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Abstract. The paper considers the application of a Generative Adversarial Network (GAN)
for the development of a generator of deep inelastic lepton-proton scattering. The difficulty
of effective training of the generator based on GAN is noted. It is associated with the use of
complex schemes of distributions of physical properties (energies, momentum components,
etc.) of particles in the process of deeply inelastic lepton-proton scattering. It is shown that the
GAN makes it possible to faithfully reproduce the distributions of lepton physical properties
in the final state at different initial energies of the center of mass in the range between 20 and
100 GeV.
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AnHotamusa. B paboTe paccMOTpeHO NpPUMEHEHHME Te€HEePaTMBHO-COCTS3aTeIbHOM CeTh
(IT'CC) pnga coszmaHus reHepaTopa TIyOOKO HEYINPYroro JENTOH-TPOTOHHOTO pacCesHUsl.
OTMedeHa CIIOXHOCTh 3((GEeKTUBHOro oOydeHMsT reHepaTtopa Ha ocHoBe ['CC, koropas
CBS3aHA C MCIOJb30BAaHUEM CJIOXKHBIX CXEM pacIpenesieHusT (U3NYSCKMX XapaKTePUCTUK
(Hepruii, KOMIIOHEHTOB MMIIYJIbCOB M T. II.) 4YacTUL B IIpoLiecce IJTYyOOKO HEYIPyroro
JIENTOH-NPOTOHHOro paccesiHus. IlokaszaHo, yuto I'CC no3BoJjisieT TOYHO BOCIIPOU3BOIUTH
pacnpeneieHusT GU3NYECKUX XapaKTePUCTUK JIEITOHA B KOHEYHOM COCTOSTHUM.

KioueBbie ci10Ba: MHKIIO3UBHOE [JIIYOOKO HEYIPYrO€ paccessHue, HEUPOHHAsl CEeTb,
reHEePAaTUBHO-COCTSI3aTeIbHAS CETh, JIENTOH-TIPOTOHHOE paccesiHue
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Introduction

The results of experimental studies of deep inelastic lepton-proton scattering are generally pro-
cessed and analyzed by modeling both the actual process of particle interaction and the operation of
detector setups; the Monte Carlo method is the most convenient for this purpose. The problem is
that simulation involves complex physical models, requiring high computational costs and much time.

Machine learning methods provide an alternative, allowing to build event generators. The
advantage of these methods is that they can be trained on heterogeneous data, i.e., both experi-
mental results and data obtained by modeling the entire process under consideration (for example,
inclusive deep inelastic scattering). The resulting event generator can be capable to collect the
necessary data quickly and with minimal computational costs.

In this paper, we consider one of these machine learning models, the generative-adversarial
network (GAN) [1].

The advantage of the considered model is its ability to faithfully reproduce the real data on
which it was trained.

The GAN model includes two neural networks: a generator and a discriminator. The first net-
work is intended for generating some quantities, such as particle characteristics. The second net-
work identifies the differences between the values obtained by the generator and the real values.

The discriminator tries to distinguish the real values from those created by the generator, thus
training it. The generator gets better at producing data with each training iteration, which in turn
trains the discriminator [1].

While the GAN method has been successful for diverse applications (for example, generating
photos and videos that are indistinguishable from real ones [2, 3]), it has certain drawbacks asso-
ciated with complications in the training process of the model.

The reason for these complications is the strong dependence on the parameters of the model,
often causing the following issues:

instabilities during training,

discrepancies,

parameter variations,

retraining of models.

There are many approaches to solving these problems, for example, those outlined in [4].

In this paper, we used the approach proposed in [5], described in detail below in the
following section.

Applying GANs in high energy physics and elementary particle physics comes with additional
difficulties. The most crucial are the multiple strict constraints dictated by conservation laws.
Consequently, not every generation output can be considered suitable.

The prediction accuracy is also important; otherwise, the relationships between the derived
quantities may be violated, which is also unacceptable. Similar problems are described, for
example, in [6].

