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Abstract. The paper develops a complex approach to accounting for imperfect contacts (IC) 
when determining effective properties of various nature. The IC are assumed to be caused by 
various factors (microstructure features, process’s specifity and so on). To obtain macroscopic 
properties, we seek a solution of the homogenization problem for the material containing 
isolated ellipsoidal inhomogeneities when fields are discontinuous at the interphase boundaries. 
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Аннотация. В работе развивается комплексный подход к учету неидеальных 

контактов (НК), появление которых вызвано разнообразными факторами (особенности 
микроструктуры, специфика процесса на мезоуровне и т. п.), при определении 
эффективных свойств материала различной природы, представляемых тензорами 
второго ранга. Макроскопические свойства определяются путем решения задачи 
гомогенизации для материала, состоящего из матрицы и изолированных эллипсоидальных 
неоднородностей, на границе которых поля не являются непрерывными. Рассмотрены, 
обобщены и сопоставлены существующие подходы к учету НК: подход, при котором 
НК моделируют, вводя скачок поля на границе раздела фаз через задаваемое отношение 
значений поля по обе стороны границы, а также подход, при котором в рассмотрение 
вводится неоднородность с поверхностным эффектом. С целью учета НК при нахождении 
эффективных свойств материала, рассматривается эквивалентная неоднородность 
с идеальными контактами на границе, вклад которой в макроскопическое свойство 
эквивалентен вкладу исходной неоднородности. В качестве примера решена задача об 
определении эффективной диффузионной проницаемости материала.

Ключевые слова: эффективные свойства, неидеальный контакт, эквивалентная 
неоднородность, эффективная диффузионная проницаемость, задача гомогенизации
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Introduction
The properties of a material that is inhomogeneous at the microlevel directly depend on its 

structure and can be determined within the framework of continuum theory using homogeniza-
tion methods. Physical fields are introduced into consideration, which, as a rule, are assumed to 
be continuous at the interphase boundaries. From a physical standpoint, this means that there are 
"ideal" contacts at the internal boundaries. At the same time, a number of phenomena should be 
described taking into account the presence of imperfect contacts, which can occur both due to 
the peculiarities of the microstructure of the material and in connection with the specifics of the 
described process [1–4].

As a rule, the issues of taking into account imperfect contacts to determine the effective 
properties are considered in the literature separately, in the context of describing processes that 
are different in nature. For example, some authors have drawn attention to the need to take 
into account the phenomenon of segregation when determining effective diffusion coefficients. 
This phenomenon is understood as the sedimentation of impurities in structural defects, which 
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is characteristic for mass transfer [2, 5–8]. Such a procedure was implemented by introducing a 
concentration jump in terms of the ratio of concentrations from the outer and inner sides of the 
interphase boundary (segregation parameter). Using this approach, the authors of [2] obtained the 
Voigt–Reuss and Hashin–Shtrikman boundaries for effective impurity mobility by expressing the 
diffusion flux in terms of a gradient of chemical potential (the potential was assumed to be con-
tinuous), after which the effective diffusion coefficients were determined directly. A constant seg-
regation parameter in [5, 6] was introduced into the equations of the modified effective medium 
method. This parameter was introduced into the equations of effective field methods in [7, 8].

Approaches to accounting for imperfect contacts in determining the effective thermal or electri-
cal conductivity of a material inhomogeneous at the microlevel have been considered separately in 
the literature [9–12]. It was believed that such contacts appear due to the presence of surface defects 
(roughness, delamination, etc.). Modeling of imperfect contacts was carried out by considering 
inhomogeneities with a surface effect (it was assumed that such inhomogeneities were covered with 
a layer with extreme properties, whose thickness tends to zero). The surface effect was taken into 
account either by determining the magnitude of the field jump from solving the problem of isolated 
inhomogeneity in an infinite matrix [9], or by approximating expressions for concentration tensors 
connecting the average fields inside the inhomogeneity with the applied field [10–12].

The similarity of the equations of diffusion, heat and electrical conductivity allows to make an 
assumption about the possibility of developing a unified approach to modeling imperfect contacts 
caused by different factors to determine the effective properties of varying nature for materials.

