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Annoranusa. B paboTe BnepBbie MPOBEAEHO MPSIMOE CPABHEHUE IBYX OCHOBHBIX MOIXOA0B K
BBIUMCJICHUIO sIkoOMaHa ypaBHeHUiT HaBbe — Ctokca: koHTuHYyajabHoro (KIT) u nuckpetHoro
(IIT). Ha ©6a3ze coOCTBEHHOro KOHEUHO-OOBEMHOIrOo Kojaa JJs MOASAMPOBAHUS TEYEHUIA
peanusoBaH Il kK BblUMCIeHUIO sKOOMaHa (B AOMOJHEHME K yxke cyuiectBytouemy KIT).
JIT 6buT ycriemHo BeprudULIMPOBAH MYTEM CPABHEHUS MOJYYEHHOTO YMCIEHHOTO pe3yJbTara
C pellleHMeM HecTalmoHapHbiX ypaBHeHuit HaBbe — Ctokca. CpaBHeHUE NBYX ITOJXO/IOB
MPOBENEHO Ha TMpPUMEPE JIAMUHAPHOIO OOTeKaHWsl LWIWMHIpPA WAEATbHBIM Ta30M TMpU
okosiokputnueckux umciax PeitHonbaca (Re = 50 u 60). Ycranomieno, yro KII TouHee
MPeNCKa3bIBAET MOKa3aTeb pocTa Bo3MylieHui, a JI1 — ux 4acToTy U aMIUTUTYAY B LIEJIOM.
IMosyyeHHBIE Pe3yabTaThl MO3BOJSIOT YTBepXaaTh, uro KIT u Il paBHO3HAYHBI 11O MOPSIKY
TOYHOCTA M BBIOOP KOHKPETHOTO IMOJXOAA IJIs TIPOBEACHMST aHaam3a YCTOMYMBOCTU MOXKET
OTPEACNAThCS APYTUMU KPUTEPUSIMU (HATIPUMEpP, TPOCTOTA peaanu3aliui, BBIYMCIUTEIbHBIC
3aTpaTthl 1 Ap.).

KioueBbie cjioBa: TJ00QJBHBI aHAJIM3 YCTOMYMBOCTH, sKoOMaH ypaBHeHuii HaBbe —
Crokca, apromatuueckoe auddepeHlpoBaHue
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Introduction

One of the most powerful and advanced tools for studying the stability of viscous fluid flows
is the linear theory of stability, which considers the development of small perturbations that do
not interact with each other. Most 20th century studies were based on the linear theory of hydro-
dynamic stability within the framework of the locally parallel approach (the Orr—Sommerfeld
equation) or two-dimensional parabolized equations (see books [1, 2] and a review [3]). By the
end of the 20th century, the advances in computer technologies made it possible to conduct linear
stability analysis of two-dimensional and even three-dimensional solutions of the Navier—Stokes
equations; this approach came to be known as global stability analysis (GSA) in the literature [4].

The dynamics of the evolution of small perturbations within the GSA is determined by the
matrix of derivatives of the governing equations with respect to all variables, i.e. the Jacobian
of the stationary Navier—Stokes equations (more precisely, its discrete form). Currently, two
different approaches are used to calculate this Jacobian. For example, [5—9] covering a wide
range of problems of GSA for two-, three- and quasi-three-dimensional flows used the approach
called continuum in [10]. It consists in the initial linearization of the Navier—Stokes equations,
which leads to an analytical expression for their Jacobian, for which a discrete approximation is
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then formed using one or another finite-difference scheme. In contrast to this method, [11—18]
used an approach called discrete, in which the governing equations are initially discretized and
then linearized.

The Jacobian matrices obtained using these approaches differ, since in general the lineariza-
tion and discretization operations are noncommutative [10]. However, as the mesh is refined,
the difference between the results of these approaches should decrease. Different aspects of the
continuum and discrete approaches have been studied in the context of solving conjugate equa-
tions for optimization problems [19, 20]. However, these approaches were not compared within
the framework of GSA in the literature and the choice of a specific approach in [5— 18] was
not substantiated.

