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Аннотация. В статье рассматриваются численные алгоритмы для определения 
коэффициентов многочленов с фиксированным старшим коэффициентом, которые 
обеспечивают на заданном интервале минимальное отклонение от нуля в минимаксной 
норме с заданной весовой функцией. Указанные многочлены служат полезным инструментом 
во многих численных методах, в частности в тау-методе Ланцоша, обеспечивающего 
нахождение приближенного численно-аналитического решения обыкновенных 
дифференциальных уравнений с коэффициентами в виде многочленов от независимой 
переменной. Частным случаем таких многочленов являются хорошо известные многочлены 
Чебышева, определяемые аналитически, однако в большинстве случаев весовых функций 
такие многочлены можно определить и табулировать только численно.
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Introduction
Approximations of functions that are optimal by the minimax (uniform) norm offer significant 

advantages over the simpler approximation of functions by the least squares method [1]. Expansion 
of a function into a truncated series consisting of polynomials of least deviation from zero is com-
monly used to construct such approximations [2, 3, 5–7]. In addition, the polynomials of least 
deviation from zero are useful for making an optimal choice of collocation points for interpolation 
of functions by polynomials (these points are zeros of the corresponding polynomials [1]), as well 
as for constructing approximate solutions for linear ordinary differential equations (ODE) with 
coefficients in the form of polynomials with respect to an independent variable [1, 2, 4]. 

Unfortunately, there are not many polynomials of least deviation from zero at a given interval, 
for which there is an explicit algebraic representation in analytical form. In this paper, we con-
sider a refined version of a rapidly convergent numerical algorithm for calculating the coefficients 
of polynomials of least deviation from zero over a given interval with a given weight, which was 
partially discussed in [8]. 
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Polynomials of least deviation from zero

The problem on constructing a polynomial of a given degree that deviates least from zero in 
a given interval with a given weight is formulated as follows. Let there be a continuous function 
f(x) and a finite interval [a, b] for which a continuous weight function q(x) is strictly positive in 
this interval; however, the ends of the interval where the function q(x) can vanish1 may be the 
exceptions. It is required to find a polynomial of degree n of the form

p(x) = a0 + a1x + a2x
2 + … + an-1x

n–1 + anx
n (1)

with previously undetermined coefficients a0, a1, a2, …, an–1 and the leading coefficient an = 1, 
which is the solution to the optimization problem

max |q(x)p(x)| → min. (2)

Here, maximization is performed with respect to the variable x ∈ [a, b], and minimization with 
respect to the coefficients a0, a1, a2, …, an–1. Such a polynomial is called the polynomial of least 
deviation from zero in the interval [a, b] with the weight q(x). 

First-kind Chebyshev polynomials taking the following form provide the smallest deviation 
from zero in the interval [–1, +1] with the weight q(x) = 1:

Tn(x) = cos[n arccos(x)];
the polynomials are scaled using a 2–n multiplier so that the leading coefficient of the polyno-
mial is equal to unity. Scaled second-kind Chebyshev polynomials of the second kind taking the 
following form provide the smallest deviation from zero in the interval [–1, +1] with the weight 
q(x) = (1 – x2)1/2: 

Un(x) = sin[(n + 1) arccos(x)] / (1 – x2)1/2.
Polynomials of degree n, providing the smallest deviation from zero in the interval [0, 1] with 

the weight q(x) = x, are obtained by separating a multiplier in the form of a weight function 
from first-kind Chebyshev polynomials of degree n + 1, for which such an argument substitution 
x → ax + b should be performed that the interval [xa + 1] of argument values be mapped to the 
interval [0, 1], where

xa = cos[π(2n + 1)/(2n + 2)] 
is the minimum zero of the function Tn+1(x). 

Polynomials of degree n, providing the smallest deviation from zero in the interval [0, 1] with 
the weight q(x) = x(1 – x), are obtained by separating a multiplier in the form of a weight func-
tion from first-kind Chebyshev polynomials oof degree n + 2, for which such an argument sub-
stitution x → ax + b should be performed that the interval [xb, xc] of argument values is mapped 
to the interval [0, 1], where 

xb = cos[π(2n + 3) / (2n + 4)] and xc = cos[π/(2n+4)]
are the minimum and maximum zeros of the function Tn+2(x). 

Other examples of polynomials of least deviation from zero are given in monographs [6, 7], 
but in general, very few such polynomials for which there are explicit algebraic expressions 
are known.

