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Abstract. We investigate the effects of resonant tunneling of the charge carriers of the I
zone in the GaAs/AlAs heterostructure within the framework of the effective mass method, tak-
ing into account complex character of the valence band dispersion law. The problem is solved
by introducing Green’s function with parametric dependence on energy within the biorthogo-
nal formalism of quantum theory. The effects imposed by the spin state of holes, as well as the
effect of short-range interface corrections, are investigated.
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Introduction

Resonant tunneling in quantum-dimensional structures is the charge carrier transfer through
potential barriers of finite height when its energy is equal to the resonance energy of the quantum
system. This phenomenon is used in the design of a variety of electronic devices working at high
frequency and terahertz range: semiconductor optic amplifiers and modulators, quantum-cascade
structures and others [1—5]. Another field of application is spintronics where polarization effects
are used to separate charge carriers with various effective spin momentum projections. It makes it
possible to design different spintronic devices like spin filters and spin injectors [6, 7].

Theoretically, tunneling processes are described by the transmission coefficient which is equal
to the relation of probability flow densities. To find probability flow, we need to solve the
stationary inhomogeneous Schrodinger equation. In general case, it has the following operator

form
(- E]jw(E)- o). 0

where H is the Hamiltonian of the quantum system, |y (E)) is vector, which describes the
stationary state of the quantum system with energy E and |p) is vector characterizing the particle
source in the quantum system.

The Schrodinger equation is generally solved by the transfer matrix method. This approach has
a high calculation precision, however, it requires large software capacities and is also associated
with the need to satisfy a large number of boundary conditions in the case of multi-barrier
structures and the complex structure of the energy zones of the materials [8, 9].

In the present work, effects of resonant tunneling in heterostructures are investigated using
Green’s function method which can be formulated within the framework of the biorthogonal
approach to the analysis of quantum systems described by non-Hermitian operators [10, 11].
The problem is reduced to a solution of the inhomogeneous Schrodinger equation in the
k-representation using the corresponding Green's function, parametrically dependent on energy.
In the case of the open unlimited space, the particle wave function amplitude is not equal to zero
at infinity. Accordingly, the system Hamiltonian is non-Hermitian. Within the framework of the
developed approach, a finite space is considered and a method of smoothly changing dissipative
potential barriers near the boundaries of the structure into the system is applied. In the region of
this dissipative potential, the amplitude of the wave function of the particle fades. The presence
of a potential of this kind leads to the fact that the Hamiltonian of a particle in a limited region
also becomes non-Hermitian. Consequently, the solution of the problem with the escape of a
particle to infinity can be replaced by the solution of the problem in a finite-size space with the
analogous non-Hermitian Hamiltonian [12].

Theory

The mathematical formulation of the biorthogonal theory is based on the search for two sets of
eigenvectors and eigenvalues of a given non-Hermitian Hamiltonian and its conjugate operator.
The problems of finding eigenvalues and eigenvectors have the form

H|y,)=E,

w2>, 2
H'ly,)=E;

n

V),

where |\|/;? and |\|fi > are ‘right’ and ‘left’ eigenvectors respectively, related by the biorthonormality
and completeness conditions

(vl v ) =3,

Zn:|w2><\vi =1.

3)
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The tunneling problem is considered within the framework of Green's function method, which
is convenient for analyzing a continuous energy spectrum. Green’s function for the Schrodinger
equation, parametrically dependent on the energy of a particle, has the operator form

G(E)=(A-E) . “)

Using the Kohn—Luttinger basis, we can solve the Schrodinger equation (1) within the framework
of the effective mass method [13]. The effective Hamiltonian of I'y zone in k-representation has

the form
P+Q w V 0

R W'+ P-0 0 4
2m,| V7 0 P-Q0 W
0 vt wt P+Q

) (&)

where P=y (kK +k}+k2). O=v,(kl+k}—2k2), ¥V =—3y,(k} -k )+i2\B3y;k k, .
= —2«/§y3 (kx —iky)kz > V> Vos Y5 AI€ Luttinger parameters characterizing structure of the

valence band. For a finite volume of the system, wave vector k is taking discrete values.
Thus, we can determine the solution of Eq. (1) with the Iy effective Hamiltonian using the

corresponding Green’s function
(klw(E)) =2 k) (K [p). (6)
=

Results and Discussion

In this work, tunneling of holes in a one-dimensional double barrier heterostructure GaAs/AlAs
is investigated. The system has the following parameters: width of quantum well d = 20 nm,
width of quantum barriers d, = 30 nm, the energy gap between two materials is 0. 46 eV. The k
and k£ components of wavevector k are equal to zero. Luttinger parameters for GaAs: y, = 6.98,
Y, = 5.06, y, = 2.93. Luttinger parameters for AlAs: y, = 3.76, y, = 0.82, y, = 1.42 [14]. The
characteristic functions of the potentials and energy dependence of the tunneling coefficient are
shown in Figs. 1 and 2, respectively.

