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Abstract. The article compares the efficiency of two methods for implementing modal 
control for active vibration suppression of distributed elastic systems. The former is the modal 
filter method, which implies a linear transformation of measured and control signals; the 
latter is the method of modal observers, which uses the object model to reconstruct the state 
vector from the measurement signals. For this purpose, the problem of suppression of forced 
bending vibrations of a thin metal beam at several lower resonance frequencies has been solved 
numerically for two different objects. The simulation results showed an undeniable advantage 
of the observer method over the modal filter one. The inherent effects of signal transmission 
in the control loop, occurring in real systems but usually neglected in numerical studies were 
analyzed. It was established that these phenomena had a significant impact on the efficiency 
of the synthesized control systems. Therefore, they must be taken into account in numerical 
simulations.
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Аннотация. Статья посвящена сравнению эффективности двух методов реализации 
модального управления для активного гашения колебаний распределенных упругих 
систем: метода модальных фильтров, предполагающего линейное преобразование 
измеренных и управляющих сигналов, и метода наблюдателей, использующих 
модель объекта для восстановления вектора состояния по результатам измерений. 
Для этого численно решается задача (в двух постановках) гашения вынужденных 
изгибных колебаний тонкой металлической балки на нескольких низших резонансах 
с помощью пьезоэлектрических сенсоров и актуаторов. Полученные результаты 
показали бесспорное преимущество метода наблюдателей перед методом модальных 
фильтров. Проанализированы эффекты передачи сигнала в контуре управления, 
возникающие в реальных системах, но не принимаемые, как правило, во внимание 
в численных исследованиях. Установлено, что эти эффекты существенно влияют на 
эффективность синтезируемых систем управления, поэтому их необходимо учитывать 
при моделировании.
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Introduction
Active control of vibrations in distributed elastic systems has received much attention in recent 

decades. Similar problems are found in many fields, such as construction, robotics, mechanical 
engineering, automotive, aerospace, etc. The control problem is often formulated as suppressing 
the forced vibrations of an object, since such vibrations can worsen the operational characteris-
tics of a structure, causing unwanted noise or even damage and failure. Our paper addresses this 
specific problem.

Active feedback control of mechanical vibrations in elastic systems is carried out by sensors in 
the control system (CS), feeding input signal to actuators (drives) applying control action to the 
object, which is the output of the CS. Piezoelectric elements capable of performing the functions 
of sensors and actuators due to direct and reverse piezoelectric effects have become widespread 
for these purposes. Such elements are simple and convenient to use, are easily molded into the 



St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023. Vol. 16. No. 3

162

required shape and can operate in a wide frequency range, which makes them very attractive for 
active oscillation vibration control. Here we consider sensors and actuators that are piezoelectric 
plates coated with electrodes and glued to the control object (metal beam).

Our previous studies presented experimental [1] and numerical [2, 3] comparison of various 
methods for active control for the problem of damping forced bending vibrations of a thin metal 
beam in a frequency range including two lower resonance frequencies. We considered a local 
approach (each control loop contains one sensor and one actuator located on both sides of the 
beam in the same region), a modal approach (each control loop corresponds to a specific vibra-
tion mode and uses all available sensors and actuators), as well as a modal control method (only 
one control loop is used, configured to compensate for a known form of external perturbation). 
Recent research indicates that the modal approach has the greatest efficiency among the methods 
for damping forced vibrations in objects at several resonance frequencies.

The modal approach in these studies is based on mode separation in the CS by the method 
of modal filters, i.e., the matrices giving the linear transformation of measured and control sig-
nals. This procedure allows to ‘filter out’ the unnecessary modes to ensure that each control loop 
corresponds to one specific mode of the object’s vibrations. This method is easy to use, but its 
efficiency is limited, especially given a small number of sensors and actuators. There is another, 
more advanced method for mode separation in control loops: the observer method. It uses an 
object model to reconstruct the state vector based on the measurement results, therefore providing 
more efficient mode separation. However, this approach also does not completely solve the main 
problem of modal control that is the spillover effect, i.e., the transfer of energy to higher uncon-
trolled modes [4], which can destabilize a closed system. 

