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Abstract. This paper continues studies in machine learning models capabilities aimed to
finding the best way to predict the values of unobservable quantities that characterize centrality,
based on experimental data for observable quantities: the number of charged particles and
the number of neutrons produced in ultrarelativistic nuclear interactions. The sought-for
unobservable quantities were the number of wounded nucleons involved in the interaction
and the number of binary nucleon-nucleon collisions. A decision tree, a random forest, and a
multilayer perceptron (MP) were tested as machine learning models. The prediction accuracy
of the models was characterized by the coefficient of determination R?. Dependences of R?
values on initial energies (40—200 GeV) for different systems of colliding nuclei were obtained.
The MP model was found to be able to predict the values of unknown quantities in a wide range
of initial energies for different systems of nuclear interactions with good accuracy.
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AnHoramusa. JlanHas paboTra MPOMOJIKAET HCCIEIOBaHUS BO3MOXHOCTEH MoOjeeit
MAIlIMHHOTO OOYyYeHWs, HallpaBJIeHHble Ha TIOMCK ONTUMAJbHOTO TIYTU TpeacKa3aHus
3HAUEHUII HEHAOMI0JaeMbIX BEJIMYWH, XapaKTepU3YIOIIUX IIeHTPaIbHOCTh, OCHOBBIBASICH
Ha 3KCIEPUMEHTAJIbHBIX IAaHHBIX IJIs HAOJIONAEMBIX BEJIWYMH: YMCJIA 3aPSIKEHHBIX YaCTHUIL
U Yucja HEWTPOHOB, DPOXMAIOIIMXCS BO B3aUMOJCHUCTBUU YJIbTPAPESITUBUCTCKUX SIIEP.
HckoMbIMKM HeHaOMOJAEMbIMU BEJTMYMHAMU OBUTM YMCJIO PAHEHBIX HYKJIOHOB, YYaCTBYIOIIUX
BO B3aMMOJEMCTBMM, WM YMCJIO OMHAPHBIX HYKJIOH-HYKJOHHBIX CTOJKHOBeHMiIl. B KauecTBe
MOJieJiell MallIMHHOTO OOY4YeHUsI ObUIM TPOTECTUPOBAHBI JEPEBO PEIIECHUWI, CIyJYailHBIN Jiec
u MHOrocsolHbI TiepuenTtpod (MIT). TouHoCTh TIpeacKa3aHust MOIEIei XapaKTepu3oBajiach
ko3 duLmenTom nerepmuHanuu (R?). IloaydeHbl 3aBUCUMOCTU 3HAaYeHUd R’ OT HayaJbHBIX
sHepruii (200 — 40 I'sB) mast pasHbIX CUCTeM CTaJKMBAIOIIUXCS SAEp. YCTaHOBJIEHO, UTO
mojenb MIT criocoGHa ¢ Xxopouleil TOUHOCThIO MPEJACKA3bIBaTh 3HAYEHUS UCKOMBIX BEJIMYUH B
LIMPOKOM AMana3oHe HayadbHbIX 9HEPIUid JUISl Pa3IMUHBIX CUCTEM SIACPHBIX B3aUMOIEUCTBUIA.

KioueBbie cjoBa: MallMHHOE OOydyeHHUE, CTOJIKHOBEHHUE SIAep, HadyajbHash DSHEpPrus,
K03 dULIMEHT AeTepMUHALMU, MHOTOCIOMHBINA MePLEITPOH

Ccepuika a1 matupoBannst: Jlooarnos A. A., bepmaukos A. 5., MutpankoBa M. M. Monenu
MaIIMHHOTO O0YUYEHUS IJTsSI HAXOXACHUSI 3HAU€HU I HEeHAOTI01aeMbIX TAPAMETPOB, OTTUCHIBAIOIIINX
C UEHTPAJIbHOCTb, MPU CTOJKHOBEHMSIX PA3IUYHBIX SIIEP B 9HEPreTuyeckoM auamnazoHe ot 40
1o 200 I'sB // Hayuno-texnumyeckue Begomoctu CIIGITIY. ®Pusuko-MareMaTHdecKue HayKH.
2023. T. 16. N 2. C. 121—131. DOI: https://doi.org/10.18721/ JPM.16211

