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Abstract. In this work, we investigated the effect of plasma-chemical treatment of silicon 
substrates on the subsequent epitaxial growth of GaAs. It is shown that a change in processing 
modes did not lead to a strong change in the root-mean-square roughness of the initial silicon 
surface. It was found that under the same growth conditions GaAs is formed on substrates dif-
ferently depending on the silicon treatment mode: from individual crystallites with nanowires 
to a structure intergrown from individual crystallites. It is shown that a change in the annealing 
temperature significantly affects the resulting surface morphology.
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Аннотация. В настоящей работе исследовано влияние плазмохимической обработки 
кремниевых подложек на последующий эпитаксиальный рост GaAs. Показано, что 
смена режимов обработки не приводила к сильному изменению среднеквадратичной 
шероховатости исходной поверхности кремния. Установлено, что при одних и тех 
же условиях роста наноструктуры GaAs формируются на кремниевых подложках по-
разному в зависимости от режима обработки кремния: от отдельных кристаллитов с 
нанопроволоками до структуры, сросшейся из отдельных кристаллитов.
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интеграция, плазмохимическая обработка, сканирующая электронная микроскопия
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Introduction

Improving the technology of data processing and transmission today is one of the key tasks in 
modern micro and nanoelectronics. Modern silicon processors and metal-oxide-semiconductor 
technology easily cope with data processing [1]. However, silicon is an indirect-gap semiconductor, 
and this greatly complicates the creation of effective light emitting devices on its basis necessary 
for information transmission. Therefore, devices based on A3B5 materials are responsible for 
transmitting information due to their outstanding optical properties. Integration of a light emitting 
source directly on a silicon substrate will not only reduce the final cost of such devices, but also 
reduce power consumption while increasing bandwidth throughput [2]. However, the growth of a 
polar semiconductor on a nonpolar substrate leads to the formation of antiphase domains [3–5]. 
Also, the growth of GaAs on Si(001) leads to a large number of threading dislocations, which 
are obtained due to the difference in the lattice constants of both materials [4, 6, 7]. Therefore, 
to date, many methods have been explored for the formation of III-V semiconductors on silicon 
in order to reduce the resulting dislocation density and eliminate antiphase domains in the final 
structures [3–11]. One of such methods is the creation of a “soft substrate” for subsequent 
epitaxial growth [11]. As an alternative to this method, we propose the creation of a developed 
surface morphology by plasma-chemical processing which, as expected, will allow the subsequent 
nucleation of monolithically integrated GaAs nanostructures on Si(001). 

Materials and Methods

The epitaxial growth of GaAs on Si(001) substrates with plasma-chemical treatment was studied 
using a SemiTEq STE35 MBE setup with solid-state sources. Plasma-chemical processing was 
carried out in combined fluoride plasma in the modes of chemical polishing (CP) and reactive ion 
etching (RIE). The constant parameters during plasma-chemical treatment were: pressure in the 
reactor (10 Pa), temperature of the process (25 °C), treatment time (30 s), fluorine-containing gas 
flow (10 cm3/min), argon flow (60 cm3/min). The capacitively coupled plasma source power was 
15 and 95 W, inductively coupled plasma source power was 500 and 400 W, and the voltage was 
5 and 38 V for processing in the CP and RIE modes, respectively. After processing, the silicon 
samples were scanned by atomic force microscopy (AFM) to determine the root-mean-square 
(RMS) surface roughness. According to the scan results, it was revealed that the RMS roughness 
of the untreated original surface was 0.171 nm, while after processing in fluoride plasma in CP 
and RIE modes, the RMS roughness was 0.295 and 0.312 nm, respectively. After treatment, the 
samples were placed in a growth chamber, where they were preliminarily annealed at 600 and 
800 °C for 60 minutes. After annealing GaAs was deposited with a thickness of 200 nm and with 
a growth rate of 0.25 ML/s at a temperature of 600 °C.

