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Abstract. The work demonstrates the use of photomodulation FTIR spectroscopy to study 

structures containing epitaxial layers of GeSn and GeSiSn in the temperature range of 79–180 
K. The photoreflectance method has enabled observation of direct interband transitions, and 
evaluation of the impact of temperature variation and mechanical strain on their energy values.
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Аннотация. В работе продемонстрировано применение метода фотомодуляционной 

ИК фурье-спектроскопии для исследования структур, содержащих слои GeSn и GeSiSn 
в диапазоне температур 79–180 К. Метод фотоотражения позволил наблюдать прямые 
межзонные переходы, оценить влияние температуры и механических напряжений в 
структуре.
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Introduction

Presently there is an active interest in research on the development of semiconductor devices 
based on group IV compounds of the periodic table (Si, Ge and Sn). Such compounds can 
have a direct band structure, which makes it possible to create light-emitting devices on their 
basis. Another important advantage is its good compatibility with silicon technology [1, 2]. One 
promising alloy is Ge1–xSnx, which has a direct band structure at a certain tin content (from 
about 6.5–8.6 % [3, 4]). This makes it possible to manufacture photodetectors and light-emitting 
devices, such as lasers and LEDs, in the mid-infrared wavelength range based on this compound. 
Studies [5, 6] have attempted to create a photodiode and an LED based on such an alloy. 
Another promising compound for these purposes is the Ge1–x–ySixSny alloy, which enables band 
engineering through the adjustment of the Sn content [3]. The possibility of obtaining emitting 
and photodiode structures based on this alloy has also been demonstrated [7–9].

The goal of the current work is to obtain information about the band structure of the Ge1–x–ySixSny 
alloy using the FTIR photoreflectance spectroscopy method. Knowledge of the band structure 
parameters of Ge1–x–ySixSny can be used for the development of new optoelectronic devices.

Materials and Methods

In this study, the optical properties of heterostructure samples containing Ge0.918Sn0.082 and 
Ge0.923Si0.025Sn0.052 alloys were investigated. The samples were grown via molecular beam epitaxy 
on (100) silicon substrates. The studies were performed using two series of structures. As the base 
of the samples of each series, a 100 nm silicon buffer layer was grown on a silicon substrate, on 
top of which, after a 10 nm Ge0.3Sn0.7 insert, a 200 nm thick Ge virtual substrate layer was formed. 
The final layer, 200 nm thick, was different for each series of samples: Ge0.918Sn0.082 for series A; 
Ge0.923Si0.025Sn0.052 for series B. For each series, the samples were annealed in an argon atmosphere 
at different temperatures (see Table).

Table
Description of the studied samples

Annealing 
temperature Non-annealed 125 °C 300 °C 350 °C

Series A A0 A1 A2 A3
Series B B0 B1 B2 B3

To study the optical properties of the samples described above, the method of photomodulation 
Fourier-transform infrared (FTIR) spectroscopy was used. The photoreflectance method is 
based on measuring the changes in the intensity of the probe beam as a result of the periodic 
action of the modulating beam (ℏω > Eg) on the electric field within the sample. Photoinjected 
electron-hole pairs are separated under the influence of this field and partially compensate for 
the surface charged states. This causes a change in the optical characteristics of the structure and, 
consequently, leads to modulation of the reflectance. Using phase-sensitive detection, a change 
in the reflection coefficient is recorded, which can be either positive or negative, depending on 
the phase of the reflectance modulation [10].

The experimental setup was based on a Vertex 80 FTIR spectrometer equipped with CdHgTe 
and InSb photodetectors cooled by liquid nitrogen. Synchronous detection was performed by 
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using an SR-830 lock-in amplifier. Light from an incandescent lamp with a quartz bulb was used 
as a probe beam, and modulation was carried out by a laser with a wavelength of 405 nm, which 
was mechanically chopped at a frequency of 2.3 kHz. To cool the samples, a liquid-nitrogen-
cooled cryostat and a closed-cycle helium cryostat were used, allowing a cooling temperature 
down to 11 K to be achieved.

