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Abstract. The paper considers the application of a Generative Adversarial Network (GAN) 
for the development of a generator of deep inelastic lepton-proton scattering. The difficulty 
of effective training of the generator based on GAN is noted. It is associated with the use of 
complex schemes of distributions of physical properties (energies, momentum components, 
etc.) of particles in the process of deeply inelastic lepton-proton scattering. It is shown that the 
GAN makes it possible to faithfully reproduce the distributions of lepton physical properties 
in the final state at different initial energies of the center of mass in the range between 20 and 
100 GeV.
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Аннотация. В работе рассмотрено применение генеративно-состязательной сети 
(ГСС) для создания генератора глубоко неупругого лептон-протонного рассеяния. 
Отмечена сложность эффективного обучения генератора на основе ГСС, которая 
связана с использованием сложных схем распределения физических характеристик 
(энергий, компонентов импульсов и т. п.) частиц в процессе глубоко неупругого 
лептон-протонного рассеяния. Показано, что ГСС позволяет точно воспроизводить 
распределения физических характеристик лептона в конечном состоянии.

Ключевые слова: инклюзивное глубоко неупругое рассеяние, нейронная сеть, 
генеративно-состязательная сеть, лептон-протонное рассеяние
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Introduction
The results of experimental studies of deep inelastic lepton-proton scattering are generally pro-

cessed and analyzed by modeling both the actual process of particle interaction and the operation of 
detector setups; the Monte Carlo method is the most convenient for this purpose. The problem is 
that simulation involves complex physical models, requiring high computational costs and much time.

Machine learning methods provide an alternative, allowing to build event generators. The 
advantage of these methods is that they can be trained on heterogeneous data, i.e., both experi-
mental results and data obtained by modeling the entire process under consideration (for example, 
inclusive deep inelastic scattering). The resulting event generator can be capable to collect the 
necessary data quickly and with minimal computational costs.

In this paper, we consider one of these machine learning models, the generative-adversarial 
network (GAN) [1].

The advantage of the considered model is its ability to faithfully reproduce the real data on 
which it was trained.

The GAN model includes two neural networks: a generator and a discriminator. The first net-
work is intended for generating some quantities, such as particle characteristics. The second net-
work identifies the differences between the values obtained by the generator and the real values.

The discriminator tries to distinguish the real values from those created by the generator, thus 
training it. The generator gets better at producing data with each training iteration, which in turn 
trains the discriminator [1].

While the GAN method has been successful for diverse applications (for example, generating 
photos and videos that are indistinguishable from real ones [2, 3]), it has certain drawbacks asso-
ciated with complications in the training process of the model.

The reason for these complications is the strong dependence on the parameters of the model, 
often causing the following issues: 

instabilities during training,
discrepancies, 
parameter variations, 
retraining of models.
There are many approaches to solving these problems, for example, those outlined in [4].
In this paper, we used the approach proposed in [5], described in detail below in the 

following section.
Applying GANs in high energy physics and elementary particle physics comes with additional 

difficulties. The most crucial are the multiple strict constraints dictated by conservation laws. 
Consequently, not every generation output can be considered suitable.

The prediction accuracy is also important; otherwise, the relationships between the derived 
quantities may be violated, which is also unacceptable. Similar problems are described, for 
example, in [6].

Conservation laws can produce significant irregularities in the distributions of physical quanti-
ties (for example, angles, momenta, energies, etc.) characterizing the interaction of particles. An 
example is the distribution of the pz momentum component of the final-state lepton (Fig. 1,a). 
Multiplicity is understood (in Fig. 1 and below) as the number of events in the bin normalized by 
the total number of events, i.e., a dimensionless quantity. As evident from Fig. 1,a, the distribu-
tion has a sharp edge associated with the laws of conservation of energy–momentum: energy (or 
momentum) in the final state cannot exceed the level of energy (or momentum) in the initial state. 
The existence of such an irregularity negatively affects the training of GAN, as discussed in [6].
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It was proposed in [7] that the problems associated with irregularities in the distributions of 
quantities with respect to specific physical parameters can be solved by generating transformed 
‘twins’ of the quantities rather than the quantities themselves, modified in such a way that the 
new distribution becomes smoother.

