
2 Tr Tr
together 32.32 29.9
separately 32.72 31.48
3 Inv Tr
together 32.72 31.48
separately 32.77 31.45
4 Tr Inv
together 32.77 31.50

Notations: 7T, F are the mode analyzer and synthesizer, respectively;
Tr, Inv are transposition and inversion of influence matrices, respectively.

124



Mechani
4 ca|cs>

Table 2 gives the results obtained from different CS with observers at the first three resonances.
Two cases are considered for each combination of modal matrices: control over only two (k = 2)
or over all three modes (kK = 3). In each of these cases, various normalization methods were
considered: all three methods for £ = 3, only trivial and asymptotic for k = 2, since in this
case there is practically no difference between the asymptotic and fitting cases. The best results
of vibration damping at each of the resonances for each combination of modal matrices are
highlighted in bold in Table 2.

Table 2

Decrease in resonant amplitudes of beam vibrations
for various control systems (with observers)

Calculation technique k L Amplitude decrease, dB,
Normalization at resonance
Case T F 1(Ay) | 11 (ay) | 111 (Ay)
{ Inv Inv 2 — 34.75 35.66 -
— 36.50 36.52 22.85
5 triv 36.44 36.55 —
asymp 36.68 36.53 —
2 Tr Tr triv 35.48 37.02 23.91
3 asymp 36.33 36.95 23.88
fit 36.18 36.99 22.75
5 triv 35.97 31.76 —
asymp 36.06 31.86 —
3 Inv Tr triv 36.18 37.09 21.99
3 asymp 36.78 38.23 21.69
fit 36.73 38.33 21.83
5 triv 36.93 36.98 -
asymp 36.94 37.18 -
4 Tr Inv triv 37.68 37.65 24.28
3 asymp 37.86 37.62 24.35
fit 37.93 37.64 24.46

Notations: k is the number of modes; friv, asimp, fit are trivial, asymptotic and fitting
normalization methods used for transposition.

Fig. 2 shows the frequency response of the closed system, where the vibration amplitude
of the point at the upper end of the beam, near each of the three lower resonances, acts as
the observable. The efficiency of four CS corresponding to each of the combinations of modal
matrices in the case of fitting normalization with simultaneous damping of vibrations at three
resonances is compared.

Notably, the difference between all the considered calculation techniques is small: it is within
a few decibels for control with observers, and about a decibel for control without observers. Thus,
robustness is observed in this aspect of the approaches to control considered. The most efficient
combinations of matrices for systems with observers are also 3 and 4, and the latter is again
preferable: it allows to damp the first and third resonances, while combination 3 allows to damp
the second resonance.

On average, the results for cases of asymptotic and fitting normalization are better than for
trivial the trivial normalization: asymptotic normalization is better for combination 2, and fitting
normalization is better for combinations 3 and 4. In general however, the normalization method
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is less important than the technique for calculating the matrices (inversion or transposition). It is
also worth noting that, on average, the first two resonances are damped better with control over
three modes (k = 3) than over two modes (k = 2).

In addition, the study confirms the conclusion drawn in [12]: control with observers remains
significantly more efficient than that based on modal and frequency filters for any techniques for
calculating modal matrices, besides it allows to damp vibrations at a larger number of resonances
exceeding the number of sensors and actuators.

a)

95 100 03 "o 115 f: Hz

Fig. 2. Frequency response of the beam for different control systems (with observers) near resonances I (a),
II (b) and III (c): without control (curves /) and for different techniques 1—4 used to calculate modal
matrices (curves 2—J5) (see Table 2 for calculation techniques 1—4)

Conclusion

The paper considers various techniques for calculating modal matrices within the modal
approach to control of distributed systems. Along with the traditional method involving inversion
of influence matrices, an alternative method was considered and substantiated, consisting in
transposition of these matrices with subsequent normalization. The example of the numerical
solution to the problem of damping of forced bending vibrations in a thin metal beam was used to
prove that the best result of control was achieved by combining the given methods, when the mode
analyzer matrix was calculated by transposition, and the mode synthesizer matrix was calculated
by inversion. This conclusion is valid for systems both with observers and based on modal and
frequency filters. In addition, it is established that the results of control can be improved through
normalization of modal matrices calculated by transposition.
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