CrtaTtbs OTKpbITOro goctyna, pacnpoctpaHsemas no nuueHsum CC BY-NC 4.0 (https://
creativecommons.org/licenses/by-nc/4.0/)

Introduction

Algorithms based on machine learning methods have long yielded good results in various fields
of science and technology, often surpassing standard algorithms [1]. In fiew of this, it seems rea-
sonable to apply machine learning to physics of ultrarelativistic collisions of nuclei.

This paper intends to continue and expand the studies in [2]. This initial study applied
machine learning methods to determine the values of unobservable experimental quantities from
the observed ones. The former include the number of binary nucleon—nucleon collisions N_, in
a nucleus—nucleus collision at a given initial energy and the number of wounded nucleons Np -
produced in a nucleus—nucleus collision. The latter are the number of charged particles N, and
the number of neutrons N produced in each individual nucleus—nucleus interaction.

We have found that three models, namely, a decision tree, a random forest and a multilayer
perceptron, are capable of predlctlng the values of N, and Np .. With good accuracy in a wide
range of collision systems [2].

© JlobanoB A. A., bepnmuukoB A. f1., MurpankoBa M. M., 2023. Uznatens: Canxr-IleTepOyprckuit moJMTeXHUUECKUI
yHuBepcuteT Ilerpa Benukoro.
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However, the above-mentioned study was limited to considering the applicability of the mod-
els only for a given initial center-of-mass energy m = 200 GeV.

As the next stage in our research, we intend to find out whether these models are applicable
for varying values of the initial energy \/WV In fact, the initial energy can determine the nature of
the processes occurring during the collision of nuclei [3].

This paper analyzes the applicability of machine learning models to predicting the number of
wounded nucleons Np .. involved in the interaction and the number of binary nucleon—nucleon
collisions N _, (parameters characterizing centrality) at initial energies in the range of 40—200 GeV.

The basis for the models are the quantities observed experimentally: the number of charged
particles and the number of neutrons produced in each individual nucleus—nucleus interaction for

various systems of colliding nuclei.

Computational technique

The input parameters of the models (decision tree, random forest and multilayer perceptron)
are the multiplicities of charged particles N, and neutrons N _ .

The multiplicity of charged particles was set in the range of pseudorapidities 3 < [n| < 4, and the
number of neutral particles in the range of pseudorapidities 5 < n| < 8. These ranges were selected
based on the experimental data from [4]. Additional input parameters of the models were the
number of protons and neutrons in colliding nuclei and the center-of-mass energy Vs, [5]. These
parameters allow simulating collisions of nuclei of different nature at different initial energies.

We considered collision events for a wide variety of nuclei used by researchers in a large num-
ber of very diverse experiments [4]. These nuclei are hydrogen H (protons) p, helium He, copper
Cu, xenon Xe, gold Au, lead Pb and uranium U.

The models were trained on the following binary systems, randomly selected from the
above nuclei:

p+Cu,p+U,He+ Xe, He + U, Cu + Cu, Cu + Xe, Xe + Pb, Au+ Au.
The predictions of the models were verified on the following binary systems:

p +Pb, p+Xe, p+ Au, He + Cu, He + Au, He + Pb
(light-heavy collision systems);

Cu+Au, Cu+Pb,Cu+U,Xe+U,Au+Pb,Au+U,Pb+U
(asymmetric heavy collisions)

Xe+ Xe, Pb+Pb, U+ U
(symmetric heavy collision systems).

The selected initial energies \s,, lay in the range from 40 to 200 GeV [4].

The models were trained at energies in the range of 40—200 GeV with a step of 40 GeV, and
verified in the extended energy range of 20—260 GeV with a step of 20 GeV. The tables below
give only part of the data obtained (not for all selected initial energies) for space considerations.