The goal of this study consists in comparing the results of GSA using various methods for
calculating the Jacobian matrix using the example of laminar flow around a cylinder with perfect
gas at near-critical Reynolds numbers.

Global stability analysis of steady laminar flows

The procedure for studying the global stability of laminar flows contains two main stages.

The first one is finding a numerical solution of a generalized system of steady Navier—Stokes
equations, including equations of continuity, conservation of motion and energy, which can be
written in operator form:

R(q) =0, (1)

where g = {p,pu,pv,pE}" is the vector of conservative variables; R is the nonlinear differential
operator of steady Navier—Stokes equations.

The solution of the steady Navier—Stokes equations satisfying Eq. (1) and obtained by analyz-
ing the stability of the flow is often called the basic one. The stability of this solution, denoted as
q , is in fact the subject of our analysis.

At the second stage, the evolution of perturbations of the basic solution over time is consid-
ered. The equation for perturbations can be obtained from the transient Navier—Stokes equations;
they are written in the following operator form:

— =-R(g). ()

GSA uses the traditional approach for linear stability analysis, which is based on_representa-
tion of the solution of the system of equations (2) as the sum of its steady solution ¢ and small
perturbations ¢':

g=q+4q. (3)

To obtain equations that are linear with respect to ¢', linearization of the operator R(q) is car-
ried out in the vicinity of the basic solution for these perturbations:

-, - OR —
R(g+4')=R(q) +%(q)q ; (4)
OR — - . . . . . .
where a—(q) =J(gq) is the Jacobian of the Navier—Stokes equations (a differential operator
q
depending on the basic solution).

The equation of relatively small perturbations is obtained by substituting expansion (3) into
Eq. (2), taking into account Egs. (1) and (4):

oq" .-
e S =0. 5
Py (9)q Q)
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Due to linearity of the system of differential equations (5), its general solution is represented
as a sum of terms (modes of perturbations), each of which is also a solution of system (5). Each
mode can be represented as

q (x,,1)=4(x,y)exp(or), (6)

where ¢ is the complex vector of the perturbation amplitudes; o is the complex number o, + i,
whose real part o, is the rate of growth/attenuation of the perturbation, and the imaginary part o,
is its frequency (only the real part of relation (6) has a physical meaning).

Substituting equality (6) into system (5) leads to the eigenvalue problem for the Jacobian of
the governing equations:

JG=0q. (7)

The numerical solution of this problem is carried out on a finite difference mesh, so all continu-
ous vectors and operators are replaced by their discrete approximations. Discretization of deriva-
tives at each point of the computational mesh in accordance with an existing stencil of a numer-
ical scheme determines the dependence of these derivatives on the values of variables at adjacent
points. Thus, problem (7) is reduced to the eigenvalue problem of the discrete approximation of
the Jacobian J, that is, the matrix M

M6, = o0, ®)

Here, the vector @, is the discretized field of the amplitude of perturbations ¢, and the dis-
cretized Jacobian M, is the matrix of derivative equations with respect to all variables at all points
of the computa‘uonal mesh, therefore, the indices £ and / in Eq. (8) take values from 1 to N X
N, where N is the number of nodes of the computational mesh, N, is the number of variables.

It should be noted that instead of linearization of expression (7) at the boundary points of the
computational domain, linearization of the corresponding boundary conditions is used, therefore,
the following equation is used for these points, instead of expression (8):

Mkl&‘l =0. )

Egs. (8), (9) can be combined if we formulate a generalized eigenvalue problem:
Mk[d[ = Q)Tkmdm > (10)

where T, is a diagonal matrix with 7, = 0 at the boundary points and 7, = 1 at the inner points.

Thus 'the determination of the stablhty of the flow within the framework of GSA is reduced to
solving the generalized eigenvalue problem (10). The eigenvalues of the matrix M,, correspond to
different modes of perturbation, and the real part of the eigenvalues is equal to the rate of growth
of perturbations, and the imaginary part is the frequency of their vibrations.

