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Abstract. A simple, fast and efficient method has been developed for removing pore-forming 
organic substances from MCM-41 type materials without affecting their shape, structural and 
adsorption characteristics. The method is based on express annealing of the synthesized silica 
materials in vacuum at low temperatures. It was shown that the synthesized particles do not sinter 
during annealing in vacuum and are monodisperse and aggregatively stable. 
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Аннотация. Разработан простой, быстрый и эффективный способ удаления 
порообразующих органических веществ из материалов типа МСМ-41 без изменения 
их формы, структурных и адсорбционных характеристик. Метод основан на экспресс-
отжиге синтезированных кремнеземных материалов в вакууме при низких температурах. 
Показано, что синтезированные частицы не спекаются в процессе отжига в вакууме, 
остаются монодисперсными и агрегативно устойчивыми.
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Introduction
MCM-41 type porous silica materials are actively studied owing to the wide range of their pos-

sible applications as adsorbents, in catalysis and biomedicine [1, 2]. A template method is applied 
to obtain such materials with the use of micelles of alkylamines as a template. Control over the 
internal structure, particle and pore size is carried out by varying the synthesis conditions and 
the structure of surfactant template. The elimination of these organic templates from the pores 
is a crucial step in the synthesis of mesoporous silica materials. Thermal calcination is a com-
mon method for template removal in the laboratory due to high efficiency, easy operation, and 
requirement of simple equipment. However, the significant reduction of silanol concentrations 
happens during calcination (which renders the sample unsuitable for post-modification), besides, 
the structural shrinkage is invariably detected following template removal. In addition to the 
removal of organics by calcination, various post synthetic methods are also used to wash particles 
from surfactant in organic solvents under the action of ultrasound or microwaves [3, 4]. As a rule, 
all of the above template removal methods include several successive stages, for example, wash-
ing, centrifugation, drying, etc., which significantly increases the time required to obtain the final 
product [3–5]. Thus, the development of a procedure for a fast, efficient, low-temperature and 
one-stage removal of the template from the pores of MCM-41 type particles is still a crucial task.

Materials and Methods

Materials. Cetyltrimethylammonium bromide (CTAB), C16H33N(CH3)3Br, 99+% (Acros); 
aqueous ammonia (NH3), 24% wt., ≥99.99%; ethanol (C2H5OH), 95% wt.; deionized water (Н2О) 
10 MΩ; tetraethoxysilane (TEOS), Si(OC2H5)4, 99+% (Acros), hydrochloric acid (HCl), 37% wt., 
ACS reagent grade. 

Methods. In the present study we used spherical mesoporous silica particles (MSP) with a 
diameter of 550 ± 25 nm. MSP were synthesized according to the method developed by us via 
hydrolysis of TEOS in a mixture of NH3–H2O–C2H5OH containing a pore-forming agent – 
CTAB [6]. The removal of organics from the pores of MSP-CTAB particles was carried out in 
three different ways and then the structural characteristics of the resulting particles were com-
pared. The first way was a traditional calcination of MSP-CTAB at 550 °C in air for 6 h. In the 
second one organics were removed in two stages. The synthesized MSP-CTAB particles were 
first washed in an alcoholic solution of HCl (0.01 M) for 10 h. Then the washed particles were 
annealed at 400 °C in air for 5 h. The third way to remove pore-forming substance was fast 
(within 1 h) annealing of particles at 300 °C in dynamic vacuum under pressure of 0.1 Torr. 

