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Аннотация. В работе получены выражения для матрицы Джонса волоконного 
световода с линейным двулучепреломлением (ДЛП-волокно), которые учитывают слабое 
отклонение реального волокна такого типа от его идеального представления моделью 
линейной фазовой пластинки. Вывод проведен в рамках модели поляризационного 
элемента с фазовой анизотропией. Рассмотрены особенности использования разных 
вариантов матриц при моделировании оптоволоконных схем. Результаты могут быть 
использованы для описания практических оптоволоконных схем с ДЛП-волокнами, 
моделирования сигнала таких схем и анализа влияния на их работу поляризационных 
рассогласований. Выполнены эксперименты, которые выявили отклонение параметров 
поляризационных мод реальных ДЛП-волокон от идеализированной модели и позволили 
оценить уровень этого отклонения.
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Introduction
The paper considers birefringent optical fibers, achieving significant linear anisotropy by means 

of a special transverse structure. These fibers are widely known as polarization-maintaining (PM) 
in foreign literature. Linear anisotropy consists of propagation of two linearly polarized modes 
in orthogonal directions in the optical fiber. PM fibers are used in fiber-optic circuits along with 
other elements of polarization optics to provide reliable transformation of polarization state of 
light propagating in the circuit. This may be necessary to reduce fluctuations or fading of signal 
parameters generated in the optical circuit.

In other cases, the performance of the device to be constructed relies on a certain sequence 
of transformation of the polarization state. Since polarized light is typically used for this purpose, 
analysis of such circuits with respect to polarization (including analysis of polarization mis-
matches) is carried out based on the Jones formalism for vectors and matrices [1–6]. Calculation 
of the optical circuit involves Jones matrices for the elements included in the circuit [7]. The 
predominant factor in analyzing the influence of polarization mismatches of the optical circuit 
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elements is inaccurate mutual orientation of the elements’ polarization axes of the elements, 
taken into account by introducing the corresponding rotation matrices [1–8].

Another problem in mismatch analysis calculating Jones matrices using the elements accounting 
for their real polarization properties, different from the idealized representation [9]. Even though the 
PM fiber is one of the key elements of fiber circuits in polarization optics, selecting the appropriate 
Jones matrix to describe real PM fibers is an important issue that requires separate consideration.

In the ideal case, a PM filter is a linear phase plate whose Jones matrix in the Cartesian basis 
of Jones vectors has the well-known form [1, 2, 10]:

/2

0 /2

0
.

0

j

j

e
e

ϕ

− ϕ

 
=  

 
M (1)

This notation corresponds to the format of a special unitary matrix, which does not take into 
account the overall phase shift and the polarization-independent loss coefficient. It is also assumed 
that the matrix is written in the basis where the X-axis is aligned with the fast polarization direction.

The eigenvalues of matrix (1) have the form

λ1 = ejφ/2, λ2 = e –jφ/2,
where φ is the phase difference of polarization eigenstates (polarization modes) during a pass 
through the plate.

The quantity φ is the only parameter of the Jones matrix of an ideal PM fiber, typically uncon-
trolled and considered arbitrary in the calculations. It is evident that the eigenvectors of matrix (1) 
have the form

01 02

1 0
,    .

0 1
   

= =   
   

J J (2)

Strictly speaking, multiplying any of vectors (2) by an arbitrary complex number also produces 
eigenvectors of M0. However, form (2) is generally accepted, these vectors are normalized and 
have the same zero phase. Vectors (2) correspond to linearly polarized waves with orthogonal 
orientation, i.e., polarization modes of an ideal PM fiber.

Real PM fibers differ from the ideal representation, and the Jones matrix, which describes 
the transformation of the polarization state in such fibers, differs from form (1), albeit weakly. 
Imperfections are caused both by internal factors arising during manufacturing of the fiber, and 
by weak induced anisotropy, due to bends and twists of the fiber when it is installed in the circuit. 
Complex irregular variations of anisotropy generally occur in both cases, differing in different 
segments of the fiber. Therefore, the specific resulting properties of the Jones matrix of a real seg-
ment of PM fiber are actually unpredictable and, moreover, can change if the external conditions 
or the position of the fiber change. Therefore, analysis of the influence of imperfections in the PM 
fiber on the performance of optical circuits with such waveguides should include arbitrary cases 
of weak deviation of matrix (1).

Notably, the polarization properties of imperfect PM fibers have been considered in the litera-
ture, especially for the case of extended paths [11–13]. Depending on the considered mechanisms 
behind the deviation from the ideal structure of the fiber, such analysis was typically performed 
with a model comprising a set of segments of ideal fibers with small random angles between the 
polarization axes of the segments or some model of distributed coupling between polarization 
modes with analysis of coupled wave equations. The resulting Jones matrix either does not have 
to be constructed at all for such models, or is represented by a complex structure (for example, a 
product of matrices for individual segments of the fiber under consideration) with a large number 
of random parameters. This is justified for understanding the mechanisms behind deviations from 
ideal linear birefringence in real optical fibers, the spatial characteristics of mode coupling in 
extended optical fibers, and other similar issues.

However, a relatively simple model of the Jones matrix of a real PM fiber is often convenient 
for analyzing polarization mismatches in circuits with relatively short PM fibers, adequately 
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describing the possible transformations of the polarization state by such a fiber with a minimum 
number of variable parameters.

We were unable to uncover any literature dealing with this type of the Jones matrix of a real 
PM fiber.

The goal of this study is therefore to obtain the expressions for the Jones matrix that adequately 
describes the real PM fiber, as well as to analyze its properties and applications.

Jones matrices for a real PM fiber

The analysis is based on the following provisions.
If the ideal PM fiber corresponds to a linear phase plate with a given direction of polarization 

axes and Jones matrix (1), then the real PM fiber differs from the ideal one, which should be 
interpreted as perturbation of ideal linear anisotropy of the fiber.

While the anisotropy may generally vary by different patterns, the fiber is assumed to remain 
an element with phase anisotropy described by a unitary Jones matrix in the case of weak pertur-
bation. This condition is consistent with negligible optical losses and, accordingly, the absence of 
dichroism in real relatively short PM optical fibers (less than 1 km long); it is assumed that weak 
perturbations do not change this circumstance. For this reason, the PM fiber corresponds to the 
more general case of phase anisotropy that is an elliptical phase plate, but the eigenvectors must 
remain close to vectors (2), i.e., correspond to polarization states with ellipticity close to zero and 
azimuths orthogonal to each other and close to orientation along and across the X axis, as in the 
case of vectors (2).

In view of the above, the required matrix can be constructed based on the Jones matrix of an 
elliptical phase plate, considering the case when ellipticity is close to zero and the deviation angle 
of the plate axis from the X axis is small. However, no explicit form of the matrix of an ellipti-
cal phase plate is given in the existing literature for representation in terms of the parameters of 
ellipticity angle and the azimuth of its polarization eigenstates.

Therefore, it seems expedient to use a generalized representation of the 2 × 2 matrix in terms 
of its eigenvectors to obtain the necessary result. Generally speaking, this method allows to obtain 
any Jones matrix with the known properties of eigenvectors. A simple explicit form of the required 
Jones matrix is obtained taking into account the required properties of the eigenvectors for the 
considered case of a weakly perturbed linear phase plate.

