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Аннотация. В работе обсуждаются определение и основные свойства преобразования 

Фурье. На конкретных примерах показано, что с его помощью, а также через использование 
его свойств можно найти интегральные решения модельного неоднородного уравнения, 
нестационарной задачи Коши на неоднородном сдвиговом потоке и краевой задачи 
о трансформации внутренних волн в окрестности фокуса в неоднородной среде. 
Построенные интегралы Фурье опровергают широко распространенное утверждение, 
что Фурье-анализ непригоден для исследования неоднородных сред.
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Introduction
While the Fourier transformation is not the only method for solving differential equations, it 

is one of the most effective approaches to solving boundary-value problems, when variables are 
separated in a multidimensional problem. However, there is a widespread misconception about 
the inapplicability of Fourier analysis for inhomogeneous media. For example, the following is 
stated in the monograph by Whitham [1, p. 365]:

"For an inhomogeneous medium, or for nonlinear problems where the Fourier transform is 
not applicable...".

A similar statement is found in the book by Lighthill [2, p. 425]:
"... the need to use Fourier decomposition limits us to homogeneous [italicized by the author] 

systems usually described by equations with constant coefficients, so that each Fourier component 
(a sine wave of constant amplitude) individually can be a solution to the equations of motion."

The authors of these and many other monographs (see, for example, [3, 4]) believe that 
Fourier analysis can be used only in cases where the coefficients of the differential equation are 
constant and, conversely, it cannot be applied if these coefficients are not constant.

In this paper, we prove that Fourier analysis can be applied in problems containing differential 
equations with variable coefficients. Moreover, the problem can be two-dimensional and with 
inseparable variables, but Fourier analysis is still applicable.

Thus, the goal of this study is to expand the boundaries of the field of applicability of Fourier 
analysis, extending its approaches to problems in inhomogeneous media.

Definition and basic properties of the Fourier transform

The Fourier transform is defined as follows.
Forward transform:

( ) ( ) ( )1 exp ;
2

k ikx x dx
+∞

−∞

ϕ = − Φ
π ∫ (1)

inverse transform:

( ) ( ) ( )1 exp .
2

x ikx k dk
+∞

−∞

Φ = + ϕ
π ∫ (2)

The properties of the Fourier transform can be found, for example, in monograph [1]. They 
are derived by differentiating with respect to the parameter or by integration by parts (see, for 
example, [5]). In this case, it is assumed that the function Φ(x) decreases at infinity faster than 
any degree of |x|–1. Let us briefly list the properties of the transform that we will consider below.

Fourier transform of derivative function. We derive this property by integration of the formula 
of the forward Fourier transform (1) by parts:

( ) ( ) ( ) ( )1 exp exp .
2 2

ikikx dx ikx x dx ik k
x

+∞ +∞

−∞ −∞

∂Φ
− = − Φ = ϕ

∂π π∫ ∫ (3)
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Note that the same result can be obtained by differentiating with respect to x as a parameter 
using Eq. (2) of the inverse Fourier transform:

( ) ( ) ( ) ( ) ( )
22

2
2

1 exp exp .
2 2

ik
ikx dx ikx x dx k k

x

+∞ +∞

−∞ −∞

∂ Φ
− = − Φ = − ϕ

∂π π∫ ∫ (4)

For brevity, this property of the Fourier transform can be written as follows:

2, , .x xxik kΦ→ϕ Φ → ϕ Φ → − ϕ (5)

Properties (5) are often used in problems with constant coefficients for homogeneous media.
Fourier transform of function with a linear multiplier. To represent this property, let us first 

integrate the transformation (2) by parts:

( ) ( ) ( ) ( ) ( ) ( )1 1exp exp .
2 2

ikx dk ix ikx k dk ix x
k

+∞ +∞

−∞ −∞

∂ϕ
+ = − + ϕ = − Φ

∂π π∫ ∫ (6)

An identical expression can be obtained by differentiating by the parameter k of relation (1). 
We multiply both parts of expression (6) by an imaginary unit and write it as follows:

.kx iΦ→ ϕ (7)

Fourier transform of second derivative with a linear multiplier. We show this property by inte-
gration by parts and parametric differentiation of relation (2), repeated twice; then we obtain the 
following formula:

