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Annoranuga. B pabGore monyuyeHBl BBIpaxkeHHUs I MaTpuibl JXKoHca BOJIOKOHHOTO
CBETOBOJIA C IMHEHHBIM AByydenpeaomiaeHueM (JIJIT1-BosokHO), KOTOpbIE YUYUTHIBAIOT cj1aboe
OTKJIOHEHME pPeajbHOIo BOJOKHA TaKOro THUIIa OT €ro MIeaJbHOro MPEeACTaBICHMUS MOIEIbIO
JMHEeHOI (da30BOi MJAacTMHKU. BbIBOA MpoBedeH B paMKax MOMACJM MOJSIPU3ALMOHHOIO
afeMeHTa ¢ a30BOi aHU3OTpornueil. PaccMOTpeHBI OCOOEHHOCTM WCITOJb30BAaHUST Pa3HbIX
BapMaHTOB MaTpUIl MPU MOJEIMPOBAHUN OTNTOBOJIOKOHHBIX cXeM. Pe3yiabTaThl MOTYT OBITh
WCITOJIb30BaHBI I OIMCAHUSI MPAKTUYECKUX ONTOBOJOKOHHBIX cxeM ¢ JIJIIT-BonokHamu,
MOJIEJMPOBAHUS CUTHAJA TaKUX CXeM M aHalli3a BIMSHUS Ha MX pabOTy MOJSIpU3aLMOHHBIX
paccorjiacoBaHui. BbIMOMHEHBI SKCIIEPUMEHTHI, KOTOPbIE BBHISIBUJIM OTKJIOHEHUE MapaMeTpoB
MNOJISIpU3aMOHHBIX MO peabHbIX [JITI-BOJOKOH OT MaeaTu3MPpOBAHHON MOIEIU U TTO3BOJIWIU
OLIEHWUTb YPOBEHb 3TOTO OTKJIOHEHWUSI.
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Introduction

The paper considers birefringent optical fibers, achieving significant linear anisotropy by means
of a special transverse structure. These fibers are widely known as polarization-maintaining (PM)
in foreign literature. Linear anisotropy consists of propagation of two linearly polarized modes
in orthogonal directions in the optical fiber. PM fibers are used in fiber-optic circuits along with
other elements of polarization optics to provide reliable transformation of polarization state of
light propagating in the circuit. This may be necessary to reduce fluctuations or fading of signal
parameters generated in the optical circuit.

In other cases, the performance of the device to be constructed relies on a certain sequence
of transformation of the polarization state. Since polarized light is typically used for this purpose,
analysis of such circuits with respect to polarization (including analysis of polarization mis-
matches) is carried out based on the Jones formalism for vectors and matrices [1—6]. Calculation
of the optical circuit involves Jones matrices for the elements included in the circuit [7]. The
predominant factor in analyzing the influence of polarization mismatches of the optical circuit

© Temkuna B. C., Jluokymosuu JI. B., ApuenkoB A. b., byuunko U. P., Mensenes A. B., Iletpos A. B., 2023. W3natenb:
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elements is inaccurate mutual orientation of the elements’ polarization axes of the elements,
taken into account by introducing the corresponding rotation matrices [1—8].

Another problem in mismatch analysis calculating Jones matrices using the elements accounting
for their real polarization properties, different from the idealized representation [9]. Even though the
PM fiber is one of the key elements of fiber circuits in polarization optics, selecting the appropriate
Jones matrix to describe real PM fibers is an important issue that requires separate consideration.

In the ideal case, a PM filter is a linear phase plate whose Jones matrix in the Cartesian basis
of Jones vectors has the well-known form [1, 2, 10]:

e’ 0
. :[ 0 e-f"’”}' v

This notation corresponds to the format of a special unitary matrix, which does not take into
account the overall phase shift and the polarization-independent loss coefficient. It is also assumed
that the matrix is written in the basis where the X-axis is aligned with the fast polarization direction.

The eigenvalues of matrix (1) have the form

>\‘1 = e/@/z, }\12 = e*j‘P/Z’

where ¢ is the phase difference of polarization eigenstates (polarization modes) during a pass
through the plate.

The quantity ¢ is the only parameter of the Jones matrix of an ideal PM fiber, typically uncon-
trolled and considered arbitrary in the calculations. It is evident that the eigenvectors of matrix (1)

have the form
1 0
Jo = k Jp = 1l (2)

Strictly speaking, multiplying any of vectors (2) by an arbitrary complex number also produces
eigenvectors of M. However, form (2) is generally accepted, these vectors are normalized and
have the same zero phase. Vectors (2) correspond to linearly polarized waves with orthogonal
orientation, i.e., polarization modes of an ideal PM fiber.

Real PM fibers differ from the ideal representation, and the Jones matrix, which describes
the transformation of the polarization state in such fibers, differs from form (1), albeit weakly.
Imperfections are caused both by internal factors arising during manufacturing of the fiber, and
by weak induced anisotropy, due to bends and twists of the fiber when it is installed in the circuit.
Complex irregular variations of anisotropy generally occur in both cases, differing in different
segments of the fiber. Therefore, the specific resulting properties of the Jones matrix of a real seg-
ment of PM fiber are actually unpredictable and, moreover, can change if the external conditions
or the position of the fiber change. Therefore, analysis of the influence of imperfections in the PM
fiber on the performance of optical circuits with such waveguides should include arbitrary cases
of weak deviation of matrix (1).

