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AnnHoranuga. B paboTe moaydeHo BoIpaxkeHUe Aj1s1 MaTpUllbl JIXKoHCaA peajbHOTr0 BOJJOKOHHOTO
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Introduction

The improvement of fiber-optic technologies has contributed to the active development of
various types of specialized optical fibers. One of the directions in this field is the development
of a unique class of spun-type fibers, which have a particular internal anisotropy structure. Such
fibers have the same internal structure as fibers with linear anisotropy, however, upon shifting
along the longitudinal axis of the fiber, the direction of the polarization axes undergoes regular
rotation. This is achieved by twisting a preform with a birefringent structure (polarization-main-
taining fiber) during fiber drawing.

The type of intrinsic polarization modes of such a fiber depends on the ratio of two key
parameters in the resulting fiber structure. The first parameter, V,, rad/m, is the increment of the
phase difference of the linear polarization modes of the local fiber segment, which characterizes
the linear anisotropy caused by the transverse deformation of the core induced during manufac-
ture. The second one, V<, rad/m, is the linear velocity of the longitudinal rotation of the direction
of the polarization axes.

Depending on the achieved ratio V /V,, the eigenmodes of the spun fiber may have a different
character, but it is important to note that with an increase in the value of V /V,, the proper modes
of the spun fiber tend to orthogonal circular polarizations [1].
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Two types of spun fibers are known: with low (LoBi) and high (HiBi) birefringence.

The first type is characterized by the fact that a high value of the ratio V /¥, is due to a low
value of V. These fibers are made from preforms without a PM structure twisted under drawing
and have polarization eigenmodes with a fairly small phase difference [2—4]. With limited length
and small bends, they function as isotropic optical fiber that preserves the polarization state of
incident radiation. Spun-LoBi fibers are used, for example, to amplify light in high-power fiber
lasers to overcome the drift of the polarization state of light in the fiber due to its heating during
pumping [5, 6]. However, these fibers are significantly affected by induced anisotropy during
bends and other external perturbations of the fiber.

On the contrary, the second type, spun-HiBi fiber, has a relatively high value of V, and is
made from preforms with a significant transverse PM structure by rapidly rotating the workpiece
during fiber drawing [7]. Due to the relatively high V /¥, ratio, these fibers also have polarization
eigenmodes close to circularly polarized modes [8], and the intrinsic anisotropy of such fibers is
slightly distorted by bending, compression and other impacts. The second type of fiber is used for
various purposes, for example, to create sensitive elements of high-precision fiber-optic current
sensors [9—12]. Such an application is among the most promising, widely known and researched.

The interest in the use of spun fibers, especially with high birefringence, is caused by their
potential to preserve circularly polarized modes. However, such polarization eigenmodes corre-
spond only to the limiting case with an increase in the value of V/V, In practice, this ratio is
limited, therefore for a number of reasons, even without taking into account the internal fluc-
tuations of the structure that arise during manufacture and induced during fiber placement, the
polarization eigenmodes of real spun fibers only approach circular modes and may differ markedly
from the idealized case.

Many studies were dedicated to the analysis of the polarization properties of real spun fibers
[1, 4,8, 10, 12—15]. However, these studies are generally aimed at analyzing the complex mech-
anisms of regular and random transformation of light polarization during its propagation in
inhomogeneous anisotropic fiber structure and are based on the application of the mode coupling
formalism and the equations of coupled waves [4, 10, 12, 13]. Models of the formation of the
Jones matrix of the spun fiber have also been considered in a number of works, both for the dif-
ferential matrices of the segment and the resulting integral matrix [1, 8, 14, 15]. Such models have
a complex structure in the form of a product of matrices, and they must take into account (even
when reduced to an integral matrix) rigorous values of V, V, and fiber lengths, which are usually
unknown. In addition, such models do not allow to take into account the influence of possible
fluctuations in parameters and anisotropy induced by external perturbations of the fiber for the
Jones matrix of spun fiber. Therefore, although the results of such studies describe the properties
of spun fibers, they are difficult to apply to the analysis and modeling of practical devices based
on these fibers.

The goal of this study is to obtain the structure of the Jones matrix of a real spun fiber in the
simplest possible integral form without using the parameters of the internal structure of the fiber,
based only on the condition of a small difference in the polarization modes of such a fiber from
an idealized representation, and to analyze the properties of the resulting matrix.