( ) ( ) ( ) ( ) ( ) ( )
2 2

2
2

1 1exp exp ,
2 2

k
ikx dk ix ikx k k dk ix

k x

+∞ +∞

−∞ −∞

∂ ϕ ∂ Φ
+ = − + ϕ =

∂ ∂π π∫ ∫ (8)

which we rewrite as

( )2 .xx k
x i kΦ → − ϕ (9)

One-dimensional reference equations
Finding a solution using the Fourier transform is divided into two stages. At the first stage, we 

construct a formal solution of the differential equation in Fourier space using operator analysis 
(see the previous section). At the second stage, we solve the question of the conditions under 
which this formally constructed solution converges. We define the integration path in the complex 
space and find asymptotic expressions in each sector [6, 7].

Example 1. Let us consider an inhomogeneous differential equation that arises in the analysis 
of wave processes in inhomogeneous plasma as well as in the study of instability in the Orr–
Sommerfeld problem [6], [8, equation (1.28)]:

2 0.yyyy yyy Φ + λ Φ + γΦ =  (10)

Let us construct a formal solution for this example. The transform of equation (10) in Fourier 
space (denoted as l) has the form

( )4 2 2 0.
l

l i l ϕ+ λ − ϕ + γϕ =  (11)

Let us rewrite Eq. (11) in the following form:

2 2
2 2

1 0,  .ll P i P P P l
l
γ

− + = = ϕ
λ

(12)

It is a homogeneous differential equation of the first order (such equations are called quadra-
ture in the mathematical literature (see, for example, [9]).
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Integrating equation (11), we obtain the following expression:

3
2 2

1 1exp .
3

i l i
l l

γ ϕ = − + λ 
(13)

The inverse Fourier transform gives the solution:

3
2 2

1 1 1exp .
32

i l i ily dl
l l

+∞

−∞

γ ϕ = − + + λπ  ∫ (14)

Next, we should perform a change of the variable t = il converting the Fourier integral into the 
Laplace integral. It is important to note here that many consider the Laplace transform a special 
case of the Fourier transform (see, for example, [5, Eqs. (1.4.1), (1.4.2)]).

For convergence of integrals, we use Cauchy’s theorem on the analytical function and replace 
the integration limits by some paths in the complex plane. We do not consider the specifics of 
bypassing the pole and the choice of sectors that the integration path crosses in this study, since 
these issues are discussed in detail in many monographs, in particular in [12], where the author 
relies on the Laplace transform, unlike the discussion in [5].

Thus, we obtain the following integral, which is commonly called the Laplace integral in 
the literature:

3
2 2

1 1 1exp .
2 3C

t ty dt
i t t

γ ϕ = − + π λ ∫ (15)

Monograph [6] gives this integral without calculations. In our work, we show how to inde-
pendently derive this formal solution with the help of the Fourier rather than Laplace transform.

Example 2. Let us consider an equation describing topographic waves on an inhomogeneous 
continental shelf on the f-plane. Monograph [19] claims that the solution of this inhomoge-
neous equation can be constructed using the Laplace transform, and the reader is invited to do 
this independently.

We in turn construct a formal solution using the Fourier transform and prove the identity of 
the approaches to both Fourier and Laplace transformations. Consider the equation

2 0.xx xx F F k k x F + + µ − =  (16)

We introduce a dimensionless variable χ = kx > 0. Eq. (16) then takes the form

[ ] 0.F F k Fχχ χχ + + µ −χ = (17)

The image of equation (17) in Fourier space with respect to the variable χ (we denote it as l) 
has the form

( )2 0.ll
i l i l i− Φ + Φ +µΦ − Φ = (18)

Let us introduce a new variable s = il. Eq. (18) then takes the form

( ) ( )2

1 1 .
1 2 1 2 1

s s
s s s

Φ µ− µ − µ +
= = −

Φ − − + (19)

Integrating equation (19) and performing the inverse Fourier transform, we obtain the follow-
ing formal integral:

( ) ( )( )

( )( ) ( )
1 /2

1 /2

11 exp .
2 1C

s
F x skx ds

i s

µ−

µ+

−
=

π +∫ (20)
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The integral constructed here coincides with Eq. (25.20) in monograph [19] up to a multiplier; 
the monograph also presents analysis of integral (20) with the choice of integration paths.