The same as in [2], training of the models and verification of their prediction accuracy were
preceded by simulation (generation) of the above-mentioned binary collisions, but at differ-
ent initial energies (see above). The PYTHIAS8/Angantyr 8.307 software was used to generate
collisions [5]. The number of generated events was 100,000. Numerical values of wounded nucle-
ons N _and binary nucleon—nucleon collisions N, were obtained from each event, as well as
multiplicities of charged particles and neutrons (reference values).

The decision tree [6], random forest [7] and multilayer perceptron [8] were considered as
machine learning models, as in the previous study [2], where these models produced the best results.

The model parameters that the program did not determine during training (hyperparameters)
was selected with the Tree Parzen Estimators algorithm [9] from the Optuna library [10].

The details of the simulation were as follows. The decision tree model had a depth of 63. The
random forest model included 37 estimators with a maximum depth of 84 each. The multilayer
perceptron consisted of 7 input neurons, 5 hidden layers of 512 neurons each, with a ReLLU acti-
vation function and an output layer of two neurons with a linear activation function. The number
of epochs for training was 45, and Adam was chosen as the gradient descent optimizer [11].
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The prediction accuracy provided by the models for N, and N oy WS characterized by the
determination coefficients R>, , and R2 . [12], which are determlned by the following formula:

Z(y, 7)

zyi

i=l1

>

Ncoll

where R includes R?, & or R? Npar Vi @T€ the reference values of the given quantities; y, are the
values predicted by the model N is the number of values [2].
The prediction accuracy of the parameters N, and N was characterized by the arithmetic

mean R of R, for N and R, for N [13]""
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The closer R’ to unity (the maximum value), the closer the computational values to the
reference ones.

Confidence intervals and errors of the determination coefficient R’ were found by the bootstrap
method [14].

Computational results and discussion

Tables 1—9 present the computational results for the determination coefficients R?> depending
on the initial energy of colliding nuclei \/7\,, for three classes of collision systems on which the
verification was performed.

The models that gave the best results are considered (see [2]): a multilayer perceptron, a deci-
sion tree and a random forest.

As follows from analysis of the data presented in the tables, all models used yield good results
for any systems of colliding nuclei at initial energies of 40, 80, 120, 160 and 200 GeV (on which
the models were trained), since the values of R> > 0.95.

Because one of our goals was to analyze the results of model predictions at points interpolated
and extrapolated by energy, the tables show the determination coefficients at energies of 20, 60,
180 and 220 GeV.