It is this case of the Jones matrix of spun fibers that is effective for analyzing and modeling
devices based on these fibers; in addition, it is very useful to study the effect of imperfections
(differences between real spun fibers and idealized ones) on the operation of these devices.

Jones matrix of idealized spun fiber

First of all, it should be borne in mind that there are different options in the literature for
determining a polarized wave with a right or left direction of rotation as well as different options
for taking into account the phases of components in Jones vectors and, as a result, in Jones
matrices. It is important to understand these features in further analysis, so the Appendix (given
at the end of the paper) contains the refinements we adopted.

As noted above, the polarization modes in the idealized representation of the spun fiber are
considered to be circular. A device with circular eigenvectors in the linear Cartesian basis of Jones
vectors is described by a rotation matrix. Therefore, we assume that the Jones matrix of idealized
spun fiber has the form
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M :{cos((p/2) sin((p/2)}. 0

* | -sin(@/2) cos(¢p/2)

It is important to emphasize that the concept of idealized spun fiber described by a rotation
matrix is not related to the idea of spun fiber with an ideal structure, in which regular rotation of
the direction of the axes of linear anisotropy is introduced. In such a structure, even with regular
parameters without fluctuations, the form of the matrix will differ from the presented form (1).
The idealized spun fiber described by the rotation matrix implies precisely the idealized concept of
converting the state of polarization of light in such fiber, when it is preferable to have an element
with circularly polarized eigenmodes in the optical circuit.

Under the refining conditions described in the Appendix, matrix (1) rotates the azimuth of
the polarization state by an angle ¢/2 clockwise when observed towards the direction of wave
propagation. At the same time, the phase difference of the eigenmodes ¢ is taken into account
here, but the general phase shift ® of the eigenwaves is not included, which is not difficult to take
into account by introducing the factor ¢7®, although this factor is not needed to consider only the
transformation of the polarization state of light. From this point of view, matrix (1) belongs to the
class of special unitary matrices with a determinant equal to unity.

The eigenvectors J, and J, of matrix (1), corresponding to the eigenvalues A, = e*> and
L, = e (¢ here and below is assumed to be positive), correspond to waves with right and left
circular polarization, which are generally written as follows [17 ,16]:

=gl e
A1 ] R

According to the accepted rules, the vectors J, and J, for matrix (1) refer respectively to the
fast and slow polarization modes of the idealized spun fiber.

It is important to note here that an alternative case of idealized spun fiber can be formulated,
which rotates the polarization state of the light passing through the fiber counterclockwise. In
practice, this is set by the direction of rotation of the preform during drawing. Such a case of
idealized fiber will be described by the matrix M = M7, which also has eigenvectors (2), but
the first will correspond to the slow mode, and the second to the fast one. In general, if this case
needs to be considered, then all the expressions listed below can be used by replacing ¢ with —¢
(again, it is assumed that ¢ is positive).

Jones matrix of real spun fiber

Real spun fibers do not correspond to an idealized representation and are described by a Jones
matrix different from the rotation matrix. At the same time, there is a fundamental difference from
fibers with linear anisotropy (i.e., polarization-maintaining (PM) fibers), where the imperfection
of the fiber is associated with fluctuations in the magnitude and direction of core deformations
that arose during the manufacture of the fiber or induced by subsequent external perturbations.

Spun fiber with regular rotation of the orientation of the polarization axes differs from the
idealized representation discussed above, even without fluctuations in the anisotropy parameters,
since circular polarization eigenmodes are achieved only in the case of a limiting value of the ratio
of fiber parameters, which cannot be done in practice. The intrinsic and induced fluctuations of
the anisotropy parameters additionally distort the final polarization properties of the fiber, but are
not the main reason for the deviation from the idealized representation.

In order to formulate a relatively simple representation of the Jones integral matrix for a seg-
ment of real spun fiber, we propose to use only the condition of a slight deviation in the polar-
ization properties of such fiber from the idealized representation, i.e., a slight deviation in the
polarization eigenstates from circular ones.

We assume that the spun fiber remains an element with phase anisotropy and is described by a
unitary Jones matrix. This circumstance can be explained by the low loss of optical power in fibers of
relatively short length (in practice, spun fibers up to several tens of meters in length are commonly
used), which makes it possible to neglect the possible dichroism. We also do not take into account
the total phase shift ® of eigenmodes, which means we will consider a special unitary matrix.
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In view of the above, the Jones matrix of real spun fiber should correspond to the matrix of an
elliptical phase plate, whose eigenvectors are close to vectors (2) for circular polarizations.