Chebyshev criterion

The fundamental properties of polynomials of least deviation from zero are determined by the 
following statement.

1 A weight function with zeros in the interval [a, b] requires that the Chebyshev maxima and minima (and the 
test points for the numerical algorithm) do not coincide with the zeros of the weight function, and the signs of 
alternating maxima and minima change in accordance with the sign of the weight function. Furthermore, the 
interval [a, b] can be infinite on the right and/or on the left-hand sides, but the weight function q(x) should tend 
to zero at infinity no slower than the power function 1/xk [5–7].
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Statement 1 (Chebyshev criterion for polynomials of least deviation from zero). In order for a 
polynomial p(x) of degree n with the leading coefficient equal to unity to be a solution to problem (2), it 
is necessary and sufficient that there exist such a set of n + 1 points x0 < x1 < x2 < … < xn belonging to 
the interval [a,b], and such a number ε(positive or negative) that the following conditions are satisfied:

–|ε| ≤ q(x)p(x) ≤ |ε| for x ∈ [a, b], (3)

q(xk)p(xk) = (–1)kε for k = 0, 1, 2, …, n. (4)

This criterion is a special case of a more general statement about uniform approximations 
by rational functions, considered by Pafnuty Chebyshev in his mémoire [17] (see also [6, 7]). 
The mémoire was not published, so it is difficult to establish the exact date when this result was 
obtained. Notably, Chebyshev also turned to the problem of the best uniform approximation by 
polynomials in his earlier works (see, for example, [16]), frequently revisiting the statements for-
mulated in [17] later (see, for example, [18]). 

Below we present the modern proof of the Chebyshev criterion for polynomials deviating least 
from zero, divided for convenience of presentation into several auxiliary statements 2–6: lower 
and upper bound estimate of norm (2), existence of optimal solution, sufficiency of Chebyshev 
criterion, necessity of Chebyshev criterion, uniqueness of solution. 

Evidently, provided that conditions (3), (4) are satisfied, the equality max |q(x)p(x)| = |ε| 
holds true. The points x0 < x1 < x2 < … < xn+1 of the interval [a, b] with alternating positive 
minima and negative maxima equal in absolute value to the maximum absolute value of the 
function considered are called the Chebyshev alternation. According to Chebyshev’s alternation 
theorem ([6, 7] and [16–20]), the condition under consideration is necessary and sufficient for 
the polynomial p(x) to be a solution to optimization problem (2), so that such a solution always 
exists and is unique. 

Fig. 1. Chebyshev polynomials Tn(x) for n = 5 (a), 8 (b) and 16 (c), 
deviating least from zero in the segment [–1, +1]

a)	 b)

c)
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Fig. 1 shows graphs of first-kind Chebyshev polynomials [1–3], illustrating that this condition 
is satisfied in the interval [–1, +1] with weight q(x) = 1.

In accordance with conditions (3), (4) for an optimal polynomial p(x) with a coefficient at the 
highest degree equal to unity, there is a set of n + 1 test points xk in which the deviation from 
zero q(x)p(x) has alternating local negative minima and positive maxima, equal to ±|ε|, and the 
values of these minima and maxima are global in the interval [a, b]. 

This criterion is a special case of Chebyshev’s theory of minimax approximation using rational 
functions [6, 7], however, the proof of the corresponding statements is simplified for polynomials 
of least deviation from zero. 

Statement 2 (de la Vallée Poussin theorem [6, 7, 21–23]). If the function q(x)p(x) takes values 
λ0, λ1, …, λN–1 different than zero with alternating signs, where N ≥ n + 1, at N consecutive points 
x0 < x1 < …< xN–1 of the interval [a,b] for some polynomial p(x) of degree n with the leading coefficient 
equal to unity, then the following relation holds true for any other polynomial r(x) of degree n with the 
leading coefficient equal to unity:

max |q(x)r(x)| ≥ min {|λ0|, |λ1|, …, |λN–1|}.
P r oo f .  Suppose there is a polynomial r(x) for which the condition 

max |q(x)r(x)| < min (|λ0|, |λ1|, …, |λN–1|) is satisfied. We assume that the values of q(xk)p(xk) in the 
sequence xk are strictly positive for even points, and strictly negative for odd points. (The reason-
ing is similar when the values are positive for odd points and negative for even points). This means 
that the following condition is satisfied at even points xk: 

