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Abstract. In the paper, the problem on an interface longitudinal shear crack located between 
two functionally graded wedge-shaped regions and emerging from their common vertex has 
been considered. The shear modules of the materials are quadratic functions of the polar 
angle. This kind of functional inhomogeneity made it possible to express all the components of 
the elastic field through a single harmonic function. Using the Mellin integral transform, the 
problem was reduced to the Wiener – Hopf scalar equation, for which an exact solution was 
obtained. The influence of gradients of elastic properties of materials and geometric parameters 
of the structure on the stress intensity factor was studied.
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Аннотация. Рассматривается задача об интерфейсной трещине продольного сдвига, 
расположенной между двумя функционально-градиентными клиновидными областями 
и выходящей из их общей вершины. Модули сдвига материалов областей являются 
квадратичными функциями полярного угла. Такой вид функциональной неоднородности 
позволяет выразить все компоненты упругого поля через одну гармоническую функцию. 
С помощью интегрального преобразования Меллина проблема сведена к скалярному 
уравнению Винера – Хопфа, для которого получено точное решение. Изучено влияние 
градиентов упругих свойств материалов и геометрических параметров структуры на 
коэффициент интенсивности напряжений в вершине трещины.
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Introduction

The corner points of elastic structures are zones of increased stress concentration, conse-
quently acting as sites where cracks initiate and propagate. Cracks initiating from the vertex of 
isotropic, anisotropic, and composite wedges have been considered in many studies within the 
framework of the antiplane problem [1–5]. However, similar analysis has not been carried out yet 
for wedge-shaped regions consisting of materials with gradient properties.

Functionally graded materials (FGM) are composites whose mechanical properties vary con-
tinuously over the volume. Used as coatings, they provide protection from thermally or chemically 
aggressive environments. Common types of mechanical damage to thin coatings are cracking and 
delamination. Fracture of layered gradient coatings with an interfacial crack or with a crack perpen-
dicular to the interface between has been studied, for example, in [6, 7]. Gradient materials used 
as interfacial regions allow for continuous variation of the material properties, thus increasing the 
adhesive strength of heterogeneous materials [8]. Analysis of a wedge-shaped structure with transi-
tion FGM was performed in [9].

The studies by Jin and Batra [10] confirmed that elastic fields near the tip of a crack located 
in FGM are similar to the fields in a homogeneous material if the elastic moduli are continuous 
and piecewise continuously differentiable. Linear or exponential dependences on coordinates are 
typically used for elastic moduli in analysis of FGMs with crack defects, providing analytical solu-
tions to equilibrium equations. A quadratic dependence of the shear modulus on the polar angle 
was proposed in an earlier study [13] for gradient material, allowing to express all the components 
of the elastic field in terms of a single harmonic function under the conditions of an antiplane 
problem. This dependence of the elastic modulus was used in [11] to analyze a composite gradient 
wedge weakened by a semi-infinite crack.

This paper considers a stress-strain state of a composite functionally graded wedge with a crack 
propagating from its vertex. The effects of increasing or decreasing stress intensity coefficient 
(SIF) at the crack tip are considered depending on the composition of materials, compared with 
the homogeneous case.

Problem statement

Consider a composite wedge containing an 
interfacial antiplane crack of length ε initiating 
from its vertex (Fig. 1).

Materials of the subdomains are designated as

1 1{( , ) : 0 ,0 },r rΩ = θ ≤ < ∞ ≤ θ ≤ α

2 2{( , ) : 0 , 0}r rΩ = θ ≤ < ∞ −α ≤ θ ≤

(r, θ are polar coordinates) and are assumed to 
be functionally graded.

The shear moduli of the materials are func-
tions of the polar angle and take the values 1µ  
and 3µ  at the interfaces θ = α1 and θ = α2, 
respectively. The shear moduli of the materials 
have the same magnitude, equal to 2µ , at the 
interface. The contact of materials outside the 
crack is assumed to be perfect. The self-balanced 
load g(r) is applied to the edges of crack.