Results obtained in the section "One-dimensional reference equations". Following the approach 
outlined in monograph [5], we can change the variable, and then the properties of the Fourier 
transform are transferred to the properties of the Laplace transform. Thus, according to the 
statement made in [5], the Fourier transform is a kind of basic transformation, from which other 
transformations, for example, Laplace and Mellin types, follow. A similar approach is followed by 
the authors of monograph [9], who constructed fundamental solutions to the thermal conductiv-
ity operator, the Laplace and Helmholtz operators, as well as the wave operator in terms of the 
Fourier transform.

Thus, there is no fundamental difference between Fourier analysis and the Laplace transform 
in one-dimensional inhomogeneous media. It can be assumed that the solution is constructed 
in terms of the Laplace transform, but it can also be argued that the solution is derived in terms 
of the Fourier transform and Cauchy’s theorem. Following [5] from now on, we adhere to the 
second approach.

Unsteady Cauchy problem for Rossby waves in zonal current

As the first example of a two-dimensional Fourier transform in inhomogeneous media, con-
sider the unsteady Cauchy problem for Rossby waves. Yamagata solved this problem in 1976 
using convective coordinates [20]. Convective coordinates are a common way for an operator of 
the type ∂t + U(y)∂x for the case of a linear velocity profile U(y) = Uyy, convective coordinates 
transform an inhomogeneous differential equation into a homogeneous one, and then the Fourier 
transform is applied over spatial convective coordinates (two-dimensional transform). Next, an 
unsteady differential equation with respect to t is obtained.

It is fundamentally important that there is no point in doing the Laplace transform with respect 
to the variable t, as is customary in some mathematical groups (see, for example, [15]). It is easier 
to solve the differential equation with respect to t explicitly than to perform an additional trans-
formation. By solving the differential equation with respect to t and taking the inverse Fourier 
transform in convective coordinates, we can convert convective variables to ordinary ones and get 
a solution in the form of a two-dimensional Fourier transform.

Next, we can find a solution to an inhomogeneous differential equation and, repeating the cal-
culations, obtain the Yamagata solution, but we propose a different approach. We will not adopt 
the convective coordinates to eliminate the inhomogeneity of the differential equation to then 
perform the Fourier transform. We will immediately apply the Fourier transform for an inhomo-
geneous differential equation using its properties. Thus, on the one hand, we will significantly 
reduce the number of operations, and on the other hand, we will arrive at a known result and 
confirm the correctness of mathematical calculations. We will demonstrate this approach for the 
problem solved above, but we will solve it by a new, shorter technique, which allows to immedi-
ately find the Fourier transform of an inhomogeneous differential equation.

Example 3. The linear Cauchy problem for non-divergent barotropic Rossby waves in zonal shear 
flow is considered in [20], and its generalization to the case of divergent waves is considered in [18]:

( ) 0,t y x xx yy xU y  ∂ + ∂ Ψ +Ψ +βΨ =  (21)

where Ψ is the function of current; β is the classical parameter, 
df
dy

β =
 
(f = 2Ωsinφ, Ω is the  

angular velocity of the Earth’s rotation, φ is the latitude); the x axis is directed to the east, the y 
axis is to the north.

Let there be inhomogeneous zonal shear flow U(y) = U yy, where Uy = const. Let us perform a 
two-dimensional Fourier transform for inhomogeneous differential equation (22) with respect to 
two spatial variables x and y (without adopting the convective variables):

( ) ( ) ( )1, , , , exp  .
2

x y t k l t i kx ly dk dl
+∞ +∞

−∞ −∞

Ψ = ϕ + +  π ∫ ∫ (22)
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Then Eq. (21) takes the following form in Fourier space

( ) ( )2 2 2 2 0,yt l
k l U k k l i k   − − ϕ − − − ϕ + β ϕ =    (23)

where the subscripts denote partial derivatives.
This equation is homogeneous, contains only the first partial derivatives and is easily solved.
Let us rewrite Eq. (23) in the following form:

( )2 2
2 2 0,  .t y l
i kP U k P P P k l

k l
β

− − = ≡ + ϕ
+

(24)