In the general case, given the parameters of the polarization ellipse, namely, the azimuth Θ 
and the ellipticity angle ε −, the corresponding vector can be written in the following form with 
an accuracy up to a constant complex multiplier [2, 3]:

cos cos sin sin
( , )= ,

sin cos cos sin
j
j

Θ⋅ ε − Θ⋅ ε 
Θ ε  Θ⋅ ε + Θ⋅ ε 

J (3)

so that form (3) defines a normalized Jones vector with a unit length.
In the case of an ideal linear phase plate (ideal PM fiber), the polarization eigenstates have 

Jones vectors (2) and correspond to polarization ellipses with Θ1 = 0, Θ2 = π/2 and with ε1 = ε2 = 0.
If perturbation of an ideal linear phase plate is introduced, it is assumed that the eigenvectors 

deviate from the ideal case, for example, Θ1 and ε1 are nonzero. However, since a weak pertur-
bation is considered, we assume that conditions Θ1, ε1 << 1 are satisfied. Because Θ1 and ε1 are 
small, expansion of trigonometric functions can be applied in the general form (3): the approx-
imate equalities sinx ≈ x and cosx ≈ 1 – x 2/2 are satisfied for x << 1. If only first-order compo-
nents are preserved, we obtain the following form for the eigenvectors of the matrix of the weakly 
perturbed linear phase plate:

1 2

1 ( )
,    .

1
j j

j j
− Θ⋅ε − Θ − ε   

= =   Θ + ε + Θ⋅ε   
J J (4)

To simplify further notation, the quantities Θ1 and ε1 in the expression for the vector J1 are 
written without the subscript 1. The form of the vector J2 can be obtained formally as a vector 
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orthogonal to the vector J1, or directly by substituting the azimuth Θ + π/2 and the ellipticity 
angle −ε into form (3), which corresponds to the parameters of the orthogonal polarization state. 
Evidently, if the values of Θ and ε tend to zero, vectors (4) are transformed to (2) for an ideal 
linear phase plate.

The Jones matrix has the following general representation in terms of eigenvalues and eigen-
vectors [1, 2]:

1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 2 2 1 11 2 1 2

( )1 ,
( )
x y x y x x

y y x y x yx y y x

λ − λ − λ − λ 
=  λ − λ λ − λ−  

j j j j j j
M

j j j j j jj j j j
(5)

where j1x, j1y are components of the Jones vector J1; j2x, j2y are components of the Jones 
vector J2.

In the case of a special unitary matrix describing a lossless system, with eigenvalues λ1 = e jφ/2 
and λ2 = e –jφ/2 [4], we obtain from the general form (5):

( )
( )

/2 /2
1 2 2 1 1 2

/2 /2
1 2 1 2 2 11 2 1 2

2 sin / 21 .
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j j
x y x y x x

j j
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e e j
j e e
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− ϕ ϕ

 − − ϕ
=  ϕ −−   

j j j j j j
M

j j j j j jj j j j
(6)

If we substitute expressions (4) into Eq. (6), we can find the coefficients of the matrix for the 
case of weak perturbation of a linear phase plate. They have the form

2 2 /2 2 2 /2
11

2 2 /2 2 2 /2
22

21
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2 2 2 2 2 2

1 2 1 2

(1 ) ( ) ,
(1 ) ( ) ,

2( )(1 )sin( / 2),
2(1 )( )sin( / 2),

(1 ) ( ) 1 .

j j

j j

x y y x

m e e
m e e
m j j j
m j j j

ϕ − ϕ

− ϕ ϕ

= + Θ ε + Θ + ε

= + Θ ε + Θ + ε
= Θ + ε + Θε ϕ
= − Θε Θ − ε ϕ

− = + Θ ε + Θ + ε ≈ + Θ + εj j j j

(7)

Expressions (7) are obtained based on vectors (4) that take into account only first-order small-
ness with respect to Θ and ε. Therefore, assuming that the conditions Θ, ε << 1 are strictly satis-
fied, it is expedient to also omit the second-order components in the coefficients of the matrices, 
since they have an extremely weak effect on quantitative results in the calculations. An exception 
would be the situation when the formulas for the coefficients of the matrix would include only 
high-order perturbation components, but there are no such coefficients in expressions (7). When 
the second-order components are excluded, matrix (7) of a weakly perturbed linear phase plate 
is transformed to 

( ) ( )
( )

/2

PMF /2

2( )sin / 2
, .

2( )sin / 2

j

j

e j
j e

ϕ

− ϕ

 ε + Θ ϕ
Θ ε =  − ε − Θ ϕ 

M (8)

The determinant Δ of matrix (8) is equal to the expression

Δ = 1+ 4(Θ2 + ε2)∙sin2(φ/2),
it is real, but differs from unity.

To strictly correspond to a normal unitary matrix, a multiplier 1/Δ can be introduced into 
expression (8), but in practice it seems advisable to neglect the correction with second-order 
smallness with respect to Θ and ε, using instead expression (8) without additional multipliers.

To represent the ideal matrix Μ0 by taking into account small ellipticity angles and azimuths 
of polarization eigenstates, let us consider two special cases of matrix (8).

If either the azimuth of linear polarization eigenstate is only rotated weakly (ε= 0), or weak 
ellipticity occurs (Θ = 0), then the Jones matrix (8) is transformed to the cases
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/2 /2

PMF_ PMF_å
/2 /2

2 sin 2 sin
2 2,  .

2 sin 2 sin
2 2

j j

j j

e j e

j e e

ϕ ϕ

Θ
− ϕ − ϕ

ϕ ϕ   Θ⋅ ε ⋅   
= =   

ϕ ϕ   Θ⋅ − ε ⋅      

M M (9)

These particular cases of matrices are also interesting because they can be directly compared 
with the expressions obtained relatively simply from the cases given in the literature. This is dis-
cussed in Appendix I considering the rotation of a linear phase plate and in Appendix II analyzing 
the expression for an elliptical phase plate oriented along the X axis.

Fig. 1,a additionally illustrates our analysis, showing a Poincaré sphere with an explanation of 
the parameters used. The points A and B correspond to polarization of the vector J1 for the cases 
of the ideal and real Jones matrix of the PM fiber.

The Jones matrix (8) for the case of a weakly perturbed linear phase plate can be used for 
modeling systems with birefringent optical fibers.

The imperfection of the fiber is described by two independent parameters Θ and ε, however, 
there is no single parameter characterizing the deviation of the real matrix MPMF from the ideal 
variant M0. If the values of Θ, ε, and, accordingly, eigenvectors (4) are given, an appropriate 
quantitative parameter characterizing perturbation is the angular distance between points on the 
Poincaré sphere corresponding to the ideal case with angular coordinates {0; 0} and the non-ideal 
one with coordinates {Θ; ε}. Indeed, the great-circle distance (also called the spherical distance), 
given by two points on the Poincaré sphere (the shortest distance corresponding to a great-cir-
cle arc of the sphere containing these points), best characterizes the difference in polarization 
states [14]. Since the Poincaré sphere has a unit radius, both the geometric and angular (in radi-
ans) great-circle distances are the same. If one point on the Poincaré sphere corresponds to zero 
angular coordinates, then the angular great-circle distance to a point with coordinates {Θ; ε} is 
given by a simple expression: 

cos2ρ = cos2Θ ∙ cos2ε,
where the great-circle distance is denoted as 2ρ (the coefficient 2 is introduced to simplify 
further formulations).