The main goal of our study is to compare the two described methods of modal control, the 
modal filter method and the observer method, under the same conditions.

Our focus was for the problem formulated in the numerical study to match the experimental 
conditions as closely as possible, namely, to take into account the effects of signal transmission 
in the control loop that are integral in real systems. Such effects as phase shift and amplitude 
variation of the control signal, occurring due to delay and additional elements in the control loop, 
are also considered.

As a rule, these phenomena are not accounted for in numerical simulation [5, 6], however, 
this study presents clear proof that they significantly affect the result of CS synthesis and its effi-
ciency, and therefore must be taken into account in numerical studies if their ultimate goal is the 
experimental implementation of the given systems.

Theoretical fundamentals of the approaches under consideration

The modal approach has originated in the 1960s, when its basic principles were first formu-
lated in [7]. The proposed method was subsequently developed in [8, 9]. The modal approach has 
become the classical one, as it is well-studied and used in various fields of technology [10–12]. 
This approach can integrate both the modal filter method (for distributed sensors and actuators 
[13, 14] or their discrete systems [15, 16]) and the observer method [5, 17, 18]. 

This section provides a general overview of these methods, explaining their application within 
the framework of the study.

Modal filter method. Consider the problem of controlling bending vibrations of beams using 
piezoelectric sensors and actuators. Let us imagine the transverse displacement of the beam points 
w(x,t) as an expansion in terms of eigenmodes:

( ) ( ) ( )
1

, ,
n

i i
i

w x t X x q t
=

=∑ (1)

where n is the number of eigenmodes of the beam vibrations taken into account in the model; 
Xi(x) are the vibrational eigenmodes; qi(t) are the generalized coordinates. 

Let us write the equations for the beam vibrations in matrix form for the eigenmodes:
22 ,c dq q q Q Q+ ξΩ +Ω = +  (2)

where qn×1(t) is the vector of generalized coordinates with the length n; Ωn×n is the diagonal matrix 
of the beam’s vibrational eigenmodes; ξ is the scalar damping coefficient (taken to be the same 
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for all modes for simplicity); Qc
n×1(t), Q

d
n×1(t) are the vectors of generalized forces corresponding to 

control and external perturbation.
For simplicity, let us assume that the number of sensors and actuators is the same and equal 

to m (m ≤ n). Their operation is described by the following equations:

1 1,
s

m m n ny q× × ×= Θ (3)

1 1,
c a
n n m mQ u× × ×= Θ (4)

where ym×1(t) is the vector of sensor signals; um×1(t) is the vector of control signals applied to the 
actuators; Θs

m×n, Θ
a
n×m are the influence matrices for sensors and for actuators (characterizing how 

intensely each sensor reacts to each mode, and each actuator excites each mode).
Sensors and actuators are arranged consistently in the problems considered in the paper as 

sensor-actuator pairs on both sides of the beam. This means that the influence matrices are 
also related:

( ) ,
Ta as s

n m m nk× ×Θ = Θ = Θ (5)

where kas is a scalar coefficient depending on the physical and geometric parameters of sensors 
and actuators.

The numerical values of the elements of the influence matrices depend on how the actua-
tors and sensors are arranged on the control object. There are criteria that allow optimizing the 
locations of these elements, formulated specifically for the matrix Θ. For example, it is proposed 
in [6, 17] to maximize the minimum singular number of the matrix Θ, or the minimum eigenvalue 
of the matrix ΘTΘ, which is essentially the same.

The piezoelectric elements in this study are arranged on the beam so as to maximize their 
influence on the first and second eigenmodes, since the control problem consists in dampening 
the vibrations specifically at the two lower frequencies.

