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Introduction

Computations of hydrodynamic forces acting on solid and elastic structures oscillating in vis-
cous incompressible fluid are important for diverse applications, for example, nanotechnology,
viscosity measurements, hydromechanics of marine structures.

Since structures typically have a complex geometric shape, computational experiments con-
ducted by grid-based numerical simulation are used to solve such problems, implemented in
well-known commercial CAE packages (for example, Ansys Fluent, STAR-SSM+, etc.). The
computational approach is universal, but very expensive and time-consuming.

In view of these circumstances, it is important to be able to solve relatively simple reference prob-
lems for which explicit, asymptotic or numerical solutions can be constructed. The solutions obtained
can be used as a first and often good approximation for more problems more difficult to formulate.

To date, the only plane problem (apart from the model problem of vibrations in a plane)
allowing for an exact analytical solution is the problem of small oscillations in a circular cylinder
in an incompressible viscous fluid at rest, whose solution was obtained by Stokes in 1851.

Such a simplified model has long been used to solve hydrodynamic problems, for example, in
the theory of atomic force microscopy, and still remains popular. However, the estimate of the
hydrodynamic reaction of structures with a complex geometric shape is clearly very approximate
if it is based on Stokes’s results for a circular cylinder.

In this paper, we consider the Stokes problem for an elliptical contour making small harmonic
oscillations in incompressible viscous fluid, proposing a combination of methods to describe its
solution in almost the entire range of values of dimensionless viscosity.

Problem statement

Let an arbitrary planar contour immersed in incompressible viscous fluid with kinematic vis-
cosity v and density p make small harmonic oscillations in its plane with a given frequency . The
oscillation amplitude is assumed to be much smaller than the size of the contour.

The equations of motion are written in dimensionless form using the characteristic size of the
contour L as a unit of length, the quantity oL is divided by the amplitudes of velocities v, v of
the fluid and the forced oscillations of the contour u;, po’L* is divided by the pressure, po”L® is
divided by the hydrodynamic force F.

Under the above assumptions, hydrodynamic equations of an incompressible viscous fluid take
the form [1]:

2 2
0 sz+a—vz"—[36—p+i[3vx:0,
ox~ Oy ox
0’ 0’
IV N gD g, o, (1)
ox> Oy oy g
a&_i_al:(),
ox Oy

where B = ol?/v is a dimensionless parameter.
No-slip conditions are imposed on the contour line T':

r :ur’ (2)

where (v, v), (u,, u) are the normal and tangential components of the velocity vectors of the
fluid and the contour, respectively.
Oscillation-induced perturbations of the velocity field decay with distance from the contour T:

1%

n

=u, v

r n’ T

v. =0, vy—)O, x4+ y? > o 3)
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If the components of the velocity vector are represented in terms of two scalar functions ¢ and
v, referred to as potentials for brevity [2], namely,

a(p oy op Oy
v, = , v, =———
8x oy’ Y oy ox

then system of equations (1) and boundary conditions (2), (3) can be written as

Ap=0,
Ay +iBy =0, 4)
p=1i;
a_q)_i_a_\v:un’
on Ot
op oy
___=u’ 5
ot on )
O,y = 0,4/x” +y* = 0.

As established in [3], the hydrodynamic force F_acting on a plane contour with a normal n =
(n_,n ) making small harmonic oscillations along the Ox axis is determined in terms of the poten-
tlals {)y the formula

F.=—i[ondl~i[ yn,dl. 6)
A 4

The problem formulated is of both theoretical and practical interest in various fields, such as
microsystem design (scanning probe microscopy [4—6]), instrumentation for viscosity measure-
ments [7], hydromechanical problems of offshore structures [8]. In practice, the values of the
dimensionless parameter B can vary in a wide range: from 1073 to 103,

The exact solution of the problem of oscillations in a circular cylinder immersed in incom-
pressible viscous fluid at rest, as well as the formula for calculating the hydrodynamic drag of
the cylinder, were obtained by George Stokes in 1851 [9]. This result, which may be cumber-
some to access, was subsequently reproduced in [10] and confirmed experimentally (see, for
example, [11, 12]).