Table 1
Determination coefficients of multilayer perceptron model as function
of initial energies \/_ for light-heavy collision systems
\/%’ Determination coefficient R? for collision system
GeV p+Xe p+Au p+Pb He + Au He+U
20 0.742+0.019 | 0.706+0.023 | 0.789+0.024 | 0.902+0.023 | 0.895+0.022
40 0.954+0.022 | 0.956+0.025 | 0.954+0.028 | 0.984+0.023 | 0.988+0.025
60 0.967+0.025 | 0.965+0.025 | 0.932+0.025 | 0.983+0.025 | 0.983+0.023
80 0.951£0.026 | 0.967+0.028 | 0.969+0.024 | 0.987+0.026 | 0.988+0.026
160 0.957+£0.025 | 0.957+0.021 | 0.965+0.027 | 0.989+0.025 | 0.989+0.026
180 0.957+£0.027 | 0.9604+0.026 | 0.961+0.026 | 0.989+0.024 | 0.990+0.024
200 0.955+0.029 | 0.948+0.026 | 0.959+0.026 | 0.987+0.027 | 0.990+0.024
220 0.952+0.027 | 0.949+0.023 | 0.951+0.029 | 0.983+0.025 | 0.988+0.030
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Table 2
Determination coefficients of multilayer perceptron model as function
of initial energies Vs, for asymmetric heavy collision systems
\/% Determination coefficient R? for collision system
GeV | Cu+Au | Cu+Pb | Xe+Pb | Xe+U | Au+Pb | Au+U | Pb+U
20 0.860+ 0.846+ 0.725+ 0.733+ 0.679+ 0.689+ 0.685+
+0.023 +0.021 +0.019 +0.018 +0.014 +0.019 +0.016
40 0.978+ 0.978+ 0.988+ 0.994+ 0.999+ 0.998+ 0.999+
+0.023 +0.024 +0.023 +0.023 +0.024 +0.028 +0.029
60 0.969+ 0.949+ 0.995+ 0.951+ 0.980+ 0971+ 0.975+
+0.028 +0.024 +0.026 +0.024 +0.025 +0.025 +0.028
20 0.993+ 0.990+ 0.998+ 0.993+ 0.998+ 0.994+ 0.994+
+0.029 +0.026 +0.025 +0.028 +0.027 +0.024 +0.028
160 0.996+ 0.994+ 0.999+ 0.998+ 0.998+ 0.998+ 0.998+
+0.028 +0.023 +0.025 +0.027 +0.025 +0.031 +0.030
180 0.995+ 0.994+ 0.999+ 0.998+ 0.999+ 0.998+ 0.998+
+0.030 +0.028 +0.022 +0.033 +0.026 +0.028 +0.023
200 0.994+ 0.994+ 0.999+ 0.997+ 0.999+ 0.998+ 0.998+
+0.024 +0.024 +0.024 +0.025 +0.035 +0.026 +0.029
290 0.996+ 0.993+ 0.999+ 0.997+ 0.999+ 0.998+ 0.998+
+0.028 +0.030 +0.027 +0.028 +0.026 +0.025 +0.028
Table 3
Determination coefficients of multilayer perceptron model as function
of initial energies Vs, for symmetric heavy collision systems
\/S;], Determination coefficient R? for collision system
GeV Xe + Xe Pb + Pb U+U
20 0.840+0.022 0.682+0.020 0.627+0.020
40 0.960+0.028 0.998+0.025 0.998+0.023
60 0.899+0.024 0.985+0.026 0.972+0.027
80 0.972+0.026 0.998+0.027 0.993+0.028
160 0.992+0.026 0.998+0.026 0.998+0.028
180 0.993+0.026 0.999+0.032 0.998+0.025
200 0.993+0.029 0.999+0.027 0.999+0.028
220 0.992+0.028 0.999+0.029 0.999+0.024
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Table 4
Determination coefficients of decision tree model as function
of initial energies Vs, for light-heavy collision systems
\/% Determination coefficient R? for collision system
GeV p+Xe p+Au p+Pb He + Au He+U
20 0.399+0.009 0.151+0.004 0.251+0.007 0.228+0.006 0.328+0.008
40 0.978+0.025 0.978+0.027 0.986+0.025 0.975+0.028 0.983+0.029
60 0.577+0.014 0.672+0.019 0.454+0.014 0.502+0.013 0.611+0.019
80 0.969+0.034 0.973+0.026 0.964+0.023 0.972+0.025 0.970+0.027
160 0.985+0.026 0.995+0.028 0.988+0.027 0.983+0.030 0.997+0.024
180 0.971+£0.024 0.983+0.024 0.985+0.026 0.964+0.026 0.980+0.036
200 0.982+0.027 0.980+0.029 0.989+0.029 0.966+0.028 0.969+0.030
220 0.993+0.028 0.988+0.031 0.980+0.027 0.974+0.026 0.953+0.029
Table 5
Determination coefficients of decision tree model as function
of initial energies Vs, for asymmetric heavy collision systems
\/% Determination coefficient R? for collision system
GeV | CutAu | CutPb | XetPb | XetU | Au+Pb | AutU | Pb+U
20 0.260+ 0.268+ 0.359+ 0.304+ 0.361+ 0.398+ 0.364=+
+0.008 +0.008 +0.008 +0.008 +0.015 +0.010 +0.010
40 0.966+ 0.976+ 0.981+ 0.994+ 0.996+ 0.992+ 0.989+
+0.023 +0.027 +0.028 +0.033 +0.024 +0.027 +0.028
60 0.293+ 0.173+ 0.027+ 0.557+ 0.685+ 0.732+ 0.782+
+0.008 +0.004 +0.001 +0.016 +0.018 +0.022 +0.021
20 0.989+ 0.980+ 0.997+ 0.994+ 0.996+ 0.991+ 0.988+
+0.027 +0.026 +0.026 +0.024 +0.027 +0.027 +0.025