Finally, let us give definition to modal filters. Modal filters are matrices giving the linear trans-
formations of measured and control signals and ensuring that each control loop corresponds to a 
certain mode of the object’s vibrations.

We assume that control is carried out for k modes. The matrix T, which is the mode analyzer, 
is responsible for processing the measured signals:

1 1ˆ ,k k m mq T y× × ×= (6)

where ( )1ˆkq t×  is the estimate vector of k lower generalized coordinates qi(t).
The control actions are set in accordance with the matrix F, which the mode synthesizer:

1 1
ˆ ,m m k ku F Q× × ×= (7)

where ( )1
ˆ

kQ t×  is the vector of required control actions on k lower eigenmodes. 
Since we consider modal control, the vector of required actions depends on the vector of esti-

mates of generalized coordinates as follows:

1 1
ˆ ˆ ,k k k kQ R q× × ×= − (8)

where Rk×k is a diagonal matrix of gain coefficients. 
The elements of this matrix generally define the control laws in each loop, so they can be 

written as functions of a complex variable s:

( ).ii iR R s= (9)

Evidently, the matrices T and F should be defined as follows in the simplest case k = m = n:

( ) ( )1 1
, .s aT F

− −
= Θ = Θ (10)
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This would mean satisfying the equalities

ˆˆ , .cq q Q Q= =

However, the number of modes n to be taken into account in control of distributed systems 
generally exceeds the number of sensors and actuators m, while the number of modes k controlled 
may also differ from these numbers. 

In this case , it is possible to represent the influence matrices in the following form:

( )
( )

,  ,
a
k ms s s a

am n m k n mm n k
n k m

×
× × ×× −

− ×

 Θ
 Θ = Θ Θ Θ =    Θ  





(11)

the analyzer and synthesizer of the modes are defined as pseudo-inverse to the corresponding 
components of the influence matrices:

( )
( )

,  ,
a
k ms s s a

am n m k n mm n k
n k m

×
× × ×× −

− ×

 Θ
 Θ = Θ Θ Θ =    Θ  





(12)

This is the method for determining modal filters used in this study. For example, in the case of 
control by two lower modes using two sensor-actuator pairs (k = m = 2), the described method 
ensures that the first mode is not excited and does not affect the first control loop, and the second 
mode does not affect the second loop. 

However, higher modes are both excited and affect both control loops. This phenomenon is 
called the spillover effect (the transfer of energy to higher modes) and is the main obstacle limit-
ing the efficiency of modal control.

We earlier proposed an algorithm called the experimental identification method [19]: it allows 
experimentally implementing the described method for determining modal filters.

Meanwhile, there are other approaches to setting the matrices T and F. The first of them [20] 
is close to the one already considered:

( )
( )

( ) ( ),  .k ms a
m n n m m k m n k

n k m

T
F FT

+ +×
× × × × −

− ×

 
 Θ = Θ =     





(13)

It is also possible to determine the mode analyzer T by approximating the displacement 
function of the beam points w(x,t), using the displacement values measured by sensors [20] 
(if piezoelectric plates measuring and acting on the curvature of the beam are used, it is 
more correct to approximate the curvature function w′′(x,t)); the mode synthesizer F can be 
determined similarly.

The proposed method can be described approximately by the following formulas:

( ) ( ),  ,
T Ts s a a

k m k k m k m k k m k kT M F M× × × × × ×= Θ = Θ (14)

where Ms
k×k, M

a
k×k are some diagonal matrices whose elements give the degree of excitation and 

response of the control system to individual modes. 
If the number of sensors and actuators is increased (so that they more or less cover the entire 

surface of the control object), the methods considered produce the same results, since the eigen-
modes of an elastic body are orthogonal.

