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Abstract. The demand for efficient and high-performance computing systems has led to the 
development of photonic-based technologies for machine learning. One of the key components 
of these systems is the photonic tensor core, which performs matrix operations at high speed 
and low power consumption. In this article, we review the features of photonic tensor cores 
and their construction for use in neural networks. We discuss the advantages of photonic-
based technologies over traditional electronic-based systems, as well as the challenges in their 
implementation. We also highlight recent advancements in the development of photonic tensor 
cores for machine learning applications.
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Аннотация. Спрос на эффективные и высокопроизводительные вычислительные 
системы привел к разработке основанных на фотонике технологий машинного обучения. 
Одним из ключевых компонентов этих систем является фотонное тензорное ядро, которое 
выполняет матричные операции с высокой скоростью и низким энергопотреблением. В 
этой статье мы рассмотрим особенности фотонных тензорных ядер и их конструкцию 
для использования в нейронных сетях. Мы обсуждаем преимущества технологий, 
основанных на фотонике, перед традиционными электронными системами, а также 
проблемы, связанные с их внедрением. Мы также подчеркиваем недавние достижения 
в разработке фотонных тензорных ядер для приложений машинного обучения. 
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Introduction
The challenge of emulating brain functions continues to fascinate and inspire human ingenu-

ity, and has also proven to be of practical value to modern societies. One approach that has gained 
popularity in Artificial Intelligence (AI) is Machine Learning (ML) through the use of neural 
networks (NN). This involves training a system to autonomously classify and make decisions 
about new data, and once trained, the NN can be utilized to recognize and categorize patterns 
and objects. This is applied in various areas of science and technology, especially those related to 
space systems [1–5].

Neural networks (NNs) typically consist of multiple layers of interconnected neurons or nodes, 
and the configuration of each layer, as well as the interconnectivity of the network as a whole, 
is crucial for the network's ability to perform its intended task. The processing within a NN's 
connected layers relies heavily on vector matrix math operations, involving the multiplication of 
large matrices of input data and weights based on the training data. As the complexity and depth 
of NNs increase, their ability to perform these large matrix multiplications efficiently and quickly 
requires substantial bandwidth and low latency. This is extremely important in many cases. For 
example, for fiber-optic communication lines (FOCL) in systems of radar stations, when it is 
necessary to accompany a large number of objects, these functions are in great demand [6–8].

Since the beginning of the computing era, researchers have been exploring efficient methods to 
multiply matrices due to its ubiquity in various applications, including neuromorphic computing. 
Developing a platform that can perform matrix multiplication faster and more energy-efficiently 
is crucial in solving linear algebraic problems like inverting matrices, solving linear equations, and 
finding determinants. In fact, even fundamental graph algorithms can be hindered by slow matrix 
multiplication. This creates a number of problems in information transmission systems with intel-
ligent processing [4, 9–11].

Matrix operations on a general-purpose processor are performed serially and require con-
tinuous access to cache memory, which creates a bottleneck known as the "von Neumann bot-
tleneck". Specialized architectures, such as Graphic Process Units (GPUs) and Tensor Process 
Units (TPUs), have been developed to reduce this bottleneck and enable advanced machine 
learning models. These architectures are designed with domain-specific optimizations, such as 
parallel processing for convolutions or Matrix-Vector Multiplications (MVM), allowing for the 
deployment of systolic algorithms unlike CPUs [2, 9, 12, 13].

The advantages of using electromagnetic signals may be limited due to the need for conversion 
by optoelectronic and electro-optical methods, as well as repeated access to digital and non-vol-
atile memory, which can lead to slower operation and high energy consumption. In this regard, 
the use of heterogeneously integrated optimized photonic memory, which can store information 
in a non-volatile state, is a great advantage, especially for projects using neural networks, where 
weights are rarely updated.