Performing a substitution of variables (τ = t, l′ = l + kUyt), we obtain the following equation:

( )22
0.

y

i kPP
k l kU

τ

β
− =

′+ − τ
(25)

Eq. (25) can be integrated explicitly (the exponent of the arctangent), and then the final solu-
tion has the form of a double Fourier integral:

( ) ( )
( )

( )( )

2 2

1 22

1, , ,
2

exp arctan arctan

exp ,

y

y
y

y

k lx y t g k l
k l kU t

l li U t
kU k k

i kx l kU t y dk dl

+∞ +∞

−∞ −∞

+
Ψ = ×

π − −

 β     × − − − ×     
      

 × + + − 

∫ ∫

(26)

where the solution is normalized to the initial condition

( ) ( ) ( )1
1, , , 0 exp .

2
g k l x y t i kx ly dx dy

+∞ +∞

−∞ −∞

= Ψ = − +  π ∫ ∫ (27)

Analysis of the double Fourier integral by the stationary phase method and the construction 
of wave packet trajectories can be found in [20]. It is important to note that these studies do not 
rely on the assumption that the time variable must be large.

Unsteady Cauchy problem for Rossby waves in meridional current

As a second example, consider the unsteady Cauchy problem for Rossby waves in meridional 
current. A solution to this problem using convective coordinates can be found in [20].

Example 4. This is the case of a linear velocity profile of meridional current. The linear Cauchy 
problem for divergent barotropic Rossby waves has the following form [20]:

( ) 0,t x y xx yy xV x  ∂ + ∂ Ψ +Ψ +βΨ =  (28)

where β is the classical parameter; the x axis is directed to the east, the y axis is directed to 
the north.

There is inhomogeneous meridional shear flow V(x) = V xx, where Vx = const. As before (see 
Example 3), we perform a two-dimensional Fourier transform for inhomogeneous differential 
equation (28) with respect to two spatial variables x and y. Then Eq. (28) takes the following form 
in Fourier space

( ) ( )2 2 2 2 0.xt k
k l U l k l i k   − − ϕ − − − ϕ + β ϕ =    (29)

This equation is homogeneous, contains only the first partial derivatives and is easily solved. 
Let us rewrite it in the following form:
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( )2 2
2 2 0,  .t x k
i kP U l P P P k l

k l
β

− − = ≡ + ϕ
+

(30)

Performing a change of variables (τ = t, k′ = k + lUxt), we obtain the following equation:

( )
( )2 2

0.x

x

i k lU P
P

k lU lτ

′β − τ
− =

′ − τ +
(31)

Eq. (31) can be integrated explicitly (the exponent of the logarithm), and then the final solu-
tion has the form of a double Fourier integral:

( ) ( )
( )

( )

( )( )

2 22 2

2 2 2 22

1, , , exp ln
2 2

exp ,

x

xx

x

k lU t lk lx y t g k l i
lU k lk lU t l

i k lU t x ly dk dl

+∞ +∞

−∞ −∞

  − ++ β   Ψ = × π +− +     
 × + − + 

∫ ∫
(32)

where the solution is normalized to the initial condition

( ) ( ) ( )2
1, , , 0 exp .

2
g k l x y t i kx ly dx dy

+∞ +∞

−∞ −∞

= Ψ = − +  π ∫ ∫ (33)

Analysis of the double Fourier integral by the stationary phase method and the construction of 
wave packet trajectories can be found in [20].

The considered examples are simple in the sense that the obtained double integrals are already 
known. The novelty of our solution lies in the fact that the solution is formally constructed 
by a direct Fourier transform of an inhomogeneous differential equation without involving 
convective coordinates.

Let us now move on to a more complex problem, where the solution in the form of the Fourier 
integral of the boundary-value problem was not previously known, but it was considered in terms 
of special functions with respect to complex variables. The very procedure of constructing a cer-
tain complex variable for a special hypergeometric function and integration along a certain circle 
in a complex space suggests that there must be a way to obtain this solution in terms of the direct 
Fourier transform of the original inhomogeneous differential equation with inseparable variables.