An advantage of the modal filter method is that it is simple to implement; additionally, if a 
sufficiently large number of sensors and actuators are used, it allows to avoid destabilization of the 
object’s higher modes [20]. However, this effect can still be dangerous in such a system if there is 
a small number of sensors and actuators, instability in the higher modes.
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Observer method We describe the method by representing system (2) in the state space:

,n nq Aq Bu Dd= + + (15)

where qn is the state vector of the system associated as follows with the vector of generalized 
coordinates from (2):

( )1 1 ;Tn
n nq q q q q=  

  (16)

d is the vector of external influences with the length m̅, and the matrix D has the form

0
,n m

n m

D
D

×

×

 
=  
 

(17)

so that the following equality holds true:

1 1.
d

n m m nD d Q× × ×= (18)

The remaining matrices used in Eq. (15) can also be expressed in terms of matrices from 
Eqs. (2) and (4):

2

0 0
,  ,

2
n n n n n m

a
n n n n n m

I
A B× × ×

× × ×

   
= =   −Ω − ξΩ Θ   

(19)

where 0n×n and 0n×m are matrices consisting of zeros; In×n is a unit matrix. 
The equation for sensor signals is written similarly:

0 .n s n
m n m ny Cq q× × = = Θ  (20)

To formulate the laws for observers, we rewrite Eqs. (15) and (20), dividing the system into 
two parts. We assume here that observation is carried out for the same k lower modes for which 
control is carried out (k < n):

( ) ( ) ( )1 1 1 ,k kq A q B u D d= + + (21)

( ) ( ) ( )2 2 2 ,n k n kq A q B u D d− −= + + (22)

( ) ( )1 2 .k n ky C q C q −= + (23)

Here, two state vectors appear instead of one:

( )1 1 ,Tk
k kq q q q q=  

  (24)

( )1 1 ,Tn k
k n k nq q q q q−
+ +=  
  (25)

and the matrices from Eqs. (15) and (20) are divided into two parts accordingly. Next, we formu-
late the law of observers assuming that the matrices A(1), B(1), C(1) are known:

( ) ( ) ( )( )1 1 1ˆ ˆ ˆ .q A q B u L y C q= + + − (26)

Here 2 1ˆ kq ×  is the estimate of the state vector qk, or the vector of estimates k of the first gener-
alized coordinates and velocities.

Let us formulate the control law similar to Eqs. (7), (8) with a constant control matrix R:

1 1 2 2 1
ˆ ˆ .m m k k m k k k ku F Q F R q× × × × × ×= = − (27)
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Notice that unlike Eq. (8), the matrix R here is not square but rectangular (with the size 
k × 2k), since the vector q̂  contains estimates not only of generalized coordinates, but also of 
velocities. 

To write a general equation for the entire closed system, we introduce the observation error 
vector e2k×1 and rewrite Eqs. (21), (22), (26) and (27):

ˆ ,ke q q= − (28)

( ) ,ku FR q e= − + (29)

( ) ( )( ) ( ) ( )1 1 1 1 ,k kq A B FR q B FRe D d= − − + (30)

( ) ( ) ( ) ( )2 2 2 ,n k n k kq A q B FR q e D d− −= − + + (31)

( ) ( )( ) ( ) ( )1 1 2 1 .n ke A LC e LC q D d−= − + − (32)

Thus, the equation of the whole system can be written as follows:

,q Aq Dd= + (33)

introducing the following notations:

( ) ,
Tk n kq q q e−= (34)

( ) ( )
( )

( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1
2 2

2 2 2

2 1 1
2 2

0

,

0

k n k

k k

A B FR B FR

A B FR A B FR

LC A LC

× −

×

 − −
 
 = − −
 
 −
 

(35)

( )

( )

( )

1

2

1

.