By analogy with this classical problem, we define the problem of vibrations in an arbitrary
plane contour placed in infinite incompressible fluid as the Stokes problem for this contour.

Stokes problem for a circular cylinder

We present the solutions of the problem obtained by the potential method from monograph [2].
The solution for the case of incompressible fluid has the following form in polar coordinates r, 0:

—u( (1.6)- )—cos
9(r0)= "(H(1LB)+1) ®
y(r.0)=u, (}2[]({1’([:;31) sin 0, (7)
_ 3H(LP)-1
FX(B)=—1WO 1+H(1>B) )
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introducing the function

r.B)= A (D) (8)
2 \/%Hl’(l) (r\/ﬁ)‘ .

r=l1

H{(

For large values of B, it follows from Eq. (7) for the hydrodynamic force that

Fx(B)ﬁ:@inuo {1+2(1+i)\/§}. 9)

Eq. (9) is often called the Stokes formula [10—12].

Evidently, if p — o, F (B) — inu,, which corresponds to representations of the ‘added’ mass of
ideal incompressible fluid.

At low B, the potentials have the form

4
¢(r,0) ~, — Leoso,
B[2y—l;—2ln2+ln[3j r
. (10)
4 .
\V(Vae)[;o % lsm 0,
B(zy—lg—zmzﬂnp) r
and, in accordance with Eq. (6),
_ 8mu, .
BﬁoB(2y—?—2ln2+lnBj an

(here vy is Euler’s constant)

Methods for solving the Stokes problem for an elliptic cylinder

Analytical solution. Some asymptotic results were obtained in [13] for an elliptic contour, and
a formal solution was constructed in [14].

Thus, we take the major semiaxis of the ellipse (L = a) as the length scale. The ellipse equation
in Cartesian (dimensionless) coordinates has the form

2
F:x2+y—2=1, (8=2j.
€ a

We introduce elliptical coordinates
x=hch&cosm, y=hsh&sinn.
where h = \/@ is half the distance between the focal points,
Ee [§O,+w), ne [0,27‘5].
Then the ellipse equation is written as

e = =
— € —€

The unit normal n and tangential T vectors to the contour of the ellipse are expressed as
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(ecosm,sinn) . (—sinm,ecosn)

n= ,T= .
Jsin® n+¢% cos’n Jsin® n+¢* cos’

The normal and tangential derivatives follow the expressions

9 o
on \/sin2 n+e’cos’n Ot \/sin2 n+e&°cos’ M

The boundary conditions for potentials at £ = &, are given as

8_(p+8_w:8u0 cosm,
g on
(12)
op Oy .
— ———=—u,sinn.
o g
The Laplace equation for the potential ¢ in elliptic coordinates is given by the equality
o* 0
€2,2% . (12)
g on
Its solution, decreasing at infinity, has the following form:
0(&m) =D Cyp e PN cos (2k ~ 1), (13)
k=1
The equation for the potential y in elliptic coordinates is expressed by the formula
1 Oy 'y 2
+ +(1-¢" )iy =0. 14
(chzé—cos2 n)(é’&z on’ ( ) (14)

It is known (see monograph [15]) that Eq. (14) allows for separation of variables, and its solu-
tion, decreasing at infinity and odd with a period of 2=, has the form

W(i,n)=ZDZk71H2k71(§,§o,61) S62k71(ﬂaf1)~ (15)
k=1
Here we introduce the notations
1. )

Neglk)_l(i,fI)
dNeglk)—l (§,Q) (16)
dg

H,, (E»FowQ) =

&=&
the following functions_are used:
sey; (bz,c_l (q),n,q) is an odd Mathieu function with a period of 2x;

Neglk)f1 (bzkl(q),ﬁ,q? is a modified Mathieu function of the third kind (the terminology
adopted in monograph |15] is used).
Both functions correspond to the eigenvalue b,,_ (¢), k =1, 2,....
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Note that in addition to (&,n), the remaining arguments in all functions are omitted for brevity

from now on.
The Mathieu periodic function se,_,(n) and its derivative can be written as a Fourier series:

S€k-1 (n) = ZBZk—l,Zr—l Sin(zr - l)na
r=l1 (17)

>

d 0
d_nseZkl ; (2r=1)B,_,,, cos(2r-1)m,
2n
By = - I S€p-1 (ﬂ)Sin(2” —l)ndﬂ- (18)

0

The formulas given in monograph [15] are used for the non-periodic Mathieu function Ne!))_ (£):

0

NeZk 1 = 22k z By 12 |:‘]r—l (Vl)Hfl) (Vz)_Jr (vl)Hr(l—)l (Vz )] >
S2k-1 :Se;k—l(O)SQZk 1( j \/76 :\/ge&-

19)

Therefore,
sz I(&)&O):
\/lgi( I)HBMMH g, I(Vl)Hsl)(VZ) Jv("l)Hglf)l(VZ)}
_ s=1
S (1) Buars [T () H (1), () B ()]
s=1 £=g
[JS—I(VI)HS(I) (Vz)_Js (VI)HEI—)I(V2):|' =
E=E,

=e [—J:,_l (VIO)HS) (v;))+ezi°Js_l (VIO)HS'(I) (v§)+JS' (v]O)Hf,l_)1 vg)—ezé(’.]s (VIO)H'( ) (v2 )}

v, = \/ge_g‘),vg = \/geé".

Substituting solutions (13), (15) into boundary conditions (12), we obtain the following system
of equations:

2k 1 Gy 1005(2k 1 T] +ZD2k Hyy 1(‘t:oa‘t:0)sezk 1(n)=8”o cosn,

MS

k=l k=1 (20)
> (2k=1)Cysin(2k—1)n ZDzk 1€, (n) =—u,sinn.
k=1

If we use the representation se,,  (n), se;,_(n) as a Fourier series in terms of the functions
sin(2k—1)n, cos(2k—1)n, then we can reduce system of equations (20) with respect to the coeffi-
cients C D,,_, to an infinite system of linear equations, i.c.,

U1
1
2r1+z b1 Bar ik 2k1(&>05é0’ )_Suosr’

o0

1
G+ ZDzk—lBZr—l,Zk—l =uy0,,

k=1
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where ! is the Kronecker symbol, denoting the following:
5 — {1, r=1,
"0, r#l.
Finally, excluding the coefficients C,_,, we obtain

Z.O:DZk—lBZr—l,Zk—l (1 + H2k—1 (%0’ ao’ Q)) = (1 + 8)”061- (21)
k=1

The infinite system of linear equations (21) can be solved by the reduction method.
Finally, in accordance with Eq. (6), we have:

2T o
F = —ij > Cy, cos(2k —1)ncosndn -
0 k=1
21 o
lszzkl 2-1 ‘:oa‘:oa )SeZk—l (Tlaq)sinndn= (22)
0 k=1

_ln( C z b aoaiwq)szll)

The asymptotic form of the solution for large p. As shown in [16], the method of boundary inte-
gral equations for p — < can be used to construct an asymptotic solution of the Stokes problem
for an arbitrary smooth convex contour as asymptotic series in powers of 1 /\/E.

The first two terms of such an expansion give expressions for potentials at contour points [16]:

2 »
(F,O,) —ugcosM+ ! u0(1+8)8 Zlm(g)cosmn,

l\/E T m=1 m
cosncosm
L, (8)= 5 zn i zn Al
0 (8 cos’ n+sin n)

(23)

1 (1+&)u,sinn
v (&)
(% B"“’l( \/8 cos’ 1 +sin’ n

Substituting Eqgs. (23) into expression (6) for the hydrodynamic force produces the

following formula:
2 2
F.=imugs+——® | g €1 pl €L (24)
JiB(1-¢) € €

where K, F are complete elliptic integrals.
At ¢ — 1, the ellipse degenerates into a circle and Eq. (24) becomes Eq. (9).
Asymptotic form of the solution for small p.If p — 0, we have:

q—0, se, (H,CI) - sin(2k —1)n, Byyin 0 &30 [15]
and then the first term in Egs. (13), (15) becomes the principal one. Therefore, system of equa-
tions (20) allows to obtain the following dependences:

¢(&mn) ~ ey Ezzzzzz ;_ e (H(’)uo cos,
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(19, (5800)
=0 Hl(&O»&O»Q)"'I

v (&)

u, sinm.