S1

S2

S3

A

B
2ρ

θ

S1

S2

S3

2ε

2Θ

A
B

a) b)

Fig. 1. Deviation of PM fiber eigenvector point 
on the Poincaré sphere during perturbation of the fiber: 

Θ, ε are the azimuth and ellipticity angle; 2ρ is the great-circle distance; 
points A and B correspond to polarization of the vector J1 for the cases

of Jones matrices for ideal and real PM fiber, respectively
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This expression corresponds to a small circle of the Poincaré sphere with the center in zero 
angular coordinates and a radius 2ρ (Fig. 1,b). Since the quantities Θ and ε are small, this rela-
tionship is reduced to a simpler expression: 

2 2 2 ,ρ = ε + Θ (10)

corresponding to the equation of a circle on the plane.
Note that the imposed conditions Θ, ε << 1 also assume that the condition ρ<< 1 is satisfied.
The parameter ρ  also gives a unified quantitative characteristic for the level of deviation of the 

PM fiber from the ideal case for the matrix with the selected values of Θ and ε. The maximum 
potential deviation ρmax of the real PM fiber from the idealized representation can be given in 
analysis and calculations, and then the parameters ε and Θ should clearly be considered under 
the constraint

(ε2 + Θ2) ≤ ρmax
2.

It may be more convenient to analyze and model real PM fibers based on a different logic for 
constructing the fiber matrix, selecting the initial value of ρ. It is inconvenient to use the rela-
tionship of Θ and ε with the parameter ρ based on expression (10), especially since it is ambigu-
ous. However , this expression corresponds to the equation of a circle with the radius ρ, and it is 
convenient to determine the position of a point on a circle with a given radius by some angle θ. 
If it is counted from the direction along the equator of the Poincaré sphere, as shown in Fig. 1,b, 
i.e., assuming that θ = 0 at Θ = ρ and ε = 0, then the parameters Θ and ε are given by simple 
expressions: 

( ) ( ), cos ;  , sin .Θ ρ θ = ρ ⋅ θ ε ρ θ = ρ ⋅ θ (11)

Thus, the given value of ρ determines the level of small deviation of the polarization eigenstate 
of the perturbed linear phase plate, which is supplemented by the option to select the specific 
type of perturbation due to arbitrary choice of the angular parameter θ. Then, taking into account 
expressions (8) and (11), the matrix of the perturbed linear phase plate can be written with the 
given parameter of perturbation smallness ρ and the argument θ in the form 

( ) ( )
( )

/2

PMF /2

2 sin / 2
, .

2 sin / 2

j j

j j

e j e
j e e

ϕ − θ

θ − ϕ

 ρ ⋅ ϕ
ρ θ =  ρ⋅ ϕ 

M (12)

This case of Jones matrix of a real PM fiber, as well as form (8), has two variable parameters 
accounting for imperfection of the fiber. However, it may be more convenient to use the parameters 
ρ and θ, offering advantages in calculations with varying parameters, which is discussed below.

Application of obtained Jones matrices of real PM fiber to 
analysis and numerical modeling of circuits

The analysis carried out concerned several aspects important for calculations on the influence 
of imperfections in PM fibers and other polarizing fiber-optic elements (referred to as polarization 
mismatches of the elements) on the operation of the circuits containing them.

The parameters of the Jones matrix characterizing deviation from its ideal form, which must 
be varied to consider all of their possible values that cannot be predicted in advance, are not the 
only factor influencing the calculations of signal distortions in fiber-optic circuits with polarizing 
elements. The phase difference φ also affects the distortion of the signal generated in the circuit 
compared to the ideal and matched polarizing elements; the difference φ should also be varied in 
the interval 2π during the analysis. Consequently, a range of parameters have to be varied in cir-
cuits with even a small number of fiber-optic polarizing elements and PM fibers to study the effect 
of polarization mismatches, so that the worst possible types of distortions in the circuit’s oper-
ation can be identified. Therefore, comprehensive analysis of polarization mismatches in circuit 
elements generally requires numerical calculations by computing means, and the computational 
costs for iterative calculations over a large number of parameter values may be high.
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Numerical computations of the Jones matrix for a real PM fiber assuming certain deviation 
parameters of the eigenvectors given by the values of Θ and ε, can be performed by directly using 
the general structure of the Jones matrix (6). The form (II-6) can be used (see Appendix II) for 
eigenvectors (the first one corresponds to vector (3), the second one is orthogonal to the first 
one), followed by calculating the matrix (6). The form of the general matrix of an elliptical phase 
plate given in Appendix II can also be used. Expressions (II-7) are obtained precisely by substitut-
ing (II-6) into form (6), but take into account some simplifications based on trigonometric iden-
tities. The case based on such general structures has an advantage, since they are correct even if 
the condition smallness is not sufficiently satisfied for Θ or ε and the distortion level ρ introduced 
cannot be considered sufficiently low. However, the obtained matrices (8) and (12) are much sim-
pler and do not include trigonometric functions with respect to variable parameters. This not only 
makes it possible to obtain analytical results for distortions of the resulting signals in the analyzed 
circuits in some cases, but also significantly reduce computational costs in numerical calculations.

Another aspect is related to organizing calculations with a varying a set of parameters. In prac-
tice, this implies searching through the values of all these parameters, calculating some resulting 
circuit signal for each specific combination of values. The possible maximum distortion level of 
the eigenvectors in the element’s Jones matrix should be assessed based on empirical data or 
the results of additional theoretical studies of perturbation of a particular fiber element. The ρmax 
parameter mentioned above serves for this purpose in the case of PM fiber. An alternative logic 
is possible when calculation and analysis involves searching for the maximum permissible petur-
bation level ρmax, which must be provided for an acceptable distortion level of the circuit signals. 
In any case, analysis based on the generalized structures of the fiber’s Jones matrix or based on 
matrix (8) has to involve a search through two variable parameters Θ and ε in the variation ranges 
from –ρmax to ρmax, satisfying the condition

Θ2 + ε2 ≤ ρmax
2.

Generally speaking, it is not quite convenient to vary two independent parameters in the 
same common range, but with a dependent boundary of one parameter at a specific value of 
the second one. It seems more convenient and expedient to organize the search through vari-
able parameters using matrix (12) with ρ and θ replacing the parameters Θ and ε. If form (12) 
is used, the quantity ρ should be varied independently in the range from –ρmax to ρmax, and θ in 
the range from 0 to 2π.

There is another aspect related to analysis of polarization mismatches in circuits with PM 
fibers and the matrices considered. As already noted, such analysis often starts with considering 
only the angular misalignment between the polarization axes of PM fibers in splices or connectors 
joining the polarization splitters [7, 8]. On the one hand, this approach is adopted because it is 
very simple to account for such a misalignment within the framework of the Jones matrix formal-
ism. The coupling is taken into account by introducing a rotation matrix [2, 3]:

cos sin
( ) ,

sin cos
α α 

α =  − α α 
R (13)

where α is the angle between the directions of the polarization axes of connected fibers.
The angle α in the calculations should be varied in the range [–αmax, αmax], taking into account 

the estimated level of possible angular misalignment.
On the other hand, this approach implies that the influence of angular misalignment between 

the polarization axes of coupled PM fibers can be greather than that of the imperfections of 
individual fibers.