During the preparation of the spectra for analysis, a phase-correction technique was used to 
restore the modulation phase [11]. The photoreflectance spectra were analyzed using the method 
described previously [12].

Results and Discussion

For the first series of samples containing a Ge0.918Sn0.082 layer, the photoreflectance spectra 
measured in the temperature range of 79–180 K are presented in Fig. 1. For all the samples a 
photoreflectance signal in the form of a double peak is present on the left side of the spectrum. 
The left maximum corresponds to a direct interband transition in the Ge0.918Sn0.082 compound. 
The nature of the right extremum at the time of writing the work is not clear, but we assume 
that the double peak may appear because of the presence of mechanical strain in the structure. 
Such strain can cause a splitting in energy between the subbands of heavy and light holes. This 
assumption correlates with the results of X-ray diffraction measurements, which have given the 
strain relaxation degree of only 72% for the Ge0.918Sn0.082 epitaxial layer.

For the A0 and A1 samples, additional photoreflectance signals in the spectra were observed at 
energies above 800 meV. These evidently belong to the germanium virtual substrate layer, as their 
energy corresponds to the direct interband transition in this material.

Fig. 1. Photoreflectance spectra for samples of series A: non-annealed, A0 (a); annealed at 125 °C,
A1 (b) and annealed at 300 °C, A2 (c)

c)

b)a)
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Fig. 2. Temperature dependence of the energy of direct transitions in the Ge0.918Sn0.082 (a) 
and Ge (b) layers

a) b)

From the spectra of the Series A samples, one can also evaluate the effect of annealing on the 
photoreflectance signal. For example, it can be noted that the signal from sample A1 is increased 
compared to non-annealed one (A0). With further annealing, the signal began to weaken and was 
not observed for sample A3. Presumably, the annealing changes the concentration of defects and 
therefore the equilibrium concentration of charge carriers, which affects the built-in electric field 
of the sample, resulting in a weaker reflectance modulation.

Fig. 2 shows the temperature dependences of the energy of the direct transitions in the 
Ge0.918Sn0.082 layer (a) and germanium layer (b), obtained from the analysis of the spectra 
using the techniques described in [12]. The experimental results were approximated by the 
empirical Varshni equation, and the fitting parameters for each sample are shown as insets in 
the corresponding figures. In comparison, the corresponding dependences were plotted based 
on the available literature [13–16]. By comparing the experimental results for Ge with the 
literature data in Fig. 2, b, a good accuracy of the photoreflectance method for studying such 
structures is shown.

According to the dependencies in Fig. 2, a, it can also be noted that the experimentally 
obtained energy values for Ge0.918Sn0.082 do not precisely coincide with the calculations based 
on literature data. This discrepancy can be explained by the presence of mechanical strain 
in the structure. In addition, for the sample A2 annealed at 300 °C, the energy value at 79 K 
was lower by ~12 meV relative to A0 and A1. Along with the observed greater splitting of the 
photoreflectance peak, this may imply a change in the strain values in the case of annealing at 
a relatively high temperature. 

The photoreflectance spectra of the sample series with the Ge0.923Si0.025Sn0.052 epitaxial layer 
are shown in Fig. 3, a. The spectra exhibited a broadened and asymmetrical (relative to the 
maximum) peak, which can be represented as a combination of two signals. Indeed, at energies 
less than 770 meV, signals from the Ge0.923Si0.025Sn0.052 alloy are observed, from which the values 
of the energy gap at the Γ point are determined. The broad shoulder to the right of the maximum 
is likely caused by the signal from the Ge virtual substrate, which was observed in the samples of 
series A.

The dots in Fig. 3, b indicate the temperature dependence of the value of the direct transition 
energy in Ge0.923Si0.025Sn0.052 obtained from the analysis of the photoreflectance spectra. The red 
curve approximates the experimental data using the Varshni equation, and the green curve 
is a dependence constructed on the base of literature data [13–16]. Notably, in this series 
of samples, the photoreflectance signal was observed only for the non-annealed sample. The 
absence of the signal in the annealed samples can be caused by a decrease in the modulation 
of the built-in electric field. Additional research would be necessary to determine the reason 
behind this effect.
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