Notably, the polarization properties of imperfect PM fibers have been considered in the litera-
ture, especially for the case of extended paths [11—13]. Depending on the considered mechanisms
behind the deviation from the ideal structure of the fiber, such analysis was typically performed
with a model comprising a set of segments of ideal fibers with small random angles between the
polarization axes of the segments or some model of distributed coupling between polarization
modes with analysis of coupled wave equations. The resulting Jones matrix either does not have
to be constructed at all for such models, or is represented by a complex structure (for example, a
product of matrices for individual segments of the fiber under consideration) with a large number
of random parameters. This is justified for understanding the mechanisms behind deviations from
ideal linear birefringence in real optical fibers, the spatial characteristics of mode coupling in
extended optical fibers, and other similar issues.

However, a relatively simple model of the Jones matrix of a real PM fiber is often convenient
for analyzing polarization mismatches in circuits with relatively short PM fibers, adequately
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describing the possible transformations of the polarization state by such a fiber with a minimum
number of variable parameters.

We were unable to uncover any literature dealing with this type of the Jones matrix of a real
PM fiber.

The goal of this study is therefore to obtain the expressions for the Jones matrix that adequately
describes the real PM fiber, as well as to analyze its properties and applications.

>

Jones matrices for a real PM fiber

The analysis is based on the following provisions.

If the ideal PM fiber corresponds to a linear phase plate with a given direction of polarization
axes and Jones matrix (1), then the real PM fiber differs from the ideal one, which should be
interpreted as perturbation of ideal linear anisotropy of the fiber.

While the anisotropy may generally vary by different patterns, the fiber is assumed to remain
an element with phase anisotropy described by a unitary Jones matrix in the case of weak pertur-
bation. This condition is consistent with negligible optical losses and, accordingly, the absence of
dichroism in real relatively short PM optical fibers (less than 1 km long); it is assumed that weak
perturbations do not change this circumstance. For this reason, the PM fiber corresponds to the
more general case of phase anisotropy that is an elliptical phase plate, but the eigenvectors must
remain close to vectors (2), i.e., correspond to polarization states with ellipticity close to zero and
azimuths orthogonal to each other and close to orientation along and across the X axis, as in the
case of vectors (2).

In view of the above, the required matrix can be constructed based on the Jones matrix of an
elliptical phase plate, considering the case when ellipticity is close to zero and the deviation angle
of the plate axis from the X axis is small. However, no explicit form of the matrix of an ellipti-
cal phase plate is given in the existing literature for representation in terms of the parameters of
ellipticity angle and the azimuth of its polarization eigenstates.

Therefore, it seems expedient to use a generalized representation of the 2 x 2 matrix in terms
of its eigenvectors to obtain the necessary result. Generally speaking, this method allows to obtain
any Jones matrix with the known properties of eigenvectors. A simple explicit form of the required
Jones matrix is obtained taking into account the required properties of the eigenvectors for the
considered case of a weakly perturbed linear phase plate.

In the general case, given the parameters of the polarization ellipse, namely, the azimuth ©
and the ellipticity angle ¢ —, the corresponding vector can be written in the following form with
an accuracy up to a constant complex multiplier [2, 3]:

J (0, 8){ 3)

cos®'cosg—jsin®-sin8}
b

sin®-cose+ jcos®-sing

so that form (3) defines a normalized Jones vector with a unit length.

In the case of an ideal linear phase plate (ideal PM fiber), the polarization eigenstates have
Jones vectors (2) and correspond to polarization ellipses with ® = 0, ®, = n/2 and with g =¢,= 0.

If perturbation of an ideal linear phase plate is introduced, it is assumed that the eigenvectors
deviate from the ideal case, for example, ©, and ¢, are nonzero. However, since a weak pertur-
bation is considered, we assume that conditions ©,, g, << 1 are satisfied. Because ©, and ¢, are
small, expansion of trigonometric functions can be applied in the general form (3): the approx-
imate equalities sinx = x and cosx = 1 — x %2 are satisfied for x << 1. If only first-order compo-
nents are preserved, we obtain the following form for the eigenvectors of the matrix of the weakly

perturbed linear phase plate:
1-j®-¢ —(®— je)
J, = | = : : 4)
O+ je I+/0O-¢

To simplify further notation, the quantities ®, and ¢, in the expression for the vector J, are
written without the subscript 1. The form of the vector J, can be obtained formally as a vector
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orthogonal to the vector J,, or directly by substituting the azimuth © + n/2 and the ellipticity
angle —¢ into form (3), which corresponds to the parameters of the orthogonal polarization state.
Evidently, if the values of ® and ¢ tend to zero, vectors (4) are transformed to (2) for an ideal
linear phase plate.

The Jones matrix has the following general representation in terms of eigenvalues and eigen-
vectors [1, 2]:

M_

1 |:j1xj2y7\’1 _j2xj1y7\’2 _(}\‘1 _}\‘Z)jlxj2x j| (5)
jlijy _jlijx ,

(7‘1 _}\'Z)jlijy jlijy}\‘Z _j2xj1y7\’1

where j, , jly are components of the Jones vector J; j,, j2y are components of the Jones
vector J,.

In the case of a special unitary matrix describing a lossless system, with eigenvalues &, = e#*”
and A, = e 77 [4], we obtain from the general form (5):

1 {jlszye”’”—jzleye'”” —jzjlszxsin(@/z)}

M B 1 . . — 7 ° . .
j2]1yJ2y Sln((p/2) Judse jol2 _sz]lyej<p/2

P EPE—— (6)
Jizdoy —hdox
If we substitute expressions (4) into Eq. (6), we can find the coefficients of the matrix for the
case of weak perturbation of a linear phase plate. They have the form

m, =(1+0%°c")e’"? +(©@ +&°)e /*”,

m,, =(1+ 0%’ )e’f‘"/2 +(®% +€%)e’?,

m,, = j2(0+ je)(1+ jOg)sin(¢/2), (7)
my, = j2(1- jOe)(® — je)sin(p/2),

jlxj2y _jlijx = (1+®282)+(®2 +82) z1"‘@2 +82.