The angular alignment of the axes in modern PM fiber splices is no worse than 3–5°, which 
corresponds to the typical extinction rates for connectors of PM fibers in the range of 20–25 dB 
[15, 16]. However, special splicers make it possible to achieve the alighnment up to up to 1° in 
polarization axes of PM fibers in fusion splicings. However, perturbations of even short PM fibers 
can also have ρ values of order of 1°, as confirmed by our experimental findings (see below).

Thus, in practice, the level of angular misalignment of PM fibers connected can be comparable 
to the mismatch level ρmax associated with the imperfection of the PM fibers. In fact, accounting 
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for the imperfection of PM fiber in the calculations only makes sense when its ρmax level is com-
parable or higher than the misalignment level of the angles between the polarization axes αmax.

In cases where ρmax ≈ αmax or ρmax > αmax, it turns out that the Jones matrix of a real PM fiber 
already takes into account the possible azimuth shift of its polarization eigenstate, including 
the azimuth shift at zero ellipticity angle, which describes a particular case of angular misalign-
ment only. Then adopting the approach described above makes it possible to exclude specifically 
accounting for the angles α and the corresponding rotation matrices in the calculations (see Fig. 
2). If PM fibers are represented by an ideal model with a matrix of the form M0 (this is shown 
in Fig. 2,a), taking into account two connected fibers in the calculations implies that they are 
described by the matrix 

M0(i+1)∙R(α)∙M0i,
where i, i + 1 are the numbers of the connected fibers in the direction of light propagation.
However, if one of the PM fibers or both are described by a model with the matrix MPMF, then 

potential angular misalignments are already taken into account in the calculations by the param-
eter Θ. Then, the following matrices can be used in the calculations:

M0(i+1)∙MPMFi or MPMF(i+1)∙MPMFi or MPMF(i+1)∙M0i,
depending on which fibers are described by the imperfect fiber model.

Thus, the given properties of the matrix MPMF allow to exclude the rotation matrices from the 
description of circuits with PM fibers to account for angular misalignment in fiber connections, 
which can considerably simplify the calculations by reducing the number of variable parameters.

Moreover, this approach provides a certain unification of the circuit model, because even if it 
is angular misalignments that are predominant, it can be assumed that ε = 0 in the matrix MPMF 
of the form (8). On the other hand, using matrices MPMF does not always allow to completely 
exclude rotation matrices from the description of PM fiber connections. This point is illustrated in 
Fig. 2,c, where a real PM fiber is connected at both ends to fibers or other polarization elements, 
which are described by ideal matrices with a strictly defined axis orientation. In this case, the 
angle Θ in the matrix MPMF takes into account the same shift in the axis orientation at both ends 
of the fiber, even though the angular mismatch due to inaccurate orientation of the fibers at the 
connections may be different at different ends of the fiber. Therefore, a rotation matrix should 
be introduced at one end of the fiber for correct description. This means that caution should be 
exercised in excluding the rotation matrices from the description of connections so as not to miss 
those cases of angular misalignment that are not taken into account in the matrices MPMF.

Experimental

This section describes experiments aimed at studying the properties of real PM fibers and their 
differences from an idealized linear phase plate; an approximate estimate was obtained for the the 
parameter ρ introduced earlier for real fibers.

One of the best-known theoretically and experimentally studied phenomena illustrating the 
imperfections in PM fibers is the coupling of polarization modes [11, 13]. For example, such 

α Θ

MPMF(i+1)R(α) M0(i+1)M0i

a) b) 

Θ Θ

MPMFM0

с) 

M0

c)

a) b)

Fig. 2. Examples of accounting for orientation mismatches of polarization axes 
in connected optical fibers (see explanations in the text)
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imperfection appears when one linearly polarized eigenmode is excited at the input and when 
both this and orthogonal polarization modes are detected at the output. However, it is difficult 
to unambiguously interpret the formation of a spurious mode at the fiber output and its relative 
level in the context of the Jones matrix of PM fiber discussed above. This is especially true for 
modeling within the framework of the Jones matrix formalism of complex fiber-optic circuits 
including PM fibers.

Apparently, the most acceptable approach to determining the parameters of imperfections in 
PM fibers is based on measurements allowing to find the Jones matrix of an element by measuring 
the output polarization state at different input polarization states appear. For example, linearly 
polarized light with orientations of 0, 45 and 90° relative to an arbitrarily selected X axis can be 
used at the fiber input, to subsequently calculate the Jones matrix of the fiber using the measured 
parameters of the polarization state at the fiber output by the formulas given in [6, 17].

However, in this study we consider very slight deviations of the parameters Θ and ε of the 
Jones matrix from zero (about 1° or even smaller). This means that the accuracy with which 
linear polarization of light is oriented at the fiber input must be significantly better, while ellip-
ticity should be much smaller, which is difficult to achieve in normal laboratory conditions with 
standard devices.

In view of these obstacles, we chose another measurement setup to approximately extimate the 
level of ρ values in real PM fibers (see the scheme in Fig. 3). The fiber tested is excited by laser 
radiation during measurements, some segment of the fiber is heated, and a polarimeter records 
the heating-induced evolution of the polarization state at the fiber output.

Consider the following well-known circumstances to understnad the principle underlying the 
experiments carried out. As light passes through an element with phase anisotropy, for example 
an optical fiber, the polarization state undergoes specific transformations. The crucial aspect here 
is that this transformation corresponds to rotation of the surface of the Poincaré sphere around 
an axis given by the polarization eigenstates of the element by an angle corresponding to the dif-
ference in phase delays φ of these states [1, 6, 13]. If the phase difference φ varies monotonically 
in the range above 2π, then the evolution of the output polarization state on the Poincaré sphere 
is a small circle of the sphere whose angular radius R is determined by the ratio of amplitudes 
of polarization modes [1, 6, 18]. The variation in φ  in the scheme shown in Fig. 3,a is induced 
by heating of a fiber segment; the polarimeter records the resulting evolution of the polarization 
state of light. Next, the measured values of the polarization state (points on the Poincaré sphere) 
can be approximated by a circle to determine its parameters, namely the radius R and the angular 
coordinates of the circle center 2Θ0 and 2ε0. Since the circle center corresponds to the point of the 
polarization eigenstate of the fiber, the coordinates of the center Θ0 and ε0 represent the required 
parameters of the matrix MPMF of the fiber tested. Fig. 3,b shows the Poincaré sphere with the 
point B corresponding to the polarization eigenstate of the fiber considered (as in Fig. 1).

S1

S2

S3

2ε0

B

2Θ0

R

Measured evolution

Laser

Polarimeter

PM Fiber

Heater

Collimator

Box
a) b)

Fig. 3. Experimental setup (a) and evolution of polarization state 
on the Poincaré sphere, recorded during the measurements (b)
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We previously carried out such measurements to detect the level of spurious mode at the out-
put of PM fibers by the found value of R. However, approximating the measured points on the 
Poincaré sphere by a circle allows to determine not only R, but also the center of the circle B, i.e., 
the values of Θ0 and ε0. Any specific polarization states do not have to be determined precisely at 
the output of the fiber in this case.