Conservation laws can produce significant irregularities in the distributions of physical quanti-
ties (for example, angles, momenta, energies, etc.) characterizing the interaction of particles. An
example is the distribution of the p. momentum component of the final-state lepton (Fig. 1,a).
Multiplicity is understood (in Fig. 1 ‘and below) as the number of events in the bin normalized by
the total number of events, i.e., a dimensionless quantity. As evident from Fig. 1,a, the distribu-
tion has a sharp edge associated with the laws of conservation of energy—momentum: energy (or
momentum) in the final state cannot exceed the level of energy (or momentum) in the initial state.
The existence of such an irregularity negatively affects the training of GAN, as discussed in [6].
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Fig. 1. Distributions of momentum component p_of final-state lepton (a)
and transformed quantity 71 (p,) (b)
Initial electron energy E; = 30 GeV

It was proposed in [7] that the problems associated with irregularities in the distributions of
quantities with respect to specific physical parameters can be solved by generating transformed
‘twins’ of the quantities rather than the quantities themselves, modified in such a way that the

new distribution becomes smoother.
The following transformation is used in this study for the p, momentum component of the

final-state lepton [7]:

T(p.)=log[(E, - p.)/(1 GeV/c)].

As a result, a smoother distribution is obtained (see Fig. 1,b).
A similar transformation was applied for the total energy of the scattered lepton E;

T(E)) =log[(E, - E)/(1 GeV/c)].

Methodology

Since this paper considers inclusive scattering of charged leptons (e*, e-, u*, u~) by protons, the
scattered lepton is characterized by four-momentum in the lepton—proton center-of-mass frame:

pl :(E ’p)a

where p is the lepton’s three-dimensional momentum vector, given by the components p , Py P
E, is the total energy of the scattered lepton.

Additional parameters are the total energy £ of the incident lepton in the lepton—proton cen-
ter of mass frame and the type of lepton (e" or e~ or u* or pu~). These parameters allow the GAN
to predict the final state of various leptons at different initial energies considered.

The energy E is defined as
E,~ VSH/
0 )

where \/EV is the initial energy in the lepton—proton center of mass frame.

The initial energies £, = 10, 20, 30, 40, 50 GeV were considered for training.

The PYTHIAS program was used to obtain the final states of leptons [8]. 100,000 events were gen-
erated at initial energies “/57\/ = 20, 40, 60, 80 and 100 GeV for each type of lepton: (e, e-, u*, u~). The
four-momenta of the final-state lepton were recorded in each event (referred to as the real values).
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Using the quantities 7(p,) and T(E) (the transformed quantities) allows the generator to
avoid predicting unphysical values, and the discriminator to distinguish the real data from the
generated ones.

The following quantities are fed to the discriminator input to increase its accuracy:

— 2 2 _ D, _ p
.. £, pr —m, (p—arctan( ATJ, G—arctan( /PJ

(these are referred to as additional quantities).

A 128-dimensional noise vector (a vector of values obtained from a Gaussian distribution
with the mean equal to 0 and the variance equal to 1), energy E; and lepton type are fed to the
generator input. The generator network consists of 4 hidden layers of 512 neurons each with a
Leaky ReLU activation function and a dropout of 0.2 [9]. The output layer consists of 4 neurons
with a linear activation function. The output is four main predicted quantities: p, Dy T(p.) and
T(E). In addition to these, the model includes the prediction of additional quantities: p, E, p,,
¢, 0, obtained based on the predicted ones. The main and additional quantities are then fed to
the discriminator input.

The discriminator network consists of 4 hidden layers with 512 neurons each, a Leaky ReLU
activation function and a dropout of 0.2 [9]. A so-called dropout layer with a rate of 10% [10]
is applied to each of the layers, randomly dropping 10% of the layer weights. This helps prevent
overfitting in classification procedures [11]. Spectral normalization is also applied to each layer
[12], allowing to achieve a 1-Lipschitz mapping for the discriminator [13]. The output layer con-
sists of a single neuron with a linear activation function. The higher the value obtained, the more
confident the discriminator is in identifying the given values as realistic.

The paper uses the type of generative-adversarial network with a least square loss function.