Expressions (7) are obtained based on vectors (4) that take into account only first-order small-
ness with respect to ® and ¢. Therefore, assuming that the conditions ®, ¢ << 1 are strictly satis-
fied, it is expedient to also omit the second-order components in the coefficients of the matrices,
since they have an extremely weak effect on quantitative results in the calculations. An exception
would be the situation when the formulas for the coefficients of the matrix would include only
high-order perturbation components, but there are no such coefficients in expressions (7). When
the second-order components are excluded, matrix (7) of a weakly perturbed linear phase plate
is transformed to

e’ 2(e+ jO)sin(¢/2)

M, (©,8) = 4
i (0:2) —2(e— jO)sin(¢p/2) e

: (8)

The determinant A of matrix (8) is equal to the expression
A= 1+ 4(0* + €)-sin*(¢/2),

it is real, but differs from unity.

To strictly correspond to a normal unitary matrix, a multiplier 1/A can be introduced into
expression (8), but in practice it seems advisable to neglect the correction with second-order
smallness with respect to ® and ¢, using instead expression (8) without additional multipliers.

To represent the ideal matrix M by taking into account small ellipticity angles and azimuths
of polarization eigenstates, let us consider two special cases of matrix (8).

If either the azimuth of linear polarization eigenstate is only rotated weakly (¢e= 0), or weak
ellipticity occurs (® = 0), then the Jones matrix (8) is transformed to the cases
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e’ j2®-sin§ e’ 26-sin%

MEMF_@ = > MPMF_ = . )

j20- sin% e o ~2g- sin% e/

These particular cases of matrices are also interesting because they can be directly compared
with the expressions obtained relatively simply from the cases given in the literature. This is dis-
cussed in Appendix I considering the rotation of a linear phase plate and in Appendix II analyzing
the expression for an elliptical phase plate oriented along the X axis.

Fig. 1,a additionally illustrates our analysis, showing a Poincaré sphere with an explanation of
the parameters used. The points A and B correspond to polarization of the vector J, for the cases
of the ideal and real Jones matrix of the PM fiber.

a) b)
S3

Fig. 1. Deviation of PM fiber eigenvector point
on the Poincaré sphere during perturbation of the fiber:
0, ¢ are the azimuth and ellipticity angle; 2p is the great-circle distance;
points 4 and B correspond to polarization of the vector J, for the cases
of Jones matrices for ideal and real PM fiber, respectively

The Jones matrix (8) for the case of a weakly perturbed linear phase plate can be used for
modeling systems with birefringent optical fibers.

The imperfection of the fiber is described by two independent parameters ® and ¢, however,
there is no single parameter characterizing the deviation of the real matrix M,,,. from the ideal
variant M. If the values of ©, ¢, and, accordingly, eigenvectors (4) are given, an appropriate
quantitative parameter characterizing perturbation is the angular distance between points on the
Poincaré sphere corresponding to the ideal case with angular coordinates {0; 0} and the non-ideal
one with coordinates {®; ¢}. Indeed, the great-circle distance (also called the spherical distance),
given by two points on the Poincaré sphere (the shortest distance corresponding to a great-cir-
cle arc of the sphere containing these points), best characterizes the difference in polarization
states [14]. Since the Poincaré sphere has a unit radius, both the geometric and angular (in radi-
ans) great-circle distances are the same. If one point on the Poincaré sphere corresponds to zero
angular coordinates, then the angular great-circle distance to a point with coordinates {®; ¢} is
given by a simple expression:

cos2p = c0s20 - cos2e,

where the great-circle distance is denoted as 2p (the coefficient 2 is introduced to simplify
further formulations).
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This expression corresponds to a small circle of the Poincaré sphere with the center in zero
angular coordinates and a radius 2p (Fig. 1,b). Since the quantities ® and ¢ are small, this rela-
tionship is reduced to a simpler expression:

p’ =g’ +0?, (10)

corresponding to the equation of a circle on the plane.

Note that the imposed conditions @, ¢ << 1 also assume that the condition p<< 1 is satisfied.

The parameter p also gives a unified quantitative characteristic for the level of deviation of the
PM fiber from the ideal case for the matrix with the selected values of ® and ¢. The maximum
potential deviation p_  of the real PM fiber from the idealized representation can be given in
analysis and calculations, and then the parameters ¢ and ® should clearly be considered under
the constraint

(&+0)=p,’

max *

It may be more convenient to analyze and model real PM fibers based on a different logic for
constructing the fiber matrix, selecting the initial value of p. It is inconvenient to use the rela-
tionship of ® and ¢ with the parameter p based on expression (10), especially since it is ambigu-
ous. However , this expression corresponds to the equation of a circle with the radius p, and it is
convenient to determine the position of a point on a circle with a given radius by some angle 6.
If it is counted from the direction along the equator of the Poincaré sphere, as shown in Fig. 1,5,
i.e., assuming that 6 = 0 at ® = p and ¢ = 0, then the parameters ® and ¢ are given by simple
expressions:

@(p,e)zp-cose; s(p,e)zp-sine. (11)

Thus, the given value of p determines the level of small deviation of the polarization eigenstate
of the perturbed linear phase plate, which is supplemented by the option to select the specific
type of perturbation due to arbitrary choice of the angular parameter 6. Then, taking into account
expressions (8) and (11), the matrix of the perturbed linear phase plate can be written with the
given parameter of perturbation smallness p and the argument 0 in the form

e’ j2p-e”’sin(¢/2)

iy (p.9) = j2p-e”sin(q/2) e

(12)

This case of Jones matrix of a real PM fiber, as well as form (8), has two variable parameters
accounting for imperfection of the fiber. However, it may be more convenient to use the parameters
p and 0, offering advantages in calculations with varying parameters, which is discussed below.