The following transformation is used in this study for the pz momentum component of the 
final-state lepton [7]:

0( ) log[( ) (1  GeV )].z zT p E p c= −

As a result, a smoother distribution is obtained (see Fig. 1,b).
A similar transformation was applied for the total energy of the scattered lepton El: 

0( ) log[( ) (1  GeV )].l lT E E E c= −

Methodology
Since this paper considers inclusive scattering of charged leptons (e+, e–, μ+, μ–) by protons, the 

scattered lepton is characterized by four-momentum in the lepton–proton center-of-mass frame:

( ),l lp = E ,p

where p is the lepton’s three-dimensional momentum vector, given by the components px, py, pz; 
El is the total energy of the scattered lepton.

Additional parameters are the total energy E0 of the incident lepton in the lepton–proton cen-
ter of mass frame and the type of lepton (e+ or e– or μ+ or μ–). These parameters allow the GAN 
to predict the final state of various leptons at different initial energies considered.

The energy E0 is defined as

0 ,2
lNsE ≈

where √slN is the initial energy in the lepton–proton center of mass frame.
The initial energies E0 = 10, 20, 30, 40, 50 GeV were considered for training.
The PYTHIA8 program was used to obtain the final states of leptons [8]. 100,000 events were gen-

erated at initial energies √slN = 20, 40, 60, 80 and 100 GeV for each type of lepton: (e+, e–, μ+, μ–). The 
four-momenta of the final-state lepton were recorded in each event (referred to as the real values).

a)	 b)

Fig. 1. Distributions of momentum component pz of final-state  lepton (a) 
and transformed quantity T(pz) (b)
Initial electron energy E0 = 30 GeV
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Using the quantities T(pz) and T(El) (the transformed quantities) allows the generator to 
avoid predicting unphysical values, and the discriminator to distinguish the real data from the 
generated ones.

The following quantities are fed to the discriminator input to increase its accuracy: 

2 2,  ,  ,  arctan ,  arctan yz
T x yl

T x
z

ppp p p   pp pE   = + ϕ = θ =      

(these are referred to as additional quantities).
A 128-dimensional noise vector (a vector of values obtained from a Gaussian distribution 

with the mean equal to 0 and the variance equal to 1), energy E0 and lepton type are fed to the 
generator input. The generator network consists of 4 hidden layers of 512 neurons each with a 
Leaky ReLU activation function and a dropout of 0.2 [9]. The output layer consists of 4 neurons 
with a linear activation function. The output is four main predicted quantities: px, py, T(pz) and 
T(El). In addition to these, the model includes the prediction of additional quantities: pz, El, pT, 
φ, θ, obtained based on the predicted ones. The main and additional quantities are then fed to 
the discriminator input.

The discriminator network consists of 4 hidden layers with 512 neurons each, a Leaky ReLU 
activation function and a dropout of 0.2 [9]. A so-called dropout layer with a rate of 10% [10] 
is applied to each of the layers, randomly dropping 10% of the layer weights. This helps prevent 
overfitting in classification procedures [11]. Spectral normalization is also applied to each layer 
[12], allowing to achieve a 1-Lipschitz mapping for the discriminator [13]. The output layer con-
sists of a single neuron with a linear activation function. The higher the value obtained, the more 
confident the discriminator is in identifying the given values as realistic.

