A St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023. Vol. 16. No. 3
HayuyHo-TexHnueckme sBegomocTtun CM6ITY. ®dusmnko-matematudeckme Hayku. 16 (3) 2023

MECHANICS

Original article
DOI: https://doi.org/10.18721/IPM.16311

COMPUTATION OF FRACTURE PARAMETERS
FOR CRACKS IN MATERIALS WITH CUBIC SYMMETRY
IN THE PLANE STRAIN STATE

A. V. Savikovskii'?®, A. S. Semenov’
! Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia;

2 Joint Stock Company “Power machines — ZTL, LMZ, Electrosila,
Energomachexport” (JSC “Power machines”), St. Petersburg, Russia;

™ savikovskii.artem@yandex.ru
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AnHoranusa. PaccmarpuBaeTcsi HaKJIOHHAs IpPSIMOJMHENHAs LIEHTpajlbHas TpelluHa B
OJIHOOCHO PACTITMBaeMON TUIOCKOCTH TP CMEIIaHHOI Mojie pa3pylueHus (KOMOMHALIMS MO/
HOPMaJIbHOTO OTpbhIBa U TIPOJOJILHOIO CABUIa) B OPTOTPOITHOM MarepHajie M MaTepuaje C
Kyouueckoii cumMerpueil. C MOMOIIbIO BbIpake€HUIA, BBIBEACHHBIX HAa OCHOBE (hopMain3Ma
JlexHuikoro, a Tak:ke METOAOB IKCTPATIOSIIIUY TIePEeMEIIeHU W HamNpSKEHUN TTOJyYeHb
3HaueHUss KO3(P(PULMEHTOB MHTCHCUBHOCTU HAIPSDKEHMI [UISL Pa3IM4YHbIX OpPUEHTALIUIA
TpewuHbl. [IpeacraBiaeHbl pe3yiabTaThl BepubUKaLUM KCIIOIb30BAHHOTO MOAX0Aa Ha OCHOBE
CpaBHEHUs KOHEYHO-3JIEMEHTHOTO pacuera ¢ aHajmuTuyeckuMm (ormiamuue MeHee 0,75 %).
IIpoBeneH cpaBHUTENbHBI aHaIM3 KO3(MGUIIMEHTOB WHTEHCMBHOCTU HAIPSDKEHUM U
PaCKpBITUSI TPEIIMHBI JJTsSI TPEX BUAOB CUMMETPUHN YIIPYTUX CBOMCTB: M30TPOITHOTO MaTepuaa,
Marepuasiia ¢ KyOM4ecKkoi CUMMETpUell U OPTOTPOITHOTO MaTepuara.

KiroueBble clioBa: TMHEHAasS MEXaHUKa pa3pylIeHUsT, AaHU30TPOIHbII MaTepua, hopMaanu3m
JlexHuukoro, K03POULUMEHT MHTEHCUBHOCTH HAIPSKEHUIA.

®uuancuposanue: PaGora BbimosHeHa npu (HMHAHCOBOM momaepxke IlpaBuTenbcTBa
Poccniickoit ®enepaunu (roczamanue Ne 0784-2020-0021).

Ccebiika mas umrupoBanmsi: CaBukoBckuit A. B., CemenoB A. C. Pacuer mapameTpoB
paspyuieHus1 i TpelluH B MaTepuajiax ¢ KyOMYecKoil CUMMETpueil Tpu TIJIOCKOM
nedopmupoBaHHOM cocTosHuu // Hayuno-texnumyeckue Bemomoctu CIIGITIY. ®Pusuko-
Marematuyeckue Hayku. 2023. T. 16. Ne 3. C. 131—149. DOI: https://doi.org/10.18721/
JPM.16311

CraThsl OTKPBITOrO mOCTyIa, pacrnpoctpansgeMas mo jauueH3un CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/)

Introduction

Rotary and stationary blades of modern gas turbine engines (GTE) are their most loaded and
critical elements; the loads they experience are the most diverse [1, 2]. These are centrifugal forces
from rotation as well as non-uniform distribution of gas pressure and inhomogeneous temperature
fields varying over time. First-stage hot section GTE blades are commonly made of single-crystal
heat-resistant nickel alloys with high short-term and long-term strength, as well as high thermal
fatigue resistance [3—35]. Nickel-based monocrystalline alloys are a family of orthotropic materials
with cubic symmetry of elastic properties.