Admittedly, there are some peculiarities stemming from the above-described main principle 
behind the transformation of the polarization state of light propagating through the fiber.

Firstly, the position of the center of the observed circle on the Poincaré sphere does not 
depend on the properties of the initial fiber segment up to the section that is heated. If the polar-
ization properties of this segment are static, then it can determine the polarization state of light at 
the input to the heated section and, accordingly, affect R, but not the position of point B.

Secondly, heating can transform the polarization eigenstates in real fibers, due to irregular 
mechanisms governing the distortion of PM fiber properties. However, in this case, the circular 
evolution of the polarization state at the output is distorted, forming spirals and other shapes 
deviating from the circle.

Thirdly, the position of the recorded point B can depend not only on the eigenmodes of the 
heated fiber section, but also on the eigenmodes of the fiber section between the heater and the 
polarimeter. The propagation of radiation through this segment can also rotate the surface of the 
Poincaré sphere (together with the circular evolution produced at the output from the heated 
section) around the axis already given by the modes of the output segment. However, this cir-
cumstance affects the result only if the eigenmodes of the heated and output segments differ; this, 
however, does not prevent us from recording the very fact of deviation of the measured point B 
from the point {0; 0} corresponding to the ideal PM fiber.

A highly coherent RIO-Orion laser (Redfern Integrated Optics, USA) with an FC/APC con-
nector was used in the measurements to connect the PM fiber and excite mainly one linear polar-
ization mode (according to the laser’s specifications, the extinction rate exceeds 20 dB).

The experimental conditions created provided relatively low values of R, illustrating the devia-
tions of the center of the observed circle on the Poincaré sphere more clearly. The laser’s output 
power in the fiber was 10 MW. The polarization state was measured with a PAX1000IR2 polarim-
eter (Thorlabs, USA). This device measures the azimuth and ellipticity angle of the polarization 
state with an accuracy of 0.25°. The fiber patch cord was connected to the polarimeter by a colli-
mator with a ferrule connector (FC) installed at the input to the polarimeter. The connector key-
ing position was oriented approximately relative to the polarimeter axis and remained unchanged 
during the experiments.

The first stage of measurements consisted of testing three PM patch cords with a length of 
1 m, terminated by FC/APC connectors. Patch cord samples 1 and 2 were purchased from AFW 
Technologies (Australia, model PMP-15-R-L-1), and patch cord 3 was included with the laser 
source. The output section of the fiber patch cord (about 20 cm long) was heated to 70 °C for 20 min-
utes, which was sufficient to change the phase difference φ of polarization eigenmodes by about 2π.

The results of the measurements are shown in Fig. 4 and in Table 1. Since the rotation of the 
collimator relative to the polarimeter axis was set manually and the direction of the fiber axis only 
approximately corresponded to the polarimeter axis, it is not the measured values of Θ0 that are 
informative but rather their difference for different patch cords.

The results indicate that the observed evolution of the polarization state at the output from the 
PM fiber patch cord is in excellent agreement with the circumference. At the same time, there is a 
significant difference in R values for different patch cords, which is most likely due to a mismatch 
in the orientation of polarization axes of PM fibers connected with the laser.

Notably, the parameter R is introduced as the angular radius of the small circle on the Poincaré 
sphere, when the angular coordinates are determined by the doubled angles Θ and ε. A circle with 
half the radius is obtained if points on the plane are plotted in coordinates Θ and ε without dou-
bling (Fig. 4,b). The values of the azimuth Θ0 for the patch cords differ by about 3.5°, and there is 
also a non-zero ellipticity angle ε0, which diverges for different patch cords in a range exceeding 
1.5° (from -1.09° to 0.63°). The spread in Θ0 values may not be caused by internal inhomogene-
ities of the fiber but to rotation of the fiber when it is connected to the collimator if the keying is 
attached inaccurately. However, the difference in the values of the ellipticity angle exceeding 1.5° 
indicates a difference in the polarization eigenstates of fiber patch cords.
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A segment of HB1250 PM fiber from Fibercore (USA), slightly longer (200 m) compared to 
the length of the patch cords, was considered at the second stage of the experiments. The laser 
excited mainly one polarization mode in the fiber. The entire path was heated to 40 °C, and then 
the evolution of the polarization state at its output was recorded as the fiber cooled down to about 
25 °C. In this case, the fiber segments in front of the heater and behind it were relatively short, 
and the temperature varied in the most part of the fiber.

At this stage of the experiment, transformations in the polarization properties were clearly 
manifested as variation in the level of spurious polarization mode at the output, which can be 
interpreted as interference from the components of this mode migrating from the main mode in 
different segments of the fiber with different phase delays that vary with temperature. The change 
in the level of spurious mode corresponds to the change in the radius R of the recorded circular 
trajectory on the Poincaré sphere. On the other hand, this means that a change in the tempera-
ture of such a long fiber can transform its polarization eigenstates in the presence of complex 
birefringence inhomogeneities in the fiber. Therefore, a change in the radius R should also be 
accompanied by changes in the center of the circle formed on the Poincaré sphere.

The evolution of the polarization state observed in this experiment is shown in Fig. 5. It is a 
quasi-circular motion with a changing radius, which reflects the above-described circumstances. 
In the context of the main issue considered in this paper, it is more important to change not the 
radius, but the center of the circular segments of this trajectory. Indeed, if we choose relatively 
small segments of the evolution in the polarization state, in general, they accurately correspond 
to a circle (the variation in the radius R occurs slower than the increase in the phase difference 

No. 1
No. 2

No. 3

ε

Θ

a) b)

Fig. 4. Evolution of polarization state on the Poincaré sphere (a) and on the plane, in the coordinates 
Θ and ε (b). No. 1, No. 2, No. 3 are patch cord numbers. The scale unit is 1 degree.
Approximation of experimental points by a circle on the Poincaré sphere is shown by red lines 

Tab l e  1

Parameters of circles
approximating the measured points of evolution
in polarization state on the Poincaré sphere.

First stage of experiment (see Fig. 4)

Angular parameter
Parameter value, degrees,

for patch cord
No. 1 No. 2 No. 3

Radius R 9.24 1.99 3.72
Azimuth Θ0 –2.44 0.92 –0.24
Ellipticity ε0 0.63 –0.51 –1.09
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between the modes by 2π). We can therefore assume that the centers of such circles characterize 
their polarization eigenstates at the appropriate moment for a given temperature. Fig. 5 shows 
the measured evolution of the polarization state, including examples for four fragments of the 
measured trajectory corresponding to temperatures of approximately 33, 30, 28 and 25 °C. These 
fragments were selected from a vast range of experimental data to show examples of circles with 
different values of parameters Θ0 and ε0.

Approximation of all measured points by a small circle on the Poincaré sphere gives the fol-
lowing parameter values, in degrees:

R = 7.59, Θ0 = 0.98, ε0 = 0.37
(such a circle is shown in Fig. 5,b in Θ and ε coordinates). The parameters of the circles inscribed 
in the points of the fragments shown in Fig. 5,d are given in Table 2.