160 0.982+ 0.973+ 0.990+ 0.996+ 0.989+ 0.986+ 0.978+
+0.026 +0.026 +0.028 +0.028 +0.028 +0.026 +0.023
130 0.966+ 0.968+ 0.978+ 0.983+ 0.990+ 0.976+ 0.978+
+0.027 +0.028 +0.024 +0.025 +0.027 +0.027 +0.030
200 0.980+ 0.986+ 0.983+ 0.994+ 0.996+ 0.988+ 0.982+
+0.025 +0.026 +0.024 +0.027 +0.027 +0.023 +0.027
220 0.976+ 0.984+ 0.964+ 0.987+ 0.988+ 0.979+ 0.978+
+0.026 +0.028 +0.026 +0.024 +0.025 +0.028 +0.024
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Table 6
Determination coefficients of decision tree model as function
of initial energies Vs, for symmetric heavy collision systems
\/S;], Determination coefficient R? for collision system
GeV Xe + Xe Pb+ Pb U+U
20 0.275+0.007 0.383+0.010 0.329+0.009
40 0.983+0.025 0.996+0.029 0.983+0.027
60 0.169+0.005 0.715+0.020 0.757+0.021
80 0.981+0.027 0.994+0.028 0.970+0.025
160 0.965+0.023 0.994+0.026 0.965+0.025
180 0.971+0.025 0.984+0.028 0.973+0.027
200 0.978+0.025 0.995+0.023 0.978+0.025
220 0.979+0.023 0.989+0.028 0.977+0.028
Table 7
Determination coefficients of random forest model as function
of initial energies Vs, for light-heavy collision systems
\/% Determination coefficient R? for collision system
GeV p+Xe p+Au p+Pb He + Au He +U
20 0.311+0.008 0.098+0.002 | 0.205+0.006 | 0.192+0.006 | 0.302+0.009
40 0.979+0.026 | 0.980+0.024 | 0.985+0.025 0.980+0.025 | 0.980+0.025
60 0.628+0.016 | 0.705+0.015 | 0.508+0.012 | 0.589+0.016 | 0.661+0.019
80 0.973+£0.024 | 0.989+0.032 | 0.988+0.028 | 0.983+0.025 | 0.979+0.030
160 0.990+0.023 0.991+0.029 | 0.987+0.025 0.981+0.027 | 0.992+0.028
180 0.989+0.028 | 0.994+0.031 0.993+0.025 0.990+0.029 | 0.992+0.032
200 0.994+0.029 | 0.993+0.027 | 0.997+0.025 0.984+0.02 0.984+0.030
220 0.986+0.030 | 0.994+0.027 | 0.990+0.030 | 0.980+0.027 | 0.970+0.024
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Table 8
Determination coefficients of random forest model as function
of initial energies Vs, for asymmetric heavy collision systems
\/% Determination coefficient R? for collision system
GeV | CutAu | CutPb | XetPb | XetU | AutPb | AutU | Pb+U
20 0.270+ | 0.274+ | 0.343+ | 0.290+ 0.338+ 0.378+ 0.352+
+0.007 | +£0.007 | +0.012 | +0.007 | +0.010 +0.010 +0.008
40 0.983+ | 0.986+ | 0.992+ | 0.995+ 0.994+ 0.972+ 0.967+
+0.027 | +£0.026 | +0.029 | +0.027 | +0.024 +0.025 +0.028
60 0.501+ | 0.393+ | 0.282+ | 0.709+ 0.754+ 0.793+ 0.806=+
+0.012 | +0.011 +0.007 | +0.018 +0.020 +0.021 +0.020
20 0.988+ | 0.984+ | 0997+ | 0.994+ 0.992+ 0.974+ 0.968+
+0.025 | +£0.028 | +0.026 | +0.028 +0.031 +0.025 +0.025
160 0.988+ | 0.987+ | 0.996+ | 0.998+ 0.995+ 0.985+ 0.981+
+0.031 +0.024 | +0.033 | +0.025 +0.028 +0.031 +0.026
180 0.985+ | 0.984+ | 0.983+ | 0.995+ 0.992+ 0.984+ 0.983+
+0.027 | +£0.027 | +0.026 | +0.023 +0.025 +0.027 +0.027
200 0.986+ | 0.988+ | 0983+ | 0.997+ 0.993+ 0.987+ 0.983+
+0.025 | +£0.025 | +0.024 | +0.028 +0.028 +0.024 +0.029
220 0.977+ | 0.980+ | 0962+ | 0.987+ 0.984+ 0.976+ 0.975+
+0.026 | +0.024 | +0.026 | +0.026 | +0.027 +0.028 +0.023
Table 9
Determination coefficients of random forest model as function
of initial energies \/sNN for symmetric heavy collision systems
\/% Determination coefficient R? for collision system
GeV Xe + Xe Pb + Pb U+U
20 0.277+0.008 0.379+0.010 0.311+0.008
40 0.986+0.023 0.990+0.029 0.947+0.027
60 0.456+0.014 0.759+0.022 0.768+0.022
80 0.977+0.030 0.986+0.030 0.952+0.027
160 0.985+0.026 0.995+0.029 0.968+0.027
180 0.986+0.032 0.991+0.028 0.977+0.027
200 0.988+0.027 0.992+0.025 0.973+0.025
220 0.978+0.028 0.981+0.029 0.971+0.027
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Comparing the data obtained, we can conclude that the multilayer perceptron model showed
the best results compared to the others with an interpolated initial energy of 60 GeV, since its
R? values are closest to unity. We should also note that the value of R? for the decision tree and
random forest models is noticeably less than unity (within the errors given in the tables).