If the shear moduli of the materials of regions 
Ωj depend on the polar angle, the equilibrium 
equations have the form

2 2

2 2 2 2

1 1 1 0,
( )

j j j j j

j

w w w d w
r r r r r d

∂ ∂ ∂ µ ∂
+ + + =

∂ ∂θ ∂ µ θ θ ∂θ
(1)

Fig. 1. Composite functionally graded wedge 
with interfacial longitudinal-shear crack 
propagating from its vertex: μ1(θ), μ2(θ) are the 
shear moduli of FGM materials in the regions 
Ω1 and Ω2; α1, α2, θ, r, ε are the geometric 
parameters; g(r) is the self-balanced load 

applied to the edges of the crack
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and the stresses are expressed in terms of displacements wj by the formulas:

,   ( ). 1, 2j j j
jrzjzj

w w
r r

jθ

µ ∂ ∂
τ

∂
== τ = µ

∂θ
(2)

We adopt quadratic dependences on the angular coordinate for the shear moduli of materials:

2( ) ( ) ,j j ja bµ θ = θ+

whose coefficients, determined by the values at the interfaces, take the form

1 1 2 1 2 3 2 2 1 2 2( ) ,  ( ) ,  .a a b b= µ − µ α = µ − µ α = − = µ    

If we assume that the displacements in the regions Ωj can be represented as

1( , ) ( , ),j j
j j

w r w r
a b

θ = θ
θ+

 (3)

then it follows from Eqs. (1) that the functions ( , )jw r θ  are harmonic, and the stresses are defined 
by the formulas

1( , ) ( , ),

( ) .

j j
j j

j
rzj j j

w r w r
a b

w
a b

r

θ = θ
θ+

∂
τ = θ+

∂





(4)

The components of elastic fields (3), (4) must satisfy mixed conditions at the interface between 
materials and the no-stress condition at the outer edges of the composite:

1 2

1 2 1 2

1 1 2 2

( , 0) ( , 0) ( ) (0 ),
( , 0) ( , 0),  ( , 0) ( , 0) ( ),

( , ) 0,  ( , ) 0 (0 ).

z z

z z

z z

r r g r r
r r w r w r r

r r r

θ θ

θ θ

θ θ

τ + = τ − = ≤ < ε
τ + = τ − + = − ε < < ∞

τ α = τ −α = ≤ < ∞
(5)

Reducing the problem to the Wiener–Hopf equation and its solution
Applying the integral Mellin transform, we obtain the following representations for displace-

ments and stresses:

1

1( , ) ( , ) ,
2
1( , ) ( , ) ,

2

p
j j

L

p
zj zj

L

w r W p r dp
i

r T p r dp
i

−

− −
θ θ

θ = θ
π

τ θ = θ
π

∫

∫
(6)

where the transforms, according to Eqs. (3) and (4), are expressed as

( , ) [ ( )sin ( ) cos ] ( ) ,j j j j jW p A p p B p p a bθ = θ+ θ θ+

( , ) [ ( )sin ( ) cos ]
( ) [ ( ) cos ( )sin ].

zj j j j

j j j j

T p a A p p B p p
a b p A p p B p p

θ θ = − θ+ θ +

+ θ+ θ− θ
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In accordance with the regularity conditions, the integration path L in Eqs. (6) is located 
parallel to the imaginary axis in the strip –δ1 < Re p < δ2 (δ1, δ2 > 0). The quantities depending 
on the integral transformation parameter, Aj(p) and Bj(p) (j = 1, 2) are determined from the 
conditions (5).

We introduce the following functions:

1

1 2
0

1

1
1 0

( ) [ ( , 0) ( , 0)] ,

( ) ( , 0) , ( ) ( ) .

p

p p
z

U p w w d

T p d G p g d

+

∞

− θ +

∂
= ερ + − ερ − ρ ρ

∂ρ

= τ ερ + ρ ρ = ερ ρ ρ

∫

∫ ∫
(7)

In this case, W+(p) and G+(p) are regular and have no zeros in the right half-plane Ω+ of 
the path L, and T–(p) in the left half-plane Ω– [12]. Expressing the quantities Aj(p) and Bj(p) in 
terms of functions (7) under Mellin-transformed boundary conditions (5), we arrive at the scalar 
Wiener–Hopf equation:

1
2( )[ ( ) ( )] ( ) 0 ( ),F p T p G p U p p L−

− + ++ +µ ε = ∈ (8)

where

1 1 2 2
1 2

1 1 2 2

( ) ( )( ) ctg( ) ctg( ) ,
( ) ( )

v p v pF p p p
u p u p

α α
= α + α

α α
(9)