Application of obtained Jones matrices of real PM fiber to
analysis and numerical modeling of circuits

The analysis carried out concerned several aspects important for calculations on the influence
of imperfections in PM fibers and other polarizing fiber-optic elements (referred to as polarization
mismatches of the elements) on the operation of the circuits containing them.

The parameters of the Jones matrix characterizing deviation from its ideal form, which must
be varied to consider all of their possible values that cannot be predicted in advance, are not the
only factor influencing the calculations of signal distortions in fiber-optic circuits with polarizing
elements. The phase difference ¢ also affects the distortion of the signal generated in the circuit
compared to the ideal and matched polarizing elements; the difference ¢ should also be varied in
the interval 2z during the analysis. Consequently, a range of parameters have to be varied in cir-
cuits with even a small number of fiber-optic polarizing elements and PM fibers to study the effect
of polarization mismatches, so that the worst possible types of distortions in the circuit’s oper-
ation can be identified. Therefore, comprehensive analysis of polarization mismatches in circuit
elements generally requires numerical calculations by computing means, and the computational
costs for iterative calculations over a large number of parameter values may be high.
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Numerical computations of the Jones matrix for a real PM fiber assuming certain deviation
parameters of the eigenvectors given by the values of ® and ¢, can be performed by directly using
the general structure of the Jones matrix (6). The form (I1-6) can be used (see Appendix II) for
eigenvectors (the first one corresponds to vector (3), the second one is orthogonal to the first
one), followed by calculating the matrix (6). The form of the general matrix of an elliptical phase
plate given in Appendix II can also be used. Expressions (1I-7) are obtained precisely by substitut-
ing (II-6) into form (6), but take into account some simplifications based on trigonometric iden-
tities. The case based on such general structures has an advantage, since they are correct even if
the condition smallness is not sufficiently satisfied for ® or ¢ and the distortion level p introduced
cannot be considered sufficiently low. However, the obtained matrices (8) and (12) are much sim-
pler and do not include trigonometric functions with respect to variable parameters. This not only
makes it possible to obtain analytical results for distortions of the resulting signals in the analyzed
circuits in some cases, but also significantly reduce computational costs in numerical calculations.

Another aspect is related to organizing calculations with a varying a set of parameters. In prac-
tice, this implies searching through the values of all these parameters, calculating some resulting
circuit signal for each specific combination of values. The possible maximum distortion level of
the eigenvectors in the element’s Jones matrix should be assessed based on empirical data or
the results of additional theoretical studies of perturbation of a particular fiber element. The p_
parameter mentioned above serves for this purpose in the case of PM fiber. An alternative logic
is possible when calculation and analysis involves searching for the maximum permissible petur-
bation level p__, which must be provided for an acceptable distortion level of the circuit signals.
In any case, analysis based on the generalized structures of the fiber’s Jones matrix or based on
matrix (8) has to involve a search through two variable parameters ® and ¢ in the variation ranges
from —p__ to p_, satisfying the condition

@*+e<p 2

max

max’

Generally speaking, it is not quite convenient to vary two independent parameters in the
same common range, but with a dependent boundary of one parameter at a specific value of
the second one. It seems more convenient and expedient to organize the search through vari-
able parameters using matrix (12) with p and 6 replacing the parameters ® and ¢. If form (12)
is used, the quantity p should be varied independently in the range from —p_ to p_, and 0 in
the range from 0 to 2.

There is another aspect related to analysis of polarization mismatches in circuits with PM
fibers and the matrices considered. As already noted, such analysis often starts with considering
only the angular misalignment between the polarization axes of PM fibers in splices or connectors
joining the polarization splitters [7, 8]. On the one hand, this approach is adopted because it is
very simple to account for such a misalignment within the framework of the Jones matrix formal-
ism. The coupling is taken into account by introducing a rotation matrix [2, 3]:

max max’

R(a) :{ (13)

cosa  sin oc}
9

—sino.  cosa

where o is the angle between the directions of the polarization axes of connected fibers.

The angle o in the calculations should be varied in the range [—a__, o _ ], taking into account
the estimated level of possible angular misalignment.

On the other hand, this approach implies that the influence of angular misalignment between
the polarization axes of coupled PM fibers can be greather than that of the imperfections of
individual fibers.

The angular alignment of the axes in modern PM fiber splices is no worse than 3—5°, which
corresponds to the typical extinction rates for connectors of PM fibers in the range of 20—25 dB
[15, 16]. However, special splicers make it possible to achieve the alighnment up to up to 1° in
polarization axes of PM fibers in fusion splicings. However, perturbations of even short PM fibers
can also have p values of order of 1°, as confirmed by our experimental findings (see below).

Thus, in practice, the level of angular misalignment of PM fibers connected can be comparable
to the mismatch level p__ associated with the imperfection of the PM fibers. In fact, accounting
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for the imperfection of PM fiber in the calculations only makes sense when its p__level is com-
parable or higher than the mlsahgnment level of the angles between the polanzatlon axes o

In cases where p ~a_orp > o, itturns out that the Jones matrix of a real PM" ﬁber
already takes into account the possible azimuth shift of its polarization eigenstate, including
the azimuth shift at zero ellipticity angle, which describes a particular case of angular misalign-
ment only. Then adopting the approach described above makes it possible to exclude specifically
accounting for the angles a and the corresponding rotation matrices in the calculations (see Fig.
2). If PM fibers are represented by an ideal model with a matrix of the form M, (this is shown
in Fig. 2,a), taking into account two connected fibers in the calculations implies that they are

described by the matrix
M,..,,R(0)M,,

where i, i + 1 are the numbers of the connected ﬁbers in the direction of light propagation.