The goal of this study is to generalize and compare the available approaches to accounting for 
imperfect contacts in determining the effective properties for cases of materials with spheroidal 
and ellipsoidal inhomogeneities.

Statement of homogenization problem

The effective properties of the material are found by solving the homogenization problem for a 
representative volume V, which is a particle of a continuous medium at the macro level. Effective 
properties are expressed using tensor quantities relating the fields that are average in terms of rep-
resentative volume. As a rule, it is assumed that the homogenized material satisfies the simplest 
linear governing relations. Due to the similarity of the equations of diffusion, heat and electrical 
conductivity, below we will limit ourselves to the consideration of the diffusion problem, for 
which Fick’s law holds true: 

,eff
V Vc< > = − ⋅ < ∇ >J D (1)

where Deff is the effective diffusion permeability tensor (the diffusion tensor of an impu-
rity in a homogenized material), J is the diffusion flux, c is the concentration, ∇ is the nabla  

operator, ( )1... ...V V V
dV< > = ∫ .

To find the fields to be averaged, the stationary diffusion problem is solved. The law of con-
servation in the absence of internal sources/sinks has the following form:

( ) 0,∇⋅ =J x (2)

where x is the radius vector of a point inside volume V.
The flux and concentration gradient at each point of the representative volume are related by 

a linear governing relation:

( ) ( ) ( ) ,c= − ⋅∇J x D x x (3)

where D(x) is the diffusion permeability tensor of the material at point x.
The independence of effective properties from the conditions at the boundary of the represen-

tative volume allows to choose them arbitrarily. It is convenient to set a homogeneous Hill con-
dition, which in the case of the diffusion problem has the form ( ) 0c

Σ
= ⋅x G x . Then the average 

value of the concentration gradient is completely determined by the boundary condition [13]:
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0.Vc< ∇ > = G (4)

The presence of boundaries within volume V (interphase boundaries Γ) requires imposing addi-
tional boundary conditions. These conditions will vary depending on the method of accounting 
for imperfect contacts.

Next, we consider a material consisting of an isotropic matrix characterized by a diffusion per-
meability tensor D0 = D0I (I is the unit tensor), and ellipsoidal inhomogeneities with the volume 
V1 with the permeability D1 = D1I, giving the conditions at the interphase boundaries.

One of the simplest methods known from the literature to account for imperfect contact is 
the introduction of a field jump at the interface between the matrix (+) and the inhomogeneity 
(–) using a constant ratio of field values from the outer and inner sides of the boundary. In the 
context of the diffusion problem, either the concentration field or the normal component of the 
flow can experience a jump. In the first case, the following conditions hold true at the interface 
of the phases Γ with the external normal nΓ: 

( ) ( ) ( ) ( )0 1 ,  ,c

c c
D D c s c

n n →Γ+ →Γ−
Γ Γ→Γ+ →Γ−

∂ ∂
= =

∂ ∂ x x
x x

x x
x x (5)

where sc is the segregation parameter; the jump is expressed as [c] = (sc–1)c(x)│x→Γ–.
If there is a jump in the normal component of the flux Jn, the following conditions can be 

imposed by introducing the segregation parameter sf into consideration: 

( ) ( ) ( ) ( )0 1 , . f

c c
D s D c c

n n →Γ+ →Γ−
Γ Γ→Γ+ →Γ−

∂ ∂
= =

∂ ∂ x x
x x

x x
x x (6)

In this case, the jump is defined as ( ) ( ) .[ ] 1n fJ s Γ →Γ−
= − ⋅

x
n J x

Another way of accounting for imperfect contact is used for inhomogeneities with a surface 
effect. In the general case, inhomogeneities representing confocal ellipsoids are placed in the 
matrix, for which the conductivity of the inner ellipsoid is D1 = D1I, and the conductivity of the 
outer layer is Ds = DsI.