1 2 2( ) 1 ( 1) [1 ctg( )],j j ju x m m x x x− −= + − − (10)

1( ) 1 ( 1) tg( ) ( 1, 2),j jv x m x x j−= + − =

1 2 1 2 2 3,  ,m m= µ µ = µ µ   

1 1 1 2 1 2 3 2 2( ),  (0) (0),  ( ).µ = µ α µ = µ = µ µ = µ −α  

Eqs. (10) include two dimensionless parameters mj (0 < m j < ∞) that characterize the relative 
shear stiffnesses of materials along the crack line with respect to materials at the outer faces of the 
wedge. The crack is located in the region of locally soft material if 0 < mj < 1, and in the region 
of locally rigid material if 1 < mj < ∞. The value mj = 1 corresponds to a homogeneous material in 
the region Ωj. In the case of a homogeneous wedge, when m1 = m2 = 1, we write the expression 
obtained in [13] for the coefficient in Eq. (8) from Eqs. (9) and (10). If m1 = m2, then the function 
F(p) takes the form found in [11].

To factorize function (12), let us represent it in the following form:

2( ) ( ),F p K p
p

= (11)

1( ) ( ) ( ),  ( ) ctg( ),K p X p p X p p p= Φ = α

1 1
1 2 1

1 1

( )1( ) ( ) ( ),  ( ) ,
2 ( )

v pp F p F p F p
u p

α
Φ = =

α

1 1 2 2
2 1 2

2 2 1 1

( ) ( )( ) 1 ( ) ctg( ) .
( ) ( )

u p v pF p tg p p
u p v p

α α
= + α α

α α
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The function Φ(it) is continuous along the imaginary axis at p = it, it has no zeros and poles, 
its index is zero and it exponentially tends to unity at t → ∞. Therefore, according to the calcu-
lations given in [12], we obtain:

( ) ( ) ( ),p p p+ −Φ = Φ Φ (12)

1 ln ( )( ) exp  ( ),
2 L

tp dt p L
i t p±

 Φ
Φ = ∉ π − 

∫

1

1 1

(1 )( ) ( ) ( ),  ( ) .
(1 2 )

pX p X p X p X p
p+ − ±

Γ ± α ππ
= =

α Γ ± α π

Using Eqs. (11), (12) and applying Liouville’s theorems [12], we obtain from Eq. (8):

1 12( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),
2

pX p p T p Q p U p X p p Q p J p− −
− − − − + + + −

µ
Φ + = − Φ − =

ε


(13)

where

1 11 ( )( ) ,  ( ) ( ) ( ) ( ) ( ).
2 2L

Q t tQ p dt Q t t X t F t G t
i t p

− −
± + + += = Φ

π −∫ (14)

Evaluating the terms in equality (13) at p → ∞, we can conclude that the single analytical 
function is constant: 

( ) .J p const C= =
This constant can be found from Eq. (13) for the p = 0.
Taking into account Eqs. (12) and (14), as well as the equality T–(0) = –G+(0), which follows 

from the equilibrium equation of the region Ω1, we find that

1 1
*

1(0) ( ) ( ) ( ) ( ) ,
4 L

C C G X p t F t G t dt
i

− −
+ + + += − + Φ

π ∫ (15)

1 22 2
2 1 1 2

* 2 2
1 2 1 1 2 2

3(0) (0) .
2 1 1

m mC X
m m m m− −

  α α
= Φ = +  α α + + + +  

To calculate the integral in Eq. (15), we use Cauchy’s residue theorem. The poles of the inte-
grand, located in the half-plane Ω+ (to the right of the path L), are the poles of F(t); in view of 
Eq. (9), it is convenient to represent this function as

1 1 2 2
1 1 2 2

1 1 2 2

( ) ( )( ) ,
( ) ( )

v t v tF t m t m t
u t u t

α α
= α + α

α α
 

 

(16)

where

( ) cos ( 1)sin ,  ,j j jv x x x m x x t= + − = α

2 2( ) sin ( 1) (sin cos ) ( 1, 2).j j ju x m x x m x x x j= + − − = (17)

It follows then that the poles of function (16) are determined by the positive roots of the equa-
tions ũ(x) = 0, located in the intervals nπ < xnj < (n + 0.5)π (n = 1, 2,…).