Due to the importance of the properties of the eigenvectors of the optical element matrix,
first consider the properties of the eigenvectors corresponding to the condition of proximity to
the vectors (2). In the general case, in terms of the basic parameters of the polarization ellipse
(ellipticity angle ¢ and azimuth ®), two orthogonal Jones eigenvectors in the Cartesian basis are
generally written as follows [16, 18]:

_{cos@coss—jsin@sins} _{—sin@cossjtjcos@sins} 3)

sin®cose+ jcos®sing cos®cose+ jsin®sing

where the parameters € and © are set directly for vector J, and vector J, is obtained as orthogonal
toJ,.

Florm (3) defines normalized vectors with unit length, and in general, orthogonal vectors
are written to a constant complex factor, i.e., they can have different values of both length and
initial phase.

It is useful to consider the transition to the idealized case with circular polarizations, for which
it is necessary to take the value ¢ = n/4. Integrals (13) are then transformed to the form

e @1 jej® 1 }
Jy=—=| .| o= .| 4
NG L} 2 [‘J @

The difference between the obtained expressions (4) and form (2) lies only in the factors
depending on the azimuth; the latter give some additional arguments for Jones complex vectors.
Such factors do not affect the shape of the polarization ellipses, which in this case are degenerated
into a circle and formally do not have a definite azimuth. An additional factor does not change
the unit length of the vector, but, strictly speaking, it still has meaning, since it determines the
initial position of the end of the electric field strength vector of the wave on a circular hodograph.
Thus, it is evident from the analysis of expressions (4), that the common representation of circular
polarization vectors (2) formally corresponds to ¢ = n/4 and ® = 0.

Let us assume that the polarization eigenstate differs little from circular polarization; this is
characterized by an elliptical angle ¢ = n/4 — §, where the deviation & is assumed to be small
(6 << 1). Then, approximations for trigonometric functions can be applied in the general form
of Jones vectors (3) and approximate equalities can be used preserving the components of only
first-order smallness:

sin(%—S)z%(l—S), cos(%—é‘))z%(l+8). (5)

If we substitute expressions (5) into form (3) and apply the known trigonometric transforma-
tions, we obtain the eigenvectors of the matrix of imperfect spun fiber in the following form:

e /o 1+8-¢° N j(l_a_e—ﬂ@)

J =— ‘ ,J,=—F . 6
NG 1(1—5'612@)) 2| 1456 ©

The polarization states described by vectors (6), taking into account the smallness of 5, are
elliptical, although close to circular. Here, ® has a clear meaning, the direction of the semi-ma-
jor axis of the polarization ellipse and can have an arbitrary value in the full range of azimuth
variation [0; n]. The considered polarization eigenstates of the spun fiber are shown in Fig. 1,
illustrating the deviation of the polarization state of the vector J, from the idealized representation
(from point A to some point B) on the Poincaré sphere. The vector J, corresponds to diametrically
opposite points of the sphere.
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Fig. 1. Displacement of position of polarization eigenmode of spun fiber
on the Poincaré sphere, taking into account its real characteristics:
point A corresponds to polarization with the Jones vector J, for the case of idealized spun fiber,
point B for the case of real spun fiber; ©, ¢ are the azimuth and ellipticity angle parameters;
25 is the angular deviation of the polarization eigenmode from the point of circular polarization

Two approaches can be proposed to obtain the Jones matrix of real spun fiber M, . The first
is to use the general form of the phase anisotropy matrix expressed in terms of the eigenvalues A,
A, and eigenvectors [18, 19]:

M=

1 |:j1xj2y}\’l _j2xj1y7\'2 _(7"1 _}\‘Z)jlijc :|’ )
1

jlijy - jlyj2x (7\'1 - }\'Z)jlijy jlxj2y7\‘2 - j2ley7\'

where j , jly are components of the Jones vector J ; j, , jzyare components of the vector J,
If we consider a special unitary matrix that describes a system without losses and has eigenval-
ues A, = €°? and A, = e7*2, then we obtain from the general form (7):