The semi-major axes of the outer ellipsoid b1, b2, b3 and the inner ellipsoid a1, a2, a3 are related 
as follows: 

2 2 ,i ib a= + ξ

where i = 1, 2, 3; ξ is a constant.
Perfect contacts take place at the inner boundaries Γa of the inner ellipsoid of volume Va with 

the outer normal nΓa
 and Γb of the outer ellipsoid of volume Vb with the outer normal nΓb

:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

1

,  ,

,  .

b b
b b

b b

a a
a a

a b

s

s

c c
D D c c

n n

c c
D D c c

n n

→Γ + →Γ −
Γ Γ→Γ + →Γ −

→Γ + →Γ −
Γ Γ→Γ + →Γ −

∂ ∂
= =

∂ ∂

∂ ∂
= =

∂ ∂

x x
x x

x x
x x

x x
x x

x x
x x

(7)

To take into account the surface effect, it is necessary to pass to the limit at 
ξ → 0, as well as (in the context of the diffusion problem) either at Ds → 0 or at Ds → ∞. In the 

first case, corresponding to insulating coating, it is convenient to introduce an equivalent surface 
resistance into consideration
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( )2 2 2 2 2 2
1 2 1 3 2 3

0, 0
1 2 3

4
lim ,

6 s

s
D

s a a s

a a a a a aV
D S a a a S Dξ→ →

π + + ξ
β = = (8)

where 0lims b aV V Vξ→= − , Sa is the surface area of the inhomogeneity with the volume Va.
In the second case, corresponding to conductive coating, it is convenient to introduce an 

equivalent surface permeability

( )2 2 2 2 2 2
1 2 1 3 2 3

0,
1 2 3

4
lim .

6 s

s s
D s

a a

a a a a a aD V D
S a a a S ξ→ →∞

π + +
λ = = ξ (9)

The inhomogeneity with imperfect contacts can be formally replaced by an equivalent inho-
mogeneity with perfect contacts, which affects the effective properties in the same way as the 
initial one. To carry out such a replacement, it is necessary to determine the properties D* that an 
equivalent inhomogeneity should possess. These properties will vary depending on the method of 
accounting for imperfect contact.

The introduction of equivalent inhomogeneity has the advantage that it becomes possible to 
use existing homogenization methods developed under the assumption of continuity of fields at 
the real interphase boundary. In this case, it is sufficient to substitute the corresponding diffusion 
coefficients of the impurity inside the inhomogeneity into expressions known from the literature. 
Since it is sufficient to take into account the presence of imperfect contacts at the stage of deter-
mining the diffusion permeability of equivalent inhomogeneity in this manner, here we will limit 
ourselves to qualitative and quantitative analysis of expressions for D*.

Note that imperfect contact, modeled by setting a concentration jump or by considering inho-
mogeneity with insulating coating, may occur when an impurity is aggregated at the interphase 
boundary. On the other hand, imperfect contact, which is modeled by setting another jump, 
namely, the normal component of the flux, or by considering inhomogeneity with conductive 
coating, may occur when additional diffusion paths are formed along the interphase boundary.

In view of this, it is of interest for each of these cases to compare two approaches to modeling 
imperfect contacts: 

by setting the field jump in terms of the segregation parameter;
by considering an inhomogeneity with a surface effect.
The effective property can be expressed as a function of various microstructural parameters. 

This article uses the approach developed by Sevostyanov and Kachanov [13], where the role of 
the microstructural parameter is played by the sum of the tensors of the contribution of inhomo-
geneities. Below, we give the expressions for these tensors in the presence of imperfect contacts 
in the material, modeled using the approaches discussed above.

Contribution tensors

The contribution tensors are determined assuming that the inhomogeneities are isolated. If the 
concentration is set at the boundary of the representative volume, then the average gradient c over 
the representative volume is fully determined, while the average flux depends on the microstruc-
ture; it can be represented as a sum 

0 0 ,V< > = − ⋅ + ∆J D G J (10)

where ΔJ is the additional flux due to the presence of inhomogeneity.
Such an additional flux is a linear function of the applied field:

1
0 ,DV

V
∆ = − ⋅J H G (11)

where HD is the tensor of the contribution of inhomogeneity to the diffusion permeability.
The contribution tensor can be found by solving the Eshelby problem for diffusion. The latter 

has an analytical solution only for ellipsoidal inhomogeneity. In this case, the contribution tensor 
can be expressed in terms of the concentration tensor, which linearly relates the field inside the 
inhomogeneity with the applied field.
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Thus, to find the contribution tensor, it is necessary to solve the problem of averaging fields 
and find the concentration tensor. The presence of imperfect contacts should be taken into 
account at both stages.