We should note that there are two groups of poles: tnj = xnj/αj. We can prove that functions (17) do 
not have complex zeros. In addition, the poles in question are identical if mj is substituted with mj

–1.
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As a result, we obtain from Eq. (19) that

2
1

*
1 1

1(0) ( ),
2 nj nj

j n
C C G a G t

∞

+ +
= =

α
= − −

π ∑∑ (18)

where 

1 1

1

(1 2 )1 ( ) ( ),
(1 )

nj
nj nj nj

j nj

t
a t b x

t
−
+

Γ +α π
= Φ
α Γ +α π

1
2 2

0

ln ( )( ) exp ,nj
nj

nj

t it d
t

∞
−
+

 Φ ξ
Φ = − ξ 

π ξ +  
∫

1

cos ( 1)sin
( ) .

cos ( )sin
nj nj j nj

nj
nj nj j j nj

x x m x
b x

x x m m x−

+ −
=

+ +

Based on the Abel-type theorem [12], we conclude that the stress asymptote on the crack line 
at r → ε + 0 has the form

1
1( ,0) ~ .z r C

rθ

ε
τ

π − ε
(19)

We define the stress intensity factor (SIF) at the crack tip by the formula

III 10
lim 2 ( ) ( ,0).zr

K r rθ→ε+
= π − ε τ

Then, using asymptote (16), we obtain that

III 1 2 1 2( , , , , ) 2 .K m m Cα α ε = ε (20)

Eqs. (18) and (20) determine the SIFs for various loading conditions of the crack edges with a 
self-balanced load based on finding the integral that defines the function G+(p) in Eqs. (7).

We assume that concentrated forces with the magnitude T0 are applied to the edges of the 
crack at a distance r0 from the vertex of the wedge. In this case, 

0 0( ) ( ),g r T r r= − δ −

0 0( ) ( ) pG p T r+ = − ε ε

(δ(r – r0) is the Dirac delta function).
Then, in accordance with Eqs. (18) and (20), we obtain the following representation for 

the SIF:

2
01

III 0 *
1 1

2 1 .
2

njt

nj
j n

rK T C a
∞

= =

 α  = +  ε π ε   
∑∑ (21)

To examine the effect from the gradient of the material, we introduce a normalized SIF of 
the form

0
III III ,N K K= (22)

where K0
III is the SIF at the tip of the crack located in a homogeneous wedge.
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The value of K0
III can be obtained from Eq. (21) by assuming m1 = m2 = 1. In this case, accord-

ing to Eqs. (10),

( ) ( ) 1 ( 1, 2).j ju x v x j= = =

Consequently, the functions included in representations (11) take the form

1 2 1 2( ) 1,  ( ) 1 tg( ) ctg( ),F p F p p p= = + α α

and the poles of the integrand in expression (15) are determined, in accordance with representa-
tion (9), by the formulas

 ( 1, 2,...; 1, 2).nj jt n n j= π α = =

In particular, provided that the structure is geometrically symmetric, when α1 = α2 = α, the 
series (21) is summed up, and the SIF in a homogeneous wedge has the form

(2 )
0
III 0

0

2 .K T
r

π α

π α π α

ε
=

αε ε −

Numerical results

SIF (21) depends on five parameters: the two opening angles α1 and α2 of the wedge-shaped 
regions Ω1 and Ω2, the relative stiffnesses of these regions m1 and m2, and the dimensionless param-
eter r0/ε, which determines the positions of the points where forces are applied to the crack edges.

The effect of small values of the geometric parameter r0/ε on SIF is very weak, increasing at 
r0/ε close to unity when the convergence of the series in Eq. (21) worsens. The dependence of the 
normalized SIF (22) on the parameter r0/ε, for example, in the case of a homogeneous region Ω2, 
is monotonically decreasing for m1 > 1, and monotonically increasing for m1 < 1. If r0/ε ≪ 1, series 
(21) do not make a significant contribution to the SIF, and its value in this case is determined by 
the quantity C*. A similar situation also occurs in the case of small vertex angles of wedge-shaped 
regions, when α1 and α2 ≪ 1.