The following expressions are valid for the loss functions of the discriminator (L,) and the
generator (L) in such networks [5]:

1 o1 X

LD :EEprd“m(x)[(D(x | y)_b) ]+5Ez~p(z)[(D(G(z | y))—a) ]’ (1)
1 2

Lg :EEz~p(z)[(D(G(z |y)—0o)], )

where D(...) is the discriminator network; G(...) is the generator network; x are the real data;
z is the noise vector; D(x) are the values obtained by the discriminator based on the real data;
D(G(z)) are the values found by the discriminator based on the data obtained by the generator;
F is the expected value; a, b are the hyperparameters of this loss function, equal to 0 and 1,
respectively [5].

GAN was trained for 400 epochs in our study. RMSProp was used for gradient descent optimi-
zation, with p = 0.9 [14], 1-107* training steps for the generator and 5-1073 for the discriminator.
Using different training steps contributes to better training convergence, as shown in [15].

Simulation results

Due to the large number of possible scattering configurations (different types of leptons and
different initial energies £), only some configurations are given below to illustrate the operation
of the GAN.

Fig. 2 shows the distributions of the momentum components for the muon p* and the elec-
tron e~ in the final states, obtained by GAN and the PYTHIAS8 program. It can be seen that the
model generates quantities with virtually identical distributions, as evidenced by the y? values in
the graphs and the corresponding momenta (p-value) [17].

Fig. 3 shows the distributions of the p. momentum components of final-state electrons at dif-
ferent energies, obtained by GAN and the PYTHIAS program. Analyzing the results obtained, we
can conclude that the model can predict the correct distributions both at the energies at which
the network was trained (10, 20, 30, 40, 50 GeV), and at interpolated energies (15, 25, 35, 45
GeV). Notably, the model can also predict the p_ values at high energies £ (60, 70, 80, 90 GeV).
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Fig. 2. Predicted distributions over momentum components p, Py D,
for the muon p* (a, b, ¢) and electron e~ (d, e, f) at the same initial energy
E, = 30 GeV, obtained using GAN (gray curves) and PYTHIAS (black curves).
The corresponding values of y? and the graphs for the ratio of GAN
to PYTHIAS (GAN/PYT) predictions are given for each distribution
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Fig. 3. Distributions of p, momentum component of the electron, predicted using the PYTHIAS
program (gray curves) and using GAN (black), at different initial energies E|
Triangles indicate the energies at which the model was trained

Aside from lepton momenta and energies, let us consider the quantities derived from them,
used to characterize scattering. Such quantities include the squared momentum transfer Q> = —¢>
(¢ is the momentum of the virtual photon) and the Bjorken variable x, = = (*/2Pg (P is the
momentum of the incident proton).

Fig. 4 shows the joint distributions of Q” and x, at energies £, = 10 and 40 GeV, obtained
based on data from PYTHIA8 and GAN. Comparmg the dlStI‘lbuthﬂS in Fig. 4, a and b and
those in Fig. 4, ¢ and d, obtained by two approaches at two values of £ (10 and 40 GeV), we can
see good agreement between the distributions obtained using PYTHIAS and GCC. The 2 values
calculated for all distribution bins are given as a quantitative assessment of this agreement.
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Fig. 4. Joint distribution of (” and x,, for electrons at initial energies £, = 10 GeV (a, ¢)
and 40 GeV (b, d), predicted using PYTHIAS (a, b) and GAN (c, d)

The values of y? are given to characterize the accuracy of GAN predictions for each value of £

Conclusion

The paper considers a generative-adversarial network (GAN) to generate the final state of
Ieptons in inclusive deep inelastic lepton—proton scattering in the 20—100 GeV center-of-mass
energy range.

We confirmed that the developed model can generate the distributions of various characteris-
tics of different final-state leptons, including the quantities calculated based on the initially gen-
erated ones. The GAN can generate distributions not only at initial center-of-mass energies on
which it was trained but also at interpolated energies (GeV): 15, 25, 35, 45.

In addition, we found that the model can generate the required distributions at extrapolated
initial energies (GeV): 120, 140, 160 and 180.

In the future, there is a clear interest in considering semi-inclusive deep inelastic scattering,
generating the characteristics of an additional particle, in particular a pion.
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