The eigenvectors correspond to the spatial distributions of the mode amplitudes. The flow is
unsteady if at least one eigenvalue has a positive real part (i.e., there is a growing perturbation
mode), and stable otherwise.

As already noted in the introduction, two different approaches are currently used to determine
the elements of the M,, matrix at the inner points of the computational domain. According to the
method for calculating this matrix, the GSA is called continuum or discrete, respectively.

Within the framework of the first of approach (see, for example, [5]), called continuum
in [10], an analytical expression is derived for the Jacobian J, and then its discretization is carried
out using some numerical scheme, which, generally speaking, may differ from that used to solve
system of equations (1) obtaining the basic solution.

In contrast, within the second approach (see, for example, [11, 12]), called discrete in [10], the
calculation of the Jacobian in problem (7) is carried out not at the differential, but at the discrete
level, i.e., it is not the operator R itself that is differentiated, but its discrete form, used to obtain
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a basic solution, called the right-hand side of system (2) ( traditionally denoted as RHS,); index
k takes values from 1to N x N, as in Eq. (10).

The discrete form of the Jacoblan in this case is the matrix of partial derivatives RHS, with
respect to the variables a, (the discrete form of the vector of the principal variables g) at each inner
point of the computational mesh:

>

ORHS,

M. =
K oo,

(11

There are two approaches to differentiating Eq. (11). Within the framework of the first, the
explicit dependence RHS (a) is formulated for the numerical scheme used, and then differen-
tiated analytically. Even though this problem is very time-consuming, especially for modern
schemes with high-order accuracy, it was solved in [21], and the developed approach was suc-
cessfully applied in [11, 13, 16, 18].

This paper uses an alternative approach based on the technology of automatic differentia-
tion (AD). Even though AD as a concept has appeared quite long ago [22], interest in it arose
only in the last two decades, with efforts to solve related problems on optimizing the shapes of
airfoils [23].

The basis for the AD is that the algorithm for calculating any complex function (including
RHS) consists of sequential application of elementary operations ¢, (addition, multiplication,
exponentiation, etc.):

RHS=¢,0c@,0...00,. (12)

The values of the derivative of the elementary function at each step are known analyti-
cally, so the Jacobian of the RHS function can be calculated by the rule of differentiation of a
complex function:

J=@ 0@, o..00. (13)

Libraries implementing AD (see, for example, [24, 25]) accumulate the results of this dif-
ferentiation during the calculation of the initial function and calculate the discretized Jacobian.
Notably, the AD method is not automatic in the full sense of the word and requires editing the
source code of the program.

In the absence of gas-dynamic discontinuities, theoretically (i.e., with computational meshes
that provide grid-independent solutions for emerging perturbations), the continuum and discrete
approaches should provide the same result. However, in practice, the results obtained using dif-
ferent approaches on finite grids may differ dramatically.

It should be noted that the evolution of perturbations can be considered not only within the
GSA, but also within direct numerical simulation of transient Navier—Stokes equations (2). In
this case, the solution of the steady Navier—Stokes equations (1) is used as an initial approxima-
tion. The initial perturbations are determined by the error of the numerical solution of transient
equations. If the flow is unsteady, then an increase in the amplitude of perturbations is observed
as a result of the calculation. At the linear stage, when the exponential nature of the growth of
perturbations is observed, their evolution should be consistent with the results of the GSA in the
discrete calculation of the Jacobian.

In this paper, we verified our implementation of the discrete approach to calculating the
Jacobian based on such a comparison.

Statement of the problem on the stability of steady flow
around a cylinder and its computational aspects

The results of two stability analysis methods were compared using the example of the problem
on laminar flow around a cylinder with perfect gas, using meshes that are sequentially refined in
both directions. The problem was considered in a compressible statement with the Mach number
M = 0.2 and two values of the Reynolds number, Re = 50 and 60, slightly exceeding the Reynolds
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number for the stability threshold, Re = 47 (see,
for example, [26]), when the Reynolds number
is constructed from the velocity of the incident
flow U and the diameter of the cylinder D.