Diverse types of cracks can evolve in GTE blades during operation: fatigue, creep and ther-
mal fatigue due to combined action of different loads (mentioned above), variable in time and
space [6—8].

The phenomena of crack initiation and propagation under cyclic thermal loading in single crystal
Ni-based alloys have been investigated experimentally, for example, in dumbbell-shaped specimens
at the I.I. Polzunov Scientific and Development Association on Research and Design of Power
Equipment (St. Petersburg) [5]. Finite element simulation of thermal fatigue crack nucleation in a
dumbbell specimen was carried out in [9], using methods of continuum damage mechanics.

© Casuxosckuii A. B., CemenoB A. C., 2022. Uznarens: Cankr-IlerepOyprckuii mosutexHudeckuii yHusepcuter [letpa
Benukoro.
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Stress intensity factors (SIF) are considered as the main fracture parameters in this study, serv-
ing to estimate the crack resistance of a structure [10, 11]. In the general cases dealing with geom-
etry and loading for cracks in structures made of orthotropic materials, SIFs must be calculated
for mixed-mode fracture (a combination of opening mode fracture, transverse and longitudinal
shear). Sih, Paris and Irwin [12] obtained asymptotic expressions for displacements in a small
neighborhood of the crack tip for homogeneous anisotropic material under mixed-mode loading.
Ranjan and Arakere [13] provide formulas for calculating SIFs for an anisotropic material based
on asymptotic expressions. Cho and Lee [14] present asymptotic expressions for displacements
in the vicinity of the crack tip, formulating equations for calculating the SIFs by extrapolation of
displacements for composite anisotropic material. The interaction of several cracks in an infinite
anisotropic plane are considered in [15—17], accompanied by SIF calculations. Different frac-
ture criteria based on calculating the SIFs (maximum circumferential stress, energy criterion,
etc.) were proposed in various studies on fracture mechanics in isotropic materials, for example,
in [18—20]. The influence from the orientation of the material’s anisotropy axes on the values of
SIF in an anisotropic plate was considered in [21—23]. Curvilinear cracks in an anisotropic elastic
material were discussed in [24—26], exploring the specifics of SIF calculations for this type of
cracks. A numerical method was used in [27, 28] to calculate SIFs for two- and three-dimensional
cases, finding numerically complex roots used in asymptotic expansions for displacements.

Notably, all of the above papers calculate SIFs by the finite element method, based on asymp-
totic expansion of displacements or stresses in an anisotropic material [12]. However, complex
parameters of an anisotropic material depending on its elastic constants have to be additionally
found within this approach, with a fourth-order equation subsequently solved [12, 29].

In this paper, we propose explicit formulas for calculating SIFs in terms of orthotropic elastic
constants, crack tip displacements and crack rotation angle relative to the anisotropy axes of the
material (similar to the known formulas for isotropic material). This allows to calculate the SIFs
in finite element (FE) computations, when only the displacements in the vicinity of the crack
tip and the elastic moduli of the orthotropic material are known; these formulas are useful for
engineering calculations, yielding estimates for crack resistance of structures.

Especially the proposed improvements are useful for finite element packages where the built-in
methods do not allow to calculate SIFs by extrapolation of displacements for anisotropic materials
(for example, ANSYS). Formulas for calculating the SIFs in terms of displacements of the crack
edges and the elastic properties of the orthotropic material were obtained in [30] for the case of
a plane stress state. This study proposes a generalization of the methods constructed in [30] for
the case of a plane strain state.

The goal of this study is to obtain the expressions containing explicit dependences of the SIFs
on the displacements of the edges in the vicinity of the crack tip in orthotropic material and
material with cubic symmetry for the case of a plane strain state (PSS).

The proposed analytical expressions can be used to obtain numerical estimates for orthotropic
materials based on the displacement extrapolation method. The paper also presents SIF calcula-
tions using the stress extrapolation method, comparing the results with the data obtained for the
displacement extrapolation method.