Reference equation for a two-dimensional inhomogeneous medium.  
Abnormal focusing of internal waves

In the examples discussed above, the solution was sought in the form of a two-dimensional 
Fourier integral, while the inhomogeneity of the external field (the velocity field of the back-
ground flow, or topography) was one-dimensional.

Now let us consider a more complex example of a problem with two-dimensional inhomoge-
neity of the external field.

Example 5. The theory of anomalous focusing of internal waves in a two-dimensional inhomo-
geneous fluid introduces the following reference equation of elliptical-hyperbolic type for vertical 
displacement in the vicinity of the focus [13, Eq. (2.5)]:

2

2

2 0,zz yy y
y z y

y z
L L L

 
Ψ + + Ψ + Ψ =  

 
(34)

where Ψ is the function of current; (x, y, z) is the rectangular coordinate system; Ly, Lz are the 
lengths of inhomogeneities along the y and z axes.

We will search for solutions localized in a small neighborhood of a certain level along the 
vertical coordinate and exponentially attenuating outside this level; here, for the case of internal 
waves, the following notations are introduced [13]:

2 2

2

1 12 ln ,  ,z z
y

y z

N
L L N

∇ Ω ∇
= ∇ Ω = −

Ω
(35)
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where Ω = ω – kU (ω is the frequency, k is the zonal wavenumber, U(z,y) is the inhomogeneous 

horizontal background shear flow); 2
0( ) ln ( )dN z g z

dz
= − ρ  (ρ0(z) is the density).

The value of all derivatives is taken at the focal point. Since equation (34) is invariant with 
respect to the scale transformation z = az′, y = a2y′, a certain self-similar variable is introduced. 
The solution is constructed as a summation of all partial solutions with respect to hypergeometric 
functions of a complex argument. The procedure for constructing this complex variable is not 
entirely clear. It is also not entirely clear what functions are considered in [13], how these func-
tions appear, what their physical nature is, and what primary and secondary quantization mean in 
construction of asymptotic forms of the solution. Note that the asymptotic forms of the two-di-
mensional function are constructed as one-dimensional only on the waveguide axis.

To interpret these solutions in terms of special functions of complex arguments on the one hand 
and to represent these classes of solutions using the classical Fourier transform and its properties 
(presented above) on the other hand, we will independently construct a solution in integral form, 
find its two-dimensional asymptotic forms and show what primary and secondary quantization 
mean in terms of the classical Sturm–Liouville problem. To do this, we can use the well-known 
integral representations of the hypergeometric function as a basis, and then the approach to finding 
a solution will become more transparent. In a sense, we are using the integral representation as a 
starting point, but it is better to take steps in the opposite direction to search for the solution.

The solution to equation (34) is sought in the form of a Fourier integral. First we confine 
ourselves to the upper half of the integral:

( ) ( ) ( )
0

, , , , , , exp .k y z G k l z ily dl
∞

Ψ ω = ω∫ (36)

In fact, a reasonable question arises whether to take the whole integral or only the upper (or 
lower) part of it. We will further discuss this problem in the final section of the paper.

We use the properties of the Fourier transform again:

( )2 2,  ,  ,  .y yy yy l
G ilG l G y i l GΨ→ Ψ → Ψ →− Ψ → − (37)

The first three formulas in this equation are the properties of the Fourier transform of the 
derivative, which are widely known. The latter formula is a special case of equality (21) in mono-
graph [9]. Despite the popularity of this formula, it is not used in applied problems. Our work 
focuses specifically on the practical application of this last formula from Eq. (37).

Substituting integral (36) into equation (34) and taking into account (37), we obtain the fol-
lowing equation for the Fourier transform G:

2 2 2

2 0.zz l
z y

l z lG G i G
L L

− − = (38)

Equality (38) is not an equation with separable variables. To convert it to such form, let us 
perform the following variable substitution 

( ) ( ), , ,z l → η ϕ
where

1/2

1/2 ,  .
z

z l l
L

η = ϕ = (39)

The Jacobian of such a substitution has the form

( )
( )

1/2,
.

,
l

z l
∂ η ϕ

=
∂

(40)
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It should be noted that equations (39) and (40) contain l1/2. Technically, this specific fact 
allows us to consider only one of the parts of the Fourier integral. For simplicity, we first chose 
the upper, positive part of the integration to resolve the question related to the square root.