Introducing an expansion in series with respect to a small parameter B, we find:

81'67&’7&’0
© ~ U, cosm,
p=0 45, _ 2 - o1 [ 2
(I—¢)pi—e ™ —e ™ +| 2y—in+Inp+2In e"z z(l—a )
~ Bie™ ™ sin
v g sinm,

(l—s)B{_e*“iO —e % +[2y—in+lnB+2ln(e§° 411 i(l—sz)ﬂ}

consequently, the force is expressed as follows in accordance with Eq. (6):

167,67

(1-¢) B{_e—% e +{2y—i7‘c+ln[3+2ln(e&o 41‘ i(1- Sz)ﬂ} (25)

* B—0

Ife -1,
21n(eé°% i(l—gZ)j:2ln(1TTS\/;]:%—2ln2,
¢ ~1‘78+o(1—g)2,

Eq. (11) for the circle is obtained from expression (25) by passage to the limit.

Finite difference method. The numerical algorithm for solving the problem is described in detail
in [17]. Comparing the results obtained by different methods in [16, 17], we can conclude that the
proposed finite difference method can be applied in a fairly wide range of values B €[0.1,25], i.e.,
even in the range of ‘moderate’ values p € [1,10], where the applicability of asymptotic solutions
is questionable.

Numerical implementation of solution methods

To numerically implement the formulas of the analytical solution, it is necessary to calculate
the eigenvalues b, _,(g) of the Mathieu equation and the coefficients B,,_ , . The technique for
describing them has long been described [15, 18]. Although the general consensus is that theoretical
work on the methods for calculating these eigenvalues is completed [19], in reality, many results
have not yet been obtained, especially for the case of purely imaginary and modulo large values of
g. Therefore, it is necessary to rely on the Mathematica package, capable of calculating periodic
Mathieu functions, and to find the coefficients B, _ , , by numerical integration by Egs. (18).

The experience gained from calculations by the methods described above indicates that the
range of eigenvalues B can be conditionally divided into three parts: small (B < 1), large (B > 10)
and moderate (B € [1,10]). The reduction method for system (21) converges quickly in the range of
small B (in 3—5 iterations). Fig. 1 shows the calculated magnitudes of the force |F | for different e.

The analysis showed that convergence of the method slows down at f > 1, the dimension
of the matrix of coefficients B, _ , | increases, the condition number increases rapidly, and it
becomes practically impossible to calculate the coefficients B, _ , | by Egs. (18) at 8 > 10, since
the integrand oscillates rapidly. The problems with implementing the calculation scheme in this
range are generally similar to those in the theory of diffraction and scattering of high-frequency
sound waves.
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Fig. 1. Calculated dependences of the force magnitudes |Fx | on the parameter ¢
for different small B: 1073, 1072 (a) and 107, 0.5 (b).
Eq. (25) (solid lines) and analytical solution (symbols) are used

In the case of the Stokes problem for a circular cylinder, combining the asymptotes at p < 1
and B > 10 with the finite difference method allows to cover the entire possible variation range
of the parameter f.

The same effect is likely to be expected for the elliptical contour. It was found in [16] by the
finite difference method that the asymptote (24) gives acceptable results already at § > 10.

Fig. 2 shows the calculated results obtained by Eq. (24) and the analytical solution for g € [1,10].
It is clear that the solution arrives at the given asvmptote.

Fig. 2. Calculated dependences of force magnitude |FX | on the parameter B
for different values of the parameter ¢: 0.10 (1), 0.25 (2), 0.50 (3), 0.75 (4), 0.99 (5).

Eq. (24) (solid lines) and analytical solution (symbols) were used

Conclusion
The methods considered in this paper can be used to solve the problem of small harmonic
oscillations of an elliptical contour immersed in incompressible viscous liquid. Comparing the
results, we can conclude they can be used in combination to describe the solution in almost the
entire range of the p parameter values.
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