The Lekhnitskii formalism is used to calculate SIFs by extrapolation of displacements and
stresses [31]. The proposed relations for the displacement extrapolation method as well as formu-
las for the stress extrapolation method are tested for the cases of materials with different symmetry
of elastic properties: isotropic, orthotropic, as well as for a material with cubic symmetry.

Governing equations for a linear elastic material

The stress-strain state of cracked elastic bodies and the corresponding values of the fracture
parameters are generally sensitive to the type of material symmetry and the elastic constants. Let
us therefore consider the structure of compliance matrices for different classes of materials in
this section.

The generalized Hooke’s law for anisotropic material is written as follows in matrix
form [32, 33]:

g, =S5,6,, 0, =Ce,. (1)

i
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Einstein’s summation convention is used in Eq. (1) and the following notations are intro-
duced for tensor components: ¢, is a component of a 6-dimensional vector composed of strain
tensor components:

Sg. is an element of the compliance matrix (6 x 6); ij is an element of the elastic modulus matrix
(6 x 6).

The 3 x 3 compliance matrix for the case of a plane strain state has a different form (depending
on the symmetry class).

For orthotropic material

1-v;3vy, _Vio Vi3V 0
S]I?DS Slf;DS S]I;DS El fl El
[S]PDS — S;DS Szf;DS S;DS — _% _ V1g32 - \23\/32 O ; (2)
S]I;DS SZPéDS Sé;DS 1 1 2 1
0 0 —
L Gy, |
for material with cubic symmetry:
1=V _v(v+] 0_
S]I;DS S]I;DS S11;Ds (E ) 1 E 2
v(v+ -V
[S]PDS = SzplDS SZDS SzpeDS =~ E E 01; (3)
S]};DS S;DS Séf;DS 1
0 0 —
G
For isotropic material
1V _v(v+]) 0 ]
SPDS SPDS SPDS E E
11 12 16 5
+1 1-
[S]PDS — S;DS SZPZDS S;DS —_| _ V(V ) A4 O , (4)
SPDS SPDS SPDS E E
16 26 66 2 + 1
0 o  2v+D
E
where £, E,, E; are Young’s moduli; G,,, G,;, G,,, G are the shear moduli; v, , v,5, v, V), V5, V

are Poisson’s ratios.
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Methods for calculating SIFs

We consider a problem of uniaxial tension along the vertical direction in an orthotropic plate
(plane) with a single oblique rectilinear central crack assuming a plane strain state. It is assumed
that the normal to the plate coincides with one of the orthotropy axes. The axes of the introduced
global Cartesian coordinate system xOy coincide with the anisotropy axes of the material x» Oy»
and the loading direction Ox. The crack orientation Ox’' does not coincide with the anisotropy
axes x"0y" of the material and the loading direction Ox (Fig. 1).

Asymptotic expressions for displacements
near the crack in a polar coordinate system with
the origin at the crack tip are well known for an
isotropic material for the case of PSS [34]; these
expressions are used to calculate the SIFs by dis-
placement extrapolation [35]:

Kl: Z_R.L.u’(r’n)’
Vr 20-v)
2 G ®)
KH:,/—TC-—-u;(r,ﬂ;),
ro 2(1-v)

where G =

and v are the shear modulus

(1+v)
and Poisson’s ratio of the isotropic material;
Fig. 1. Schematic representation of problem r is the distance from the crack tip to the point
statement: orthotropic plate (finite or infinite) ~ under consideration; K|, K|, are the SIF values
with an oblique rectilinear crack (highlighted for the opening-mode fracture and longitudinal
by a red line) with a plane strain state (PSS)  shear; u/(r,n), u;(r,n) are the components of the

under the action of uniaxial tension: displacement vector of the upper edge of the
3 coordinate systems are shown, y is the crack crack in the crack coordinate system.
inclination angle relative to the global coordinate The expressions for SIFs in the case of aniso-

system, 0 is the angle between the direction to the  tropic material, similar to (5), are obtained from

analyzed point and the crack coordinate system  the asymptotic expressions for displacement

fields at the crack tip assuming that x, = z = 0,

and the presence of a PSS. The expressions derived based on the Lekhnitskii formalism [31] allow
for the following representation [13]:

ul (r,0) = E-Re( ! -ZZ:ZZZ(Kinpj,/coseJru'jsine)}

T T VoS
3 . , (6)
r
u' (r,0) = —-Re( —- KM _q . /cosO+p' sin6 J,
g m By — k) Z‘;( o ’ )

where u/(r,0), u/(r,0) are the components of the displacement vector in the polar coordinate sys-
tem of the cracf<; r is the distance from the crack tip to the point under consideration; 6 is the
angle between the direction to the analyzed point and the direction of crack growth; K|, K, are the