A brief description of both stages is provided below.

Field averaging

We determine the average fields in the case of perfect contacts at the matrix/inhomogeneity 
interface, which in the framework of this study corresponds to a material with equivalent inho-
mogeneity, as well as modeling of imperfect contacts by various approaches.

According to the Ostrogradsky–Gauss theorem, 

( ) ( )1 1,  ,V Vc c d d
V VΣ ΣΣ Σ

< ∇ > = Σ < > = ⋅ Σ∫ ∫n x J n J x x (12)

where nΣ is the external normal to the surface Σ of the representative volume V.
Expressions (12) can be conveniently rewritten taking into account the interphase boundaries; 

in this case, the corresponding surface integrals should be added and subtracted. Then, with per-
fect contacts at the interface of the inhomogeneity of volume V1, we obtain the known formulas: 

0 1 0 1

1 1 1 11 , , 1V V V V V V
V V V Vc c c
V V V V

   < ∇ > = − < ∇ > + < ∇ > < > = − < > + < >   
   

J J J (13)

where ( ) ( )
0 0 0

1 1 1

1 1
0 1,  .... ... d ... ... dV VV VV V

V V< > = < > =∫ ∫
The case of a material with inhomogeneity with a coating of finite thickness characterized 

by finite properties is a particular case of a three-phase material with perfect contacts at its 
inner boundaries.

In this case, the average fields follow the expressions 

0

0

1 ,

1 ,

a s

a s

b a s
V V V V

b a s
V V V V

V V Vc c c c
V V V

V V V
V V V

 < ∇ > = − < ∇ > + < ∇ > + < ∇ > 
 
 < > − < > + < > + < > 


=


J J J J
(14)

where ( ) ( )1 1 and .... ... d ... ... d
a sa sa s

V sVV VV VaV V< > = < > =∫ ∫
In the presence of a concentration jump at the interface, the average concentration gradient 

should be determined as follows [6]:

[ ]
0 1

1 1 11 ,V V V
V Vc c c c d
V V V ΓΓ

 < ∇ > = − < ∇ > + < ∇ > + Γ 
  ∫ n (15)

whereas the average flux is calculated using Eq. (13).
If the concentration jump is set based on the segregation parameter under condition (5), then 

it is convenient to rewrite Eq. (15) in the following form: 

0 1

1 11 .V V c V
V Vc c s c
V V

 < ∇ > = − < ∇ > + < ∇ > 
 

(16)

The presence of a jump in the normal flux component leads to the need to use the following 
formula for the average flux [6]: 

[ ]
0 1

1 1 11 ,V V V n
V V J d
V V V Γ

 < > = − < > + < > + Γ 
  ∫J J J x (17)

in this case, the average concentration gradient is determined by Eq. (13).
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In the particular case, when the jump of the normal component of the flux is given in accor-
dance with condition (6), the average flux is determined by the expression

0 1

1 11 .V V f V
V Vs
V V

 < > = − < > + < > 
 

J J J (18)

Expressing 
0Vc< ∇ >  in terms of G0, we obtain the following representations for the average flux:

for the material with equivalent inhomogeneity,

( )
1

*1
0 0 0 ,V V

V c
V

< > = − ⋅ − − ⋅ < ∇ >J D G D D (19)

for the material with inhomogeneity and coating of finite thickness (characterized by 
finite properties),

( ) ( )0 0 1 0 0 .
a s

a s
V s V

V Vc c
V V

< >= − ⋅ − − ⋅ < ∇ > − − ⋅ < ∇ >J D G D D D D (20)