This however raises the question of why such a variable substitution should be chosen. The 
answer is contained in [17], where the solution is constructed in the WKB approximation. In fact, 
any reasoning about self-similarity turns out to be superfluous, since in a certain sense the entire 
self-similarity of the solution is reduced to a simple substitution of variables of the form (39).

Equality (38) in terms of new variables (η,φ), takes the form of an equation with separable variables:

2 0.
2

z z

y y

L LG G i G i G
L Lηη η ϕ

η ϕ
−η − − = (41)

In this case, we search for a solution with separable variables:

( ) ( ) ( ), .G H Fη ϕ = η ϕ (42)

We obtain the following equation for the function H(η):

( )2
0 0,

2
z

y

LH i H H
Lηη η

η
− − η +µ = (43)

where μ0 is the separation constant.
Next, the term with the first derivative in equation (43) is removed by the following substitution:

( ) ( ) 2exp .
8

z

y

LH P i
L

 
η = η η  

 
(44)

We obtain the following equation for the function P(η):

2
2

021 0.
16 4

z z

y y

L LP i P
L Lηη

  
+ −η − −µ + =      

(45)

Recall that we are searching for solutions localized in the vicinity of the level z = 0. Analysis 
of equation (45) allows to conclude that the coefficient at η2 must be positive, so we obtain the 
following condition for the existence of localized solutions:

2

21 0 0 4 .
16

z
z y

y

L L L
L

 
− > ⇔ < <  

 
(46)

Condition (46) means that the branches of the parabola bounding the inner area of transpar-
ency from the outer area of shadow, must be practically parallel to each other. Otherwise, the ver-
tical mode does not form and the wave does not approach the critical point for an infinitely long 
time. It is important to note that if condition (46) is not satisfied, then other modes of solution 
transformation are formally possible. There is no question of any uniqueness of the solution here.

Evaluation of the parameters for internal waves shows that if we take the scales adopted by the 
authors of [13], we obtain a very good difference in these values (Lz < 4 Ly), so the concept of a 
parabolic trap is valid from a physical standpoint.

Let us define the quantum values of the separation variable μ0 [10, 16]:

( )
1/2

2

0 22 1 / 1 ,  0,1, 2, ... .
4 16

z z

y y

L Lm i m
L L

   
− + = µ − − =      

   
(47)

From here, we can find the eigenvalues
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1/22

0 2

161 1 ;  1 ,  0,1, 2, ...
4 2 2

yz

y z

LL i m m
L L

  δ  µ = − + δ ≡ − =         
(48)

and eigenfunctions

( )
1/4 1/2

2 22

2 2
0

1 exp 1 ,  0,1, 2,...,
16 2 16

z z
m

m y y

L LP H m
L L

∞

=

       η    η = η − − − =                
∑ (49)

where Hm are Hermite polynomials.
Let us now define the second factor F(φ) in solution (42). We obtain the following equation 

from Eq. (41):

0 0.z

y

Li F F
L ϕ

ϕ
− +µ = (50)

The solution of equation (50) has the following form:

( ) 0,  .y

z

L
F i

L
µϕ = ϕ µ ≡ − µ (51)

Finally, we obtain the following eigenvalues:

1 1 .
4 2 2

i mδ  µ = + + 
 

(52)

Substituting all the found composite solutions into the initial integral (36), we find 
the eigenfunctions:

( ) ( )
1/4

21/2

1/2 2
0 0

1/2
22 2

2

, , , , 1
16

exp 1 exp ,
2 16 8

z
m

m z y

z

z y y

Lz lk y z A k l H
L L

Lz l zil y dl
L L L

∞∞
µ

=

     Ψ ω = ω − − ×       
      
 × − − ⋅ +               

∑ ∫
(53)

where A(k,ω) is some constant that determines the spectral density of the initial state.
Further, the obtained eigenfunctions (53) can be reduced by simple transformations to a 

degenerate hypergeometric function with respect to some complex argument. Note that it is the 
integral notation (53) that is preferred for finding the asymptotic forms of eigenfunctions. Despite 
the fact that the constructed eigenfunctions (53) express the dependence on two physical variables 
(z and y), the integral for the eigenfunctions is one-dimensional, which makes it possible to use 
the stationary phase method [16].