1 {jlszyef‘“—jzleye'f““ —j2j, s, sin(¢/2) }

M B 1 . . — ° o .
J251,Jo, Sm((P / 2) Ji)o,€ jor2 .]2)(.]1yejq)/2

=T (8)
Jlx-]Zy - le-]Zx
The required matrix of real spun fiber M
substituting expressions (6) into form (8).
Another way to obtain the required matrix M
of an arbitrary elliptical phase plate:

spun» Which has eigenvectors (6), can be obtained by

spun 18 to use the expression for the Jones matrix

COSE+jCOSZ®-COS28'Sin2 (sin28+jsin2®-cos28)sin$
2 2 2
M, = : )]

—(sin28—jsin2®-cos28)sing cosg—jcos2®-cos28-sing

Expression (9) was obtained in [20] by substituting expressions for orthogonal Jones vectors
written in the general form (3) into form (8). To obtain the matrix M it is necessary to take
into account ¢ = /4 — § in matrix (9) and use simplifications (5).

In both cases, the result is a matrix of the form

SPUN?
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cos§+j2é‘>cos2®-sing (l+j285in2®)-sing

Mgy = . (10)
—(1—j28sin2®)-sin% cos%—jZScosZ@-sin%

Notably, the determinant A of matrix (10) is expressed as
A= 1+ 48%sin*(¢/2)

and it is real, but not equal to unity.

To obtain a strict correspondence to a normal unitary matrix, a multiplier of 1/A can be intro-
duced into expression (10), but in practical calculations it is advisable to neglect the second-order
correction for a small parameter § and use matrix (10) without additional factors.

As mentioned above, for the idealized representation of the fiber, we could choose not the
rotation matrix M, given by Eq. (1), but the matrix M;= M (formally, this can be justified by
replacing ¢ with —¢), rotating the azimuth of polarization counterclockwise. Both options are
equivalent, since they are given by the direction of rotation of the fiber preform during drawing.
In this case, the right circular polarization will be the slow mode of the matrix, and the left one
will be the fast one.

Expressions for the eigenvectors J; and J) of the matrix M, can be obtained if we assume
that ¢ = —n/4 + & in form (3), since the vector J| is close to the left circular polarization. As a
result, we obtain the following expressions:

| 1+58-¢7%° e/ j(g.eﬂ@ _1)
J =— . , I, =— 11
TR e ) T e .
cos> 4+ 250820 -sin— —(1—j285in2®)-sin2
A 2 2 2
SPUN = . (12)
(1+j285in2®)-sin8 cosg—j26cos2®-sin2
2 2 2
It can be seen from expression (12) that the matrix MY, ., as expected, corresponds to the

matrix transposed to M similarly to the matrices M; and M, for idealized spun fiber.

SPUN?

Specifics of applying the Jones matrix for real spun fiber
in analysis and modeling of fiber optic circuits

The Jones matrix representation of real spun fiber can be used to analyze and model systems
containing such fibers. As a rule, such analysis is aimed at clarifying the effect of imperfection
of fibers and other polarization elements on the operation of the system as a whole. The models
obtained within the framework of the Jones formalism usually contain many parameters charac-
terizing polarization mismatches, which must be varied in analytical or numerical calculations.
Therefore, the obtained expression (10), which is a simple explicit form of the Jones matrix
of real spun fiber and takes into account the small difference between the polarization eigen-
modes of the fiber and their idealized representation using a small parameter §, is attractive for
these calculations.

Matrix (10) contains three parameters: 8, ® and ¢; all of them can affect the transformation of
the polarization state when light passes through the spun fiber and, as a result, the formation of
signals in the optical circuit. Therefore, when performing analysis or numerical calculations, it is
necessary to determine which parameter values to use.

The small parameter § sets a quantitative measure of the deviation of the real spun fiber from
the idealized representation. This deviation can be related both to the limited value of the ratio
V. /V,, which is provided during the creation of the fiber, and to fluctuations in parameters that
occur during the manufacture or placement of the fiber. As a result, the specific value of § for
real fibers can be difficult to predict. The most appropriate approach for analysis is to determine a
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certain threshold value of 5 for the fiber in question. Such a value can be obtained by separate
theoretical consideration of the specific structure of the spun fiber or determined empirically.
Further, the calculations should consider the effect of mismatches by varying the parameter  in
the range from 0 to 5 .

The azimuth of the eigenstates in a certain orientation basis, depending how the spun fiber is
connected and using which elements, must be generally considered unknown, uncontrolled and
any possible value of the parameter ® in the range from 0 to =.