q(xk)r(xk) < |λk| = q(xk)p(xk),
and the following condition is satisfied at odd points xk: 

q(xk)r(xk) > –|λk| = q(xk)p(xk).
As a result, the quantity q(x)[p(x) – r(x)] is strictly positive at even points xk and strictly neg-

ative at odd points xk. The values of q(xk) do not vanish and, therefore, are strictly positive. The 
polynomial p(x) – r(x) of degree n – 1, which is not identically zero, alternately takes positive 
and negative values for at least n + 1 points and, therefore, has at least n zeros. Consequently, 
the polynomial r(x) for which 

max |q(x)r(x)| < min (|λ0|, |λ1|, …, |λN–1|),
does not exist.

Statement 2 is proved.
Remark. De la Vallée Poussin theorem allows to obtain a lower-bound estimate for solving 

optimization problem (2). If λ0, λ1, …, λN–1 are local maxima and minima of the function q(x)
r(x) with alternating signs, then such a structure is called the de la Vallée Poussin alternation; it 
gives not only the lower-bound estimate for the solution to optimization problem (2), but also the 
upper-bound estimate, equal to max {|λ0|, |λ1|, …, |λN–1|}. 

Statement 3. There is a polynomial p(x) that provides a solution to optimization problem (2). 
This statement is important because it excludes the case when there are polynomials p k(x) with 

progressively decreasing values Pk = max |q(x)pk(x)|, while the minimum of this quantity is never 
reached in the set of polynomials of fixed degree. In particular, there is no solution to optimiza-
tion problem (2) without imposing an a priori restriction on the degree of the polynomial p(x).

P roo f .  The values of the quantities Pk = max |q(x)pk(x)| are bounded from below by zero, so 
there is an exact lower bound Pfor the values of Pk in the set of polynomials. According to the 
definition of the exact lower bound, there is a sequence of polynomials pk(x) of degree n:

pk(x) = a0,k + a1,kx + a2,kx
2 +… + an–1,kx

n–1 + xn,
for which P ≤ Pk ≤ 2P and lim Pk = P with k→∞. 

Consequently, the values of the polynomials pk(x) in the interval [a + δ, b – δ] (where δ is suf-
ficiently small) starting from some number k are bounded from above and from below (an offset 
had to be made from the ends of the interval to take into account the case when the continuous 
weight function q(x) at the ends of the interval can equal zero). It follows from the Lagrange 
formula [15] for a polynomial p(x) of degree n, taking the values yk at the given n + 1 points xk, 
of the form
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that when the values of the polynomial yk are bounded from above and from below at n + 1 fixed 
points xk, each individual coefficient of the polynomial is also bounded from above and from 
below. According to the Bolzano–Weierstrass theorem (lemma) on the limit point, each infinite 
bounded sequence of points in the space Rn has an infinite subsequence with a limit. Therefore, a 
subsequence with a limit for each of the polynomial coefficients can be selected in the considered 
sequence of polynomials pk(x) (represented as vectors of length n + 1, consisting of the polyno-
mial coefficients bounded from above and from below). 

In other words, there is a sequence of polynomials pk(x) for which lim Pk = P for k → ∞, and 
the coefficients of the polynomials pk(x) have limit values bj = lim aj,k при k → ∞. Evidently, this 
condition also holds true for the higher coefficients of the polynomials pk(x), by definition equal 
to unity.

Consider a polynomial r(x) with the coefficients bj:

r(x) = b0 + b1x + b2x
2 + … + bn-1x

n–1 + xn.
Since bj = lim ajk, the following condition is satisfied for any fixed value of x: 

lim pk(x) = r(x) for k→∞,
so that convergence to the limit is uniform over the considered finite interval of values of x. It 
follows from the inequality

max |q(x)r(x)| = max |q(x){pk(x) + [r(x) – pk(x)]}| ≤ 

≤ max |q(x)pk(x)| + max |q(x)|⋅max |r(x)–pk(x)|
that max |q(x)r(x)| = P. Indeed, max |q(x)r(x)| cannot be less than P; at the same time, the first 
term on the right-hand side of the inequality tends to P for k → ∞, and the second term tends to 
zero. Thus, quantity (2) reaches its lower bound P for the polynomial r(x).