However, if one of the PM fibers or both are described by a model with the matrix M, ., then
potential angular misalignments are already taken into account in the calculations by the param-
eter ®. Then, the following matrices can be used in the calculations:

M. M, or M, . -M, orM, . M,

0(i+1) PME(i+1) © " PMFi PME(i+1)

depending on which fibers are descnbed by the imperfect fiber model.

Thus, the given properties of the matrix M, allow to exclude the rotation matrices from the
description of circuits with PM fibers to account for angular misalignment in fiber connections,
which can considerably simplify the calculations by reducing the number of variable parameters.

Moreover, this approach provides a certain unification of the circuit model, because even if it
is angular misalignments that are predominant, it can be assumed that € = 0 in the matrix M,
of the form (8). On the other hand, using matrices M,,,. does not always allow to completely
exclude rotation matrices from the description of PM fiber connections. This point is illustrated in
Fig. 2,c, where a real PM fiber is connected at both ends to fibers or other polarization elements,
which are described by ideal matrices with a strictly defined axis orientation. In this case, the
angle O in the matrix M, takes into account the same shift in the axis orientation at both ends
of the fiber, even though the angular mismatch due to inaccurate orientation of the fibers at the
connections may be different at different ends of the fiber. Therefore, a rotation matrix should
be introduced at one end of the fiber for correct description. This means that caution should be
exercised in excluding the rotation matrices from the description of connections so as not to miss

those cases of angular misalignment that are not taken into account in the matrices M,

a) b)
7777777 ( tﬁ,,,,,,, ___,,__{y).___f_.__

."I A
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fffffffffff .
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Fig. 2. Examples of accounting for orientation mismatches of polarization axes
in connected optical fibers (see explanations in the text)

Experimental

This section describes experiments aimed at studying the properties of real PM fibers and their
differences from an idealized linear phase plate; an approximate estimate was obtained for the the
parameter p introduced earlier for real fibers.

One of the best-known theoretically and experimentally studied phenomena illustrating the
imperfections in PM fibers is the coupling of polarization modes [11, 13]. For example, such
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imperfection appears when one linearly polarized eigenmode is excited at the input and when
both this and orthogonal polarization modes are detected at the output. However, it is difficult
to unambiguously interpret the formation of a spurious mode at the fiber output and its relative
level in the context of the Jones matrix of PM fiber discussed above. This is especially true for
modeling within the framework of the Jones matrix formalism of complex fiber-optic circuits
including PM fibers.

Apparently, the most acceptable approach to determining the parameters of imperfections in
PM fibers is based on measurements allowing to find the Jones matrix of an element by measuring
the output polarization state at different input polarization states appear. For example, linearly
polarized light with orientations of 0, 45 and 90° relative to an arbitrarily selected X axis can be
used at the fiber input, to subsequently calculate the Jones matrix of the fiber using the measured
parameters of the polarization state at the fiber output by the formulas given in [6, 17].

However, in this study we consider very slight deviations of the parameters ® and ¢ of the
Jones matrix from zero (about 1° or even smaller). This means that the accuracy with which
linear polarization of light is oriented at the fiber input must be significantly better, while ellip-
ticity should be much smaller, which is difficult to achieve in normal laboratory conditions with
standard devices.

In view of these obstacles, we chose another measurement setup to approximately extimate the
level of p values in real PM fibers (see the scheme in Fig. 3). The fiber tested is excited by laser
radiation during measurements, some segment of the fiber is heated, and a polarimeter records
the heating-induced evolution of the polarization state at the fiber output.

Consider the following well-known circumstances to understnad the principle underlying the
experiments carried out. As light passes through an element with phase anisotropy, for example
an optical fiber, the polarization state undergoes specific transformations. The crucial aspect here
is that this transformation corresponds to rotation of the surface of the Poincaré sphere around
an axis given by the polarization eigenstates of the element by an angle corresponding to the dif-
ference in phase delays ¢ of these states [1, 6, 13]. If the phase difference ¢ varies monotonically
in the range above 2z, then the evolution of the output polarization state on the Poincaré sphere
is a small circle of the sphere whose angular radius R is determined by the ratio of amplitudes
of polarization modes [1, 6, 18]. The variation in ¢ in the scheme shown in Fig. 3,a is induced
by heating of a fiber segment; the polarimeter records the resulting evolution of the polarization
state of light. Next, the measured values of the polarization state (points on the Poincaré sphere)
can be approximated by a circle to determine its parameters, namely the radius R and the angular
coordinates of the circle center 20 and 2¢. Since the circle center corresponds to the point of the
polarization eigenstate of the fiber, the coordinates of the center ®, and ¢, represent the required
parameters of the matrix M, of the fiber tested. Fig. 3,b shows the Poincaré sphere with the
point B corresponding to the polarization eigenstate of the fiber considered (as in Fig. 1).

b
a Laser : >
7777.:-:7B0X
.-~-i-»PM Fiber
| ‘ ........ Heater
- Collimator
Polarimeter

Fig. 3. Experimental setup (@) and evolution of polarization state
on the Poincaré sphere, recorded during the measurements (b)

104



Radiophysi
? adiophysics -

We previously carried out such measurements to detect the level of spurious mode at the out-
put of PM fibers by the found value of R. However, approximating the measured points on the
Poincaré sphere by a circle allows to determine not only R, but also the center of the circle B, i.e.,
the values of ®, and g,. Any specific polarization states do not have to be determined precisely at
the output of the fiber in this case.

Admittedly, there are some peculiarities stemming from the above-described main principle
behind the transformation of the polarization state of light propagating through the fiber.