SIF values corresponding to modes I and II, respectively (K, = K, K, = K)); M i :{ Ha Ml}
is the auxiliary matrix. -1 1

Eq. (6) can be reduced by identical algebraic transformations to the form used in [13, 30, 36].
The quantities p, and ¢, depend on >, according to the corresponding formulas [13, 30]; p;, u)
are complex parameters of the anisotropic material, i.e., the roots of the 4th-order equation with
compliance constants in the crack coordinate system [31], selected so that the roots have a pos-
itive imaginary part.
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It should be noted that expressions (6) are valid for orthotropic material and cubic symmetry
in a plane stress or plane strain state; however, expressions (6) become more complicated for a
crack in a three-dimensional stress state (see [37]).

Substituting the value 0 = & into expressions (6) and converting them, we obtain the required
values of SIFs for the case of an anisotropic material [25, 36]:

{K} = \/E -[B]" - {u'}, (7)
2r

where {K}={K, K}, {u'} ={u.(r,n), u,(r, ).

1 Re[uipf—u:zplij 1 Re[_pf—p,lij
det[B] M =1y det[B] M —H,

1 Re[_ u{q3—u’;q1 ij 1 Re[qf —4 ij
_det[B] Ml det[B] M =4, |

The primes on the quantities in the ratios (5)—(8) indicate that these components of vectors
and tensors belong to the coordinate system associated with the crack orientation (x'Oy’ in Fig. 1).

If the xOy coordinate system is rotated into the x'Oy’ coordinate system in the plane by an
angle y (see Fig. 1), the matrix is determined by the equality

[B]' = @®)

cosy siny O

[Q]=|-siny cosy 0 9)
0 0 1

and the elastic compliance matrix is transformed from the global coordinate system to the crack
coordinate system via the transformation matrix, based on the ratio

Sij,'kl = Qim : an ' Qko ’ QIP ) Smnop’ (9)

in turn transformed into the Lekhnitskii formulas in the two-dimensional case [31].
Interestingly, the components of the displacement vector in expressions (5) and (8) must also
be given in the coordinate system associated with the crack:
Thus, expressions (7) and (8) can be used to calculate the SIF values if the displacements in
the crack edges and the linear elastic constants of the material are known.

The SIFs can also be determined from the asymptotic expressions (see [13, 32, 38] for PSS)
for the distribution of stress fields along the crack growth direction (6 = 0):

K, =o' (r,0)-y2mr,

(11)
K, =0 (r,0)-\2mr,

We should note that expressions (11) are valid for both isotropic and anisotropic materials.
If relations (11) are used, the stress components also need to be transformed from the global
coordinate system xOy to the crack coordinate system x'Oy’ (see Fig. 1):
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G:‘/’ = QimanGmn ° (12)

Formulating the SIF expressions for specific classes
of elastic symmetry properties

According to Egs. (6)—(8), the complex parameters of anisotropic material p; and p) need to
be found to calculate SIFs in terms of the components of the displacement vector, based on the
4th-order characteristic equation. In the case when the crack is not rotated relative to the anisot-
ropy axes of the material, the characteristic equation for determining p, and p, takes the form:

Sn _2S16”“3 +(25), +S66)u2 —25,u+S,,=0 (13)

Substituting the coefficients S for the orthotropic material for the case of PSS (2) into
Eq. (13), we solve it using the formulas for converting the roots to the crack coordinate sys-
tem; then, substituting the calculated roots u, and p, into expressions for [B]™' (8), we arrive at
an explicit analytical expression for the influence matrix [B]™! in terms of the elastic moduli of
orthotropic material:

cli- ’El(l_vzsvn) sin 2y 20 ’EI(I—V23V32) sin® y + cos”
Ez(l_vnvn) Ez(l_V13V31)