The phase difference of the polarization modes ¢, formed when light passes through the fiber,
also turns out to be a virtually unknown and uncontrolled parameter. Even if the key parameters
of spun fiber are known, in the case of sufficiently long (several meters or more) spun fiber
with high birefringence, the phase difference of eigenmodes is difficult to calculate or determine
precisely; taking into account fluctuations of the parameters and possible significant changes of
temperature, the value of ¢ may actually be random in the range from 0 to 2x. Therefore, in the
analysis and calculations, it should also be varied in the specified range.

As for the phase difference ¢, we should make one more important remark. We noted above
that spun-HiBi fibers are most commonly used in fiber-optic sensors as sensitive elements. The
most common example of using such fibers are fiber-optic current sensors, where it is assumed
that due to the Faraday effect, the phase difference in spun fiber wound around a current-carry-
ing conductor changes between two circularly polarized orthogonal modes. Thus, when analyzing
such schemes, it should be borne in mind that the phase difference ¢ must also contain a com-
ponent induced by the measured effect. In this case, the non-reciprocal anisotropy induced by
the measured magnetic field as a consequence of the Faraday effect is circular. If the spun fiber
corresponded to the idealized representation and was described by the matrix M (or M), then,
obviously, during modeling, the phase difference ¢ should be given as

o =0¢,+ o),

where ¢, is the quasi-stationary component of the phase difference between circularly polarized
modes in the fiber.

The value of ¢, as indicated above, can actually be any in the range of 0—2n. But since the
real spun fiber differs a priori from the idealized representation and the eigenmodes of such
fiber are not strictly circular, setting the phase difference ¢ in the form of the above sum will be
approximate. Such an approximation may be quite acceptable in practice in the analytical study
and numerical modeling of signals in measuring circuits with spun fiber.

Experimental

To analyze schemes with spun fiber based on the obtained form of the Jones matrix, it is nec-
essary to estimate the possible range of values of the main parameter characterizing the deviation
of the fiber from the idealized representation, the parameter 5. Such an estimate can be made
both based on additional studies of fiber anisotropy factors and experimentally. The following are
the results of experiments that allow us to estimate the parameter & for specific spun fiber and
illustrate the analysis presented above.

For measurements, we used the fact that if two polarization modes are excited during propa-
gation through an element with phase anisotropy (for example, through anisotropic optical fiber),
then when the phase difference ¢ of the modes changes by 2x, the evolution of the polarization
state at the output from the element on the Poincaré sphere forms a circle [17, 19]. The change in
¢ leads to the rotation of the sphere around the axis, which is set by the points of the polarization
eigenstates, and the angular radius R of the circle is determined by the ratio of the amplitudes of
the polarization modes. Therefore, the experimental formation and detection of such an evolution
as well as its subsequent analysis with the determination of the parameters ©, and g of the center of
the small circle of the sphere allow to measure the polarization eigenstates of the element. Fig. 2, a,
b illustrates this approach and provides a diagram of the experimental setup for its implementation.

The key issue determining the possibility of the correct implementation of this approach to mea-
suring the fiber polarization eigenstates is the method of organizing changes in the phase difference
¢. We used fiber heating for this purpose. Unlike other measures such as longitudinal tension that
change the optical length of the fiber, heating has a smaller effect on the inner structure of the fiber
determining its anisotropy. In addition, this method can be used with relatively long fibers.
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Fig. 2. Schematic of the experiment (@) with inset (¢) illustrating the passage of light
to the input into the tested spun fiber as well as the evolution of the polarization state
on the Poincaré sphere, recorded during measurements (b)

However, the measurement approach used has its own specifics.

Firstly, heating the fiber can still lead not only to a change in the phase difference ¢. A change
in temperature, due to various mechanisms, can change the ratio of linear and circular anisotropy
and transform the nature of its eigenmodes. This should lead to a more complex evolution of
the polarization state at the fiber output, since the point on the Poincaré sphere will move along
a circle when both the center of the circle and its radius are changed. The latter is due to the
fact that if the polarization eigenmodes of the fiber change, then taking into account the fixed
radiation parameters of the source, the ratio of the excited polarization modes will also change.
However, the change in the parameter ¢ with an increase in fiber temperature should occur faster
than the change in the angular parameters of the eigenmodes. We believe that if a fragment of the
evolution of the polarization state observed during measurements corresponds well to the small
circle of the Poincaré sphere, then this allows to estimate the values of g, and ®, of the polar-
ization eigenstates of the fiber corresponding to this fragment. As a result of the experiment, our
measurements can show not only the parameters of the eigenmodes of real fiber, but also detect
their fluctuations when external conditions change.