The size of the computational domain was
120D. This size was sufficient to eliminate the
influence of boundary conditions on the basic
solution and the results of the GSA. A series of
O-type computational meshes was constructed
in this region (an example of such a mesh is
shown in Fig. 1) with a uniform distribution of
nodes along the angular coordinate and cluster-
ing towards the wall along the radial coordinate
(the parameters of the constructed meshes are
shown in Table 1).

In this paper, the finite volume Numerical

Fig. 1. Example of O-type computational Turbulence Simulation (NTS) CFD code was

mesh (L1 mesh) used for calculations [27]. In this code, the

finite-difference relaxation method is used to

find steady solutions to the governing equations. A hybrid scheme is used to approximate inviscid
flows in calculations of compressible flows:

y/D
60

20

20

80

Ay :aUARoe +(1 —Qy )A4cs (14)

where a,, is the weight of upwind approximation; A, , A, . are the finite difference operators of the
third-order upwind-biased Roe scheme and the fourth-order central difference scheme, respectively.

Table 1
Parameters of O-type computational meshes used and their values
Mesh NLp N | Ah/D Ah, /Ah | Ah_ /D
L1 80 1.0-102 1.098 2
L2 160 5.0-1073 1.040 2
L3 240 2.5-103 1.028 2
L4 320 1.0-103 1.023 2
L5 800 1.0-10* 1.011 1

Notations: Nw, N_is the number of nodes in the circumferen-
tial and radial directions, respectively, Ah, is the grid pitch, Ak
is its maximum value, D is the diameter of the cylinder.

The viscous components of the flows are approximated using a second-order central
difference scheme.

To calculate the evolution of small perturbations by solving transient Navier—Stokes equations,
numerical time integration was carried out using an implicit second-order Euler scheme with a
time step Az = 0.3-D/U,, which provided values of the Courant number less than unity in almost
the entire computational domain and approximately 1,000 steps per Kiarman vortex street for
all meshes.

The indicators of the growth or attenuation of perturbations and their frequency were deter-
mined by processing the dependences of the transverse velocity on time obtained by unsteady
calculations at several points in space. A linear stage of perturbation evolution was identified,
when their amplitude increases exponentially.

Solving the spectral problem, the calculation of the discrete form of the Jacobian was carried
out by both methods (discrete and continuum). Within the framework of the continuum method
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implemented earlier in the NTS code, a finite-difference scheme was used to discretize the
Jacobian J (it is described in more detail in [5]), which is a combinations of a third-order upwind
scheme and a fourth-order central difference scheme:

>

Ay =,y +(1—0y)A,c, (15)

where a,, is the weight of the upwind approximation; A,,, A, . are the finite difference operators of
the upwind scheme and the central difference scheme, respectively.

To use the discrete approach, we implemented in this paper, we applied the automatic differ-
entiation method (using the ADF95 library [25]). For the numerical solution of the eigenvalue
problem, the Krylov—Schur method was used, which is implemented using the open library
SPEPc/PETSc [28]. This method is designed to solve eigenvalue problems with sparse non-Her-
mitian matrices of large size (this is the type of matrix considered). It is a modification of an
implicitly restarted version of the Arnoldi method, which belongs to the class of Rayleigh—Ritz
methods based on projection onto the Krylov subspace (see, for example, monograph [29]). The
Krylov—Schur method allows to obtain the requested number of the eigenvalues the largest in
absolute value and their corresponding eigenvectors. Therefore, to use it, the initial matrix is
pre-transformed in such a way that the most important eigenvalues in terms of stability with
the largest real part become the largest in absolute value. This transformation is a combination
of shifting and inverting the matrix (this approach is called the “Shift-Invert Approach” in the
literature [30]).