Further analysis of these tables suggests that all models show good results for extrapolating the
given values towards higher energies (220 GeV), R> > 0.9. However, all models proved incapa-
ble of fully describing the considered dependences at energies lower than the ones on which the
training was conducted (20 GeV). The determination coefficient R?> is much less than unity for
all three models considered in this study. This is due to excessively low multiplicities of charged
particles N, and neutrons N at an initial energy of 20 GeV. Because of the strong differences
in the values of N,and N at 20 GeV, as well as at the energies on which the training was con-
ducted, none of the models turned out to be capable of correctly predicting the required values
of N and N

coll part®
Conclusion

The studies carried out allowed to establish an optimal machine learning model capable of
predicting the number of wounded nucleons N .. and the number of binary nucleon collisions
N, characterizing the collision centrality, which are not observed in the experiment, based on
the experimentally observed multiplicity of charged particles N, and the number of neutrons
N .. produced in the collision for a wide variety of collision systems with the initial energies \/_
ranglng from 40 to 200 GeV.

We established for the initial conditions and the selected parameters (the energies and col-
lision systems on which the training was conducted, as well as the energies of the interpolated
and extrapolated points) that the multilayer perceptron model gives the best results compared to
the decision tree and random forest models. Moreover, the multilayer perceptron can predict the
values of N, and N . with high accuracy (R* > 0.9) in collisions at higher (extrapolated) initial
energies: 220 240 and 260 GeV.

Intel® CoreTM 19-9980XE processor, NVIDIA GeForce RTX™ 2080 Ti graphics card and 64 GB
RAM were used for the computations.
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