D

D D

D

 
 

=  
 
−  

(36)

Evidently, if k = n, the second row and the second column of the matrix of the closed system 
A̅ disappear, and the poles of the system are given by two matrices: 

( ) ( ) ( ) ( )1 1 1 1
11 33 and .A A B FR A A LC= − = −

Thus, the observation and control problems are separated, and we can independently syn-
thesize the matrices L and R, based on the required properties of a closed system. The presence 
of higher uncontrolled modes (at k < n) immediately complicates the problem: the previously 
mentioned spillover effect appears. The effect consists of two distinct components: the first one 
is observation spillover, occurring due to activation of higher modes, for which the matrix com-
ponent A̅32 = LC(2) is responsible; the second one is the control spillover, i.e., excitation of higher 
modes by the control system, expressed by the components of the matrix

( )2
21 23 .A A B FR= = −

The spillover effect interferes with the operation of the control system and limits its efficiency; 
in particular it can lead to destabilization of a closed system.
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Apparently, if the dynamics of a system with control is described by Eq. (33) with matrix 
(35), then this description allows to find an explicit solution in the time or frequency domain as 
well as analyze the stability of the system by the eigenvalues of matrix A̅. However, this method 
is suitable only if the control matrix R is constant, i.e., its components do not depend on the 
complex variable s. Unlike theoretical models, there is always a delay in the control loop in real-
life conditions, which can be described just by setting the dependence R(s). The control loop 
may also include additional elements, such as low-pass filters and amplifiers that have their own 
amplitude and phase frequency characteristics, which also affects the transfer functions (TF) in 
the control loops.

In this case, the dynamic response of the system using observers is calculated via the following 
formulas for the Laplace transforms of variables introduced earlier:

( ) ( ) ( ) ( ) ( )( ) ( )
11 1 1

2ˆ ,kq s sI A LC B FR s Ly s
−

= − + + (37)

( ) ( ) ( ) ( ) ( )ˆ ,u s FR s q s K s y s= − = − (38)

( ) ( ) ( ) ( ) ( ) ( )( ) 11 1 1
2 ,kK s FR s sI A LC B FR s L

−
= − + + (39)

( ) ( )( ) ( )1
2 .nq s sI A BK s C Dd s

−
= − + (40)

The matrix R is considered constant in the object models used in the observers in this paper. In 
particular, this assumption is necessary to analyze the stability of observation for the Aobs matrix:

( ) ( ) ( )1 1 1 .obsA A LC B FR= − − (41)

Thus, the observer’s operation does not account for the above-mentioned additional effects on 
signal transmission in control loops, while the general model of the system does in fact account 
for these effects. One of the goals of the study is precisely to analyze how these phenomena influ-
ence the efficiency of control with observers.

Let us focus more closely on the structure of the observation matrix L and the control matrix R. 
Since we use a modal approach, these matrices should provide separate control of different modes 
of the object’s vibrations. For this purpose, we give the matrices in the following manner:

2 2, ,
L

R Rdk k
k k k m k k k k k kLd

k k

K
L T R K K

K
×

× × × × ×
×

 
 = =   

 
(42)

where Tk×m is the mode analyzer; KL
k×k, K

Ld
k×k, K

R
k×k, K

Rd
k×k are diagonal matrices with elements KL

i, 
KLd

i , K
R
i and KRd

i , i = 1,…, k. 
The elements KR

i and KRd
i , characterize how the control effect on the ith mode depends on the 

estimates of the ith generalized coordinate and velocity; the elements KL
i and KLd

i reflect the influ-
ence of the estimate error of the ith generalized coordinate on the dynamics of estimates of the ith 
generalized coordinate and velocity. The specified error is obtained from the errors in determining 
the measured signals ŷ – y using a linear transformation given by the matrix T. 

Notably, the matrices introduced earlier for the modal filter method participate in observation 
and control. This is the mode analyzer and syntesizer matrices T and F (see Eqs. (27) and (42)). 
They perform the same function, separating the object’s vibrational modes in the control system; 
they can be determined by the methods described in the section 'Modal filter method'.

To summarize, we should note that the observer method is more difficult to apply than the 
modal filter method, and it can be expected to provide a more accurate estimate of generalized 
coordinates, since the observer method involves a control object model to solve this problem. 
Moreover, the observer method can be further sophisticated to improve the efficiency by expand-
ing the vector of estimated variables or using distributed observers as well as nonlinear control 
methods [21–24].
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Hinged-support beam

The first part of the study considers modal CS for damping vibrations in a hinged-support 
beam. For the system considered in this section, the problem of synthesizing a CS using modal 
filters was solved in [25] by one of the authors of this study.