Secondly, the azimuth of the points recorded by the polarimeter is determined by the position
of the polarimeter axis, which is set virtually arbitrarily relative to the end of the fiber. Therefore,
the absolute value of the measured azimuth @, of the polarization mode will not be informative
(for the second mode, the azimuth will be shifted by n/2). However, when analyzing spun fiber,
as discussed above, the deviation of the fiber from the idealized representation is characterized
not by azimuth, but by the imperfection parameter 5, which is related only to how much the
ellipticity angle of the polarization mode ¢, differs from n/4. However, if the value of ®; changes
during the measurement process, then these changes will indeed characterize changes in their
polarization eigenmodes.
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The experiments used spun fiber manufactured by Fibercore (model SHB1500(8.9/125)), the
length of the test segment was 80 m, the fiber was wound around a standard coil with a diameter
of 16 cm. The scheme of the radiation source to which the fiber was connected is shown in Fig.
2,c. A DFB laser from Optilab was used (model DFB 1550 PM-20, wavelength 1550 nm, out-
put power 9.5 MW), which had a fiber output (PM fiber with an APC-type connector). Next, a
segment of PM fiber of the Bow-Tie type manufactured by Fibercore (model HB1250, the beat
length of polarization modes is 3.28 mm) was spliced to the laser output via a connector. A short
fiber segment (approximately 0.82 mm long) was formed at the end of the fiber input, rotated
45° relative to the axes of the main segment, after which the spun fiber was spliced. This segment
served as a quarter-wave phase plate.

When linearly polarized radiation passes from the laser output through the PM fiber input
and the quarter-wave plate rotated by 45°, circularly polarized radiation should be formed, and
one polarization mode should be excited in it in the idealized representation of the spun fiber.
However, since the real spun fiber has polarization modes other than circular ones, and the
formed fiber phase plate is not an ideal quarter-wave, in fact two polarization modes in an
unequal amplitude ratio were excited in the tested fiber. This exactly corresponded to the condi-
tions required for measurements: it was possible to directly monitor the correspondence of frag-
ments of the evolution of the polarization state to circular trajectories on the Poincaré sphere and
measure the parameters of the polarization modes of the fiber.

The polarization state was recorded with the Thorlabs polarimeter PAX10001R2 (USA), which
allowed measuring the azimuth and elliptical angle of the polarization state with an accuracy of
0.25°. A collimator was used to connect the fiber to the polarimeter.

During the experiment, the tested fiber was slowly heated to 40 °C (in 50 minutes). The evo-
lution of the recorded polarization state of light at the fiber outlet caused by heating is shown in
Fig. 3,a. Evidently, the trajectory of the point of the output state of polarization on the Poincaré
sphere forms many turns covering the pole of the sphere under heating. The radius of the turns
varies noticeably, and their shape does not always correspond to circles, which is quite under-
standable for the reasons mentioned above.

Nevertheless, many turns in the trajectory of the polarization state correspond well to circles.
Such fragments illustrate a situation where, with stable polarization eigenstates of the fiber, the
phase difference ¢ changes. For example, Fig. 3,6 shows three fragments of the observed evolution
of the polarization state at the output of the spun fiber, which are consistent with the circles on
the sphere. This can be seen by the correspondence between the points measured by the polarim-
eter and the circles on the sphere approximating these points. Such fragments make it possible to
determine the parameters of the polarization eigenmodes in a given segment of the trajectory. The
table shows the values of the circle parameters for the three fragments shown in Fig. 3,b.

Fig. 3. Complete evolution of polarization state (a) and fragments of evolution
I, II and III () at the output from the spun fiber, shown on the Poincaré spheres
Solid lines correspond to the approximation of the fragment points by circles on the sphere.

Points A and C correspond to right circular polarization (¢ = 45°) and linear polarization

along the axis X (® = ¢ = (), respectively
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Additionally, the measured evolution of the polarization state allows to estimate the average
normalized temperature sensitivity of the phase difference ¢ of the polarization modes. This sen-
sitivity was approximately 0.02 rad/(m-°C).