Because the temperature varied unevenly, the number of points on the circles differs; in fact, 
reciprocating motion along the trajectory on the Poincaré sphere is observed in some segments.

It follows from these results that the azimuth of polarization eigenmodes of the tested fiber var-
ies in the range of 0.20° and the ellipticity angle in the range of 0.85°. Since measurements were 
carried out for a single fiber, without changing the connection to the source and the polarimeter, 
it is clear that the observed changes in both the azimuth Θ0 and the ellipticity angle ε0 point to 
transformation in polarization eigenstates of the fiber.

Θ

ε

Θ

ε
I III

II

IV

c) d)

a) b)

Fig. 5. Evolution of polarization state on the Poincaré sphere (a,c) and on the plane, 
in the coordinates Θ and ε (b,d). The cases of complete evolution (a,b) 

and its fragments I, II, III, IV (c, d) are shown. The scale unit is 1 degree.
Approximation of experimental points by circles on the Poincaré sphere is shown by solid lines
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In general, these experimental results can only be considered illustrative, as they give very 
approximate estimates for the degree of perturbation of the ρJones matrix in the tested fibers. 
Since the absolute values of the parameters Θ0 and ε0 cannot be regarded as completely reliable 
(especially those for the azimuth Θ0), keeping in mind the errors of the polarimeter and the 
approximate positioning of the collimator’s connector axis relative to the polarimeter axis, we did 
not recalculate the pairs of values {Θ0, ε0} into the value of ρ,  that could be found using expres-
sion (10). However, the changes in {Θ0, ε0} can serve for approximately estimating the value of ρ 
at about 1°.

In addition to relative accuracy of the polarimeter readings, which is 0.25°, other error factors 
may affect the measurement results, for example, deviation of experimental points from the circle 
inscribed in them, as well as others not discussed in this study. Thus, the observed values of ρ at 
the level of up to 1° should be interpreted as an upper-bound estimate. However, as already noted, 
other key parameters, primarily angular misalignments of connected fiber axes may have the same 
level of values in modern circuits with fusion-spliced PM fibers.

We can therefore confirm that the conditions for small deviation of polarization properties of 
real PM fibers from the properties of an ideal linear phase plate are satisfied, so it is reasonable to 
use the Jones matrices introduced in this paper for modeling polarization mismatches in circuits 
with PM fibers.

Conclusion

We obtained an expression for the Jones matrix of a real PM fiber within the framework of 
the phase anisotropy model, accounting for weak values of ellipticity and azimuthal deviations 
of eigenmodes. The constructed matrix can be used to describe optical circuits with PM fibers 
adopting the Jones formalism to analyze the effect of polarization mismatches on the operation of 
the circuit. An alternative form of the Jones matrix of PM fiber is also given, where the azimuth 
and the ellipticity angle of the eigenstate are replaced by other angular parameters: the deviation 
level of the point characterizing the polarization eigenstate on the Poincaré sphere and the devia-
tion direction of this point from the point for the ideal case. The second form of the matrix may 
have an advantage in modeling systems with numerical calculations and varying the imperfection 
parameters of PM fiber.

The experimental results illustrate the imperfections of real PM fibers, manifesting as weak 
variation in the ellipticity angle and azimuth of polarization modes. Furthermore, the experi-
ments allowed to approximately estimate the level of these variations with a range of about 1°. 
This justifies the condition for small deviation of the ellipticity angle and azimuth imposed in the 
theoretical analysis for the polarization modes of PM fiber relative to the ideal model, addition-
ally confirming that the obtained matrices can be used in analysis of modern fiber-optic circuits.

Moreover, useful expressions were constructed (see Appendix II, Eq. (II-7) below) to represent 
the matrix of an elliptical phase plate explicitly in terms of arbitrary ellipticity angle and azimuth 
of the polarization eigenstates. We have not found such an explicit form of the matrix for an 
arbitrary elliptical phase plate in the available literature.

Tab l e  2

Parameters of circles
approximating the measured points of evolution
in polarization state on the Poincaré sphere.

Second stage of experiment (see Fig. 5)

Angular parameter

Parameter value, degrees,
for fragment

I II III IV
Radius R 8.48 7.07 9.19 6.87
Azimuth Θ0 0.86 0.82 1.03 0.87
Ellipticity ε0 –0.18 0.07 0.66 0.28
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Appendix I

Linear phase plate with rotation

The case when the perturbation of a linear phase plate is reduced to rotation of the directions 
of the polarization eigenstates, while they remain linear, can be described relatively simply. If 
an element with matrix (1) is rotated by an angle Θ, then its Jones matrix is determined by the 
following relation [2, 4–6, 10]: 

LPP_ 0( ) ( ) ,Θ = −Θ ⋅ ⋅ ΘM R M R (I-1)

where the matrix R corresponds to rotation matrix (13). By substituting expressions (1) and (13) 
into relation (I-1), we obtain a matrix of a linear phase plate with the fast axis oriented at an 
angle Θ to the X axis, taking the form

( ) ( ) ( )
( ) ( ) ( )LPP_

cos / 2 cos 2 sin / 2 sin 2 sin / 2
.

sin 2 sin / 2 cos / 2 cos 2 sin / 2
j j

j jΘ

ϕ + Θ⋅ ϕ Θ⋅ ϕ 
=  Θ⋅ ϕ ϕ − Θ⋅ ϕ 

M (I-2)

Matrix (I-2) is valid for any angles Θ.
If we assume that the rotation angle is small, i.e., Θ << 1, then the form of matrix (I-2) can be 

used to obtained a matrix of the form

( ) ( )
( ) ( )

/2 2

LPP_ /2 2

2 sin / 2 2 sin / 2
.

2 sin / 2 2 sin / 2

j

j

e j j
j e j

ϕ

Θ − ϕ

 − Θ ϕ Θ ϕ
=  Θ ϕ + Θ ϕ 

M (I-3)

Further, if we leave only the first-order components in Θ, then matrix (I-3) is transformed to 

( )
( )

/2

LPP_ /2

2 sin / 2
.

2 sin / 2

j

j

e j
j e

ϕ

Θ − ϕ

 Θ ϕ
=  Θ ϕ 

M (I-4)

Evidently, the form of matrix (I-4) coincides with the form of Jones matrix (9).

Appendix II

Elliptical phase plate
The matrix of an elliptical phase plate is explicitly given in [2, 18] for the case when the 

azimuth of the polarization eigenstate (fast mode) coincides with the X-axis. This matrix takes 
the form

( ) ( ) ( )
( ) ( ) ( )EPP =0

cos / 2 sin / 2 cos 2 sin / 2 sin 2
.

sin / 2 sin 2 cos / 2 sin / 2 cos 2
j

jΘ

ϕ + ϕ ε ϕ ε 
=  − ϕ ε ϕ − ϕ ε 

M (II-1)

It is easy to formulate expression (II-1) by synthesizing the Jones matrix based on structure (6). 
Indeed, the eigenvectors for the matrix MEPP|=0 are obtained by assuming that Θ = 0 in the Jones 
vector (3), which gives the expressions

1 2

cos sin
,  .

sin cos
j

j
ε ε   

= =   ε ε   
J J (II-2)

Substituting these expressions into structure (6) yields a matrix of the form (II-1).
If we assume that the ellipticity of the polarization eigenstates is small and ε << 1, then 

replacing the trigonometric functions in expression (II-1) with their approximate analogues, 
i.e., sin(x) ≈ x and cos(x) ≈ 1 – x2/2, we obtain a matrix of the form
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( ) ( )
( ) ( )

/2 2

EPP /2 2=0

2 sin / 2 2 sin / 2
.

