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Abstract. Primary characteristic of a capacitive MEMS switch is the ratio of capacitances 

in the open and closed states. Conventional switches have this ratio from several units to sev-
eral tens. However, it can be significantly increased by mounting a “floating” electrode onto 
the transmission line. The analytical approach provides the capacitance ratio of the modified 
switch as high as 105. Finite element simulation takes parasitic capacitance into account and 
gives significantly lower value. In this work, the dependence of capacitive characteristics and 
S-parameters on the substrate properties is investigated. The ways for enhancing the switch 
performance are proposed.
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Аннотация. Основной характеристикой емкостного МЭМС-переключателя является 

отношение емкостей в разомкнутом и замкнутом состояниях. Для стандартных 
изделий это отношение составляет от нескольких единиц до нескольких десятков. 
Однако его можно значительно увеличить, используя «плавающий» электрод на линии 
передач. Согласно аналитическим расчетам, отношение емкостей модифицированного 
переключателя составляет около 105. Моделирование методом конечных элементов 
учитывает паразитную емкость и дает существенно меньшее значение. В настоящей 
работе исследована зависимость емкостных характеристик ключа и S-параметров от 
свойств подложки и предложены способы их улучшения.
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Introduction

MEMS switch is an electromechanical relay of micron size fabricated by microelectronic 
techniques [1, 2]. It provides low insertion loss and high isolation in combination with small 
dimensions and virtually zero power consumption [3]. These features make MEMS switches 
attractive for advanced communication systems, radar equipment and other areas of radio 
electronics [4]. The recent growth of wireless communications and increased demands driven 
by 5G standard (high cutoff frequencies, small space availability in mobile phones and battery-
operated devices) offer wide opportunities for MEMS switches. Many applications require 
switches with capacitive contact that ensure wider bandwidth in comparison with resistive devices. 
An important parameter of this switch is the ratio of capacitances in the open and closed states 
Con/Coff [5]. In conventional devices, this ratio varies from several units to several tens in the best 
case [6, 7]. Implementation of novel design solutions significantly improves Con/Coff. This work is 
devoted to the MEMS switch equipped by a “floating” electrode.

Materials and Methods

The proposed switch is schematically shown in Fig. 1, a. A movable electrode is an aluminum 
beam with a length of 100 µm, which is fixed on torsion suspensions. A transmission line runs 
under the beam at a distance of 1 µm. A thin metal electrode is formed on top of the dielectric 
layer. In the open state, the potential of the electrode is floating. The capacity of the beam-line 
system is small, so the signal passes from the input to the output with minimal losses. In the 
closed state, the beam touches the electrode, and their potentials are equalized. The capacity 
between the beam and the line increases significantly, so the switch shunts the line. The signal 
does not pass from the input to the output, and high isolation is achieved. The concept of the 
“floating” electrode is thoroughly described in our previous work [8]. Driving electrodes are 
located under both arms of the beam, so an additional restoring force may be applied in case of 
stiction. This design significantly improves the reliability of the switch compared to the classical 
one-electrode structure.

The switch is simulated by the finite element method (FEM) [9]. The model includes a chip 
with a coplanar transmission line and contact pads, as shown in Fig. 1, b. The line consists 
of a 100 nm thick ruthenium layer covered by 1 µm thick aluminum metallization and has a 
characteristic impedance of 50 Ohm. It is formed on a 460 µm thick substrate covered by silicon 
dioxide layer with a thickness of 1 µm. The switch is built into one of the grounded conductors, 
as shown in Fig. 1, с. A test signal with the amplitude of 1 V and frequency of 300 kHz is applied 
to the central conductor from a power supply with a resistance of 50 Ohm. The capacitance is 
calculated using the total energy of the electric field. S-parameters are calculated by analyzing the 
transverse electro-magnetic wave applied to the contact pad.

Results and Discussion

In the open state, the switch is equivalent to series-connected capacitors. The first capacitor 
is formed by the transmission line and the “floating” electrode, while the second one consists 
of the electrode and the beam. The second capacitance is significantly lower than the first one. 
Therefore, it determines total capacitance in the open state:

    
(1)

where S = 50 µm2 is the overlap area of the beam with the electrode; g = 1 µm is the gap 
between them; d = 50 nm is the thickness of the dielectric layer, ε0 is the dielectric constant. 
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Fig. 1. A switch with “floating” electrode: schematic illustration (a); a model of the chip (b); 
a close-up view of the beam and electrode (c)

a)

c)

b)

In the closed state, the second capacitor is converted to a contact resistance, so the total capacitance 
is determined by the first capacitor:

 
(2)

where lE = 394 µm is the length of the “floating” electrode; w = 150 µm is the width of the line; 
ε = 3.8 is the dielectric permittivity of silicon dioxide. Thus, the switch has a capacitance ratio of 
105, which is an order of magnitude higher than Con/Coff for most conventional devices.