Let us write the imaginary part of the integral (53) in the following form:

2 1exp ln .
8 2 2y

zil y i m l
L

   δ  + + +          
(54)

If we differentiate this expression by the variable l and equate the expression in square brackets 
to zero, we obtain the equation for the point lc:

2 1 .
8 2 2y c

zy m
L l

δ  + = − + 
 

(55)
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Let us rewrite this relation in the following form:

2

1
2 .

2
8

c

y

m
l

zy
L

 δ + 
 = −
 

+  
 

(56)

The resulting expression (56) is a kind of generalization of the short-wave WKB asymptotic 
form of the dispersion relation lc = y–1. Then the second derivative of the phase with respect to the 
wavenumber is proportional to lc

–2, and, therefore, the inverse first power root of this derivative 
is proportional to l1c.

The asymptotic form of eigenfunctions in the vicinity of the critical point is as follows:

( ) ( ) 1

1/4
1/2 2

1 1/2 2
0

1/2
2 2

2

, , , , 1
16

1exp 1 exp .
2 16 2 2

c z
c m

m z y

c z

z y

z l Lk y z A k l H
L L

z l L i m
L L

µ+
∞

=

     Ψ ω = ω − ×       
    δ   × − − ⋅ +           

∑
(57)

Analysis of this equality allows us to conclude that the asymptotic form of the solution of the 
reference equation exactly coincides with the WKB solution [17], expressed as a vertical mode in 
the form of Hermite polynomials majored by a Gaussian function, and gives the classical degree 
of 5/4 for the amplitude of the vertical velocity. If the authors of [13] describe a certain mode, 
then we are certain that this is not their vertical mode in the form of a WKB solution along a 
vertical coordinate, but a completely different one, which is constructed in [17].

The solutions we constructed are not functions with respect to the variables z, y, but rather to 
some curvilinear variables taking the following form:

( )
2

1/2
2

, , .
8

8
y

y

z zy z y
L zy

L

 
 
  

→ +       
+   

  

(58)

Thus, in a sense, there is a curvature of space in the vicinity of the focal point. However, all 
this "curvilinearity" was also observed in the solution of the problem in the WKB approximation, 
where formally the following variable substitution took place:

( ), , .zy z y
y

 
→   

 
Therefore, by and large, the asymptotic forms of one-dimensional integrals do not give any 

qualitatively new results other than WKB solutions, with the exception of condition (47), which 
is satisfied with a large margin.

Reduction of the Fourier integral to a hypergeometric function of a complex variable. To com-
pare our solution with the solution obtained by Erokhin and Sagdeev [13], we rewrite the eigen-
functions (54) in the following form:

( )
1/2 2 2

1/2
1/2

0

, , , exp exp .
2 8 8m m

y y y

zl z l zk y z l H il y dl
L L L

∞
µ

      
Ψ ω = δ − δ ⋅ +                 

∫ (59)
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Next, we perform the substitution of variables (l → x), and the argument

1/2
1/2

1/22 y

z l
L

 
δ  

 
of the Hermite polynomial is taken as a new variable

1/2 1/2

1/2 .
2 y

zlx
L
δ

= (60)

It follows from this that 
2 1

2
2 2

0

exp 2 ( ) .m m
xax H x dx
z

∞ µ+

µ+
 Ψ ∝ − ∫ (61)

The complex variable 2а appeared in Eq. (60), depending on two spatial physical variables, z and y:

( )2
2

1 12 8 .
2 2 ya i z yL

z
= − +

δ
(62)

We solved the two-dimensional problem in terms of a one-dimensional integral, but only with 
respect to a complex argument. Apparently,

( )
2

2 2

1 2 *,
2 8 y

z
a z i z yL

δ
= ≡ τ
δ − +

(63)

where τ is the complex variable from the study by Erokhin and Sagdeev [13] (the asterisk corre-
sponds to complex conjugation).