Statement 3 is proved.
Statement 4. If conditions (3), (4) of the Chebyshev criterion are satisfied for the polynomial p(x), 

then the optimal value for the right-hand side of optimization problem (2) is equal to |ε|, and the 
polynomial p(x) (possibly one of many) ensures that this optimum is achieved. 

Proo f .  The condition max|q(x)p(x)| = |ε| is satisfied for a polynomial p(x) satisfying the 
Chebyshev criterion, so that the solution of optimization problem (2) does not exceed |ε|. However, 
since the Chebyshev alternation is a special case of the de la Vallée Poussin alternation, then, 
according to the de la Vallée Poussin theorem (see Statement 2), the solution to optimization 
problem (2) cannot be less than |ε|. Therefore, the solution of optimization problem (2) is equal 
to |ε|, and the polynomial p(x) ensures that this optimum is achieved.

Statement 4 is proved.
Statement 5. The polynomial p(x) providing a solution to optimization problem (2) must satisfy the 

Chebyshev criterion (see Statement 1). 
Proo f .  Consider the behavior of the function F(x) = q(x)p(x) in the segment [a, b]. The 

function q(x) can vanish only at the ends of the interval, so the number of zeros of the function 
F(x) within the interval certainly does not exceed n, and all zeros are isolated points. 

Let y1, y2, …, ym be an ordered set of zeros of odd multiplicity for this continuous function (that 
might not contain a single point). The points y1, y2, …, ym divide the segment [a, b] into m + 1 
intervals, so that the function F(x) takes alternately a positive or a negative value in each of them. 
If the function F(x) has no zeros, then the entire segment [a, b] is an interval where the function 
F(x) is either positive or negative.

For intervals with positive values of F(x), we select a point with the maximum value of the 
function in this interval (it might not be the only one in this interval), and for intervals with 
negative values of F(x), we select a point with the minimum value of the function in this interval. 
We obtain a set of points y1, y2, …, ym, dividing the segment [a, b] into m + 1 intervals, where the 
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function F(x) preserves its sign, but changes it upon intersecting the interval boundary. The set 
of points x0, x1, x2, …, xm, xm+1, belonging to these intervals, which do not coincide with the ends 
of the intervals, consists of alternating positive maxima and negative minima λ0, λ1, λ2, …, λm+1 of 
the function F(x). 

Let λ = max|λk|. If the maximum is equal to λ in any interval, and the minimum modulus is 
less than λ in the adjacent (subsequent or preceding) interval, then this interval is attached to the 
current interval together with the subsequent interval with a positive maximum, regardless of its 
value (Fig. 2,a). The resulting interval has the following property: such a positive constant can 
be subtracted from the function F(x) that the positive maximum of the function in the interval 
decreases, but the negative minimum modulus of the function in the interval does not increase 
sufficiently to exceed the new positive maximum. 

Similarly, if the minimum is equal to –λ in some interval, and the maximum is less than λ 
in the neighboring interval, then this first interval is attached the current interval together with 
the subsequent interval containing a negative minimum (see Fig. 2,b). A positive constant can be 
added to the function F(x) for this interval, which would reduce the negative minimum modulus 
of the function in the interval and simultaneously increase the positive maximum of the function 
in the interval so as not to exceed the new negative minimum modulus.

Ultimately, a set of N intervals is obtained in the interval [a, b] for a given polynomial p(x), 
containing points x0, x1, x2, …, xN–1 with alternating positive maxima and negative minima of the 
function F(x) equal to ±ε, where ε = max |q(x)p(x)|. On the other hand, if N is greater than or 
equal to n + 1, then such a polynomial p(x) satisfies the Chebyshev criterion and, in accordance 
with statement 2, is the solution to optimization problem (2).

Now let N be less than or equal to n. At the stage when the intervals were combined, the 
boundaries of the new intervals were determined, i.e., a set of points y1, y2, …, yN–1, where the 
function F(x) vanishes and changes its sign. There are also constants δk > 0 and a universal 
constant δ = min δk. These constants can be subtracted from the function F(x) in intervals with 
positive maxima or added to the function F(x) in intervals with negative minima, reducing the 
minimax norm in the corresponding interval.

Let the function F(x) take positive values in the first interval (the reasoning is similar if the 
function F(x) takes negative values in the first interval). Consider the function Q(x), which is the 
product of a polynomial of degree no higher than n – 1 and the weight function q(x):

Q(x) = q(x)(y1 – x)(y2 – x) ∙ ∙ ∙ (yN–1 – x).