(8] = -9
[E,(1- [E(1-
C 1( V23V32) C052\|I+Sin2\|f Cl1=- w Sin2\|l
I E,(1-v,vsy) E,(1-v3vy))
EE,

\/[ \/7\/(1 Vi3V (1= V23V32)+{ 2(V12+V13V32)Jj(1_\’23v32)

As a corollary to Eq. (7), the SIFs for an orthotropic material are determined in terms of the
components of the displacement vector in the small neighborhood of the crack tip with a PSS
based on the relations:

K, = Tlcli- E(=vavy) sin 2y -u’ +2C Msinz\p+cosz\u )|,
2r E,(1-v;v;) E,(1-v;3vy)

K, = Tlac /—E‘(I_VBV”) cos’ y+sin’y |-ul +C| 1- /—El(l—v23v32) sin 2y -u!, |.
2r EZ(I—VBVN) Ez(l_vwvm)

Notably, each SIF (K| and K))) in Eq. (15) depends on both displacement components «’ and u,
In the case of calculatlng SIFs for cracks in materials with cubic symmetry, expresmons

(I5) are simplified (taking into account the equalities E, = E,= E, G,= G,= G, = G;
Vi = Vi3 T Vg TV S v, = vy, =)

T

G +2(1-2v)(1+ v))

where C =—

(15)

12 31

(16)
E /

K“_EW)(E

G +2(1-2v)(1+ v)j
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The matrix [B]™' is diagonal in this case, i.e., each component of the displacement vector
affects only one SIF and not the other. Moreover, the difference between ratios (16) and expres-
sions (15) is that the crack inclination angles has absolutely no effect on the SIF values.

There is an important qualitative difference between Eq. (15) obtained for the case of a plane
strain state and a similar formula in [30] for the case of a plane stress state. In the case of PSS,
the SIFs depend on the Poisson ratios v ,, v,;, v,,, v

Consider the properties of the matrix [B] ™.

Property 1. The determinant of the matrix [B]™' depends only on the parameter C:

det [B]" = 4N>. (1+ E(1-vyvsy,) ) fE1(1_V23V32) jsinz yeos y —
Ez (1_V13V31) Ez (1_V13V31)
—Msin2 ycos” y —sin® ycos® y — fM -(sin* y +cos* y) |=—4N>.
Ez(l_V13V31) Ez(l_V13V31)

It follows from the expression for def|B]"' that it is impossible to uniquely calculate the SIF
in terms of displacements if C = 0 or C — co. It follows from the conditions E|, > 0, E, > 0 that
C # 0, however, a possible situation is that C — oo, which happens provided that

E E
24?\/(1 —V3V3 )=V Vs,) +(_1_2(V12 + V13V32)] =0,
2

G12

310 732°

E
(G—‘— 2(vy, + v13v32)j <0.

12

This ratio between the elastic constants corresponds to the formula for the roots of Eq. (13)
when they are real, but Eq. (13) cannot have real roots [31]. If the ratio of elastic constants is
sufficiently close to

/E E
2 _l\/(l = ViV (L=Vv,yyvy,) + (_l =2(v, + V13V32)J ~0,
E, G,

2

or E is sufficiently small, it may prove problematic to numerically determine the matrix [B]™
and calculate the SIFs.
Property 2. As follows from expression (15), in the case when

El(l—v )=E2(1—v13v31

the elements of the matrix [B]™' do not depend on the crack rotation angle y (just as in the
case of an isotropic material); u, only affects K|, u'_only affects K .

E (1-
Property 3. As evident from expressions (15), the closer the root w is to unity,
E,(1-v;vy)

the more u, affects the value of K and u'_the value of K|, and vice versa.