2 sin / 2 2 sin / 2

j

j

e j
e j

ϕ

− ϕΘ

 − ε ϕ ε ⋅ ϕ
=  − ε ⋅ ϕ + ε ϕ 

M (II-3)

If we preserve only the first-order components with respect to ε, we obtain the 
following expression:

( )
( )

/2

EPP /2=0

2 sin / 2
.

2 sin / 2

j

j

e
e

ϕ

− ϕΘ

 ε ⋅ ϕ
=  − ε ⋅ ϕ 

M (II-4)

Apparently, this result (II-4) completely coincides with the form of the Jones matrix (9).
It is logical to supplement the particular case of the matrix for an elliptical phase plate MEPP|Θ=0 

with the case of the Jones matrix for an elliptical plate of arbitrary orientation.
The general form of such a matrix can be obtained based on the expression

EPP EPP 0
( ) ( ) .

Θ=
= −Θ ⋅ ⋅ ΘM R M R (II-5)

However, it is possible to use a more general principle to obtain the matrix of an elliptic phase 
plate, applying expressions (6). Adopting the notation of the normalized Jones vector (3) and its 
orthogonal vector, we obtain the form of the eigenvectors of the matrix MEPP in the general case as

1 2

cos cos sin sin sin cos cos sin
= ,  = .

sin cos cos sin cos cos sin sin
j j
j j

Θ⋅ ε − Θ⋅ ε − Θ⋅ ε + Θ⋅ ε   
   Θ⋅ ε + Θ⋅ ε Θ⋅ ε + Θ⋅ ε   

J J (II-6)

Substituting expressions (II-6) into Eq. (6) and performing trigonometric transformations, we 
obtain the following general structure for the Jones matrix of an elliptical phase plate:

( )

( )
EPP

cos cos 2 cos 2 sin sin 2 sin 2 cos 2 sin
2 2 2 .

sin 2 sin 2 cos 2 sin cos cos 2 cos 2 sin
2 2 2

j j

j j

ϕ ϕ ϕ + Θ⋅ ε ⋅ ε + Θ⋅ ε 
=  

ϕ ϕ ϕ − ε − Θ⋅ ε − Θ⋅ ε ⋅  

M (II-7)

As far as we are aware, this important expression for the general case of an elliptical phase plate 
is absent in the literature, and can be useful for formulating Jones matrices for various particular 
cases of phase plates and anisotropic fibers.



111

Radiophysics

REFERENCES

1. Huard S., Polarization of light, John Wiley & Sons, Inc., Chichester, UK, 1997.
2. Ishchenko E. F., Sokolov A. L., Polyarizatsionnaya optika [Polarization optics], Third Ed., 

Fizmatlit Publishing, Moscow, 2019 (in Russian).
3. Azzam R. M. A., Bashara N. M., Ellipsometry and polarized light, Third ed., North Holland 

Publishing Company, Amsterdam, Netherlands, 1999.
4. Gerrard A., Burch J. M., Introduction to matrix methods in optics, revised ed., Dover Publications, 

Inc., Dover, USA, 2012.
5. Yariv A., Yeh P., Optical waves in crystals: propagation and control of laser radiation, John Wiley 

& Sons, Inc., New York, Chichester, Brislane, Toronto, Singapore, 1984.
6. Collett E., Polarized light in fiber optics, SPIE Press, Bellingham, Washington, USA, 2003.
7. Temkina V., Medvedev A., Mayzel A., Research on the methods and algorithms improving the 

measurements precision and market competitive advantages of fiber optic current sensors, Sensors. 20 
(21) (2020) 5995.

8. Krylov G. M., Fat’yanov O. V., Duplinskii A. V., Influence of birefringent fibre joints on the 
visibility drift in a Mach – Zehnder interferometer, Quantum Electron. 50 (5) (2020) 447–453.

9. Temkina V., Medvedev A., Mayzel A., Sivolenko E., Quarter wave plate for fiber optic current 
sensor: Comparison of modeling and experimental study, In book: International Youth Conference 
on Electronics, Telecommunications and Information Technologies (Proc. YETI 2021, St. Petersburg, 
Russia), Ed. by E. Velichko, V. Kapralova, P. Karaseov, et al., Book Series “Springer Proceedings in 
Physics”. Vol. 268. Springer Cham, 13 January (2022) 437–448.

10. Molchanov V. Ya., Skrotskii G. V., Matrix method for the calculation of the polarization 
eigenstates of anisotropic optical resonators, Sov. J. Quantum Electron. 1 (4) (1972) 315–330.

11. Yang J., Yu Z., Yuan L., Characterization of distributed polarization-mode coupling for fiber 
coils, In book: Peng G. D. (Ed.). Handbook of Optical Fibers. Springer Nature Singapore Pte. Ltd., 
Singapore, 16 May 2018.

12. Wuilpart M., Megret P., Blondel M., et al., Measurement of the spatial distribution of 
birefringence in optical fibers, IEEE Photon. Technol. Lett. 13 (8) (2001) 836–838.

13. Rashleigh S., Origins and control of polarization effects in single-mode fibers, J. Light. Technol. 
1 (2) (1983) 312–331.

14. Kells L. M., Kern W. F., Bland J. R., Plane and spherical trigonometry, Andesite Press, Warsaw, 
2017.

15. Polarization Maintaining (PM) Patch Cord 980, 1030, 1064, 1310, 1550 nm. https://www.
afwtechnologies.com.au/pm_patchcord.html. (Accessed July 27, 2023).

16. 1550 nm Polarization Maintaining (PM) Patch-cord, https://www.dkphotonics.com/
product/1550nm-polarization-maintaining-patch-cord.html (Accessed July 27, 2023).

17. Fedotov A., Ustimchik V., Rissanen J., et al., Active tapered double-clad fiber with low 
birefringence: supplement, Opt. Express. 29 (11) (2021) 16506–16519. 

18. Tentori D., Garcia-Weidner A., Kuzin E., On the birefringence evaluation of single-mode fibers, 
Rev. Mex. Fis. 62 (4) (2016), 381–392.



St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023. Vol. 16. No. 3

112

СПИСОК ЛИТЕРАТУРЫ

1. Huard S. Polarization of light. Chichester, UK: John Wiley & Sons, Inc., 1997. 352 p.
2. Ищенко Е. Ф., Соколов А. Л. Поляризационная оптика. 3-е изд., испр. и доп. М.: 

Физматлит, 2019. 576 с.
3. Аззам Р., Башара Н. Эллипсометрия и поляризованный свет. Пер. с англ. М.: Мир, 1981. 

584 с.
4. Джеррард А., Бёрч Дж. М. Введение в матричную оптику. Пер. с англ. М.: Мир, 1978. 