The following representations hold true for a material with a inhomogeneity with a field jump 
determined by the segregation parameter occurring at the interface:

if there is a jump in concentration,

( )
1

1
0 0 1 0 ,V c V

V s c
V

< > = − ⋅ − − ⋅ < ∇ >J D G D D (21)

if there is a jump in the normal flux component,

( )
1

1
0 0 1 0 .V f V

V s c
V

< > = − ⋅ − − ⋅ < ∇ >J D G D D (22)

Representation of the contribution tensors in terms of the concentration tensors
The average concentration gradients included in expressions (19)–(22) can be expressed for 

the case of ellipsoidal inhomogeneity in terms of the applied field G0, for which the concentration 
tensors Λ*, Λa, Λs, Λc, Λf are introduced, satisfying the equalities 

1 * 0Vc< ∇ > = ⋅GΛ  (for equivalent inhomogeneity),

0 0 and 
a saV V sc c< ∇ > = ⋅ < ∇ > = ⋅G GΛ Λ  (for inhomogeneity with coating), 

1 0cVc< ∇ > = ⋅GΛ  (for inhomogeneity with a concentration jump, determined in terms of the 
segregation parameter, at the interface),

1 0fVc< ∇ > = ⋅GΛ (for inhomogeneity with a jump in the normal component of the flux, deter-
mined in terms of the segregation parameter, at the interface).

Expressions for these concentration tensors were obtained in [8, 10–14]. Taking into account 
these expressions and Eqs. (10), (11), we limit ourselves here to giving the final expressions for 
the contribution tensors of inhomogeneities:

( )
3

0
0

1 0

*

* 1
D

i i
i i i

ii

ii

D DD
D A D A=

−
=

+ −∑H e e (23)

(for equivalent inhomogeneity with perfect contacts [13]);

( ) ( )

1 0 0 13

0
1

1 0 0 11 1

a
i

D a
i i

i a i
i i i i

a

SD D D D A
VD

S FA D A D A D D A
V H

=

− − β
=

 + − + − β − 
 

∑H e e (24)

(for inhomogeneity with insulating coating);
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( )

( )

1 03

0
1

1 0

1

1 1

a
i

D a
i i

i a i
i i i i

a

SD D A
VD

S FA D A D A A
V H

=

− + λ −
=

 + − + λ − + 
 

∑H e e (25)

(for inhomogeneity with conductive coating)

( )
3

1 0
0

1 1 0 1
D c

i i
i i c i

D s DD
A D s D A=

−
=

+ −∑H e e (26)

(in the presence of a concentration jump determined in terms of the segregation parameter sc [8]),

( )
3

1 0
0

1 1 0 1
fD

i i
i i f i

s D D
D

A s D D A=

−
=

+ −∑H e e (27)

(in the presence of a jump in the normal component of the flux, determined in terms of the seg-
regation parameter sf).

In the case of spheroidal inhomogeneity, for a1 = a2 = a, γ = a3/a, the following equalities 
hold true: 

( ) ( )

( ) ( )( )

( ) ( )( )

1 2 0 3 0

1 2 0 02 2

3 0 02 2

,  1 2 ,

1 1 1 1 2 ,
2

1 1 1 2 ,

A A f A f

F F f f
a

F f f
a

= = γ = − γ

 
= = γ − − γ γ 

 
= − γ − − γ γ 

where

( ) ( )
( ) ( )

2

2

0 2 2

2 2

11 arctan , 1
11

,  
2 1 11 ln , 1.

2 1 1

g
f g g

−

 − γ
γ ≤

γγ − γ− γ γ = = γ = 
− γ  γ + γ −

  γ ≥  γ γ − γ − γ −  

In the case of spherical inhomogeneity, F1 = F2 = F3 = 0, f0(γ) = 1/3.
Note that according to the conclusions presented in monograph [9], where only spherical 

inhomogeneities were considered, the presence of insulating coating leads to a concentration 
jump at the matrix/inhomogeneity interface, and the presence of a conductive layer leads to a 
jump in the normal flux component, determined by solving the problem for composite inhomoge-
neity at the passage to the limit. This corresponds to the physical understanding of the phenom-
enon modeled, as noted above.