Verification of the GSA results obtained with the discrete approach
to calculating the Jacobian

Fig. 2 shows the spatial distributions of perturbations of the longitudinal velocity U at the
Reynolds number Re = 60 on the L4 mesh, obtained by discrete GSA and direct numerical solu-
tion of the transient Navier—Stokes equations. For the latter, the local amplitudes of perturbations
are obtained as a result of subtracting the fields of the instantaneous and basic solution with nor-
malization to the maximum value |U”_ |.

a) b)

JiD . VD Re[EL(E ) nax / E ) ]

< NN m 4l -I-

e U e T X
s B

Fig. 2. Spatial distributions of longitudinal velocity perturbations obtained on the L4 mesh by direct
numerical solution of the transient Navier—Stokes equations (a) and using discrete GSA (b)
Reynolds number Re = 60, Mach number M = 0.2

e
T

D

I\}

In the framework of a discrete GSA, the spatial distribution of perturbations is determined by
the real component of the eigenvector corresponding to the most unstable eigenvalue. For com-
parison, the complex components of the E, vectors corresponding to the longitudinal velocity
perturbations were reduced in phase and amplitude to the value at the point where the amplitude
of the perturbations |U”__ | is maximum. The analysis of the data in Fig. 2 allows us to conclude
the discrete GSA not only correctly predicts the shape of perturbations developing due to insta-
bility on the L4 mesh but also provides good quantitative agreement.The growth rate and the
frequency of development of the most unstable perturbations at Re = 60 on a series of meshes
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L1—L5 are shown in Table 2. The growth rate and frequency obtained by the discrete approach
coincide with high accuracy (on all meshes for the flow, the error does not exceed 0.4%) with
the solution of the transient Navier—Stokes equations, which indicates that the approach was

implemented correctly.

Table 2

Comparison of computational parameters of the most unstable
perturbations obtained by two methods on a series of meshes

Computational value of parameter
Mesh Growth rate ®_ Frequency o,
I | 1 I 1l
L1 0.0132 0.754 | 0.753
L2 0.0389 0.740 | 0.741
L3 0.0420 | 0.0421 0.738
L4 0.0430 | 0.0431 0.737
L5 0.0437 0.736

Notations: I corresponds to direct numerical solution
of transient Navier—Stokes equations; II to GSA, discrete
approach. Note. Reynolds number Re = 60, Mach number

M =0.2.

Comparison of the results of two methods of global stability analysis
The direct comparison of the discrete and continuum approaches implemented in the NTS

code is complicated by differences both in the methods for calculating the Jacobian and in the
numerical schemes used to calculate the inviscid part of the flows.

d
fo! -

0.020

0.015

0.010

0.005

0.000

=010 015 020 025 _ Ah

Fig. 3. Effect of the grid step on the difference
in growth rates o, calculated using discrete (d)
and continuum (¢) GSA methods
Hybrid schemes with two weights
of the upwind term a were used

The discrete GSA uses the same computa-
tional scheme as for calculating the basic flow,
i.e., a hybrid upwind Roe scheme. This correc-
tion is significantly nonlinear, which does not
allow it to be used within the framework of con-
tinum GSA, therefore it uses a simplified linear
upwind term. It would be possible to avoid dif-
ferences between the schemes by using identical
central difference schemes, but in practice this is
impossible due to loss of stability when obtaining
a basic solution. Nevertheless, if we reduce the
weight of the upwind term, this can drastically
reduce the difference in the schemes used.

This possibility is illustrated in Fig. 3, which
shows the dependence on the grid step of th
modulo difference in growth indicators or — (oiT
in the vicinity of the cylinder obtained from the
results of discrete and continuum GSA. If the
weight of the upwind term is reduced, the dif-
ference decreases. The following are the results
obtained using hybrid schemes with the weight
of the upwind term o = 0.05.