Firstly, the position of the center of the observed circle on the Poincaré sphere does not
depend on the properties of the initial fiber segment up to the section that is heated. If the polar-
ization properties of this segment are static, then it can determine the polarization state of light at
the input to the heated section and, accordingly, affect R, but not the position of point B.

Secondly, heating can transform the polarization eigenstates in real fibers, due to irregular
mechanisms governing the distortion of PM fiber properties. However, in this case, the circular
evolution of the polarization state at the output is distorted, forming spirals and other shapes
deviating from the circle.

Thirdly, the position of the recorded point B can depend not only on the eigenmodes of the
heated fiber section, but also on the eigenmodes of the fiber section between the heater and the
polarimeter. The propagation of radiation through this segment can also rotate the surface of the
Poincaré sphere (together with the circular evolution produced at the output from the heated
section) around the axis already given by the modes of the output segment. However, this cir-
cumstance affects the result only if the eigenmodes of the heated and output segments differ; this,
however, does not prevent us from recording the very fact of deviation of the measured point B
from the point {0; 0} corresponding to the ideal PM fiber.

A highly coherent RIO-Orion laser (Redfern Integrated Optics, USA) with an FC/APC con-
nector was used in the measurements to connect the PM fiber and excite mainly one linear polar-
ization mode (according to the laser’s specifications, the extinction rate exceeds 20 dB).

The experimental conditions created provided relatively low values of R, illustrating the devia-
tions of the center of the observed circle on the Poincaré sphere more clearly. The laser’s output
power in the fiber was 10 MW. The polarization state was measured with a PAX1000IR2 polarim-
eter (Thorlabs, USA). This device measures the azimuth and ellipticity angle of the polarization
state with an accuracy of 0.25°. The fiber patch cord was connected to the polarimeter by a colli-
mator with a ferrule connector (FC) installed at the input to the polarimeter. The connector key-
ing position was oriented approximately relative to the polarimeter axis and remained unchanged
during the experiments.

The first stage of measurements consisted of testing three PM patch cords with a length of
1 m, terminated by FC/APC connectors. Patch cord samples 1 and 2 were purchased from AFW
Technologies (Australia, model PMP-15-R-L-1), and patch cord 3 was included with the laser
source. The output section of the fiber patch cord (about 20 cm long) was heated to 70 °C for 20 min-
utes, which was sufficient to change the phase difference ¢ of polarization eigenmodes by about 2.

The results of the measurements are shown in Fig. 4 and in Table 1. Since the rotation of the
collimator relative to the polarimeter axis was set manually and the direction of the fiber axis only
approximately corresponded to the polarimeter axis, it is not the measured values of @, that are
informative but rather their difference for different patch cords.

The results indicate that the observed evolution of the polarization state at the output from the
PM fiber patch cord is in excellent agreement with the circumference. At the same time, there is a
significant difference in R values for different patch cords, which is most likely due to a mismatch
in the orientation of polarization axes of PM fibers connected with the laser.

Notably, the parameter R is introduced as the angular radius of the small circle on the Poincaré
sphere, when the angular coordinates are determined by the doubled angles ® and ¢. A circle with
half the radius is obtained if points on the plane are plotted in coordinates ® and ¢ without dou-
bling (Fig. 4,b). The values of the azimuth ©, for the patch cords differ by about 3.5°, and there is
also a non-zero ellipticity angle ¢, which diverges for different patch cords in a range exceeding
1.5° (from -1.09° to 0.63°). The spread in ©, values may not be caused by internal inhomogene-
ities of the fiber but to rotation of the fiber when it is connected to the collimator if the keying is
attached inaccurately. However, the difference in the values of the ellipticity angle exceeding 1.5°
indicates a difference in the polarization eigenstates of fiber patch cords.

105



4 St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023. Vol. 16. No. 3 >
I

a) _ b)

Fig. 4. Evolution of polarization state on the Poincaré sphere (a) and on the plane, in the coordinates
® and ¢ (b). No. 1, No. 2, No. 3 are patch cord numbers. The scale unit is 1 degree.
Approximation of experimental points by a circle on the Poincaré sphere is shown by red lines

Table 1

Parameters of circles
approximating the measured points of evolution
in polarization state on the Poincaré sphere.
First stage of experiment (see Fig. 4)

Parameter value, degrees,

Angular parameter for patch cord
No. 1 No. 2 No. 3
Radius R 9.24 1.99 3.72
Azimuth © —2.44 0.92 -0.24
Ellipticity € 0.63 -0.51 -1.09

A segment of HB1250 PM fiber from Fibercore (USA), slightly longer (200 m) compared to
the length of the patch cords, was considered at the second stage of the experiments. The laser
excited mainly one polarization mode in the fiber. The entire path was heated to 40 °C, and then
the evolution of the polarization state at its output was recorded as the fiber cooled down to about
25 °C. In this case, the fiber segments in front of the heater and behind it were relatively short,
and the temperature varied in the most part of the fiber.

At this stage of the experiment, transformations in the polarization properties were clearly
manifested as variation in the level of spurious polarization mode at the output, which can be
interpreted as interference from the components of this mode migrating from the main mode in
different segments of the fiber with different phase delays that vary with temperature. The change
in the level of spurious mode corresponds to the change in the radius R of the recorded circular
trajectory on the Poincaré sphere. On the other hand, this means that a change in the tempera-
ture of such a long fiber can transform its polarization eigenstates in the presence of complex
birefringence inhomogeneities in the fiber. Therefore, a change in the radius R should also be
accompanied by changes in the center of the circle formed on the Poincaré sphere.