IR transmission spectra were measured using an IFS Bruker 113v Fourier spectrometer. Spectra 
were recorded in vacuum in the range of 450–4000 cm–1 with the use of DTGS detector. Spectral 
resolution was 4 cm–1. Spectra were obtained from the sample area of 1.25×1.25 mm. The nitrogen 
adsorption was performed using a Micromeritics 3FLEX at a temperature of 77 K. The specific 
surface area was calculated by the Brunauer–Emmett–Teller (BET) method, and the pore size 
distribution was found using the nonlocal density functional theory (NLDFT). Transmission elec-
tron microscopic measurements were performed using a Jeol JEM-2100F microscope (accelerating 
voltage 200 kV, point-to-point resolution 0.19 nm). The preparation of particles for TEM studies is 
described in Ref. [7]. Microscopic studies also were carried out using an NT-MDT SMENA atomic 
force microscope (AFM) in a tapping mode. Particle size distribution and the electrophoretic mobil-
ity of synthesized MSP were determined by dynamic light scattering (DLS) and electrophoretic light 
scattering methods, respectively, at 25 °C with the use of a Zetasizer Nano analyzer. The particle 
size distribution and the electrokinetic potential were calculated using the built-in analyzer software.
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Results and Discussion

Monodisperse spherical MSP are synthesized via basic hydrolysis of TEOS in a NH3–H2O–
C2H5OH–CTAB medium [6]. CTAB molecules are present mainly in the form of cylindrical micelles 
in the chosen reaction medium. Negatively charged products of TEOS hydrolysis interact with pos-
itively charged trimethylammonium groups, which are located on the surface of CTAB micelles. 
As a result, the micelles are covered with a layer of amorphous SiO2 [6,8]. Furthermore, these sil-
ica-coated micelles form clusters ~10–15 nm in size in the reaction mixture due to van der Waals 
forces. As the number of clusters grows, the aggregative stability of the system decreases and, as a 
result, the clusters coagulate to form submicrometer spherical aggregates. 

The organics removal from the pores of the synthesized particles was carried out by several 
methods (Fig. 1). In the first case organics are removed by a long-term (6 h) high-temperature 
(550 °C) annealing of particles in air (the thus obtained particles were designated as MSP-a). 
During annealing an oxidation of CTAB molecules occurs followed by the formation of CO, 
CO2, and NOx oxides, which are subsequently removed from the pores by surface diffusion. When 
calcination can affect the composition and/or structure of the material low-temperature methods 
are required to remove pore-forming substances. For example, multiple (2 to 5 times) washing 
of MSP from CTAB in an alcoholic HCl solution is applied. Then, the resulting particles are 
annealed at 400 °C in air for 5 h (MSP-w) to remove water and CTAB molecules remaining after 
washing. In order to further reduce the annealing temperature and the number of stages required 
to remove organic pore-forming substances from MSP we propose a new low-temperature method 
for CTAB removing, which is annealing of particles at 300 °C in vacuum for 1 h (MSP-vac).

Fig. 2,a shows the size distributions measured by the DLS method for all synthesized par-
ticles. The average diameter of all obtained particles is the same and found to be 555 nm, the 
standard size deviation does not exceed 5%. The zeta potential value of MSP-vac was found to 
be -34 mV at pH = 5.5, which is close to the values obtained for MSP-a (-35 mV) and MSP-w 
(-38 mV). The results obtained indicate that all the particles are aggregatively stable in aqueous 
suspensions regardless the method of CTAB removal. AFM image of a monolayer of MSP-vac 

Fig. 1. Schematic representation of different approaches for CTAB removal from MSP

a)	 b)	 c)

Fig. 2. Particle size distribution measured by DLS method: 
(1) MSP-w, (2) MSP-a, (3) MSP-vac (a). AFM image of MSP-vac (b). 

TEM image and its enlarged fragment (inset) of MSP-vac (c)
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(Fig. 2,b) shows that they form a hexagonal close packing similar to opal-like structure [6], which 
additionally confirms that the particles are monodisperse and not coalesced. The average particle 
diameter determined by AFM was found to be 545±25 nm, which is consistent with the DLS data 
(Fig. 2,a). There are 3-nm pores visible on the TEM image of the particles (Fig. 2,c), besides, a 
roughness of ~10 nm can be seen on the surface of the particles, which is comparable to the size 
of the clusters forming the particles [6]. Apparently, during vacuum annealing CTAB is removed 
both from the pores and from the outer surface of the particles, otherwise the presence of organ-
ics decomposition products on the particle surface would lead to a decrease in roughness. Thus, 
according to the results of DLS, AFM and TEM (Fig. 2), the synthesized MSP-vac particles do 
not sinter during annealing in vacuum and are monodisperse and aggregatively stable. 