23V 32

Testing the methods for calculating SIFs using
the finite element solution of the problem

We consider an oblique rectilinear through crack in an infinite plate (plane) oriented at an angle
vy to the anisotropy axes (Fig. 2), with uniaxial tension of the plate in the vertical direction. It is
assumed that the PSS is achieved in the problem when the stress-strain state is the same in each
section along the z axis and g, =y = Yy = 0. The SIFs are calculated for different crack orienta-
tions, varied in increments of §O°, to test the obtained formulas based on extrapolation methods for
displacements and stresses. The finite element method is used to calculate SIFs in computations of
stress and displacement fields [39—41]. The plate material is considered to be linearly elastic.
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This problem has a well-known analytical
solution for SIFs [42]:

K, =o~ma -cos® v,
I v (17)
K, =ovna-siny-cosy.

The analytical solution for the infinite plane in
Egs. (17) does not depend on the form of anisot-
ropy and the elastic moduli of the material. This
is because an infinite plane is considered and
the loads are self-balanced. SIF computations
for isotropic and anisotropic materials using the
displacement method (see Egs. (5), (15) and
(16)) and stress method (see Egs. (12) and (13))
were performed in the PANTOCRATOR finite
element package [43]. Quadratic plane 8-node
Fig. 2. Schematic representation of problem elements were used in the computations.

statement for uniaxial tension of an infinite Several FE models of a cracked plate were
plate with an oblique through crack constructed in the computations, varying the
(highlighted in red) angle y (crack orientation angle relative to the

orthotropy axes of of the material) and compar-
ing the numerical values of the SIFs with the analytical ones. Fig. 3 shows as an example the FE
model of a square plate with a central rectilinear crack inclined at an angle y = 60°, including
126,000 nodes, 20,800 finite elements in the entire model and 80 at the edge of the crack.

The behavior of a crack in an infinite plate (plane) was simulated for a plate of finite dimen-
sions, a 1:22 ratio was chosen between the length of the computational domain and the crack:
the length of the domain for simulation was 22 cm, the width of the domain was also 22 cm; the
length of the crack was 1 cm. The load in the problem was a constant vertical stress c,= 100 MPa
set at the upper face. The plate was fixed to exclude solid-state displacements. Numerical methods
were verified and comparing with the analytical solution for three types of elastic properties:

isotropic material,

material with cubic symmetry,

orthotropic material.

The values of the elastic constants used in the calculations are taken from [30]. Fig. 4 shows a
comparison of SIF values obtained by extrapolation of displacements and stresses with analytical
solution (17) for all three types of material properties.

a) b)

Fig. 3. FE model of plate with oblique central crack (a)
and its enlarged fragment in the vicinity of the crack (b)
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Crack rotation angle W, degrees

Fig. 4. Graphs comparing the values of SIFs K and K, obtained numerically
by extrapolation of displacements (symbols), with an analytical solution for SIFs
K, (blue dashed line) and K|, (solid red line).

Values for an isotropic material are marked with the symbol (A), those for an orthotropic
material with (<), those for a material with cubic symmetry of properties with ()

Analytical and numerical values of K and K, for inclination angles that are multiples of 30°
(marked with symbols in Fig. 4), are given in Table 1. We should note that the maximum error
A, for the method calculating SIFs by the stresses (0.40%) is lower than that for the method
calculating SIFs by the displacements (0.75%). Error for isotropic material is minimal, and max-
imal for both methods for orthotropic material. However, despite this, these methods show high
accuracy, since the error does not exceed 0.75% compared with the analytical solution in all
cases considered.

Influence of material anisotropy on crack opening

We compare the opening of the crack edges for the three previously considered classes of
materials: isotropic, with cubic symmetry and orthotropic. If we consider expressions (6) for SIFs
of the isotropic material and transform them by subtracting the displacement at the opposite
edges of the crack, then, after substituting analytical expression (17) for the SIFs, we obtain the
following equalities for opening of the crack in the isotropic material:

2
u (r,m)—ul(r,—m)=20,V2rasiny - cosw%\/),

2(1-v?) (18)

ul, (r,m)—u) (r,—m) = 26,~/2ra cos” y ——=.