Fig. 2. Procedure for combining segments with alternating maxima and minima to construct 
the Chebyshev alternation (the length of the combined segments is marked by the extension lines):

single or several sequentially located minima lie above the minimum level of the function 
F(x) (a); single or several sequentially located maxima lie below its maximum level (b).

The extrema are shown by arrows

a)	 b)
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The function Q(x) is strictly positive in the intervals where there is a Chebyshev maximum 
of the function F(x), and strictly negative in those where there is a Chebyshev minimum of this 
function. 

Let R = max |Q(x)|. If we subtract the function sQ(x) with a sufficiently small positive factor s 
from the function F(x) (for example, we can choose s = (δ/R)), then this should safely reduce the 
positive maxima of the function F(x) and reduce its negative minima, thus also serving to reduce 
max |F(x)|. Therefore, the considered polynomial p(x) cannot serve as a solution to optimization 
problem (2), since an even smaller value for max |F(x)| can be obtained to replace the current 
polynomial p(x) of degree n (its leading coefficient is unity) with a new polynomial r(x) of degree 
n, where the leading coefficient is also equal to unity: 

G(x)= F(x) – (δ/R)Q(x) = q(x)p(x) – (δ/R)q(x)(y1 –x) ∙ ∙ ∙ (yN–1 – x) =

= q(x)[p(x) – (δ/R) (y1 – x) ∙ ∙ ∙ (yN–1 – x)] = q(x)r(x),

max |G(x)| < max |F(x)|.
Thus, the optimal polynomial of degree n, considered in statement 3, must satisfy the 

Chebyshev criterion.
Statement 5 is proved.
Statement 6. The polynomial p(x) satisfying the Chebyshev criterion and providing a solution to 

optimization problem (2) is unique. 
Proo f .  Let there be two polynomials p(x) and r(x) of degree n, whose higher coefficients are 

equal to unity and which are the solution to optimization problem (2). Since the polynomials p(x) 
and r(x) are not identically zero, the expressions q(x)p(x) and q(x)r(x) have non-zero maxima and 
minima in the interval [a, b]. 

According to statement 5, each of the polynomials p(x) and r(x) satisfies the Chebyshev crite-
rion, and the value ε ≠ 0 is the same for them. Polynomials of the form 

s(x,α) = (1 – α)p(x) + αr(x)
are polynomials of degree n with a unit coefficient for the highest degree. These polynomials are 
also solutions to optimization problem (2) for 0 < α< 1: the chain of inequalities 

|q(x)s(x,α)| = |q(x)[(1 – α)p(x) + αr(x)]| ≤ (1 – α)|q(x)p(x)| + α|q(x)r(x))| ≤ |ε|
implies that max |q(x)s(x,α)| ≤ |ε|, and since the case max |q(x)s(x,α)| < |ε| is impossible because |ε| 
is the solution to optimization problem (2), we obtain that max |q(x)s(x,α)| = |ε|.

Let x1, x2, …, xn+1 be Chebyshev inflection points with alternating maxima and minima of 
the function q(x)s(x,α), equal to ±ε. If xk is the point of the negative minimum of the function 
q(x)s(x,α), equal to –|ε|, then the conditions

q(xk)s(xk,α) = (1 – α)q(xk)p(xk) + αq(xk)r(xk)) = –|ε|, 

q(xk)p(xk) ≥ –|ε|, q(xk)r(xk) ≥ –|ε|, 0 < α < 1
imply that the case when 

q(xk)p(xk) = –|ε| and q(xk)r(xk) = –|ε|,
is the only possible one.

Similarly, if xk is the point of the positive maximum of the function q(x)s(x,α), equal to |ε|, 
then the conditions

q(xk)s(xk,α) = (1 – α)q(xk)p(xk) + αq(xk)r(xk)) = |ε|, 

q(xk)p(xk) ≤ |ε|, q(xk)r(xk) ≤ |ε|, 0 < α < 1,
imply that 

q(xk)p(xk) = |ε| and q(xk)r(xk) = |ε|.
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Since the values of the polynomials p(x) and r(x) of degree n with the leading coefficient equal 
to unity are the same at n + 1 different points x1, x2, …, xn+1, these polynomials are identically 
equal to each other.