Quantum barriers are formed by AlAs atoms and quantum well potential is formed by GaAs
atoms. The dissipative potentials at the boundaries of the region are located at some distance from
the quantum barriers and are set smoothly enough so that their effect on tunneling is excluded.
Source of particles is set on the left side in front of the first barrier.
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Fig. 1. Double barrier structure (red solid line) with dissipative potential (blue dotted line) near the
boundaries
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As shown in Fig. 2, the energy dependence of transmission coefficient has several resonant
peaks. The first of them are low-intensity resonant peaks located before the energy of the quantum
barrier. They correspond to the tunneling of holes with energy below the height of the barrier.
It is possible due to the existence of quasi-resonant energy levels in quantum well between two
barriers. The last peak in this energy range is located after the energy of quantum barriers and
corresponds to the transition of holes with energy higher than the height of quantum barriers.
The width of these peaks is related to the lifetime of charge carriers in the quantum system — a
smaller width corresponds to a longer lifetime of charge carriers.
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Fig. 2. Tunneling ration depending on the energyfor heavy (solid red line)
and light (dashed blue line) holes

Let us consider the structure with non-zero k, and k, components of wavevector k. Energy
dependence of the transmission coefficient in such system is shown in Fig. 3.

In this case, energy dependence of the transmission coefficient is different for holes with all
spin projections. The shift of the second series of resonant peaks is approximately 20 meV. As
illustrated in Fig. 3, holes with different spin projections have their own resonant energies: at the
first resonant peak heavy holes with both spin projections are tunneling with the same probability
and with the same energy. However, light holes have different tunneling probabilities and resonant
energies. At the next resonant peak, there is increasing intensity of the second resonant peak. The
shift of this series is too small.
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Fig. 3. Tunneling ratio depending on the energy for holes with different effective spin projections
(mg = +3/2 is marked by the solid red line, m; = +1/2 by the solid blue line,
m, = —1/2 by the dashed blue line, m; = —3/2 by the dashed red line)
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Since the heterostructure consists of two different materials, we need to consider the influence
on resonant tunneling from both of them. GaAs and AlAs have different dispersion laws, so we
need to include in our model the changing of Luttinger parameters and thus take into account

the effect of the interface on the holes with a certain spin projection: Yi(kf = YiSkkl + Ayi Jue» Where
Ay' = Yi —Yg . Tunneling coefficient dependent on energy for heavy holes with spin projection
+3/2 is shown in Fig. 4. The ky and k, components of wavevector k are equal to zero.
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Fig. 4. Difference between tunneling ratio depending on the energy for two cases (the case with
interface correction corresponds to the solid red line, the case without interface correction to the
dashed blue line)

We can observe increasing intensity of the first resonant peaks and shift of the second series of
peaks. The shift is approximately 15 meV. There are two different peaks for independent tunneling
of heavy holes and light holes because these interface corrections including change of Luttinger
parameters do not influence light hole tunneling.

Finally, we investigate the Rashba effect of the interaction of a heavy hole with effective spin
projection +3/2 and the interface of the quantum structure. To introduce these corrections,
we need to use the effective Hamiltonian. Its kinetic energy is the sum of Hamiltonian (5) and
Rashba Hamiltonian (6). The dependences of the tunneling coefficient are compared in Fig. 5
taking into account the Rashba effect and without it.

R R 0 0
n’ B R Rl 0
2m, 0 R, -R, R

0 0 R -R
30 ., Lo o B3 N e
where R, =E(kxky ~k,k.). R, =E(kxky ~kK), R, =7[(kykz kel )+i (ke ~ k)
R, = 2[<kykz’ —k.k, ) +i(k k. —k k! )] , AR is interface correction amplitude.

AH(FS) =i , (6)

~

It can be seen from Fig. 5 that there is the shift of resonant peaks for heavy holes with spin
projection +3/2 with energy more than the height of the quantum barrier. It is approximately
20 meV. Additionally, there is another shift of the peak in the low-energy range, which is
approximately 10 meV.
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Fig.5. Difference between tunneling ratio depending on the energy for two cases
(solid red line corresponds to the case with the Rashba effect, dashed blue line to the case without the
Rashba effect)

Conclusion

The effects of resonant tunneling of charge carriers in a GaAs/AlAs heterostructure with a system
of two potential barriers are investigated. The tunneling of holes in the I'y zone is considered,
where a significant role is played by the difference in the dispersion of particles corresponding
to different spin projections. The influence of short-range interface corrections related to the
difference in the dispersion law in the materials forming the heterostructure is also considered.
In particular, the change in the transmission coefficient is shown when taking into account the
interface effect of Rashba. Shifts of tunneling ratio resonant peaks are shown and estimated. The
investigated heterostructure can be used to design spintronics devices.
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