Thus, we consider a hinged-support aluminum beam with a cross section of 3 × 35 mm and a 
length of 1 m, making bending vibrations in the xz plane (Fig. 1). 

An external harmonic perturbation is applied to the beam in the cross section with the coor-
dinate x0 = 0.4 m, which is the bending moment with the magnitude M0 = 0.1 N·m. The control 
system includes two sensors and two actuators, which are thin rectangular piezoelectric plates 
measuring 50 × 30 mm, coated with electrodes and glued to the beam by sensor-actuator pairs in 
two segments. 

The problem of the control system is to dampen the forced bending vibrations of the beam in a 
frequency range that includes two lower resonance frequencies. The numerical model of the beam 
takes into account n = 33 lower modes.

The coordinates of sensors and actuators on the beam are selected in accordance with the 
goal of control: they are arranged symmetrically relative to the middle of the beam so as to effi-
ciently respond and act on the first and second modes of bending vibrations. For this purpose, we 
decided to place them evenly, at distances l/3 = 0.333 m from the ends of the beam.

Let us consider the synthesis stages of a modal CS by the modal filter method. First we need 
to set these modal filters, i.e., matrices T and F (mode analyzer and synthesizer). They are given 
by inversion of the components of the influence matrices, in accordance with Eq. (12) for the 
simplest case k = m = 2; the result is discussed in [25]. The next step is to set the control laws for 
each loop. At this stage, the TF coefficients in the control loops were varied via the optimization 
procedure [3, 26] and the most efficient of them were determined. The stability condition of a 
closed system was monitored using the Nyquist criterion for the case of two control loops [2].

Synthesis of the modal control system with observers consisted of similar stages. First, the 
matrices T and F had to be set in exactly the same way. Secondly, it was necessary to set the 
observation and control matrices L and R: their structure was chosen in accordance with the Eq. 
(42), so it remained to determine only the diagonal elements of the matrices KL

2×2, K
Ld

2×2, K
R
2×2, 

KRd
2×2; the above optimization procedure was applied for this purpose.
Notably, the experimental specifics, i.e., phase delay and a decrease in the signal amplitude at 

higher frequencies were taken into account in the control loops for the first problem that was CS 
synthesis by the modal filter method. These phenomena are modeled by the following component 
of the TF:

( ) 1 .
1 0.0005

delR s
s

=
+

(43)

This component was included in the general TF of the control loops obtained by the optimi-
zation method. 

The second problem, CS synthesis using observers, is solved by two approaches: with and with-
out taking into account the delay (43). If the delay is not taken into account, the closed system 
can be described by Eq. (33) with matrix (35). Describing the system becomes more complex if 
the delay is taken into account; Eqs. (37)–(40) are used for this purpose. As noted earlier, the 
matrix R in the system model used in the observer is considered constant.

Fig. 1. Schematic representation of hinged-support beam
with sensors and actuators; l is the beam length, M0 is the external bending moment 
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TF in control loops for the modal filter method are given in [25]. The following are the optimal 
parameters of the CS for the observer method. The parameters for the case when the delay is not 
taken into account take the form

{ } { }
{ }2 2

0.75 3.6 , 155 2650 ,
0 , 195 640 .

L Ld

R Rd

K diag K diag
K K diag×

 = = − −
 = =

(44)

If the delay is taken into account, then

{ } { }
{ }2 2

0.015 2 , 163 2600 ,
0 , 3600 1120 .

L Ld

R Rd

K diag K diag
K K diag×

 = = − −
 = =

(45)

Now let us compare the results obtained for different control systems. Fig. 2 shows the fre-
quency response of the closed system with different types of control, in the frequency range from 
0 to 40 Hz. 