Method of constructing photonic tensor cores

To achieve this functionality, a multi-state photonic memory device has been developed, in 
which a set of cells are located between two resonant rings to select the appropriate wavelength 
at the input and output. Once the memory states are set in this photonic core, it is possible to 
perform the calculation functions completely passively. Selective recording is achieved by chang-
ing the phase of a certain number of cells that have been deposited on the waveguides by local 
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electrostatic heating, which leads to crystallization or amorphization and, accordingly, a change 
in the modal refractive index of the waveguide in a reversible process.

The dot product mechanism multiplies the i-th row of the input matrix A by the jth column 
of the kernel B. The input matrix is represented in Fig. 1 by WDM signals, which are modu-
lated using high-speed modulators such as Mach-Zehnder [14]. The column of the core matrix 
is loaded into the photonic memory with a given weight state. The interaction of light matter 
with memory leads to a change in the phase of the input signals, which are spectrally filtered by 
micro-ring resonators, weighed using amplitude modulation and subjected to element-wise multi-
plication. The resulting products of the elements are summed using a photodetector that performs 
the MAX (Dij) operation. Quantization is used in the electrical absorption circuit.

In our approach to the implementation of photonic neural networks, micro-rings are used only 
for passive selection of the frequency that will be modulated by photonic storage devices, unlike 
other implementations that use actively tuned micro-ring modulators for filtering [14, 15]. This 
allows us to control inter-channel crosstalk more precisely and potentially increases the number 
of wavelengths in the multiplexing scheme with dense wavelength separation without affecting the 
absorption coefficient and the associated fluctuations in the quality coefficient. In addition, our 
architecture includes programmable photonic storage devices with a low loss level and multiple 
states for each pair of micro-ring resonators, which are able to store information without static 
power consumption and do not significantly contribute to total losses.

The Ge2Sb2Se5 material was chosen for the implementation of photonic memory cores, since 
in the amorphous state it has a wide area of transparency for telecommunication wavelengths 
and can be used to create high-performance non-volatile photonic storage devices with multiple 
states. This material has very low optical absorption, which makes it promising for multi-state 
devices and avoids the use of high-power lasers and extremely low noise detectors. To set the 
extracted weights, we use electrothermal switching, which reversibly records each memory state 
by selective transition between amorphous and crystalline phases. To do this, heat is supplied to 
the material from the outside using Joule heating, which is activated by successively supplying 
various pulses to the cell through connected devices.

To minimize losses, the choice of material and the location of the electrodes in relation to the 
waveguide were specially developed, which allowed the use of metal with excellent thermal prop-
erties and low optical losses. Adjustment of the frequency and intensity of electrical pulses applied 
to tungsten electrodes is necessary to provide the necessary thermal energy for phase switching in 
Ge2Sb2Se5. To create an effective resistive heater that will not create losses, it is possible to use 
doped silicon, silicide, indium-tin oxide or graphene electrodes that will be located next to the 
waveguide. The change in the absorption coefficient during the phase transition is investigated 
using light signals associated with the memory of the phase transition.

During the network training process, the weights are derived by employing electrothermal 
switching of individual states of photonic memories, as opposed to the previously used optical 
pulses. This technique involves writing each memory state reversibly by selectively transitioning 
between amorphous and crystalline phases through electrothermal switching induced by Joule 
heating. In our approach, external heat is applied to the material using joule heating of a tungsten 
metal layer in direct contact with the wire. Different pulse train profiles, based on the type of 
transition required, are applied to the wire through connections in series to the device.

Fig. 1. Block diagram of the photonic tensor cores
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Results and Discussion

Our photonic memories consist of PCM (Phase-Change Memory) wires arranged in a grating 
pattern. Each wire represents a quantized state, and we use 30-nm-thin and 250-nm-wide repro-
grammable PCM-wires. By considering the condition where all wires are in the amorphous state 
as the highest state, we can achieve a 4-bit memory for each element of the kernel (Bij) using just 
15 reprogrammable wires. The total length of this memory is only 8 micrometers, not including 
the electrical circuitry.