For the correct implementation of the procedure for comparing two approaches to modeling 
imperfect contact (by setting the field jump with the appropriate segregation parameter and by 
considering the inhomogeneity with the appropriate type of surface effect), we will determine 
what diffusion permeability D* that an equivalent inhomogeneity whose contribution to the mac-
roscopic property coincides with the contribution of inhomogeneity with imperfect contact mod-
eled within the framework of different approaches should possess.
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Equivalent inhomogeneity

Let us start by considering imperfect contact when an impurity is deposited as sediment at 
the matrix/inhomogeneity interface. When such a contact is modeled by setting a concentration 
jump in terms of the segregation parameter, it follows from the equality of the contribution tensor 
defined by expression (26) and the contribution tensor of equivalent inhomogeneity described by 
Eq. (23) that

* *
1 ,cD D s= =D I I (28)

that is, a material of equivalent inhomogeneity is isotropic.
Evidently, the components of the tensor D* depend only on the segregation parameter and the 

diffusion permeability of the inhomogeneity, but do not depend on its shape. An increase in the 
segregation parameter leads to a decrease in the diffusion permeability of the equivalent inho-
mogeneity. In the absence of impurity sedimentation (at sc = 1) D* = D1. Depending on whether 
the impurity is deposited at the interphase boundary from the outside or inside, the segregation 
parameter takes the values sc > 1 or sc < 1, respectively.

In the first case, D* < D1, which reflects the physics of the process, since the impurity pene-
trates the inhomogeneity to a lesser extent and, in order to achieve the same effect when consid-
ering an equivalent inhomogeneity, it is necessary to reduce its permeability.

In the second case, D* > D1, which is also physically justified, since the equivalent inhomoge-
neity should be more permeable to the impurity due to its accumulation inside the «real» inho-
mogeneity with imperfect contact.

At sc → ∞ D* → 0; this is due to the fact that the entire impurity accumulates outside the inho-
mogeneity and it is impermeable to the diffusant.

At sc = D1/D0, we have D* = D0, i.e., a jump in concentration

( ) ( )1 0 0[ ]c D D D c
→Γ−

= −
x

x

allows to ignore the presence of inhomogeneity when finding effective properties.
In the case of using the second approach to modeling imperfect contact, it follows from the 

equality of the inhomogeneity contribution tensor with equivalent surface resistance (see Eq. (24)) 
and the equivalent inhomogeneity contribution tensor (see expression (23)) that

( )

( )

1 0
3

1
* 1

1 1

1 1

1
;
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i i

i a i
i i

a
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=

− −
=

 + − − 
 

∑D e e (29)

Here, for convenience, a dimensionless parameter of equivalent surface resistance R = D1β/a1 
is introduced.

The diffusion permeability tensor of equivalent inhomogeneity, expressed by Eq. (29), is gener-
ally orthotropic, and its symmetry group is determined by the shape of the inhomogeneity. In the 
absence of the surface effect (at R = 0), the tensor is isotropic and D* = D1 (

* * *
11 22 33 1D D D D= = =

). In general, the diffusion coefficients *
iiD  can take values both greater and smaller than D1. We 

should note that such features as redirection of the diffusion flux due to negative values of the 
components of the tensor D*, as well as the infinite permeability of equivalent inhomogeneity, can 
formally appear at certain values of structural characteristics (the ratio of the diffusion coefficients 
of the impurity in the matrix and in the inhomogeneity, the parameters of the inhomogeneity’s 
shape, the value of equivalent surface resistance). Such cases require separate qualitative and 
quantitative studies, which is beyond the scope of this paper.

Expression (29) is significantly simplified in the case of spherical inhomogeneity: then the 
equivalent inhomogeneity is characterized by an isotropic tensor 

( )*
1 1 .D R= +D I
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It follows from comparing this expression with expression (28) that two approaches to model-
ing imperfect contacts at the boundary of spherical inhomogeneities coincide when 

1 .cs R= + (30)

Let us turn to the consideration of imperfect contact, when additional diffusion paths are 
present in the material at the interphase boundary. When such a contact is modeled by setting 
the jump of the normal flux component in terms of the segregation parameter, it follows from the 
equality of the contribution tensors defined by expressions (27) and (23) that

* *
1 .fD D s= =D I I (31)

The diffusion tensor D*, defined by Eq. (31), depends only on the segregation parameter and 
on the diffusion permeability of the inhomogeneity and does not depend on its shape.