Fig. 2 shows the dependence of the normalized SIF (22) on the gradient properties of the 
material of the region Ω1 for the case of a composite with a geometrically symmetric structure 
(α1 = α2 = α) with a homogeneous region Ω2 (m2 = 1). If the material in the interfacial region has 
a lower shear stiffness compared to the outer boundary (m1 < 1), then this leads to a decrease in 
SIF at all angles α (N < 1). Conversely, when a crack is located in a region containing a material 

Fig. 2. Dependences of normalized SIF on relative shear stiffness m1 
of functionally graded region Ω1 for a geometrically symmetric wedge 

and a homogeneous region Ω2 at ε/r0 = 0.5 for different angles 
α = α1 = α2: π/4 (1); π/2 (2); 3π/4 (3); π (4)
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with high shear stiffness (m1 > 1), an increase in SIF (N > 1) occurs, compared with the homo-
geneous case. At the same time, the effects from increasing and decreasing the normalized SIF 
become more pronounced with a decrease in the opening angles of the structure.

A similar situation occurs in the case of a composite with an asymmetrical structure. For 
example, SIF exhibits this behavior for a homogeneous region Ω2, shaped as a quarter-plane and 
any values of the angle within 0 < α1 ≤ 3π/2 (Fig. 3). The effect of the material gradient of the 
region Ω1 on SIF becomes particularly pronounced in the case of thin wedge-shaped coatings, 
when the angle α1 is sufficiently small.

The variation in the SIF at the crack tip depending on the gradients of shear moduli in both 
materials is considered for a composite half-plane for angles α1 = α2 = π/2. In contrast to the case 
of homogeneous material in the region Ω2, when m2 = 1, the situation is not as clear as before. 
In general, the presence of a shear modulus gradient in this region causes a decrease in the SIF 
at m2 < 1 (see curves 1 and 2 in Fig. 4) and the increase in SIF at m2 > 1 (curves 4 and 5) for 
any values of the parameter m1. However, the gradient properties of the material in the region 
Ω2 can produce values N > 1 even in the case of a sufficiently small relative stiffness m1 < 1 for 
m2 > 1 (curves 4 and 5). Furthermore, the values of the parameter m2 < 1 (curves 1 and 2) can 
result in normalized SIF values not exceeding unity in a certain range of relative shear stiffnesses 
when m1 > 1.

Fig. 3. Dependences of normalized KIN on angle α1 
of functionally graded region Ω1 and homogeneous region Ω2 shaped as a quarter plane 
at ε/r0 = 0.5 for different values of parameter m1: 0.25 (1); 0.50 (2); 2.00 (3); 4.00 (4)

Fig. 4. Dependences of normalized SIF on relative shear stiffness m1 at ε/r0 = 0.5 
in the case of a functionally graded half-plane formed by wedge-shaped regions 

with angles α1 = α2 = π/2, for different values of parameter m2: 
0.25 (1); 0.50 (2); 1.00 (3); 2.00 (4); 4.00 (5)
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Conclusion

We used the integral Mellin transform and the Wiener–Hopf method to obtain an exact 
solution to the equilibrium problem of a functionally graded composite wedge weakened by an 
interfacial crack under longitudinal shear initiating from its vertex. The edges of the crack were 
loaded with self-balanced concentrated forces. The shear moduli of the materials comprising the 
wedge between two wedge-shaped regions are assumed to depend quadratically on the angular 
coordinate and take the values set at the interface and the inner edges of the wedge. This func-
tional dependence allows to express all the components of elastic fields in these regions in terms 
of harmonic functions.

We analyzed the influence of the geometric and stiffness parameters of the composite on the 
magnitude of the stress intensity coefficient (SIF) at the tip of the crack. Evidently, the gradient 
properties of materials can significantly affect this quantity. In the case when the crack is located 
in a region relatively softer than the regions near its edges, the SIF is significantly decreased com-
pared to its value in a homogeneous material. Conversely, an increase in the stiffness of the mate-
rials in the interfacial region leads to an increase in the SIF compared to the homogeneous case.

The approach proposed in the paper can also be applied in the case when the shear moduli of 
materials have a jump along the crack line.
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