If we use the expressions from our earlier paper [30] for the displacements of the crack edges
in the anisotropic material and substitute the expressions for complex roots into expressions for
the matrix [B]™', followed by substitution of expressions (17) for SIFs, then in the case of cubic
symmetry we obtain the following expressions for crack opening:

\/(1—v2)~(§+2(1—2v)(1+v)j

u (r,m)—ul (r,—m)=20,v2rasiny-cosy = ,

(19)

\/(1—v2)-(5+2(1—2v)(1+v)j
E

uy (r,m)—u, (r,—n) =26,V 2ra cos’
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Similarly, we can obtain the following expressions for the orthotropic material:

u (r,m)—u.(r,—m) =206,/ 2ra siny -cos y x

/E E
(1 - V23V32) ' [2 71\/(1 — Vi3V )(1 - V23V32) + (1 - 2(V12 TV,Vs, )jJ
Ez G12
EE

172

x s

20
u! (r,m)—u! (r,—m) = 26, 2ra cos” y x <0

/E E
(1 - V23V32) ' (2 EIJ(I Vi3V )(1 - V23V32) + (Gl - 2(\}12 + V13V32)jJ
% 2 12

EE

)

Table 1

Comparison of computational results with analytical solution
for three types of material

SIF value, MPa-m'”? A, %
Analytical Displacement
v, deg solution method Stress method DM | SM
K | K K | K K | K

11 11 11

Isotropic material
0 125.33 0.00 125.01 1-10* 125.31 | 0.001 | 0.25 | 0.01
30 93.99 | 54.26 93.74 53.89 93.97 | 54.23 | 0.70 | 0.07
60 31.33 54.26 31.24 53.88 31.31 | 54.21 | 0.72 | 0.11
90 0.00 0.00 1-10* 2:10* 1-10* | 1-10* | 0.02 | 0.01
120 31.33 | —54.26 31.23 —53.87 31.29 | 31.29 | 0.73 [ 0.14
150 93.99 | —54.26 93.74 -53.89 93.96 | 93.96 | 0.70 | 0.07
180 123.33 0.00 125.01 1-10* 125.31 | 125.31 | 0.25 | 0.01
Material with cubic symmetry
0 125.33 0 124.84 0.004 125.13 | 0.003 | 0.39 | 0.16
30 93.99 | 54.27 93.73 53.87 93.95 | 54.20 | 0.73 | 0.13
60 31.33 54.27 31.27 53.92 31.35 | 54.27 | 0.64 | 0.11

90 0 0 1-10* 2:10* 1-10* | 1-10* | 0.02 | 0.01

120 31.33 | —54.27 31.26 -53.91 31.32 | -54.20 | 0.66 | 0.13

150 93.99 | —54.27 93.73 -53.87 93.95 | -54.26 | 0.73 | 0.13

180 125.33 0 124.84 0.004 125.13 | 0.003 | 0.39 | 0.16
Orthotropic material

0 125.33 0 124.54 0.006 124.82 | 0.007 | 0.63 | 0.40

30 93.99 | 54.27 93.72 54.36 93.86 | 54.24 | 0.29 | 0.14
60 31.33 54.27 31.43 53.99 3142 | 54.29 | 0.66 | 0.28

90 0 0 1-10* 2-10* 1-10* | 1-10* [ 0.01 | 0.01
120 31.33 | —54.27 31.45 —53.98 3137 | —54.29 | 0.75 | 0.11
150 93.99 | —54.27 93.72 —54.36 93.86 | —54.24 | 0.29 | 0.14
180 125.33 0 124.54 0.006 124.82 | 0.0068 | 0.63 | 0.40

Notations: vy is the crack inclination angle relative to the x axis; A__ is the maximum error for the

max

SIFs K, and K,;; DM, SM are the displacement and stress methods, respectively.
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The following conclusions can be drawn by comparing expressions (18)—(20):

>

E
Firstly, if E > 2(1+ V), then the crack opening in the case of the material with cubic symmetry

is greater than in the case of the isotropic material with the same values of Young’s modulus £
and Poisson’s ratio v, and vice versa.

Secondly, if we assume for convenience that Poisson’s ratios are equal for the orthotropic
material and the material with cubic symmetry, ie., v, = v,, = v, = v, and E = E;= F and
G,= G, = G, = G, then the crack opening for £, > E, in the case of orthotropic material is
greater than that for the material with cubic symmetry, and vice versa.