344 с.
5. Ярив А., Юх П. Оптические волны в кристаллах. Пер. с англ. М.: Мир, 1987. 616 с.
6. Collett E. Polarized light in fiber optics. Bellingham, Washington, USA: SPIE Press, 2003. 540 p.
7. Temkina V., Medvedev A., Mayzel A. Research on the methods and algorithms improving the 

measurements precision and market competitive advantages of fiber optic current sensors // Sensors. 
2020. Vol. 20. No. 21. P. 5995.

8. Крылов Г. М., Фатьянов О. В., Дуплинский А. В. Влияние стыков двулучепреломляющего 
волокна на дрейф видности в интерферометре Маха – Цендера // Квантовая электроника. 
2020. Т. 50. № 5. С. 447–453.

9. Temkina V., Medvedev A., Mayzel A., Sivolenko E. Quarter wave plate for fiber optic cur-
rent sensor: Comparison of modeling and experimental study // International Youth Conference on 
Electronics, Telecommunications and Information Technologies (Proceedings of the YETI 2021, St. 
Petersburg, Russia). Edited by E. Velichko, V. Kapralova, P. Karaseov, et al. Book Series “Springer 
Proceedings in Physics”. Vol. 268. Springer Cham, 13 January, 2022. Pp. 437–448.

10. Молчанов В. Я., Скроцкий Г. В. Матричный метод вычисления собственных состояний 
поляризации анизотропных оптических резонаторов (обзор) // Квантовая электроника. 1971. 
№ 4. С. 3–26.

11. Yang J., Yu Z., Yuan L. Characterization of distributed polarization-mode coupling for fiber 
coils // Peng G. D. (Ed.). Handbook of Optical Fibers. Singapore: Springer Nature Singapore Pte. 
Ltd., 16 May 2018. 40 p.

12. Wuilpart M., Megret P., Blondel M., Rogers A. J., Defosse Y. Measurement of the spatial dis-
tribution of birefringence in optical fibers // IEEE Photonics Technology Letters. 2001. Vol. 13. No. 
8. Pp. 836–838.

13. Rashleigh S. Origins and control of polarization effects in single-mode fibers // Journal of 
Lightwave Technology. 1983. Vol. 1. No. 2. Pp. 312–331.

14. Kells L. M., Kern W. F., Bland J. R. Plane and spherical trigonometry. Warsaw: Andesite Press, 
2017. 526 p.

15. Polarization Maintaining (PM) Patch Cord 980, 1030, 1064, 1310, 1550 nm. Режим доступа: 
https://www.afwtechnologies.com.au/pm_patchcord.html (Дата обращения: 27. 07. 2023).

16. 1550 nm Polarization Maintaining Patch-cord // Режим доступа: https://www.dkphotonics.
com/product/1550nm-polarization-maintaining-patch-cord.html (Дата обращения: 27.07.2023).

17. Fedotov A., Ustimchik V., Rissanen J., Kolosovskii A., Voloshin V., Vorob’ev I., Gumenyuk R., 
Chamorovskiy Y., Filippov V. Active tapered double-clad fiber with low birefringence: supplement // 
Optics Express. 2021. Vol. 29. No. 11. Pp. 16506–16519. 

18. Tentori D., Garcia-Weidner A., Kuzin E. On the birefringence evaluation of single-mode fibers 
// Revista Mexicana de Fisica. 2016. Vol. 62. No. 4. Pp. 381–392.



113

Radiophysics

THE AUTHORS

TEMKINA Valentina S.
Peter the Great St. Petersburg Polytechnic University
29 Politechnicheskaya St., St. Petersburg, 195251, Russia
temkina_vs@spbstu.ru
ORCID: 0000-0003-2083-8989

LIOKUMOVICH Leonid B.
Peter the Great St. Petersburg Polytechnic University
29 Politechnicheskaya St., St. Petersburg, 195251, Russia
leonid@spbstu.ru
ORCID: 0000-0001-5988-1429

ARCHELKOV Arseniy B.
Peter the Great St. Petersburg Polytechnic University
29 Politechnicheskaya St., St. Petersburg, 195251, Russia
arsarch11@gmail.com
ORCID: 0009-0007-4713-1293

BUCHILKO Igor R.
Peter the Great St. Petersburg Polytechnic University
29 Politechnicheskaya St., St. Petersburg, 195251, Russia
igor.buchilko@gmail.com
ORCID: 0000-0001-8179-8648

MEDVEDEV Andrei V.
Peter the Great St. Petersburg Polytechnic University
29 Politechnicheskaya St., St. Petersburg, 195251, Russia
medvedev@rphf.spbstu.ru
ORCID: 0000-0001-7083-9184

PETROV Aleksandr V.
Peter the Great St. Petersburg Polytechnic University
29 Politechnicheskaya St., St. Petersburg, 195251, Russia
alexandr-petroff1994@yandex.ru
ORCID: 0000-0001-5216-6588



St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2023. Vol. 16. No. 3

114

© Peter the Great St. Petersburg Polytechnic University, 2023

СВЕДЕНИЯ ОБ АВТОРАХ

ТЕМКИНА Валентина Сергеевна – аспирантка Высшей школы прикладной физики и 
космических технологий Санкт-Петербургского политехнического университета Петра Великого.

195251, Россия, г. Санкт-Петербург, Политехническая ул., 29
temkina_vs@spbstu.ru
ORCID: 0000-0003-2083-8989

ЛИОКУМОВИЧ Леонид Борисович – доктор физико-математических наук, профессор Высшей 
школы прикладной физики и космических технологий Санкт-Петербургского политехнического 
университета Петра Великого.

195251, Россия, г. Санкт-Петербург, Политехническая ул., 29
leonid@spbstu.ru
ORCID: 0000-0001-5988-1429

АРЧЕЛКОВ Арсений Борисович – студент Института электроники и телекоммуникаций 
Санкт-Петербургского политехнического университета Петра Великого.

195251, Россия, г. Санкт-Петербург, Политехническая ул., 29
arsarch11@gmail.com
ORCID: 0009-0007-4713-1293

БУЧИЛКО Игорь Романович – аспирант Высшей школы прикладной физики и космических 
технологий Санкт-Петербургского политехнического университета Петра Великого.

195251, Россия, г. Санкт-Петербург, Политехническая ул., 29
igor.buchilko@gmail.com
ORCID: 0000-0001-8179-8648

МЕДВЕДЕВ Андрей Викторович – кандидат физико-математических наук, доцент Высшей 
школы прикладной физики и космических технологий Санкт-Петербургского политехнического 
университета Петра Великого.

195251, Россия, г. Санкт-Петербург, Политехническая ул., 29
medvedev@rphf.spbstu.ru
ORCID: 0000-0001-7083-9184

ПЕТРОВ Александр Викторович – кандидат физико-математических наук, доцент Высшей 
школы прикладной физики и космических технологий Санкт-Петербургского политехнического 
университета Петра Великого.

195251, Россия, г. Санкт-Петербург, Политехническая ул., 29
alexandr-petroff1994@yandex.ru
ORCID: 0000-0001-5216-6588

Received 19.06.2023. Approved after reviewing 02.08.2023. Accepted 02.08.2023.
Статья поступила в редакцию 19.06.2023. Одобрена после рецензирования 02.08.2023. 

Принята 02.08.2023.