The intensity of beam vibrations E in stationary mode is used as a controlled value, determined 
as follows:

( ) 2

0

1 , .
l

E w x t dx
l

= ∫ (46)

The results of damping forced vibrations in the first (I) and second (II) resonances for different 
control systems are given in Table 1. 

Analyzing the data in Fig. 2 and in Table 1, we can conclude that the observer method 
(curves 3, 4) is much more efficient than the modal filter method (curve 2). At the same time, 
taking into account the delay in the control loop has a considerable influence on the result, small 
near the second resonance, but leading to a dramatic change in the vibration amplitude near the 
first one, increasing the control efficiency.

Elastically restrained beam

The second part of the study focuses on creating modal control systems for vibrations in 
another elastic system, a beam elastically restrained in the midsection. This numerical study log-
ically continues the experiment we conducted earlier [1].

Fig. 2. Frequency response of hinged-support beam without control (curve 1), 
with control by modal filter method (2)and by observer method without (3) 

and with (4) accounting for the delay in the control loop
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The problem statement repeats the one used in the experiment. The experimental setup is 
shown schematically in Fig 3. Aluminum beam 1 with a cross section of 3 × 35 mm and a length 
of 70 cm is arranged vertically and fixed at one point at a distance of 10 cm from the lower end. 
The fastener connecting the beam to fixed base 3 includes piezoelectric stack actuator 2, whose 
longitudinal vibrations induce vibrations in the support, acting as an external excitation. 

The control system consists of two sensor-actuator pairs (sensors 4, actuators 5), the same as 
in the problem discussed in the section "Hinged-support beam". 

The purpose of the control system, as before, is to dampen the bending vibrations of the beam 
at the first (I) and second (II) resonances. The location of sensors and actuators on the beam is 
selected in accordance with the intended purpose [1].

In addition to digital controller 6 converting the measured signals into control signals, the 
control loop includes additional elements, low-pass filters 7 and amplifiers 8. Filters smooth out 
the high-frequency components of the signal arising from discretization in the controller, and 
generally increase the stability of the closed system; amplifiers increase the amplitude of the con-
trol signal 25 times before it is fed to the actuators. In addition, it is also necessary to account for 
the signal transformations in the control loop that occur due to charge relaxation of piezoelectric 
sensors when voltage is measured in them, appearing at low frequencies. This effect was discov-
ered experimentally and then taken into account in the simulation.

Fig. 4 shows the logarithmic amplitude and phase frequency characteristics of filters, amplifi-
ers, and piezoelectric sensors, since they all affect signal transmission in the control loop, which 
means they must be taken into account in the system model.

Numerical simulation of the closed system is carried out in several stages. 

Fig. 3. Schematic of experimental setup: 
aluminum beam 1; piezoelectric stack actuator 2; fixed base 3; sensors 4; 

actuators 5; digital controller 6; low-pass filters 7; amplifiers 8 

T ab l e  1

Decrease in resonance amplitudes of vibrations  
in hinged-support beams for different control systems

Control system
Amplitude decrease, dB,

for resonance
I (ΔE1) II (ΔE2) 

With modal filters –15.9 –16.2
With observers:

without accounting for the delay
accounting for the delay

–26.0
–32.6

–25.1
–24.1
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Firstly, we constructed a three-dimensional model of the beam with piezoelectric elements 
and fastener in the ANSYS package, conducting harmonic analysis to obtain various frequency 
and phase responses of the system. In this study, a finite element (FE) model containing 3,534 
elements and 21,088 nodes is used; the damping coefficient in such a model is assumed to be the 
same for all modes: ξ = 0.002. 

The FE model is described in more detail in [2, 26]; there is also a comparison of the results 
of FE calculations and the experiment, establishing high accuracy for the model used. 

At the second stage of simulation, the parameters are set for each type of control system tested, 
with the frequency and phase responses determined, after which the frequency characteristics 
of the closed system are calculated by combining the obtained characteristics [2]. The control 
efficiency is determined by analyzing the amplitude of vibrations in a point at the upper end of 
the beam.