FE computations were performed yo verify the above conclusions with different types of mate-
rial symmetry and values of elastic constants. The elastic properties of all three types of material
considered were set so that the crack opening was the largest for orthotropic material, the smallest
for isotropic material, and intermediate for material with cubic symmetry (Table 2). The prop-
erties of the materials were selected so that the compliance matrices and elastic moduli meet the
conditions of positive definiteness (see Table 2).

Fig. 5 shows the differences in the crack opening as well as in the distribution of vertical stress
fields o, for different types of material anisotropy for the case of the crack angle y = 30°. The
results of FE computations qualitatively and quantitatively confirm the analytical conclusions.
The latter are the same for any crack rotation angle .

In practice, the anisotropy of properties in the case of materials with cubic symmetry is eval-
uated using the parameter

E
p:E—2v, (21)

where F is Young’s modulus, G is the shear modulus, v is Poisson’s ratio.

For an isotropic material, p = 2. It is preferable to isolate this parameter in Eq. (19) and plot
the dependence of the opening near the crack tip (Fig. 6) from the asymptotic formulas (for
example, at a given fixed distance from the tip » = a/20). Fig. 6 also shows a dependence of the
maximum crack opening (» = a) for cubic symmetry, obtained based on the FE solution. The
selected values of Young’s modulus and Poisson’s ratio are given in Table 2, the shear modulus G
was varied in the range of 1—19 GPa. The external tensile load and the crack length correspond
to the formulation of the problem shown in Fig. 3. The crack inclination angle y = 30°.

As can be seen from Fig. 6, an increase in the crack opening is observed with an increase in
the anisotropy parameter p. In accordance with expression (19), the dependence of crack opening
on p (for fixed values of F, v and a variable value of G) has a root dependence.

Table 2
Elastic properties for three types of material,
used in FE calculations to verify crack openings
Module, GPa Poi ,
. oisson’s
Material .
Young’s shear ratio
Isotropic E=20 G=17.69 v=0.3
With cubic symmetry E =20 G=1.00 v=0.3
E =20 G,=1.00 v,=03
Orthotropic E,=4 G,,=1.00 v,,=0.3
E, =20 G, =1.00 v, =03
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Fig. 5. Distribution of vertical stress fields o, [MPa] (initial inclination angle y = 30°)
for materials with different symmetry of elastic properties:
isotropic (a), cubic (b) and orthotropic (c).
The scale of displacements is magnified by 5 times for clarity
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Fig. 6. Dependence of crack opening on anisotropy parameter p.
The maximum disclosure at ¥ = a (solid line) and opening in the vicinity
of the crack tip, » = a/20 (dashed line), are shown

Conclusions

Analytical expressions for the case of a plane strain state were obtained for stress intensity fac-
tors (SIFs) in terms of edge displacements of a rectilinear crack with mixed-mode fracture in an
orthotropic material and a material with cubic symmetry. The properties of the influence matrix
[B]~!, used to find the SIFs, are considered. Just as in the case of a plane stress state (that we
discussed earlier in [30]), there is no mode mixing for a material with cubic symmetry (similar to
an isotropic material). In contrast to the case of a plane stress state, the coefficients of the influ-
ence matrix for an orthotropic material in the case of a plane strain state depend on v
vy, Which in turn relate them to Young’s modulus E..

Testing the proposed methods for SIF calculations, we established good agreement with the
analytical solution of the problem for a plane with an oblique crack for various crack inclination
angles relative to the anisotropy axes of the material in a linear elastic material: isotropic, with
cubic symmetry and orthotropic (the error did not exceed 0.75% in all cases). SIF calculation
from the stresses in the vicinity of the crack tip gives more accurate results than calculation from
the displacements of the crack edges.

130 V3o Vaps
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Asymptotic formulas were also obtained for crack opening in the cases of isotropic, orthotropic
and cubic symmetry material. Crack openings were compared for different classes of materials,
depending on their elastic properties, with further confirmation of the results provided by finite
element modeling. The dependence of crack opening on the anisotropy parameter p was obtained
for the practically important case of a material with cubic symmetry.

The considered numerical methods for calculating SIFs can be recommended for modeling
crack growth and analyzing crack resistance in critical components of gas turbine engines (rotary
and static blades) made of single-crystal nickel-based alloys with cubic symmetry of physical and
mechanical properties.
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