Expressions (1) and (2) do not take into account the parasitic capacitance. FEM simulation 
considers real configuration of the transmission line and substrate properties. The dependence 
of capacitive properties on the resistivity ρ of the silicon wafer is shown in Fig. 2, a. Increasing 
ρ reduces both Con and Coff due to a decrease in the parasitic component. In turn, the drop of 
Coff increases the capacitance ratio. The maximum value is 7.4 at ρ = 50 kOhm·cm, which is 
significantly lower than the analytical prediction. The reason for the discrepancy is the relatively 
large Coff = 7.4 pF.

The coplanar line is schematically shown in Fig. 2, b. Its capacitance can be calculated by the 
method of conformal mapping [10]. The off-state value is determined as follows:

 
(3)

where Cair and Csub are the capacitances of air and substrate regions, ɛr2 and ɛr1 are the dielectric 
permittivity of silicon dioxide and the substrate, K(k) is the complete Legendre elliptic integral 
of the first kind:
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and the moduli ki, k
∼

i are described as:
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Fig. 2. Dependence of the switch characteristics on the resistivity of the substrate (a) and schematic 
illustration of a coplanar line on a double-layer dielectric substrate (b)

 (6)

According to equation (3), Coff can be reduced by using substrates with the dielectric permittivity 
close to that for SiO2. This statement is confirmed by simulation results given in Table. Two 
dielectric substrates are considered, including sapphire and borosilicate glass Borofloat 33. The 
highest capacitance ratio of 46.1 is provided by Borofloat 33. The widely used sapphire wafer 
ensures almost two times lower value due to relatively high ε. A further increase in Con/Coff requires 
changing the dimensions of the coplanar line, including the reduction of the width w of the 
central conductor and increasing the distance a between the conductors.

21 .i ik k= −
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Table
Simulated capacitive characteristics for various substrates

Material ε ρ, Ohm∙cm Сon, pF Coff , pF Сon/Coff

Low-resistivity Si 11.7 12 120.9 74.2 1.6
High-resistivity Si 11.7 5∙103 89.4 43.2 2.1

Sapphire 9.3 1016 48.4 1.8 27.7
Borofloat 33 4.6 108 47.7 1.0 46.1

Fig. 3. Insertion loss (a) and isolation (b) for the silicon and sapphire substrates

The next step is the estimation of insertion loss and isolation. Insertion loss is the amount 
of signal attenuation between the input and output ports when the switch is in the “on” state 
(the beam is in the upper position). Expressed in decibels, insertion loss must be close to zero 
for maximum power transfer. Isolation is the amount of signal attenuation between the input 
and output ports in the “off” state (the beam touches the floating electrode). This value has 
to be as large as possible. FEM simulation is carried out for four substrates indicated in Table.  
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The results are shown in Fig. 3. Low-resistivity Si provides high insertion loss in the range 
from -10 dB to -30 dB over the entire frequency range. The situation is much better for the 
high-resistivity Si, which ensures the loss higher than -3 dB for the entire frequency range, as well 
as for dielectric substrates. These materials also provide better isolation than high-resistivity Si. 
Borofloat 33 substrate is the best choice for our switch, which has better isolation, low insertion 
loss and acceptable capacitance ratio of 46.1.

Conclusion

The paper describes theoretical analysis of the capacitive MEMS switch with a floating electrode. 
Working characteristics are calculated analytically and by a finite element method. The switch can 
provide a capacitance ratio as high as 105, but the parasitic capacitance should be rather low. To 
reduce the parasitic component, one has to increase the substrate resistivity. Dielectric substrates 
ensure more than 10 times higher Con/Coff compared to silicon. A commonly used Borofloat 33 
provides excellent insulation and acceptable insertion loss in the entire frequency range. However, 
even with the glass substrate the capacitance ratio does not exceed 46.1. This value can be further 
increased by optimizing the size of the transmission line.
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