The evolution of the polarization state observed in this experiment is shown in Fig. 5. It is a
quasi-circular motion with a changing radius, which reflects the above-described circumstances.
In the context of the main issue considered in this paper, it is more important to change not the
radius, but the center of the circular segments of this trajectory. Indeed, if we choose relatively
small segments of the evolution in the polarization state, in general, they accurately correspond
to a circle (the variation in the radius R occurs slower than the increase in the phase difference
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between the modes by 2n). We can therefore assume that the centers of such circles characterize
their polarization eigenstates at the appropriate moment for a given temperature. Fig. 5 shows
the measured evolution of the polarization state, including examples for four fragments of the
measured trajectory corresponding to temperatures of approximately 33, 30, 28 and 25 °C. These
fragments were selected from a vast range of experimental data to show examples of circles with
different values of parameters © and .

Approximation of all measured points by a small circle on the Poincaré sphere gives the fol-
lowing parameter values, in degrees:

R=759,0,=0.98, ¢ =037

(such a circle is shown in Fig. 5,6 in ® and ¢ coordinates). The parameters of the circles inscribed
in the points of the fragments shown in Fig. 5,d are given in Table 2.

Because the temperature varied unevenly, the number of points on the circles differs; in fact,
reciprocating motion along the trajectory on the Poincaré sphere is observed in some segments.

It follows from these results that the azimuth of polarization eigenmodes of the tested fiber var-
ies in the range of 0.20° and the ellipticity angle in the range of 0.85°. Since measurements were
carried out for a single fiber, without changing the connection to the source and the polarimeter,
it is clear that the observed changes in both the azimuth ®; and the ellipticity angle ¢, point to
transformation in polarization eigenstates of the fiber.

a) b)

Fig. 5. Evolution of polarization state on the Poincaré sphere (a,c) and on the plane,
in the coordinates ® and ¢ (b,d). The cases of complete evolution (a,b)
and its fragments I, II, III, IV (¢, d) are shown. The scale unit is 1 degree.
Approximation of experimental points by circles on the Poincaré sphere is shown by solid lines
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Table 2

Parameters of circles
approximating the measured points of evolution
in polarization state on the Poincaré sphere.
Second stage of experiment (see Fig. 5)

Parameter value, degrees,

Angular parameter I foer 14 mfﬁt v
Radius R 848 | 7.07 | 9.19 | 6.87
Azimuth © 0.86 | 0.82 | 1.03 | 0.87
Ellipticity € -0.18 | 0.07 | 0.66 | 0.28

In general, these experimental results can only be considered illustrative, as they give very
approximate estimates for the degree of perturbation of the pJones matrix in the tested fibers.
Since the absolute values of the parameters ©, and ¢, cannot be regarded as completely reliable
(especially those for the azimuth @), keeping in mind the errors of the polarimeter and the
approximate positioning of the collimator’s connector axis relative to the polarimeter axis, we did
not recalculate the pairs of values {®, g} into the value of p, that could be found using expres-
sion (10). However, the changes in {©, ¢} can serve for approximately estimating the value of p
at about 1°.

In addition to relative accuracy of the polarimeter readings, which is 0.25°, other error factors
may affect the measurement results, for example, deviation of experimental points from the circle
inscribed in them, as well as others not discussed in this study. Thus, the observed values of p at
the level of up to 1° should be interpreted as an upper-bound estimate. However, as already noted,
other key parameters, primarily angular misalignments of connected fiber axes may have the same
level of values in modern circuits with fusion-spliced PM fibers.

We can therefore confirm that the conditions for small deviation of polarization properties of
real PM fibers from the properties of an ideal linear phase plate are satisfied, so it is reasonable to
use the Jones matrices introduced in this paper for modeling polarization mismatches in circuits
with PM fibers.

Conclusion

We obtained an expression for the Jones matrix of a real PM fiber within the framework of
the phase anisotropy model, accounting for weak values of ellipticity and azimuthal deviations
of eigenmodes. The constructed matrix can be used to describe optical circuits with PM fibers
adopting the Jones formalism to analyze the effect of polarization mismatches on the operation of
the circuit. An alternative form of the Jones matrix of PM fiber is also given, where the azimuth
and the ellipticity angle of the eigenstate are replaced by other angular parameters: the deviation
level of the point characterizing the polarization eigenstate on the Poincaré sphere and the devia-
tion direction of this point from the point for the ideal case. The second form of the matrix may
have an advantage in modeling systems with numerical calculations and varying the imperfection
parameters of PM fiber.

The experimental results illustrate the imperfections of real PM fibers, manifesting as weak
variation in the ellipticity angle and azimuth of polarization modes. Furthermore, the experi-
ments allowed to approximately estimate the level of these variations with a range of about 1°.
This justifies the condition for small deviation of the ellipticity angle and azimuth imposed in the
theoretical analysis for the polarization modes of PM fiber relative to the ideal model, addition-
ally confirming that the obtained matrices can be used in analysis of modern fiber-optic circuits.

Moreover, useful expressions were constructed (see Appendix 11, Eq. (II-7) below) to represent
the matrix of an elliptical phase plate explicitly in terms of arbitrary ellipticity angle and azimuth
of the polarization eigenstates. We have not found such an explicit form of the matrix for an
arbitrary elliptical phase plate in the available literature.
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Appendix 1

Linear phase plate with rotation

The case when the perturbation of a linear phase plate is reduced to rotation of the directions
of the polarization eigenstates, while they remain linear, can be described relatively simply. If
an element with matrix (1) is rotated by an angle ®, then its Jones matrix is determined by the
following relation [2, 4—6, 10]:

Mo = R(-0)-M,-R(0), (I-1)

where the matrix R corresponds to rotation matrix (13). By substituting expressions (1) and (13)

into relation (I-1), we obtain a matrix of a linear phase plate with the fast axis oriented at an
angle © to the X axis, taking the form

M _[cos(@/2)+ jcos20-sin(¢/2) jsin2©-sin(@/2) -

e Jjsin20-sin(¢/2) cos(@/2)— jcos2@-sin(¢/2)| (1-2)

Matrix (I-2) is valid for any angles ©.
If we assume that the rotation angle is small, i.e., ® << 1, then the form of matrix (I-2) can be
used to obtained a matrix of the form
e’ — j20%sin(¢/2) j20sin(@/2)
MLPP7® = . . o2 | iA@2 L : (I-3)
j20sin(p/2) e+ j20°sin(¢/2)
Further, if we leave only the first-order components in ®, then matrix (I-3) is transformed to

e’ j20sin(@/2)
PPe | . . ol . (1-4)
]2®sm((p/2) e

Evidently, the form of matrix (I-4) coincides with the form of Jones matrix (9).