A change in the value of R (see Table) means that when the parameters of the polarization
eigenstates change, the ratio of their excitation by radiation at the fiber input also changes. As
evident from the examples with three fragments of a fixed trajectory on the Poincaré sphere, the
azimuth ©, of the polarization ellipse of its eigenmodes changes most significantly (by almost 20°).
The ellipticity angle e, which characterizes the difference between the fiber and the idealized
case, varies significantly less. If we convert the value of ¢, into the parameter 5, then, according
to Table, the average value of § is approximately 8.3°, and the difference between the maximum
and minimum values is 2.4°.

Thus, the measurement results indicate for the fiber tested that it is possible to make quite
definite estimates for the main parameter (3) characterizing its imperfection and necessary for the
analysis of optical circuits using the obtained Jones matrix of the spun fiber.

Table

Parameters of circles approximating the measured fragment points
of evolution in polarization states on the Poincaré sphere (see Fig. 3,b)

Parameter value, degrees, for fragment
Angular parameter
| 11 111
Radius R 48.4 36.9 32.8
Azimuth ©, 2.9 15.7 12.5
Ellipticity angle g, 37.6 37.3 35.2
Conclusion

An expression for the Jones matrix of real spun fiber is obtained within the framework of the
phase anisotropy model. The expression takes into account a slight deviation of the fiber properties
from the idealized case with polarization eigenstates in the form of right and left circular polar-
izations. For this purpose, a small parameter § is used, which takes into account the deviation of
the ellipticity angle of the polarization eigenstate from n/4. The resulting expression can be used
to describe and analyze optical circuits containing spun-type fibers based on the Jones formalism.

The results of the proposed and conducted experiments on measuring the parameters of the
polarization eigenstates of the fiber illustrate the deviation of the real spun fiber from the idealized
representation and show the difference between the polarization eigenstates and circular polariza-
tion. At the same time, measurements for the fiber model used allowed to estimate the value of
the imperfection parameter § in the range of about 7°—10°.

Appendix

Variability of representation of polarization state
in the Jones formalism

Although the representation of polarized waves is well-established in the literature and the
Jones formalism is widely used to describe transformations of the polarization state, unfortunately,
there are confliciting viewpoints on some details of such a description. In general, the choice of
certain formulations does not affect the correct result. However, given the importance of these
features for the material of this paper, it is preferable to clarify some points of the approaches we
use in order to avoid confusion and possible questions.

The first aspect for which there are conflicting viewpoints in the literature is the accounting
for phases when constructing Jones vectors and the correspondence of slow and fast polarization
eigenmodes to the eigenvalues of the Jones matrix.

Consider the polarization eigenmodes of some optical element with phase anisotropy. Let us
assume for the first mode that the X component of the field at the input to the optical element
has the form
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E ™= A cos(ot+ @),

where o, ¢, are the angular frequency and the initial phase of the oscillation.
The Y component with the initial phase shifted by ¢ has the form

Eyin = A, cos(ot + @, + 5¢).

Then the Jones eigenvectors J" and J." (in the Cartesian basis) are written as follows:

in 4 in _Aze_j&p
I = Azej&p 0 = y : (Al)

1

The second vector is represented so that it is orthogonal to the first one.

Jones vectors can also include an overall factor exp(jp,), but it is typically omitted because it
does not affect the shape and orientation of the polarization ellipse. In such notation, the com-
ponents of the vector contain complex amplitudes, whose arguments are given as initial phases.
In this case, for the vector J}", assuming d¢ > 0, it turns out that the X component of the vector
is delayed relative to the Y component.

Passing through an optical element with phase anisotropy, in the case when polarization-inde-
pendent losses are negligibly small, the eigenmodes acquire only a phase delay, each a different
one. The first and second modes acquire phase delays @, and @,, respectively:

® =nlL/\ ©,=nlL/\,

where L is the geometric wavelength of the waves in the optical element; A is the wavelength of
light; n,, n, are the effective refractive indices for polarization eigenmodes.
If we include the average refractive index n and the difference An of the form

n=(n+n)2,An=n,—n
(An characterizes the anisotropy of the element), then the phase delays can be written as
O =0-092,D,=P+ /2,

where ® = nlL/\, ¢ = AnL/\.

The value of ¢ is positive if An > 0. In this case, the first mode propagates faster and has a
lower phase delay, while the second one propagates slower and acquires a greater phase delay.
Therefore, when ¢ > 0, it is logical to call the first and second modes "fast” and "slow", respectively.

Taking into account the Cartesian components of the first mode introduced above at the input
to the optical element, they can be written as

E =4 cos[ot + @, — (O - ¢/2)],

E™ =4 cos[or + ¢, + 0p — (@ — 9/2)].