Algorithm for constructing a polynomial of least deviation from zero

An algorithm for numerically constructing polynomials of least deviation from zero, which is 
a modified and optimized Remez algorithm [9–14], follows from the above Chebyshev criterion 
(Statement 1).

Step 1. The initial set of points x0 < x1 < x2 < … < xnbelonging to the interval [a, b] is 
chosen arbitrarily.

Step 2. For the current set of points, 

a ≤ x0 < x1 < x2 < … < xn ≤ b
a polynomial p(x) of degree n is constructed for which the conditions

q(xk)p(xk) = (–1)k for k = 0, 1, 2, ..., n 
are satisfied.

Evidently, such a polynomial exists, is defined uniquely and can be calculated explicitly by the 
Lagrange formula [15]. 

Step 3. The roots belonging to the interval [a, b] are found for the polynomial p(x). Since the 
values of the polynomial p(x) have different signs at the ends of the intervals [xk, xk+1], there is at 
least one root of the polynomial p(x) inside each such interval. There are exactly n such intervals, 
so there is exactly one root in each of the intervals [xk, xk+1], and all the roots of the polynomial 
p(x) are real, belong to the interval [a, b] and are not multiples. It is not difficult to find these 
roots using a suitable numerical method. 

Step 4. The list of roots 

a < y1 < y2 < … < yn < b,
belonging to the interval [a, b], which were found in Step 3, are supplemented by the beginning 
and end of the interval y0 = a and yn+1 = b. Since the polynomial p(x) of degree n preserves the 
sign in the intervals [yk, yk+1], either a global maximum (for positive values of the polynomial) or 
a global minimum (for negative values of the polynomial) exists in each of the intervals [yk, yk+1] 
for the function q(x)p(x). If the function q(x) varies slowly enough that it can be assumed to be 
constant in a narrow interval [yk, yk+1] (a typical case), then there is exactly one local maximum 
or minimum in each of the intervals [yk, yk+1], thus coinciding with the global maximum or min-
imum in this interval, since the derivative of the polynomial p(x) has degree n – 1 and therefore 
cannot have more than n – 1 zeros. 

Step 5. Let a ≤ z0 < z1 < z2 < … < zn ≤ b be a list of alternating positive maxima and negative 
minima of the function q(x)p(x), which were found in Step 4. Let us consider the values

q(zk)p(zk) = (–1)kεk with k = 0, 1, 2, ..., n 
in these points, which, according to Step 4, must be either positive or negative extrema for 

intervals [yk, yk+1] with purely positive or purely negative values of the function q(x)p(x). If the 
condition εk ≈ const is satisfied within the given accuracy, then a polynomial p(x) is obtained, 
deviating least from zero and satisfying the Chebyshev criterion. At the same time, it follows from 
the de la Vallée Poussin theorem on the best approximation of a function by polynomials (see the 
Statement 2) [6, 7] that the exact optimum for problem (2) lies in the range between min|εk| and 
max|εk| (adjusted for the current multiplier before the leading coefficient of the polynomial replac-
ing unity). If the values of εk are considerably different from each other, we replace the test points 

a ≤ x0 < x1 < x2 < … < xn ≤ b
with the points 

a ≤ z0 < z1 < z2 < … < zn ≤ b
and return to Step 2.
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Step 6. The remaining step is to normalize the polynomial p(x) so that its leading coefficient 
becomes equal to unity. Since the polynomial p(x) has n roots, and the polynomial itself is not 
identical to zero, its leading coefficient cannot be zero and, therefore, such normalization can 
be performed. An additional useful result is applying a list of n real roots of the polynomial p(x) 
located in the interval [a, b] (found in Step 3) to the polynomial.

The algorithm has a geometrical convergence rate in the following sense: there are numbers 
C > 0 and 0 < λ < 1 for any continuous weight function and for any degree n, for which

max |q(x)pi(x)| ≤ 1 + Cλi,
where i is the iteration number. 

Convergence of the given algorithm is proved similarly to that of the Remez algorithm in 
monograph [11]. Numerical experiments established that our algorithm converged very quickly 
in all practically verified cases.

Fig. 3 illustrates the verification of the algorithm’s performance for the case

a = 0, b = 1, q(x) = x3, p(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + x5. 

Evidently, it is already the third iteration that provides a completely acceptable deviation from 
zero. The algorithm finally converges in the fifth iteration. 