The paper uses the type of generative-adversarial network with a least square loss function.
The following expressions are valid for the loss functions of the discriminator (LD) and the 

generator (LG) in such networks [5]: 

2 2
~ ( ) ~ ( )

1 1[( ( | ) ) ] [( ( ( | )) ) ],
2 2dataD p pL E D b E D G a= − + −x x z zx y z y (1)

2
~ ( )

1 [( ( ( | )) ) ],
2G pL E D G c= −z z z y (2)

where D(...) is the discriminator network; G(...) is the generator network; x are the real data; 
z is the noise vector; D(x) are the values obtained by the discriminator based on the real data; 
D(G(z)) are the values found by the discriminator based on the data obtained by the generator; 
E is the expected value; a, b are the hyperparameters of this loss function, equal to 0 and 1, 
respectively [5].

GAN was trained for 400 epochs in our study. RMSProp was used for gradient descent optimi-
zation, with ρ = 0.9 [14], 1·10–4 training steps for the generator and 5·10–5 for the discriminator. 
Using different training steps contributes to better training convergence, as shown in [15].

Simulation results 

Due to the large number of possible scattering configurations (different types of leptons and 
different initial energies E0), only some configurations are given below to illustrate the operation 
of the GAN.

Fig. 2 shows the distributions of the momentum components for the muon µ+ and the elec-
tron e– in the final states, obtained by GAN and the PYTHIA8 program. It can be seen that the 
model generates quantities with virtually identical distributions, as evidenced by the χ2 values in 
the graphs and the corresponding momenta (p-value) [17].

Fig. 3 shows the distributions of the pz momentum components of final-state electrons at dif-
ferent energies, obtained by GAN and the PYTHIA8 program. Analyzing the results obtained, we 
can conclude that the model can predict the correct distributions both at the energies at which 
the network was trained (10, 20, 30, 40, 50 GeV), and at interpolated energies (15, 25, 35, 45 
GeV). Notably, the model can also predict the pz values at high energies E0 (60, 70, 80, 90 GeV).
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Aside from lepton momenta and energies, let us consider the quantities derived from them, 
used to characterize scattering. Such quantities include the squared momentum transfer Q2 = –q2 
(q is the momentum of the virtual photon) and the Bjorken variable xBj = Q2/2Pq (P is the 
momentum of the incident proton).

Fig. 4 shows the joint distributions of Q2 and xBj at energies E0 = 10 and 40 GeV, obtained 
based on data from PYTHIA8 and GAN. Comparing the distributions in Fig. 4, a and b and 
those in Fig. 4, c and d, obtained by two approaches at two values of E0 (10 and 40 GeV), we can 
see good agreement between the distributions obtained using PYTHIA8 and GCC. The χ2 values 
calculated for all distribution bins are given as a quantitative assessment of this agreement.

Fig. 2. Predicted distributions over momentum components рx, рy, рz 
for the muon µ+ (a, b, c) and electron e– (d, e, f) at the same initial energy 

E0 = 30 GeV, obtained using GAN (gray curves) and PYTHIA8 (black curves).
The corresponding values of χ2 and the graphs for the ratio of GAN 
to PYTHIA8 (GAN/PYT) predictions are given for each distribution

Fig. 3. Distributions of pz momentum component of the electron, predicted using the PYTHIA8 
program (gray curves) and using GAN (black), at different initial energies E0

Triangles indicate the energies at which the model was trained
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Conclusion

The paper considers a generative-adversarial network (GAN) to generate the final state of 
leptons in inclusive deep inelastic lepton–proton scattering in the 20–100 GeV center-of-mass 
energy range.

We confirmed that the developed model can generate the distributions of various characteris-
tics of different final-state leptons, including the quantities calculated based on the initially gen-
erated ones. The GAN can generate distributions not only at initial center-of-mass energies on 
which it was trained but also at interpolated energies (GeV): 15, 25, 35, 45.

In addition, we found that the model can generate the required distributions at extrapolated 
initial energies (GeV): 120, 140, 160 and 180.

In the future, there is a clear interest in considering semi-inclusive deep inelastic scattering, 
generating the characteristics of an additional particle, in particular a pion.
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