An increase in the segregation parameter leads to an increase in the diffusion permeability of 
the equivalent inhomogeneity. In the absence of surface defects (at sf = 1), D* = D1. At sf → ∞, 
the equivalent inhomogeneity is characterized by infinite permeability, regardless of the properties 
of the inhomogeneity (in this case, the entire impurity will instantly diffuse over the surface). In 
the case when sf = D0/D1, the equality D* = D0 is satisfied.

When imperfect contact is modeled using the second approach, the equality of the contribu-
tion tensors defined by expressions (25) and (23) gives the following result: 

3

* 1
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,
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1

a i
i
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i i

a ii
i
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V HD S a FDK A

V D H
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 + − + 
 =

+
∑D e e (32)

where a dimensionless parameter of equivalent surface permeability K = λ/(D1a1) is introduced.
The diffusion permeability tensor of equivalent inhomogeneity, defined by expression (32), is 

generally orthotropic. In the absence of the surface effect (at K = 0), D* = D1. In the presence of 
the surface effect, the diffusion coefficients *

iiD  can take values both greater and smaller than D1. 
In a certain range of values of structural characteristics, as in the case of an insulating coating, 
components *

iiD  can take values less than zero, which means from a physical standpoint that flux 
is redirected, as well as goes to infinity. Both cases require separate research beyond the scope of 
this study.

Expression (32) in the case of spherical inhomogeneities has the form

( )* 1 1 2 ,D K= +D I

it follows from here, taking into account Eq. (31), that two approaches to modeling imperfect 
contacts are equivalent when

1 2 .fs K= + (33)

To summarize, the following qualitative differences can be observed between the two approaches 
to modeling imperfect contacts.

1. Taking into account imperfect contact by setting the field jump in terms of a constant seg-
regation parameter, the symmetry group of the diffusion permeability tensor of equivalent inho-
mogeneity coincides with that for the initial inhomogeneity (in particular, it was shown above 
that the isotropy of the tensor D1 implies the isotropy of the tensor D*; we presented a more 
detailed study of the general anisotropic case in [8]). As a result, the components of the diffusion 
permeability tensor of equivalent inhomogeneity depend only on the physical properties of the 
inhomogeneity and the segregation parameter. In the case of modeling imperfect contact by con-
sidering inhomogeneity with a surface effect, the components of the tensor D* depend both on the 
properties of the coating and the material of the inhomogeneity and on its shape.
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Two approaches to modeling imperfect contacts produce the same results only in the case of 
a material with spherical inhomogeneities, provided that either equality (30) or (33) is satisfied, 
depending on the type of imperfect contact.

2. When taking into account imperfect contact by setting the field jump in terms of a constant 
segregation parameter, the components of the diffusion permeability tensor of equivalent inhomo-
geneity linearly depend either on the quantity (sc)

–1, or on the parameter sf. In the case of mod-
eling imperfect contact by considering an inhomogeneity with a surface effect, the components 
of the tensor D* depend non-linearly on the characteristics of the coating R or K (or their inverse 
quantities). At the same time, these dependencies, firstly, are different for different directions, and 
secondly, can take negative values at certain values of the characteristics of the structure, which, 
apparently, means redirection of the diffusion flux, as well as going to infinity. These cases need 
to be further investigated for compliance with the physical meaning of the modeled phenomenon.

Simulation results for imperfect contacts

Let us conduct quantitative analysis of the effect of the method of accounting for imperfect 
contact at the interface on the diffusion permeability of equivalent inhomogeneity using the 
example of a polycrystal.

A polycrystal is considered a two-phase material consisting of a matrix that models grain 
boundaries and elongated spheroidal inhomogeneities that model grains of lower diffusion per-
meability [7, 15]. For certainty, we take the values D1/D0 = 0,2, γ = a3/a = 100 (a1 = a2 = a). 
In polycrystals, imperfect contacts can occur for various reasons, which should be modeled in 
different ways. Let us briefly describe them.