Results and Discussion

The results of experimental studies (Fig. 1) demonstrate differences in the final morphology 
of the grown nanostructures pre-annealed at 600 °C. It is shown that GaAs nanocrystallites 
with periodically occurring GaAs nanowires grow on a sample with RIE treatment (Fig. 1, a). 
It should be noted that the nanowires grow in the <111> direction at an angle of 54.7° to the 
substrate surface. These results allow us to state that the nanowires obtained during the growth 
process inherit the structure of the silicon substrate.
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Fig. 1. SEM images of GaAs structures grown at T = 600 °C, H = 200 nm, V = 0.25 ML/s on silicon 
substrates with different processing modes and their AFM profilograms: (a, c) RIE, (b, d) CP. The 

pre-annealing temperature was T = 600 °C

a) b)

c) d)

Studies of epitaxial growth on samples treated in fluoride plasma in the CP mode and annealed 
at 600 °C showed that a change in the processing mode led to an increase in density and the 
formation of a GaAs structure intergrown from individual crystallites (Fig. 1, b). It is important 
to note that there is no growth of GaAs nanowires on the surface. It is likely that such a change 
in the morphology and mode of epitaxial growth is associated with an increase in the intensity of 
GaAs nucleation processes on the Si surface with a shift towards two-dimensional growth, which 
leads to suppression of the growth of GaAs nanowires. We assume that such a change in the 
growth process is associated with the influence of the geometric parameters of the relief that forms 
on the surface of the silicon substrate after RIE and CP plasma-chemical processing. According 
to the AFM profiles of the silicon surface obtained after plasma-chemical treatment (Fig. 2), 
it is clearly seen that their shape is noticeably different in the cases of RIE and CP modes.  

Fig. 2. AFM profilograms of the silicon substrate: after processing in the RIE mode (a), after processing 
in the CP mode (b)

a) b)
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Fig. 3. SEM and AFM images of GaAs structures grown at T = 600 °C, H = 200 nm, V = 0.25 ML/s 
on silicon substrates with different processing modes: (a, c, d) RIE, (b) CP. The pre-annealing 

temperature was T = 800 °C

On the silicon surface after plasma-chemical treatment in the CP mode, more pronounced peaks 
of the silicon substrate material are observed than in the RIE mode, the geometric parameters of 
which contribute to more intense nucleation and coalescence of GaAs nanocrystallites.

Next, samples with GaAs structures were examined by AFM (Fig. 1, c, d). Based on the 
obtained results, the degree of filling of the Si surface with the GaAs epitaxial material was 
estimated, which was 67% for samples obtained during growth on substrates treated in the RIE 
mode and 94.8% when treated in the CP mode. From a quantitative point of view, it is inadequate 
to judge the roughness of the structures grown on samples processed in the RIE mode, in view of 
the presence of a large number of individual crystallites. However, the values of RMS roughness 
(55.5 nm for RIE vs. 37.6 nm CP) make it possible to indirectly judge that when the regime of 
plasma-chemical processing was changed, the average difference in height of the grown GaAs 
decreased.

Fig. 3, a, b shows the SEM images of the GaAs structures grown on the Si(001) substrate 
preliminarily annealed at 800 °C. It is shown that there was a significant change in the surface 
morphology compared to the samples obtained by annealing at a temperature of 600 °C (Fig. 1). 
When processing samples in the RIE mode, no growth of individual GaAs crystallites is observed, 
as in the case of growth with annealing at 600 °C. Also, the resulting structure is similar to the 

a) b)

c) d)

structure grown by annealing at 600 °C with CP treatment, except that the intergrown crystallites 
are more elongated in length. An increase in the length of nanocrystals can indirectly indicate 
the inheritance of the substrate structure by the grown GaAs nanostructures. When samples are 
treated in the CP mode, after growth, the presence of nanowires of small size (about 140 nm 
on average) is observed on the surface. The reason for the parasitic growth of GaAs nanowires 
remains unclear. It should be noted that nanowires are oriented in accordance with the structure 
of the substrate and grow in the direction in four directions [-111], [111], [-1-11] and [1-11]. 

As in the previous case, the samples at the next stage were scanned by the AFM method 
(Fig. 3, c, d). From the results obtained, it was found that the degree of surface filling with the 
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