The solution is a polynomial with the coefficients 

a0 = –0.018464, a1 = 0.712942, a2 = –2.851981,

a3 = 4.650795, a4 = –3.493237
The deviation from zero is 5.5⋅10–5. Fig. 4 shows a comparison between the deviations from 

zero of the polynomial q(x)p(x) and the first-kind Chebyshev polynomial of the same degree.

Fig. 3. Iterations g(x) = q(x)p(x) for calculated fifth-degree polynomial p(x) of least deviation 
from zero in the interval [0, 1] with weight q(x) = x3: initial state after Step 1 of algorithm (a),

as well as the first (b), second (c) and third (d) iterations

a)	 b)

c)	 d)
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Since the weight function q(x) can vanish at some of the ends of the interval [a, b], the test 
points selected at Step 1 must lie strictly within the interval [a, b] to ensure that Step 2 can 
be taken:

a < x0 < x1 < x2 < … < xn < b.  (5)
Apparently, if q(a) = 0 or q(b) = 0 and requirement (5) is preserved, the points zk satisfy the 

following condition at step 5:

a < z0 < z1 < z2 < … < zn < b,
consequently, condition (5) is preserved both in the next iteration and in all subsequent ones. For 
this reason, it is sufficient to ensure that condition (5) is satisfied at the first step of the algorithm.

To improve the performance of the algorithm at Step 1, it is recommended to choose 
either the zeros of the first-kind Chebyshev polynomial of degree n + 1, or the minima and 
maxima of the second-kind Chebyshev polynomial of degree n, shifted and scaled from the 
interval [–1, +1] to the interval [a, b], as the starting points in (5). It is recommended to 
use the condition q(xk)p(xk) = (–1)k⋅[(b – a)/4]n instead of the condition q(xk)p(xk) = (–1)
k at Step 2 to avoid unnecessarily large coefficients for the polynomial p(x). This choice of 
scale corresponds to the oscillations of the first-kind Chebyshev polynomial of degree n (least 
deviating from zero in the segment [–1, +1] with the weight q(x) ≡ 1), recalculated from the 
interval [–1, +1] to the interval [a, b] and scaled so that the leading coefficient is equal to 
unity2. 

It is not recommended to use a direct solution of the system of linear equations 
q(xk)p(xk) = (–1)k with respect to unknown coefficients aj to find the polynomial p(x), taking 
the given values at the given points, at Step 2. The matrix of such linear equations for large 
n (the Vandermonde matrix) is characterized by a high condition number, which is why the 
solution of the equations is very sensitive to errors in rounding floating-point numbers [15]. 
The Lagrange formula [15] for a polynomial of degree n, taking given values at given n + 1 
points, is free from such instability. Aitken’s iterative process [15] can be used in practice 
instead of the explicit Lagrange formula for large degrees of the polynomial, allowing to 
sequentially add a new degree and a new interpolation point to a pre-existing interpolation 

2 Strictly speaking, this estimate is not entirely accurate, since it does not take into account the form of the weight 
function q(x). In particular, n = 5 and q(x) = x3 for the example considered, so q(x)p(x) is an eighth degree 
polynomial, and the scale of oscillations for Chebyshev polynomials of degree n = 8 instead of n = 5 should be 
considered. The refined estimate of the oscillation amplitude has the form (4/(b – a))-n-m, where m is the effective 
degree of the weight function q(x) (it can be found by approximating q(x) by a minimax norm polynomial with a 
unit weight function).

Fig. 4. Oscillations of function g(x) = q(x)p(x) of least deviation 
from zero in the interval [0, 1] at n = 5 and q(x) = x3 (solid line)

Scaled Chebyshev polynomial of degree 5 + 3 = 8, shifted from the interval [-1, +1] 
to the interval [0, 1], which has 1 as the leading coefficient, is shown by a dashed line
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polynomial. However, it seems to be best to use one of Newton’s finite difference schemes 
[15] instead of the explicit Lagrange formula at Step 2. Since the algorithm only requires that 
the value of the polynomial p(x) be calculated at a given point x, there is no need to recalcu-
late the form of Newton’s finite differences into a polynomial represented explicitly (1) before 
the algorithm stops. 

We should also note that all calculations should be performed with high accuracy if possible, 
since rounding errors introduced at intermediate stages can distort the calculation results to an 
unacceptable degree, causing the algorithm to become unstable.

The Wolfram Mathematica 11 software system was used to perform the calculations [24].
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