1. The phenomenon of segregation, which is characteristic of diffusion and which is understood as 
the sedimentation of impurities along grain boundaries from the outside, can be modeled either by set-
ting a concentration jump using the segregation parameter sc (I), or by considering an insulating coat-
ing with equivalent resistance R  (II). Let us assume that sc = 1 + R, which, on the one hand, is true 
for the case of a material with spherical inhomogeneities, on the other hand, satisfies the condition 
sc = 1 at R = 0 in the case of perfect contacts in a material with inhomogeneities of arbitrary shape.

2. Due to cracking along grain boundaries, additional accelerated diffusion paths can be 
formed; they can be taken into account either by setting the jump of the normal flux component 
in terms of the segregation parameter sf (III), or by considering conductive coating characterized 
by equivalent conductivity K (IV). For the same reasons as when choosing the dependence sc(R), 
we assume that sf = 1 + 2K.

The dependences of the diffusion permeability of equivalent inhomogeneity in the presence of 
segregation, i.e., in the case of imperfect contact modeled by methods I and II, are shown in Fig. 
1,a. An increase in the parameter R leads to a decrease in the components of the tensor D*. This, 
in turn, should subsequently (with further application of homogenization methods not considered 
in this study) lead to a decrease in the effective permeability of the material.

Note that the parameter R can formally take values from zero to infinity. To carry out quan-
titative analysis, however, we limited ourselves to considering a smaller range in which the flux 
does not change direction to the opposite, which would be the case with negative values of the 
coefficients *

iiD  and which, as noted above, requires additional analysis.
It is also worth noting that when using approach II, there is a difference in the behavior of the 

decreasing curves of the diffusion coefficients *
33D  along the symmetry axis of the inhomogeneity 

and the coefficients * *
11 22D D=  in the isotropy plane.

With the selected set of structure parameters, the coefficients * *
11 22D D=  change in the same 

way as the components of the isotropic tensor D* introduced using approach I.
Fig. 1,b shows the dependences of the diffusion permeability of equivalent inhomogeneity in 

the presence of cracking, i.e., in the case of imperfect contact modeled by methods III and IV.
An increase in the parameter K leads to an increase in the components of the tensor D*, which 

vary in different ways, depending on the method of modeling imperfect contact, as well as on 
the direction in the case of approach IV. In the future, this type of change in the permeability of 
equivalent inhomogeneity should lead to an increase in the effective permeability of the material. 
Parameter K, like parameter R, can formally take values from zero to infinity, while at a certain 
value of K the component *

33D  will go to infinity, which, as discussed above, requires additional 
analysis beyond the scope of this paper.
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It is important that the components *
iiD  take values both smaller and larger than D0, depending 

on the value of K ( *
0iiD D  can be either smaller or larger than unity).

Thus, the method of accounting for imperfect contact at the interface of the matrix and 
non-spherical inhomogeneity has a direct impact on the effective properties of the material. To 
choose the optimal approach, it is necessary to compare the results of numerical simulation with 
experimental data. The problem of such a comparison, in turn, involves difficulties in identifying 
the characteristics of the structure and requires separate study.

Conclusion

The paper proposes a generalization of the approaches available in the literature to model-
ing imperfect contacts at the interphase boundary of a material that is inhomogeneous at the 
microlevel in determining its effective properties of various nature.

It is taken into account that such contacts can occur in the material for different reasons: due 
to the particular internal structure and in connection with the specifics of the described process, 
which affects the physical interpretation of the model, but does not affect the mathematical 
framework used. A specific example of a diffusion problem was considered. The general case of a 
material with ellipsoidal inhomogeneities is considered and two approaches to modeling imperfect 
contacts are compared: by introducing a field jump (concentration or normal flux component) in 
terms of a constant segregation parameter and by considering inhomogeneity with a surface effect 
(respectively, with the presence of insulating or conductive coating).

We confirmed that the two approaches are equivalent only in the case of a material with 
spherical inhomogeneities, while in other cases these methods give qualitatively and quantitatively 
different results.
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