The growth rate and frequency obtained on the smallest L5 grid using the continuum and
discrete approaches (Table 3) practically coincide. The same table shows a comparison with the
results from [26, 31], confirming that the GSA results are representative.
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Table 3

Comptutational parameters of unsteady perturbation mode obtained
by two methods on the L5 mesh with varying Reynolds numbers,
as well as comparison with the literature data

Computational value of parameter

Computational approach o, o,
Re=50 Re=60 Re=50 Re=60
GSA, discrete approach | —0.01099 | —0.04368 | 0.72965 | 0.73637
continuum | —0.01093 | —0.04372 | 0.72955 | 0.73633
[26], GSA, discrete approach —0.013 —0.047 0.745 0.754
1], direct numerical solution
£>3f szaiieeritStgkees qu?Jas;[(i)olrllts ’ —0.012 —0.050 0.750 0.757

The arithmetic mean of the eigenvalues obtained using discrete and continuum approaches was
used as a "reference” value of ®¥ = (co:ef s cofef ) to estimate the error in calculating the growth

rate and the frequency of unsteady perturbation’ mode on on the coarser mesh L5.
Dependences of the error of the GSA results

_(0-w?)D
UO

A®

on the characteristic step of the mesh A/, defined as the average step along the angular coordinate
at a distance of 4D from the surface of the cylinder, are shown in Fig. 4 and allow us to draw
the following conclusions.The calculation error is almost the same for both considered Reynolds
numbers. The real order of accuracy of the GSA, which was determined by power-law approxi-
mations of the dependence of the error on the grid step, turned out to be approximately the same
for both approaches: its value is approximately 3.1 for the growth rate, and 1.8 (discrete GSA)
and 2.0 (continuum GSA) for frequency. These values are consistent with the formal order of the

a b

Aw, ) Aay, )
0011F - -w - DA,Re=50 : ooozk ~ ¥ " DA, Re = 50
r —A— CA,Re=50 T —a— CA,Re=50
0006_ . __v- - .DA’.Re.= 60 . . L . . . | - - DA’ Re = 60
' —&—— CA,Re=60 - I ——&— CA,Re=60

v 0.002 -

0.001
0.001

I L I L L I R T | L L L L L L I MR | L
0.06 0.08 0.10 0.12 Ah 0.06 0.08 0.10 0.12 Ah

Fig. 4. Stepwise dependences of errors in calculating the growth rate (a) and frequency (b).
The dependences were obtained by discrete (DA) and continuum (CA) approaches on meshes L1 — L4,
with varying Reynolds numbers (dependences are given by symbols), and their approximation
by exponential functions (straight lines on a logarithmic scale)
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schemes used, in which convective terms are approximated by the third order, and viscous ones
by the second. In addition, it should be borne in mind that the actual order of the schemes may
decrease on non-uniform meshes (that is, the meshes are used in this work). The analysis of the
data in Fig. 4 also allows us to conclude that the error in predicting the growth rate was about
three times less when using the continuum approach, and the error in predicting the frequency of
perturbations was less when using the discrete approach.

Conclusion

Two approaches to global stability analysis (GSA) were compared using the example of the
problem on laminar flow around a cylinder at Reynolds numbers close to critical, differing in the
methods for calculating the Jacobian of the Navier—Stokes equations: discrete (linearization of
these discretized equations) and continuum (discretization of these linearized equations).

The discrete GSA approach we implemented was verified by comparison with the results of
direct numerical simulation of unsteady laminar flow around the cylinder at Reynolds number
Re = 60. The results of the comparison showed that the growth rate and the vibration frequency
of the most unsteady mode coincided with high accuracy on all the considered meshes.

The order of accuracy of the GSA turned out to be the same for continuum and discrete
methods for calculating the Jacobian, and corresponded to the formal order of accuracy of spa-
tial discretization by the numerical schemes used to obtain the solution whose stability was ana-
lyzed The error in predicting the growth rate of perturbations is less when using the continuum
approach, and the error in predicting the vibration frequency of perturbations is less when using
the discrete approach.

Thus, it can be argued that the continuum and discrete approaches are equivalent in order of
accuracy and the choice of a specific approach for conducting stability analysis can be determined
by other criteria (ease of implementation, computational costs, etc.).

This study was supported by the Russian Science Foundation (grant 21-72-20029). The simu-
lations were run on the Polytechnic RSC Tornado cluster of the Polytechnic Supercomputer
Center (http://www.scc.spbstu.ru).
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