The integral representation of the hypergeometric function in terms of Hermite polynomials 
has the following form [11, Eqs. 7.37, 7.38 ]:

2
2

0

1 1 1; ; ; exp 2 ( ) ,
2 2 2 nF n ax x H x dx

a

∞
νν +   − ∼ −     ∫ (64)

where Rea > 0, Reν > –1;
in addition [11, Eqs. 7.376.3]: 

2
2 1

0

3 1; 1; ; exp 2 ( ) ,
2 2 2 nF n ax x H x dx

a

∞
ν

+

ν   − + ∼ −     ∫ (65)

where Rea > 0, Reν > –2.
Taking into account the eigenvalues (48), we find:

3 12 1 .
2 2

i m ν = µ + = + δ + 
 

(66)

Consequently, the constructed solutions are regular, and the integrals converge. Similarity with 
the solution from Erokhin and Sagdeev [13] was achieved in three of the four parameters. Let us 
determine the last parameter of the hypergeometric function:

7 11 *,
2 4 2 2

i mν δ  + = + + ≡ γ 
 

(67)

where γ is the quantum parameter from [1, Eq. (2.7)].
Similarly, we find that

1 5 1 .
2 4 2 2

i mν + δ  = + + 
 

(68)
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Thus, we obtained a complete agreement of our results with [13]. If we take into account the 
second part of the Fourier integral for negative wave numbers, then by substitution of the variable 
it can be reduced to an integral with respect to positive wavenumbers. But then the imaginary 
unit (i → –i 1) will be replaced in the studied integral, and this will lead to the appearance of the 
second part of the solution, where complex conjugate τ* and γ* will appear instead of τ and γ.

Thus, the general solution of the problem is the sum of solutions with respect to τ and τ*, 
which is physically equivalent to the sum of incident and reflected waves. This means that 
mathematically there is no prohibition on reflection and the hypothesis of infinite focusing is 
greatly exaggerated.

Discussion and conclusions

This study provides basic information on the operator method of Fourier transformation, 
which is necessary for practical solution of specific physical problems in inhomogeneous media. 
The main properties are formulated by two approaches:

integration by parts, which implies attenuation of functions at infinity;
parametric differentiation of the forward or inverse Fourier transform.
Using five specific examples, we established how Fourier analysis works in inhomogeneous 

media. In the first four examples, formal integral solutions are constructed, since their further 
analysis is well known and the reader can consider the references to further explore this. Notice 
that these integrals (see examples 1 and 2) are typically given without derivation and the reader 
is invited to independently obtain this derivation using the Laplace transform. In our work, we 
constructed integral solutions using the Fourier transform and Cauchy’s theorem, showing their 
equivalence with the Laplace transform in one-dimensional inhomogeneous problems.

Examples 2, 3 and 4 consider a two-dimensional problem in which the inhomogeneity of the 
medium is one-dimensional linear in nature. In Example 2, the solution can be obtained in two 
ways: in terms of the Fourier transform and in terms of the Laplace transform. In Example 5, 
we performed a complete analysis of the boundary-value problem. We constructed the Fourier 
integral, found its two-dimensional asymptotic forms using the stationary phase method and the 
properties of a parabolic quantum oscillator, and also identified the Fourier integral found, reduc-
ing it to a well-known degenerate hypergeometric function with respect to a complex argument. 
Thus, we proved that the statement about the inefficiency of Fourier analysis in inhomogeneous 
media is erroneous.

Therefore, in terms of the Fourier integral, we analytically proved the identity of the solution 
of the reference equation for vertical focusing of a monochromatic wave in the vicinity of the 
focus with the solution of the reference equation in terms of a degenerate hypergeometric func-
tion with respect to a complex variable obtained in previous studies. This mathematical solution 
is also successfully used in problems of magnetohydrodynamic instability and in the description 
of internal gravitational waves in two-dimensional inhomogeneous fluid [7, 13].

It is established that the issue of wave absorption in the focal zone is ambiguous and there-
fore both passage and reflection from a singularity can be observed. Specific estimates for typical 
parameters of oceanic gradients of hydrophysical density and velocity fields show that localization 
and, as a rule, amplification of wave movements are quite feasible and take the form of highly 
localized spatial vortex structures.

These aspects should be taken into account in studies of geophysical fields, in particular when 
analyzing mesoscale vortex dynamics in the ocean.

The analytical method described in these five examples can be used to solve other problems of 
mathematical physics.
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