The insertion loss, defined as the decrease in optical power transmitted when some wires are 
switched to the crystalline state, is approximately 1 dB for the 4-bit multilevel memory. This 
results in discrete power levels for each quantized state. When all wires are in the amorphous 
state, the transmitted optical power is denoted as P0.

In this configuration of photonic memory, uniform quantization is achieved, where each state 
corresponds to one quantization step. In 4-bit photon memory, the quantization step is 0.2 dB 
per state, and the maximum attenuation coefficient is approximately 3.5 dB, as shown in Fig. 2. 
The attenuation coefficient is calculated by dividing the optical power transmitted in two extreme 
configurations, that is, when all wires are in the crystalline state and when all wires are in the 
amorphous state.

Instead of using separate wires for each state, a smaller number of films of different lengths can 
be used to generate the remaining states by recording these films in different combinations. When 
using the ratio of linear losses per unit length, it is possible to implement 4-bit memory using only 
four films of variable length, where the losses in the crystal state correspond to the states 1000, 
0100, 0010 and 0001. This binary weighing approach reduces the number of heaters and tungsten 
contact pads while maintaining the total installation area. However, each suspended state will 
require different write/erase time and voltage, which requires further optimization.

Although it is important to note that when performing logical inference, due to the stability of 
the NNs achieved through timely training, low-bit quantization of weights is also possible, which 
allows you to get a really efficient and accurate output for quantized weights with low resolution. 
If the system is going to be used to perform relatively simple inference tasks at the edge of the 
network, it may not require high resolution. 

Thus, we propose a tensor core module implemented in photonics, which relies on photonic 
multiplexing (WDM) signals weighted after filtering using a constructed multi-component pho-
tonic memory based on Ge2Sb2Se5 cells formed on a waveguide. Photonic memory is repro-
grammed by selectively changing the phase (amorphous/crystalline) of wires using electrothermal 
switching by Joule heating induced by tungsten electrodes. If necessary, the programming of the 
photonic memory can be implemented in parallel, if necessary, or, alternatively, this photonic 

Fig. 2. Extinction ratio (ER) for a 4-bit photonic memory as a function of digital states, 
for an increased number of crystalline wires, the ER increases linearly and uniformly
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tensor core can work as a passive system with a given core matrix; that is, there will be neither 
dynamic nor static power dissipation. Another key technological feature of this design is that 
photonic memory does not introduce additional losses, which avoids repeaters and optical ampli-
fiers, cumbersome intersections and transformations between electrical and optical domains. The 
architecture shows the execution time limited only by the photon flight time in the chip, which 
is a function of the number of wavelengths and the delay of the photodetector after program-
ming the core matrix and processing optical input data. The simultaneous development of new 
materials and the development of integrated photonic memory can allow the implementation of 
mechanisms based on the proposed scheme, capable of inherently performing accumulation and 
matrix multiplication with floating point, and, consequently, open the way to the implementation 
of fully optical photonic tensor blocks, which can significantly accelerate the execution of intelli-
gent tasks at the network boundary, without requiring electro-optical transformations and access 
to external memory.

Conclusion

The proposed Photonic Tensor Core (PTC) operates based on the outlined scheme and is 
capable of passive matrix multiplication with 4-bit precision. This operation only needs to occur 
once, during the storage of weights in the photonic network. The PTC functions independently 
of any logical architecture and doesn't necessitate data transduction from external memory for 
inference. This characteristic positions it as a comprehensive analog processor, akin to recently 
developed counterparts. Specifically, during inference tasks, our architecture conducts tensor 
operations with a time complexity of O(1), and its static power consumption approaches neg-
ligible levels. This efficiency arises from the system acting as a passive filter, relying solely on 
light-matter interactions with pre-stored states in the photonic memory. Unlike logic operations 
that require optical switching, our system operates by leveraging these interactions and accessing 
inputs directly from the optical domain. The photonic memory retains previously saved kernels, 
assuming they were stored during a prior instance, and the inputs are readily accessible from the 
network's edge.
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