Appendix IT

Elliptical phase plate
The matrix of an elliptical phase plate is explicitly given in [2, 18] for the case when the
azimuth of the polarization eigenstate (fast mode) coincides with the X-axis. This matrix takes
the form

cos(q/2)+ jsin(@/2)cos2e sin(¢@/2)sin2e

M = : -
eeelos { —sin(¢p/2)sin2e cos(q/2)—jsin(¢@/2)cos2e -

It is easy to formulate expression (I1-1) by synthesizing the Jones matrix based on structure (6).
Indeed, the eigenvectors for the matrix M, | , are obtained by assuming that ® = 0 in the Jones
vector (3), which gives the expressions

cose jsing
J=| . . |.J,= . (I11-2)
jsing COSE

Substituting these expressions into structure (6) yields a matrix of the form (II-1).

If we assume that the ellipticity of the polarization eigenstates is small and ¢ << 1, then
replacing the trigonometric functions in expression (II-1) with their approximate analogues,
i.e., sin(x) = x and cos(x) = 1 — x?/2, we obtain a matrix of the form

EPP|=
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e _ j2g? sin((p/z) 28.sin((p/2) } (11-3)

M _ A
EPP|@:0 { _28.sin((P/2) e/ 4+ j2g? sin((p/2)

If we preserve only the first-order components with respect to e, we obtain the
following expression:

e’ 2¢-sin(¢/2)
Mers |®:° - —2¢-sin(@/2) e (H-4)

Apparently, this result (II-4) completely coincides with the form of the Jones matrix (9).

It is logical to supplement the particular case of the matrix for an elliptical phase plate M
with the case of the Jones matrix for an elliptical plate of arbitrary orientation.

The general form of such a matrix can be obtained based on the expression

EPP|®=0

Mg, = R(_®)'MEPP|® 0 ‘R(0©) . (I1-5)

However, it is possible to use a more general principle to obtain the matrix of an elliptic phase
plate, applying expressions (6). Adopting the notation of the normalized Jones vector (3) and its
orthogonal vector, we obtain the form of the eigenvectors of the matrix M, in the general case as

_{cos@-coss—jsin@-sins} _{—sin@-coss+jcos®-sine} (1L6)

sin®-cose+ jcos®-sing cos®-cose+ jsin®-sing

Substituting expressions (I1-6) into Eq. (6) and performing trigonometric transformations, we
obtain the following general structure for the Jones matrix of an elliptical phase plate:

cos%+jcos2®-cos28-sin% (sin28+jsin2®-00528)sin9

2
M, = . (11-7)
—(sin28—jsin2®-cos28)sing cos%—jcosZ@-cos%-sin%

As far as we are aware, this important expression for the general case of an elliptical phase plate
is absent in the literature, and can be useful for formulating Jones matrices for various particular
cases of phase plates and anisotropic fibers.
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CBEAEHUA Ob ABTOPAX

TEMKHWHA Banentnna CepreeBHa — acnupanmia Boeicwelli wkoavt npukiaduoi @usuxu u
rKocmuueckux mexuonoeuit Cankm-Ilemep6ypeckoeo noaumexuuteckoeo ynueepcumema Ilempa Beaukoeo.
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ORCID: 0000-0003-2083-8989

JIMOKYMOBW Y Jleonnn bopucosud — dokmop guzuxo-mamemamu4eckux Hayk, npogheccop Bovicuei
WKOAbl NPUKAQOHOU Qu3uku u Kocmuyeckux mexuosoeuii Canxkm-Ilemepbypeckoeo noaumexmuueckozo
yuueepcumema Ilempa Beaukoeo.
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APYEJIKOB Apcennii Bopucoma — cmydenm Hucmumyma 31eKmpoHUKU U meaeKOMMYHUKAYUL
Caukm-Ilemepbypeckoeo noaumexuuueckoeo ynueepcumema Ilempa Beaukoeo.
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BYUYWIIKO Urops Pomanosma — acnupanm Boeicuieli wikonbl Npukaaouol Gu3uku U KOCMUYECKUX
mexnonoeuti Cankm-Ilemepbypeckoeo noaumexunuueckoeo ynueepcumema Ilempa Beauxoeo.
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MEJIBEJEB Aunpeii BukropoBud — xaundudam husuixo-mamemamu4eckux Hayk, doyenm Boicuet
WKOAbl NPUKAQOHOU Qu3uku u Kocmuyeckux mexuoaoeui Canxkm-Ilemepbypeckoeo noaumexmuueckozo
yuueepcumema Ilempa Beaukoeo.
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IIETPOB Anekcanap BukropoBuu — xandudam ¢huzuxo-mamemamuueckux Hayk, douyenm Boicuwet
WKOAbl NPUKAQOHOU Qu3uku u Kocmuyeckux mexuosoeuii Canxkm-Ilemepbypeckoeo noaumexmuueckozo
yuueepcumema Ilempa Beaukoeo.
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