Similarly, the components of the second mode at the output of the optical element are
obtained by adding the terms —(® + ¢/2) to the phase of the components at the input.

It is easy to prove that if the Jones vectors take into account the initial phases of the field
oscillations, then the relationship between the input (J}", J)*) and output (J>*, J9*) vectors of
eigenmodes should have the following form:

JM = M- Jr=e e/ g

J;‘“=e_J®~M-J12'1=e_"®-e_”’/2~J'2". (A2)

The Jones matrix M of the optical element is introduced in (A2), which does not take into
account the average phase shift and is a special unitary matrix with eigenvalues

7\’1 = ej(P/Z, 7\’2 = e*j(P/Z.
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It is clear from the above arguments that if ¢ > 0, then the vectors with eigenvalues A, and A,
belong to the fast and slow modes of the anisotropic element, respectively.

The described representation of phases in terms of vectors and Jones matrices is widely used in
textbooks, monographs and articles [16, 17, 21]. However, an alternative approach to constructing
phases in terms of vectors and Jones matrices can also be found in the literature [19]. It is based
on the representation of a harmonic wave propagating along the z axis with the wavenumber & in
terms of the function cos(w? — kz). Then the phase shift of the wave relative to the zero initial phase
can be interpreted as a phase delay due to the passage of a certain path. It is not the initial phases
that are taken into account in the notation for the vectors and Jones matrices, but phase delays,
i.e., negative changes in the initial phases are taken into account as positive delays and vice versa.

In this representation, the same £ and E;“ can be written as

Exin = AICOS[(Dt _(_(po)]’ Eym - AZCOS[(Dt - (_(PO N 8@)]’

where the phase delays are now given in parentheses.
In this case, the vectors J,™ and J,™ are already written as

in Al in _AZej&p
J :|:Aze—j&p:|aJ2 :|: 4 :| (A3)

If it is necessary to take into account the phase ¢,, then the overall phase factor exp (—jo,)
must be included into Eq. (A3). The components £°* and E;“‘ also do not change, but the output
vectors are now represented as

out _ jd Lyin_ Jj®  _-je/2  yin.
J =" -M-J'=¢e" e J

J;m:ejd)-M~J'2"=e"®-e""’/z-J'Z“. (A4)

Here, the optical element with phase anisotropy is also represented by a special unitary matrix
M with the same eigenvalues ¢*? and e7*2. However, in this representation, a vector with an
eigenvalue A, = €/ corresponds to a slow mode, and a vector with an eigenvalue 1, = e7/* cor-
responds to a fast mode (at ¢ > 0).

In this paper, we adhere to the first case of the representation of Jones vectors, when they take
into account the initial phases of Cartesian components, rather than phase delays.

The second aspect on which there are conflicting viewpoints in the literature is the definition
of polarized waves with right and left directions of rotation of the electric field intensity vector.

Most textbooks and monographs [16, 22, 23] define a right-polarized wave as the one where
the electric field strength vector rotates clockwise if looking towards the direction of wave prop-
agation. Accordingly, the left-polarized wave has a counterclockwise rotation of the electric field
intensity vector. In this article, we adhere to this definition. However, an equally valid opposing
opinion can be found in the literature for the definition of right- and left-polarized waves [21].

The third aspect important for this paper is the way Jones vectors are written for right and left
circular polarizations.

In accordance with the definition of right- and left-polarized waves, which we adhere to, it
is not difficult to verify the following. For the right circular polarization, the component E_is
delayed relative to the component E by mn/2. For example, when E_= Acos(of + @), the right
circular polarization is followed by E = —Asin(of + ¢,). Consequently, the initial phase of the
Y component is additionally increased by n/2. For the left circular polarization, on the contrary,
the component E is delayed relative to the component E . Therefore, taking into account all

.. y . x . . . .
the conditions we adopted, the Jones vectors for the right and left circular polarizations will be
described by vectors (2).

Nevertheless, it is important to note that the comparison of Jones vectors (2) with right and left
circular polarizations by some researchers in the available literature may be the opposite, due to
differences in the adopted notations for the phases in terms of Jones vectors and matrices, as well
as definitions of right- and left-polarized light. For example, in [21], the use of an alternative vari-
ant of vectors is associated with an alternative definition of the names of the direction of rotation,
and in [19] it is associated with an alternative representation of Jones vectors using phase delays.
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