The results of the CS synthesized earlier using the optimization procedure and based on the 
modal filter method are given in [3, 26]. When we constructed the CS by the observer method, 
we decided to control three rather than two lower modes (k = 3), while the number of sensors 
and actuators and their locations on the beam remained the same as for the modal filter method 
(m = 2). This can be considered an indisputable advantage of the observer method: the system 
model in the observation loop can be arbitrarily complex, even with a small number of sensors 
and actuators used. On the other hand, this number imposes a limit on the number of eigenmodes 
controlled independently in the modal filter method: k ≤ m.

The matrices T and F for the CS with observers were calculated by Eq. (12):

6

0.38 0.28
8.16 28.48 49.17

1.32 2.84 10 , .
6.06 61.12 47.54

2.29 2.21
T F−

 
−  = − ⋅ =       

(47)

The observation matrices L and control matrices R obtained by the optimization procedure 
have the following structure (taking into account the form of both matrices (42)):

{ } { }
{ }3 3

90 5.08 2 , 4280 4920 4660 ,
0 , 9800 610 3600 .

L Ld

R Rd

K diag K diag
K K diag×

 = − = − − −
 = =

(48)

b) d) f)

a) c) e)

Fig. 4. Frequency (a, c, e) and phase (b, d, f) response of control loop elements affecting 
signal transmission: low-pass filters (a, b), amplifiers (c, d), piezoelectric sensors (e, f)
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Fig. 5 shows the results obtained by damping the beam vibrations by different control sys-
tems, namely, the frequency response of the closed system, where the vibrational amplitude of 
the point at the upper end of the beam, in the frequency range from 0 to 300 Hz, acts as the 
monitored value.

Table 2 shows the results for damping of forced beam vibrations by different control systems 
at resonances from the first (I) to the fifth (V). Notably, the first CS was intended for controlling 
only two lower modes, and the second CS for controlling three, however, as it turned out, these 
systems can operate at higher resonances.

It can be seen from the data in Fig. 5 and in Table 2 that the observer method, as in the case 
of the hinged-support beam, is more efficient than the modal filter method: it produces a greater 
decrease in the amplitude of forced beam vibrations not only at the first (I) and second (II), but 
also at several subsequent resonances.

Conclusion
We carried out a numerical comparison of two methods for modal control of vibrations in 

distributed systems: the modal filter method and the observer method. We established that the 
second method allows to construct more efficient control systems than the first, producing a 
greater decrease in the amplitudes of the object’s forced vibrations with a greater number of res-
onance frequencies. An important advantage of the observer method is the simplicity of control 
synthesis: it is sufficient to optimize the elements of several diagonal matrices instead of setting 
cumbersome transfer functions.

In addition, we studied the influence of the delay in the control loop occurring in real systems, 
in particular due to the presence of additional elements (such as filters and amplifiers), on the 
result of synthesis of the modal control system with observers. It was found that such influence is 
significant, so it should be taken into account in numerical models.

Fig. 5. Frequency response of elastically restrained beam 
without control system (curve 1), with control 

based on modal filter (2) and observer (3) methods 

Tab l e  2

Decrease in resonance amplitudes of vibrations 
in elastically restrained beam for different control systems

Control system Amplitude decrease, dB, for resonance
I (Δy1) II (Δy2) III (Δy3) IV (Δy4) V (Δy5)

With modal filters –31.96 –31.06 +11.42 –8.73 –14.72
With observers –36.50 –36.52 –22.85 –15.94 –24.51



173

Mechanics

Several directions are interesting for further numerical research: search for the optimal way to 
set the matrices for the mode synthesizer and analyzer, modification of the observer by expanding 
the observation vector as well as using nonlinear observation and control laws. Another promising 
direction is experimentally confirming the comparative efficiency of various methods for modal 
control obtained in the paper by theoretical methods.
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