Fig. 3,a shows the results of the FTIR study of silica particles right after the synthesis and after 
removal of CTAB by various methods. The spectral bands were identified based on the given in 
Ref. [9]. The band at 1630 cm–1 present in the spectra of all MSPs corresponds to bending vibra-
tions of H–O–H. The transmission spectra of the particles also contain a broad band at 3450 cm–1 
(Fig. 3,a, curves 2-5), to which OH stretching vibrations in hydrogen-bound molecules of physi-
cally adsorbed water mainly contribute. There is a weak broad band in the region 3650–3700 cm–1 
and the narrow band at 3745 cm–1, which correspond to vibrations of terminal and single silanol 
groups, respectively. Thus, all types of particles contain surface hydroxyl groups, which allows for 
further functionalization. The absorption bands corresponding to the vibrations of carbon-con-
taining organic groups are almost absent in the spectra of MSP-w (Fig. 3,a, curve 3) and MSP-a 
(Fig. 3,a, curve 5). At the same time, a set of weak absorption bands in the regions 1300-1500 cm–1 
and 2750–3025 cm–1 is observed in the spectrum of MSP-vac (Fig. 3,a, curve 4). These bands are 
more pronounced in the spectra of CTAB and as-synthesized MSP-CTAB (Fig. 3,a, curves 1, 2) 
and attributed to the different vibrational modes of CH, CH2, CH3 and N-CH3 groups characteristic 
of CTAB. The band in the range 1540–1570 cm–1 (Fig.3,a, curves 2, 4) results from simultaneous 
N–H and C–N vibrations. The N–H vibrations are caused by the CTAB decomposition prod-
ucts containing amino groups present in the sample. The presence of these groups causes a slight 
decrease in the porosity of MSP-vac particles compared to MSP-w and MSP-a (Fig. 3,b). 

The nitrogen adsorption and desorption isotherms of the MSP after removing of CTAB by dif-
ferent methods are shown in Fig. 3,b. For all the samples the adsorption isotherms have a step-like 
shape, which is typical of mesoporous materials [10]. The BET specific surface area and pore volume 
values were found to be: 838 m2g–1, 0.64 cm3g–1 for MSP-w; 822 m2g–1, 0.54 cm3g–1 for MSP-a; 
770 m2g–1, 0.52 cm3g–1 for MSP-vac. Pore size distribution calculated by NLDFT for all the 
samples has a well pronounced peak at 3.1 nm (Fig. 3,b, inset). It can be seen that the porosity 
characteristics of all types of particles are comparable.

a)	 b)

Fig. 3. FTIR spectra: (1) bulk CTAB, (2) MSP-CTAB as-synthesized, (3) MSP-w, 
(4) MSP-vac, (5) MSP-a (a). N2 adsorption and desorption isotherms at 77 K and NLDFT 

pore size distribution (inset) for synthesized particles: MSP-w (1), MSP-a (2), MSP-vac (3) (b)
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Conclusion

A method of low temperature vacuum annealing is developed for CTAB removal from as-syn-
thesized MCM-41-like mesoporous silica particles, which does not affect their size and porous 
structure. The measured value of the zeta potential of the particles annealed in vacuum was 
found to be -34 mV, which determines their aggregative stability in an aqueous suspension. The 
obtained values of specific surface area and pore volume were found to be ~800 m2g–1 and ~0.5 
cm3g–1, respectively, which is comparable with the values for MCM-41 type materials obtained by 
traditional annealing in air. The proposed approach for the pore-forming template removal from 
MCM-41-like materials in vacuum is fast, facile and alternative to the thermal calcination and 
chemical treatment methods.
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