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Abstract. In this article, the planar structure of an avalanche photodiode based on Ge/Si is 
designed. The dependences of the gain and bandwidth on the bias voltage for different thick-
nesses of the absorption and multiplication layers of an avalanche photodiode based on Ge/Si 
are presented.
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Аннотация. В данной статье выполнено проектирование планарной структуры 
лавинного фотодиода на основе Ge/Si. Представлены зависимости коэффициента 
усиления и полосы пропускания от напряжения смещения для разных толщин слоев 
поглощения и умножения лавинного фотодиода на основе Ge/Si.
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Introduction

Infrared photoelectronics of both special and dual applications is one of the high-tech and 
rapidly developing areas of modern optoelectronics. Of particular interest are studies on the 
creation of highly sensitive and high-speed detectors for the field of information technology, lidar 
flight time systems, quantum key distributions, remote sensing of gas, quantum optics, quantum 
computing and quantum communication applications [1].

Avalanche photodiodes (APD) are widely used in optoelectronics and communications to 
detect low-intensity signals. Avalanche photodiodes rely on amplifying internal multiplication 
by exploiting the effect of impact ionization as long as the electric field is large enough. Impact 
ionization makes it possible to generate several photon carriers, i.e., several electron-hole pairs 
are generated for one absorbed photon, which, in turn, makes it possible to amplify the light 
signal [2‒3].

Due to the large asymmetry of the ionization coefficients of electrons and holes in silicon 
(Si), this material is very attractive for APDs [2]. However, silicon is not suitable for absorption 
at telecommunication wavelengths, which require the use of materials with a smaller band gap, 
such as germanium (Ge).

To eliminate many disadvantages, a useful alternative to these existing detection technologies 
is the use of Ge as an absorber in tandem with the Si multiplication layer. The Ge band gap 
provides effective absorption at wavelengths in the entire visible and infrared ranges up to a 
maximum wavelength of approximately 1600 nm at room temperature [3].

In recent years, with the development of weak signal detection technology, the research 
and application of single photon detectors (SPAD) has entered a new stage. To date, there are 
several types of photodetectors that can cope with the task of registering single photons with 
varying degrees of efficiency [4‒5]: photoelectronic multipliers (PMT), avalanche photodiodes, 
superconducting nanowires.

APDs based on InGaAs/InP are commercially available and provide high-performance 
parameters for SPAD at wavelengths of 1.31 microns and 1.55 microns. However, they are 
much more expensive and incompatible with the integration of a complementary metal-oxide-
semiconductor (CMOS) structure compared to silicon-based detectors. The lower cost of the 
technology may make it commercially feasible to expand the silicon APD based Ge/Si technology 
for infrared radiation [6‒7].

Materials and Methods

In this work, planar structures of avalanche photodiodes based on Ge/Si with different 
thicknesses of the absorption layer and the multiplication layer were designed. Figure 1 shows a 
schematic cross-section and electric field distribution of the structure of an APD based on Ge/Si. 
These devices have a cylindrical shape with a diameter of 30 microns.

Fig. 1. APD based on Ge/Si cross section (a); Electric field distribution over the structure of an APD 
based on Ge/Si (b)

a) b)
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Fig. 2. Dependence of the gain of an avalanche photodiode based on Ge/Si on the thickness of the 
absorbing layer and the multiplication layer versus referenced voltage Vb-ref (a) dependence of the bandwidth 

on the thicknesses of the absorption and multiplication layers versus referenced voltage Vb-ref (b)

a) b)

Typically, the average doping concentrations are controlled at the level of ≈ 1×1020 cm‒3 for 
the p++ contact, ≈ 1×1017 cm‒3 for the charge region and, respectively, ≈ 1×1020 cm–3 for the n++ 

contact. In the APD structure with reverse voltage bias, the presence of a charge layer should 
ensure that the electric field in the Ge absorption layer is maintained below the APD breakdown 
field (≈ 1×105 V⸱cm‒1) in order to avoid the tunneling effect, and in the Si multiplication layer is 
greater than the APD breakdown field (≈ 3×105 V⸱cm‒1) to provide shock ionization [3‒4].

The characteristics of the avalanche photodiodes were modeled using TCAD and simulated 
under an optical input power illumination of ‒20 dBm at 1310 nm. The program is based on three 
basic equations: Poisson’s equation, continuity equations, and transport equations. Poisson’s 
equation is related to the variations in electrostatic potential with local charge densities. The 
continuity and the transport equations address the transport processes, generation processes, and 
recombination processes of carriers.

During the simulation, avalanche photodiodes based on Ge/Si were compared with different 
thicknesses of Ge absorption layers (1 µm, 1.5 µm, 2 µm) and Si multiplication (0.5 µm, 1 µm, 
1.5 µm) by gain, bandwidth and the product of gain by bandwidth, which significantly affect the 
operation of the device. 

Results and Discussion

Figure 2, a shows the dependence of the multiplication (M) on the voltage for the APDs 
structures with different thicknesses of absorption and multiplication layers. To ensure a reliable 
comparison between the devices, the voltage (Vb-ref) is used – the difference between the breakdown 
voltage (Vbd) and the bias voltage (Vbias). As shown in Fig. 2, a, in linear mode, the gain of the 
APD 1, 2, 3 increases with a decrease in the multiplication layer. This is due to the distribution 
of the electric field in the multiplication layer, the larger the width, the smaller the electric field 
and the smaller the shock ionization [8]. In APD 3, 4 and 5 in linear operation mode, the gain 
decreases with increasing thickness of the absorption layer.

Figure 2, b shows the dependence of the bandwidth (f3-dB) on the voltage for avalanche 
photodiodes based on Ge/Si with different thicknesses of absorption and multiplication layers.

Conducting analyses between five APDs Fig. 2, b it can be concluded that APD 3 has a large 
bandwidth and the smallest thicknesses of the absorption and multiplication layers. For APDs 
structures 1 and 2, the electric field in the multiplication layer is lower than the breakdown 
field, thereby the carriers do not reach their saturation rates, so the drift time increases and the 
bandwidth decreases.

Thus, the bandwidth of the device is inversely proportional to the product of the thickness of 
the absorbing layer by the transit time of the carrier. A thinner absorbing layer can provide higher 
bandwidth, but it can also reduce sensitivity and increase noise levels.
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